WO2020217590A1 - エッジライト型導光板及びエッジライト型面光源ユニット - Google Patents

エッジライト型導光板及びエッジライト型面光源ユニット Download PDF

Info

Publication number
WO2020217590A1
WO2020217590A1 PCT/JP2019/050667 JP2019050667W WO2020217590A1 WO 2020217590 A1 WO2020217590 A1 WO 2020217590A1 JP 2019050667 W JP2019050667 W JP 2019050667W WO 2020217590 A1 WO2020217590 A1 WO 2020217590A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
tert
edge
butyl
Prior art date
Application number
PCT/JP2019/050667
Other languages
English (en)
French (fr)
Inventor
山口 泰生
佐藤 誠
Original Assignee
デンカ株式会社
東洋スチレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 東洋スチレン株式会社 filed Critical デンカ株式会社
Priority to CN201980095817.2A priority Critical patent/CN113748375A/zh
Priority to SG11202111615VA priority patent/SG11202111615VA/en
Priority to KR1020217038108A priority patent/KR20220002423A/ko
Priority to JP2021515783A priority patent/JP7344961B2/ja
Publication of WO2020217590A1 publication Critical patent/WO2020217590A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/06Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen
    • C09K15/08Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen containing a phenol or quinone moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/32Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing two or more of boron, silicon, phosphorus, selenium, tellurium or a metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to an edge light type light guide plate and an edge light type surface light source unit.
  • the backlight of the liquid crystal display includes a direct type backlight in which the light source is arranged in front of the display device and an edge light type backlight in which the light source is arranged on the side surface.
  • the light guide plate is incorporated in the edge light type backlight and plays a role of guiding the light from the side to the liquid crystal panel, and is used in a wide range of applications such as TVs, desktop personal computer monitors, notebook personal computers, mobile phones, and car navigation systems. To. A backlight using a light guide plate is also used for lighting.
  • the light guide plate receives light from the end surface (side surface) of the plate-shaped molded product, and guides the light to the front surface (light emitting surface) of the molded product by a reflection pattern formed on the rear surface (non-light emitting surface) of the molded product. It is a member that has the function of emitting surface light.
  • the light guide plate tends to be large and thin, and in order to improve the uniformity of the emitted light, it has become an industrial mainstream to provide a prism pattern or the like on the front surface (light emitting surface) of the plate-shaped molded product.
  • the pattern on the front surface or the rear surface of the plate-shaped molded product can be formed at the time of molding the plate-shaped molded product.
  • the pattern can be formed by a mold shape in injection molding, roll transfer in extrusion molding, or the like.
  • the formability of the pattern is a major issue.
  • the pattern can be formed by roll transfer in extrusion molding, but problems occur in molding such as generation of eye tar and poor transferability and releasability. It has been difficult to easily manufacture a light guide plate that gives uniform brightness.
  • the pattern forming is insufficient, there is a problem that not only the optical characteristics are inferior, but also the strength is low in combination with the thinning, and the light guide plate cannot be put into practical use.
  • the present invention has been made in view of such a problem, and is an edge light type guide that can be easily manufactured because it has excellent brightness uniformity and excellent moldability in light guide plate manufacturing by extrusion molding and roll transfer.
  • the present invention provides an optical plate and an edge light type surface light source unit using the light guide plate.
  • an edge light type light guide plate containing a styrene resin composition which has a plurality of lenticular-shaped and / or prism-shaped convex portions on the surface of the light guide plate, and has a thickness T of the light guide plate.
  • the styrene resin composition is 1.0 to 3.0 mm, and the styrene resin composition contains a styrene resin and a phosphorus-based antioxidant (A) and / or a phenol-based antioxidant (B). Satisfy at least one of (1) and (2) of (1) An edge light type light guide plate having a height H of the convex portion of 10 to 500 ⁇ m and (2) a pitch P of the convex portion of 30 to 800 ⁇ m is provided.
  • an edge light type light guide plate containing a styrene resin composition has a plurality of lenticular and / or prism-shaped convex portions of a predetermined pattern on the surface of the light guide plate.
  • the thickness of the styrene resin composition is within a predetermined range and the styrene resin composition contains a specific antioxidant, the edge light type light guide plate that can be easily manufactured because of excellent brightness uniformity and moldability. It was found that the present invention was completed.
  • the height H of the convex portion is 10 to 500 ⁇ m
  • the pitch P of the convex portion is 30 to 800 ⁇ m.
  • 0.001 to 0.5 parts by mass of the phosphorus-based antioxidant (A) and 0.001 to 0 parts of the phenol-based antioxidant (B) are made with respect to 100 parts by mass of the styrene resin composition. Contains 5 parts by mass.
  • the phosphorus-based antioxidant (A) is 2,2'-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, tris (2,4-).
  • Di-tert-butylphenyl) phosphite 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5, 5]
  • Undecane tetrakis (2,4-di-tert-butylphenyl) [1,1 biphenyl] -4,4 diylbiphosphonite, bis (2,4-di-tert-butyl-6-methylphenyl) ethyl At least one selected from phosphite.
  • the phenolic antioxidant (B) is 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-.
  • the styrene resin has a weight average molecular weight (Mw) of 200,000 to 400,000 and a ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 1.0 to 3.0.
  • the styrene-based resin composition has an average transmittance of 80% or more at a wavelength of 380 to 780 nm at an initial optical path length of 115 mm.
  • an edge light type surface light source unit having the edge light type light guide plate and a light source for supplying light to the end surface of the edge light light guide plate.
  • FIG. 1A is a perspective view when the convex portion has a lenticular shape
  • FIG. 1B is a perspective view when the convex portion has a prism shape.
  • FIG. 2A is a cross-sectional view when the convex portion has a lenticular shape
  • FIG. 2B is a cross-sectional view when the convex portion has a prism shape. It is the schematic which shows an example of the manufacturing method of the light guide plate of this invention.
  • the edge light type light guide plate of the present invention has an uneven shape on the surface of the light guide plate. More specifically, as shown in FIG. 1, the surface of the light guide plate 1 has a plurality of lenticular-shaped (FIG. 1A) and / or prism-shaped (FIG. 1B) convex portions 3.
  • the convex portion is preferably provided on at least one surface of the light guide plate, and particularly needs to be provided on one surface which is the front surface (light emitting surface) of the light guide plate. Other surfaces may be provided if necessary, but it is more preferable that the other surfaces are provided only on the front surface (light emitting surface) of the light guide plate.
  • the lenticular-shaped convex portion is an arc-shaped convex portion 3A as shown in FIG. 1A
  • the edge shape of the cross section is an arc-shaped ridge (FIG. 2A).
  • the prism shape is an arc-shaped convex portion 3B as shown in FIG. 1B
  • the edge shape of the cross section is a triangular chevron-shaped ridge (FIG. 2B).
  • the convex portions are formed so as to have a plurality of rows and a parallel relationship with each other (Fig. 1). Further, it is preferable that the convex portion is integrally formed with the light guide plate.
  • the plurality of convex portions on the surface of the light guide plate is not limited as long as a plurality of convex portions are formed, but it is preferably a periodic pattern.
  • the pitch P of the convex portion is preferably 30 to 800 ⁇ m, more preferably 100 to 600 ⁇ m, and further preferably 200 to 400 ⁇ m. Within such a range, a light guide plate having sufficient strength is produced with excellent extrusion stability, roll transferability, and roll releasability in molding of a styrene resin composition to which an antioxidant is added. Is easy.
  • the pitch P of the convex portion is, for example, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650. , 700, 750, 800 ⁇ m, and may be within the range between any two of the numerical values exemplified here.
  • the pitch P of the convex portion is an average value of the distances between the vertices of the adjacent convex portions, as shown in FIG. In a specific example, it is the average value of the distances between the vertices of adjacent convex portions for 100 consecutive convex portions in an arbitrary range.
  • the height H of the convex portion is preferably 10 to 500 ⁇ m, more preferably 50 to 300 ⁇ m, and further preferably 90 to 200 ⁇ m. Within such a range, a light guide plate having sufficient strength is produced with excellent extrusion stability, roll transferability, and roll releasability in molding of a styrene resin composition to which an antioxidant is added. Is easy.
  • the height H of the convex portion is, for example, 10, 20, 21, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, It is 450, 500 ⁇ m, and may be within the range between any two of the numerical values exemplified here.
  • the height H of the convex portion is, as shown in FIG. 2, the average value of the difference between the lowest portion and the highest portion of the convex portion. In a specific example, it is the average value of the difference between the lowest portion and the highest portion of the convex portion for 100 consecutive convex portions in an arbitrary range.
  • the width W of the convex portion is preferably 30 to 800 ⁇ m, more preferably 100 to 600 ⁇ m, and further preferably 200 to 400 ⁇ m. Within such a range, a light guide plate having sufficient strength is produced with excellent extrusion stability, roll transferability, and roll releasability in molding of a styrene resin composition to which an antioxidant is added. Is easy.
  • the width W of the convex portion is, for example, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650. , 700, 750, 800 ⁇ m, and may be within the range between any two of the numerical values exemplified here.
  • the width W of the convex portion is an average value of the distances between the lowest portions of the convex portion, as shown in FIG. In a specific example, it is the average value of the distances between the lowest points of the convex portions for 100 consecutive convex portions in an arbitrary range.
  • the ratio (H / P) of the height H of the convex portion to the pitch P is preferably 0.1 to 1.0, more preferably 0.26 to 0.7, and further preferably 0.3 to 0.3. It is 0.5. Within such a range, a light guide plate having sufficient strength is produced with excellent extrusion stability, roll transferability, and roll releasability in molding of a styrene resin composition to which an antioxidant is added. Is easy.
  • the ratio (H / P) is, for example, 0.10, 0.15, 0.20, 0.25, 0.26, 0.30, 0.31, 0.32, 0.33, It is 0.34, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.66, 0.67, 0.68, 0.70. It may be within the range between any two of the numerical values exemplified here.
  • the thickness T of the light guide plate is 1.0 to 3.0 mm, preferably 1.5 to 2.5 mm, and more preferably 1.6 to 2.4 mm. Within such a range, a light guide plate having sufficient strength is produced with excellent extrusion stability, roll transferability, and roll releasability in molding of a styrene resin composition to which an antioxidant is added. Is easy.
  • the thickness T of the light guide plate is, for example, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1 9.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0 mm, here It may be within the range between any two of the numerical values exemplified in 1.
  • the edge light type light guide plate of the present invention is an edge light type light guide plate containing a styrene resin composition. That is, it is a molded product made of a styrene resin composition.
  • the styrene-based resin composition contains a styrene-based resin and a phosphorus-based antioxidant (A) and / or a phenol-based antioxidant (B).
  • the styrene resin can be obtained by polymerizing a styrene monomer.
  • the styrene-based monomer is a single aromatic vinyl-based monomer such as styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, ethylstyrene, and pt-butylstyrene. Alternatively, it is a mixture of two or more kinds, preferably styrene.
  • styrene-based resin is preferably substantially composed of only the styrene-based monomer, and more preferably a homopolymer of the styrene-based monomer.
  • the styrene-based resin composition is preferably composed of a styrene-based resin and various additives, and the styrene-based resin is, for example, 90 to 99.998 parts by mass with respect to 100 parts by mass of the styrene-based resin composition. , 95 to 99.98 parts by mass is preferable. Specifically, for example, the ratio of the styrene resin is 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99 with respect to 100 parts by mass of the styrene resin composition.
  • Examples of the polymerization method of the styrene resin include known styrene polymerization methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. From the viewpoint of quality and productivity, the bulk polymerization method and the solution polymerization method are preferable, and continuous polymerization is preferable.
  • the solvent for example, alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane can be used.
  • a polymerization initiator and a chain transfer agent can be used as needed.
  • a radical polymerization initiator is preferable, and for example, known and commonly used 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy) butane, 2,2- Peroxyketals such as di (4,5-di-t-butylperoxycyclohexyl) propane, 1,1-di (t-amylperoxy) cyclohexane, cumenehydroperoxide, t-butylhydroperoxide and the like.
  • alkyl peroxides such as t-butylperoxyacetate, t-amylperoxyisononanoate, t-butylcumyl peroxide, di-t-butyl peroxide, dicumyl peroxide, di-t -Dialkyl peroxides such as hexyl peroxide, peroxyesters such as t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxyisopropyl carbonate, polyether Peroxycarbonates such as tetrakis (t-butylperoxycarbonate), N, N'-azobis (cyclohexane-1-carbonitrile), N, N'-azobis (2-methylbutyronitrile), N, N' -Azobis (2,4-dimethylvaleronitrile), N, N'-azobis [2- (hydroxymethyl)
  • 4-t-Butylcatechol (TBC) is often used as the polymerization inhibitor of the styrene-based monomer used for the polymerization of the styrene-based resin, and 4-t- in the styrene-based resin composition. A small amount of butylcatechol may remain. Since 4-t-butylcatechol itself becomes a coloring component and reduces hue and transmittance, it is preferable that 4-t-butylcatechol is not contained in the styrene resin composition as much as possible, but it should be completely removed. Is difficult.
  • the preferred range of 4-t-butylcatechol is 0.001 to 10 ⁇ g / g, more preferably 0.01 to 8 ⁇ g / g, and particularly preferably 0.1 to 6 ⁇ g / g.
  • the polymerization reaction is controlled by adjusting the polymerization temperature or the like so as to obtain the target molecular weight, molecular weight distribution, and reaction conversion rate by using a complete mixing tank type stirring tank or a column reactor known in the polymerization step. Will be done.
  • the polymerization solution containing the polymer that has left the polymerization step is transferred to the devolatile step, and the unreacted monomer and the polymerization solvent are removed.
  • the volatilization process consists of a vacuum devolatilization tank with a heater and a devolatilization extruder with a vent.
  • the molten polymer that has left the devolatile step is transferred to the granulation step.
  • the molten resin is extruded into a strand shape from a porous die and processed into a pellet shape by a cold cut method, an aerial hot cut method, or an underwater hot cut method.
  • the weight average molecular weight (Mw) of the styrene resin is preferably 200,000 to 400,000, more preferably 220,000 to 380,000, and further preferably 250,000 to 300,000. By setting it in such a range, both moldability and strength of the light guide plate can be achieved. If it is less than 200,000, the strength of the molded product becomes insufficient, and if it exceeds 400,000, the moldability is significantly lowered.
  • the weight average molecular weight (Mw) of the styrene resin is, for example, 200,000, 210,000, 220,000, 230,000, 240,000, 250,000, 260,000, 270,000, 280,000, 290,000, 300,000.
  • the weight average molecular weight of the styrene resin should be controlled by the reaction temperature, residence time, type and addition amount of polymerization initiator, type and addition amount of chain transfer agent, type and amount of solvent used during polymerization, etc. in the polymerization step. Can be done.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the styrene resin is preferably 1.0 to 3.0, more preferably 1.2 to 2.8. , More preferably 1.5 to 2.5. Within such a range, a light guide plate having sufficient strength is produced with excellent extrusion stability, roll transferability, and roll releasability in molding of a styrene resin composition to which an antioxidant is added. Is easy.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the styrene resin is, for example, 1.0, 1.1, 1.2, 1.3, 1. 4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, It is 2.7, 2.8, 2.9, and 3.0, and may be within the range between any two of the numerical values exemplified here.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the styrene resin is the reaction temperature, residence time, type and addition amount of the polymerization initiator, type of chain transfer agent, and the chain transfer agent. It can be controlled by the amount of addition, the type and amount of the solvent used at the time of polymerization, and the like.
  • the styrene-based resin composition may contain either a phosphorus-based antioxidant (A) or a phenol-based antioxidant (B), but by using both in combination, higher moldability and strength can be obtained. can get.
  • the phosphorus-based antioxidant (A) is preferably contained in an amount of 0.001 to 0.5 parts by mass, preferably 0.01 to 0.4 parts by mass, based on 100 parts by mass of the styrene resin composition. It is preferably contained in an amount of 0.05 to 0.3 parts by mass, more preferably.
  • the phenolic antioxidant (B) is preferably contained in an amount of 0.001 to 0.5 parts by mass, preferably 0.01 to 0.3 parts by mass, based on 100 parts by mass of the styrene resin composition. It is preferable, and it is more preferable to contain 0.05 to 0.2 parts by mass. Within such a range, moldability and strength are excellent.
  • the contents of the phosphorus-based antioxidant (A) and the phenol-based antioxidant (B) with respect to 100 parts by mass of the styrene-based resin composition are, for example, 0.001, 0.005, and 0. 01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.25, 0.25, It is 0.30, 0.35, 0.40, 0.45, 0.50 parts by mass, and may be within the range between any two of the numerical values exemplified here.
  • the phosphorus antioxidant (A) is, for example, 2,2'-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, tris (2,4-di-).
  • tert-Butylphenyl) phosphite 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5]
  • Undecane tetrakis (2,4-di-tert-butylphenyl) [1,1 biphenyl] -4,4 diylbiphosphonite, bis (2,4-di-tert-butyl-6-methylphenyl) ethyl subphosphorus At least one selected from acid esters.
  • the phenolic antioxidant (B) is, for example, 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo.
  • [D, f] [1,3,2] dioxaphosphepine, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, ethylenebis (oxyethylene) bis [3- (5-tert-Butyl-4-hydroxy-m-tolyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis [2 -[3- (3-tert-Butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraox
  • a phosphorus-based-phenolic compound when 0.1 parts by mass of a phosphorus-based-phenolic compound is contained, 0.1 parts by mass of a phosphorus-based antioxidant and a phenol-based antioxidant are added to 100 parts by mass of the styrene resin composition. It is considered to contain 0.1 parts by mass.
  • Examples of the method for adding the phosphorus-based antioxidant (A), the phenol-based antioxidant (B), and other additives include a method of adding and mixing in a styrene resin polymerization step, a volatilization step, and a granulation step, and molding.
  • Examples thereof include a method of diluting and mixing the desired content, and the present invention is not particularly limited.
  • the styrene resin composition contains a sulfur-based antioxidant, a lactone-based antioxidant, an ultraviolet absorber, a hindered amine-based stabilizer, an antistatic agent, a hydrophilic additive, and liquid paraffin (as long as the effects of the present invention are not impaired. It can contain various additives such as mineral oil), polyethylene wax, microcrystalline wax, and brewing agent.
  • the styrene resin composition contains higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid, stearic acid amide, erucic acid amide, ethylene bisstearic acid amide and the like as additives as long as the effects of the present invention are not impaired.
  • a mold release agent such as a higher fatty acid amide, myristic alcohol, cetyl alcohol, stearic acid or the like may be contained, but it is preferable not to contain more than necessary because it may deteriorate the permeability.
  • the content of the release agent is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less in the styrene resin composition. From the viewpoint of obtaining a high transmittance, it is preferable that the styrene resin composition does not substantially contain a release agent.
  • the Vicat softening temperature of the styrene resin composition is preferably 95 to 104 ° C, more preferably 97 to 104 ° C. If the Vicat softening temperature is less than 95 ° C., the heat resistance is insufficient, and the light guide plate may be deformed depending on the usage environment.
  • the degree of fogging of the styrene resin composition is preferably 5% or less, more preferably 1% or less in a molded product having a thickness of 4 mm.
  • the average transmittance of the styrene resin composition at an initial optical path length of 115 mm and a wavelength of 380 to 780 nm is preferably 80% or more, more preferably 84% or more.
  • the average transmittance of the styrene resin composition at a wavelength of 380 to 780 nm at an optical path length of 115 mm after a long-term durability test is preferably 80% or more, more preferably 83% or more.
  • the initial YI value of the styrene resin composition is preferably 7.0 or less, more preferably 6.0 or less.
  • the difference ( ⁇ YI) between the initial YI value and the YI value after the long-term durability test is preferably 3.0 or less, more preferably 2.0 or less, and further preferably 1.5 or less. Is.
  • the total light transmittance and YI value were measured by the following procedure. Using pellets of the styrene resin composition, injection molding was performed at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. to form a plate-shaped molded product having a thickness of 127 ⁇ 127 ⁇ 3 mm. Here, the sample for which the long-term durability is evaluated (the sample after the long-term durability test) was stored in an oven at 80 ° C. for 1000 hours. Next, a test piece having a thickness of 115 ⁇ 85 ⁇ 3 mm was cut out from the plate-shaped molded product, and the end face was polished by buffing to prepare a plate-shaped molded product having a mirror surface on the end face.
  • the wavelength at an optical path length of 115 mm in incident light having a size of 20 ⁇ 1.6 mm and a spreading angle of 0 °.
  • the spectral transmittance of 350 nm to 800 nm was measured, and the YI value at a field of view of 2 ° in the C light source was calculated according to JIS K7105.
  • the average transmittance at a wavelength of 380 nm to 780 nm is the total light transmittance.
  • the edge light type light guide plate of the present invention is obtained by molding the above-mentioned styrene resin composition, and as a molding method, known methods such as sheet extrusion molding, injection molding, and compression molding can be used. In terms of productivity and easy upsizing of molded products, continuous sheet extrusion molding provided with a surface shape transfer mold is preferable.
  • the sheet extrusion molding include an extrusion step of supplying a resin in a heated and melted state to a feed block to continuously create an extrusion sheet from a die, and a pressing step of sandwiching the resin sheet between a pressure-bonding roll and a cooling roll.
  • a continuous sheet extrusion molding method having a transport step of transporting the resin sheet while being in close contact with the cooling roll and having a transfer mold on the surface of the cooling roll has been raised, and the shape of the transfer mold has been changed.
  • the edge light type light guide plate of the present invention has an uneven shape on the front surface (light emitting surface), but the back surface is subjected to a reflection process for diffusely reflecting light.
  • the reflection processing for example, in addition to silk printing and inkjet printing, a method of imparting dot-shaped irregularities by laser irradiation can be mentioned.
  • dot pattern printing ink having fine particles that diffuse light can be used. it can.
  • Edge light type surface light source unit of the present invention is an edge light type surface light source unit having an edge light type light guide plate and a light source that supplies light to the end surface of the light guide plate.
  • the edge light type surface light source unit of the present invention is suitably used as a surface light source device for a liquid crystal display device.
  • the conditions shown in Table 1 are formed by connecting the first reactor, which is a complete mixing type stirring tank, the second reactor, and the third reactor, which is a plug-flow type reactor with a static mixer, in series to form a polymerization process.
  • a styrene-based resin was produced.
  • the capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor.
  • a raw material solution was prepared with the raw material composition shown in Table 1, and the raw material solution was continuously supplied to the first reactor at the flow rate shown in Table 1.
  • the polymerization initiator was added to the raw material solution at the inlet of the first reactor so as to have the addition concentration (concentration based on the mass with respect to the raw material styrene) shown in Table 1, and uniformly mixed.
  • the polymerization initiators shown in Table 1 are as follows: Polymerization initiator-1: 2,2-di (4,5-t-butylperoxycyclohexyl) propane (Pertetra A manufactured by NOF CORPORATION was used).
  • Polymerization Initiator-2 1,1-di (t-Butyl Peroxy) Cyclohexane (Perhexa C manufactured by NOF CORPORATION was used)
  • a temperature gradient was applied along the flow direction, and the temperature was adjusted to the temperature shown in Table 1 at the intermediate portion and the outlet portion.
  • a solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater composed of two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1.
  • the strands are extruded into strands from a porous die, and the strands are cooled and cut by a cold cut method. It was pelletized.
  • the melt mass flow rate (MFR) was measured according to JIS K 7210 at a temperature of 200 ° C. and a load of 49 N, and the Vicat softening temperature was measured according to JIS K 7206 at a heating rate of 50 ° C./hr and a test load of 50 N.
  • the weight average molecular weight (Mw), Z average molecular weight (Mz), and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC model Showa Denko Corporation Shodex GPC-101 Column: Polymer Laboratories PLgel 10 ⁇ m MIXED-B Mobile phase: tetrahydrofuran Sample concentration: 0.2% by mass Temperature: Oven 40 ° C, inlet 35 ° C, detector 35 ° C Detector: Differential refractometer
  • the molecular weight is calculated as the polystyrene-equivalent molecular weight by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.
  • the phosphorus-based antioxidant (A) and phenol-based antioxidant (B) in Tables 2 and 3 are as follows, respectively.
  • Phosphorus antioxidant (A) HP-10 2,2'-Methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2-ethylhexyloxy) Phosphorus (ADEKA CORPORATION ADEKA STAB HP-10) 168: Tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168 manufactured by BASF Japan Ltd.)
  • PEP-36 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] Undecane (Co., Ltd.) ADEKA made ADEKA STAB PEP-36)
  • P-EPQ Tetrakis (2,4-di-tert-butylphenyl) [1,1 biphenyl] -4,4 diylbiphosphonite (Hostanox P-EPQ manufactured by Clariant Co.
  • the end face was polished by buffing to prepare a plate-shaped molded product having a mirror surface on the end face.
  • the wavelength at an optical path length of 115 mm in incident light having a size of 20 ⁇ 1.6 mm and a spreading angle of 0 °.
  • the spectral transmittance of 350 nm to 800 nm was measured, and the YI value at a field of view of 2 ° in the C light source was calculated according to JIS K7105.
  • the total light transmittance shown in Tables 2 and 3 represents the average transmittance at a wavelength of 380 nm to 780 nm.
  • the sheet was extruded from a T-die 9 having a width of 1500 mm at a resin temperature of 260 ° C. via 7. Subsequently, the extruded sheet is sandwiched between the crimping roll 11 (mirror surface cooling roll) and the first cooling roll 13 (mirror surface cooling roll), transported in a state of being wound around the first cooling roll 13, and then further cooled first.
  • the resin sheet peeled off from the second cooling roll 15 is picked up by the picking roll 17. It was picked up at 2 m / min.
  • Roll transferability The roll transfer rate T was determined by the following formula, and the roll transferability was evaluated with a roll transfer rate T of 95% or more as ⁇ , 85 to 95% as ⁇ , and 85% or less as x.
  • Roll transfer rate T (%) height of convex part of resin sheet H / depth of groove part of transfer type H' ⁇ 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Planar Illumination Modules (AREA)

Abstract

輝度の均一性に優れ、且つ押出成形及びロール転写による導光板製造において成形性に優れるために容易に製造可能であるエッジライト型導光板、及び当該導光板を用いたエッジライト型面光源ユニットを提供する。 本発明によれば、スチレン系樹脂組成物を含むエッジライト型導光板であって、前記導光板の表面に複数のレンチキュラー形状及び/又はプリズム形状の凸部を有し、前記導光板の厚みTが1.0~3.0mmであり、前記スチレン系樹脂組成物が、スチレン系樹脂と、リン系酸化防止剤(A)及び/又はフェノール系酸化防止剤(B)と、を含有し、下記の(1)及び(2)の少なくとも一方を満たす、 (1)前記凸部の高さHが10~500μmである (2)前記凸部のピッチPが30~800μmである エッジライト型導光板が提供される。

Description

エッジライト型導光板及びエッジライト型面光源ユニット
 本発明は、エッジライト型導光板及びエッジライト型面光源ユニットに関する。
 液晶ディスプレイのバックライトには光源を表示装置の正面に配置する直下型バックライトと側面に配置するエッジライト型バックライトがある。導光板はエッジライト型バックライトに組み込まれ、側面からの光を液晶パネルに導く役割を果たし、テレビ、デスクトップ型パーソナルコンピューターのモニター、ノート型パーソナルコンピューター、携帯電話機、カーナビゲーションなど幅広い用途で使用される。また、導光板を用いたバックライトは、照明用としても使用される。導光板にはPMMA(ポリメチルメタクリレート)に代表されるアクリル樹脂よりも吸水性が低く、成形品に反りの発生や寸法の変化が発生しにくいスチレン系樹脂を用いることが提案されている(特許文献1)。さらにポリスチレンを導光板に用いることも提案されている。
 導光板は、板状の成形品の端面(側面)から光を入射し、成形品の後面(非発光面)に形成された反射パターンにより、成形品の前面(発光面)に光を導き、面発光させる機能を持った部材である。近年導光板は大型薄肉化傾向で、また、出射光の均一性を高めるために、板状成形品の前面(発光面)にプリズムパターン等を設けることが工業的な主流となっている。板状成形品の前面あるいは後面のパターンは、板状成形品の成形時に形成させることができ、例えば射出成形では金型形状、押出成形ではロール転写などによって、パターンを形成させることができる。
特開2003-075648号公報 国際公報2013/094642号
 しかしながら、アクリル樹脂より光学特性に劣るポリスチレンを用いる導光板においては、パターンの成形性が大きな課題である。導光板の前面(発光面)に凹凸形状のパターンを設ける際、押出成形ではロール転写によってパターンを形成させることができるが、目ヤニの発生や転写性・離型性不良など成形に問題を生じ、均一な輝度を与える導光板を容易に製造することが困難であった。一方、パターン成形が不十分であると、光学特性に劣るばかりか、薄肉化と相まって強度が低く、実用化に耐えない導光板になるという課題があった。
 本発明はこのような問題に鑑みてなされたものであり、輝度の均一性に優れ、且つ押出成形及びロール転写による導光板製造において成形性に優れるために容易に製造可能であるエッジライト型導光板、及び当該導光板を用いたエッジライト型面光源ユニットを提供するものである。
 本発明によれば、スチレン系樹脂組成物を含むエッジライト型導光板であって、前記導光板の表面に複数のレンチキュラー形状及び/又はプリズム形状の凸部を有し、前記導光板の厚みTが1.0~3.0mmであり、前記スチレン系樹脂組成物が、スチレン系樹脂と、リン系酸化防止剤(A)及び/又はフェノール系酸化防止剤(B)と、を含有し、下記の(1)及び(2)の少なくとも一方を満たす、
 (1)前記凸部の高さHが10~500μmである
 (2)前記凸部のピッチPが30~800μmである
 エッジライト型導光板が提供される。
 本発明者らは、鋭意検討を行ったところ、スチレン系樹脂組成物を含むエッジライト型導光板において、表面に複数のレンチキュラー及び/又はプリズム形状の所定のパターンの凸部を有し、導光板の厚みが所定の範囲であり、スチレン系樹脂組成物が特定の酸化防止剤を含む場合には、輝度の均一性に優れ、且つ成形性に優れるために容易に製造可能なエッジライト型導光板となることを見出し、本発明の完成に至った。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記凸部の高さHが10~500μmであり、前記凸部のピッチPが30~800μmである。
 好ましくは、前記スチレン系樹脂組成物100質量部に対して、前記リン系酸化防止剤(A)0.001~0.5質量部と、前記フェノール系酸化防止剤(B)0.001~0.5質量部と、を含有する。
 好ましくは、前記リン系酸化防止剤(A)が、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、3,9-ビス(2,6-ジ―tert-ブチル―4-メチルフェノキシ)-2,4,8,10-テトラオキサ―3,9-ジホスファスピロ〔5,5〕ウンデカン、テトラキス(2,4-ジ―tert-ブチルフェニル)〔1,1ビフェニル〕―4,4ジイルビホスホナイト、ビス(2,4-ジ―tert-ブチル―6-メチルフェニル)エチル亜リン酸エステルから選ばれる少なくとも1種である。
 好ましくは、前記フェノール系酸化防止剤(B)が、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-〔3-(3-tert-ブチル―4-ヒドロキシ―5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンから選ばれる少なくとも1種である。
 好ましくは、前記スチレン系樹脂の重量平均分子量(Mw)が20万~40万で、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.0~3.0である。
 好ましくは、前記スチレン系樹脂組成物の初期の光路長115mmでの波長380~780nmの平均透過率が80%以上である。
 本発明の別の観点によれば、前記エッジライト型導光板と、前記エッジライト導光板の端面に光を供給する光源を有する、エッジライト型面光源ユニットが提供される。
本発明の導光板の概略を表す斜視図である。図1Aは凸部がレンチキュラー形状の場合の斜視図であり、図1Bは凸部がプリズム形状の場合の斜視図である。 本発明の導光板の断面図である。図2Aは凸部がレンチキュラー形状の場合の断面図であり、図2Bは凸部がプリズム形状の場合の断面図である。 本発明の導光板の製造方法の一例を示す概略図である。
 以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。
1.エッジライト型導光板
[導光板の形状]
(凸部)
 本発明のエッジライト型導光板は、導光板の表面に凹凸形状を有する。より詳細には、図1に示すように、導光板1の表面に複数のレンチキュラー形状(図1A)及び/又はプリズム形状(図1B)の凸部3を有する。凸部は、導光板の少なくとも一つの面に設けられていることが好ましく、特に導光板の前面(発光面)である一つの面に設けられている必要がある。他の面についても必要であれば設けてもよいが、導光板の前面(発光面)にのみ設けられていることがより好ましい。
 ここで、レンチキュラー形状の凸部とは、図1Aに示すような円弧状の凸部3Aであり、断面の縁形状が円弧状の突条体となされている(図2A)。また、プリズム形状とは、図1Bに示すような円弧状の凸部3Bであり、断面の縁形状が三角山形の突条体となされている(図2B)。また、凸部は複数条、互いに平行関係となるように形成されている(図1)。また、凸部は導光板に一体的に形成されていることが好ましい。
 導光板の表面上の複数の凸部は、複数形成されていれば制限されないが、好ましくは、周期的なパターンである。
 凸部のピッチPは、好ましくは30~800μmであり、より好ましくは100~600μmであり、さらに好ましくは200~400μmである。このような範囲内であると、酸化防止剤を添加したスチレン系樹脂組成物の成形において、優れた押出安定性、ロール転写性、及びロール離型性で、十分な強度の導光板を製造することが容易である。凸部のピッチPは、具体的には例えば、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ここで、凸部のピッチPとは、図2に示すように、隣接する凸部の頂点間の距離の平均値である。具体的一例においては、任意の範囲における、連続した100個の凸部についての隣接する凸部の頂点間の距離の平均値である。
 凸部の高さHは、好ましくは10~500μmであり、より好ましくは50~300μmであり、さらに好ましくは90~200μmである。このような範囲内であると、酸化防止剤を添加したスチレン系樹脂組成物の成形において、優れた押出安定性、ロール転写性、及びロール離型性で、十分な強度の導光板を製造することが容易である。凸部の高さHは、具体的には例えば、10、20、21、25、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ここで、凸部の高さHとは、図2に示すように、凸部の最も低い箇所と高い箇所の差の平均値である。具体的一例においては、任意の範囲における、連続した100個の凸部についての凸部の最も低い箇所と高い箇所の差の平均値である。
 凸部の幅Wは、好ましくは30~800μmであり、より好ましくは100~600μmであり、さらに好ましくは200~400μmである。このような範囲内であると、酸化防止剤を添加したスチレン系樹脂組成物の成形において、優れた押出安定性、ロール転写性、及びロール離型性で、十分な強度の導光板を製造することが容易である。凸部の幅Wは、具体的には例えば、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ここで、凸部の幅Wとは、図2に示すように、凸部の最も低い箇所間の距離の平均値である。具体的一例においては、任意の範囲における、連続した100個の凸部についての凸部の最も低い箇所間の距離の平均値である。
 凸部の高さHとピッチPの比(H/P)は、好ましくは0.1~1.0であり、より好ましくは0.26~0.7であり、さらに好ましくは0.3~0.5である。このような範囲内であると、酸化防止剤を添加したスチレン系樹脂組成物の成形において、優れた押出安定性、ロール転写性、及びロール離型性で、十分な強度の導光板を製造することが容易である。比(H/P)は、具体的には例えば、0.10、0.15、0.20、0.25、0.26、0.30、0.31、0.32、0.33、0.34、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.66、0.67、0.68、0.70であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
(厚み)
 導光板の厚みTは、1.0~3.0mmであり、好ましくは1.5~2.5mmであり、より好ましくは1.6~2.4mmである。このような範囲内であると、酸化防止剤を添加したスチレン系樹脂組成物の成形において、優れた押出安定性、ロール転写性、及びロール離型性で、十分な強度の導光板を製造することが容易である。導光板の厚みTは、具体的には例えば、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
[スチレン系樹脂組成物]
 本発明のエッジライト型導光板は、スチレン系樹脂組成物を含むエッジライト型導光板である。すなわち、スチレン系樹脂組成物からなる成形品である。
 スチレン系樹脂組成物は、スチレン系樹脂と、リン系酸化防止剤(A)及び/又はフェノール系酸化防止剤(B)と、を含有する。
(スチレン系樹脂)
 スチレン系樹脂は、スチレン系単量体を重合して得ることができる。スチレン系単量体とは、芳香族ビニル系モノマーである、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、m-メチルスチレン、エチルスチレン、p-t-ブチルスチレン等の単独または2種以上の混合物であり、好ましくはスチレンである。また、本発明の特徴を損ねない範囲でスチレン系単量体以外の単量体と共重合してもよく、アクリル酸、メタクリル酸、アクリル酸ブチル、アクリル酸エチル、アクリル酸メチル、メタクリル酸メチル等のアクリル系モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、や無水マレイン酸、フマル酸等のα,β-エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。スチレン系樹脂は、好ましくは実質的にスチレン系単量体のみからなり、より好ましくはスチレン系単量体のホモポリマーである。
 スチレン系樹脂組成物は、スチレン系樹脂と、各種添加剤とで構成されていることが好ましく、スチレン系樹脂組成物100質量部に対して、スチレン系樹脂を、例えば90~99.998質量部、95~99.98質量部含有することが好ましい。スチレン系樹脂の割合は、具体的には例えば、スチレン系樹脂組成物100質量部に対して、90、91、92、93、94、95、96、97、98、99、99.1、99.2、99.3、99.4、99.5、99.6、99.7、99.8、99.85、99.88、99.9、99.98、99.998質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 スチレン系樹脂の重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等公知のスチレン重合方法が挙げられる。品質面や生産性の面では、塊状重合法、溶液重合法が好ましく、連続重合であることが好ましい。溶媒として例えばベンゼン、トルエン、エチルベンゼン及びキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等が使用できる。
 スチレン系樹脂の重合時に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤としては、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ジ(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン等のパーオキシケタール類、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、t-ブチルパーオキシアセテート、t-アミルパーオキシイソノナノエート等のアルキルパーオキサイド類、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド等のジアルキルパーオキサイド類、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、t-ブチルパーオキシイソプロピルカーボネート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)等のパーオキシカーボネート類、N,N'-アゾビス(シクロヘキサン-1-カルボニトリル)、N,N'-アゾビス(2-メチルブチロニトリル)、N,N'-アゾビス(2,4-ジメチルバレロニトリル)、N,N'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することができる。連鎖移動剤としては、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α-メチルスチレンダイマー及びテルピノーレン等が挙げられる。
 スチレン系樹脂の重合に用いられるスチレン系単量体の重合禁止剤としては、4-t-ブチルカテコール(TBC)が使用されることが多く、スチレン系樹脂組成物中には、4-t-ブチルカテコールが僅かに残留する場合がある。4-t-ブチルカテコール自体が着色成分となり、色相や透過率を低下させるため、スチレン系樹脂組成物中には、4-t-ブチルカテコールを極力含まないことが好ましいが、完全に除去することは難しい。4-t-ブチルカテコールの好ましい範囲としては、0.001~10μg/gであり、より好ましくは、0.01~8μg/gであり、特に好ましくは、0.1~6μg/gである。
 連続重合の場合、まず重合工程にて公知の完全混合槽型攪拌槽や塔型反応器等を用い、目標の分子量、分子量分布、反応転化率となるよう、重合温度調整等により重合反応が制御される。重合工程を出た重合体を含む重合溶液は、脱揮工程に移送され、未反応の単量体及び重合溶媒が除去される。脱揮工程は加熱器付きの真空脱揮槽やベント付き脱揮押出機などで構成される。脱揮工程を出た溶融状態の重合体は造粒工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。
 スチレン系樹脂の重量平均分子量(Mw)は、好ましくは20万~40万であり、より好ましくは22万~38万であり、さらに好ましくは25万~30万である。このような範囲にすることにより成形性と導光板の強度を両立することができる。20万未満では成形品の強度が不十分となり、40万を超えると成形性が著しく低下する。スチレン系樹脂の重量平均分子量(Mw)は、具体的には例えば、20万、21万、22万、23万、24万、25万、26万、27万、28万、29万、30万、31万、32万、33万、34万、35万、36万、37万、38万、39万、40万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。スチレン系樹脂の重量平均分子量は、重合工程の反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。
 スチレン系樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、好ましくは1.0~3.0であり、より好ましくは1.2~2.8であり、さらに好ましくは1.5~2.5である。このような範囲内であると、酸化防止剤を添加したスチレン系樹脂組成物の成形において、優れた押出安定性、ロール転写性、及びロール離型性で、十分な強度の導光板を製造することが容易である。スチレン系樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、具体的には例えば、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 スチレン系樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、重合工程の反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。
(リン系酸化防止剤(A)/フェノール系酸化防止剤(B))
 スチレン系樹脂組成物は、リン系酸化防止剤(A)及びフェノール系酸化防止剤(B)の何れか一方を含有していればよいが、双方を併用することでより高い成形性及び強度が得られる。
 リン系酸化防止剤(A)は、スチレン系樹脂組成物100質量部に対して、0.001~0.5質量部含有することが好ましく、0.01~0.4質量部含有することが好ましく、0.05~0.3質量部含有することがより好ましい。また、フェノール系酸化防止剤(B)は、スチレン系樹脂組成物100質量部に対して、0.001~0.5質量部含有することが好ましく、0.01~0.3質量部含有することが好ましく、0.05~0.2質量部含有することがより好ましい。このような範囲内であると、成形性及び強度が優れる。スチレン系樹脂組成物100質量部に対する、リン系酸化防止剤(A)及びフェノール系酸化防止剤(B)の含有量は、それぞれ、具体的には例えば、0.001、0.005、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 リン系酸化防止剤(A)は、例えば、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、3,9-ビス(2,6-ジ―tert-ブチル―4-メチルフェノキシ)-2,4,8,10-テトラオキサ―3,9-ジホスファスピロ〔5,5〕ウンデカン、テトラキス(2,4-ジ―tert-ブチルフェニル)〔1,1ビフェニル〕―4,4ジイルビホスホナイト、ビス(2,4-ジ―tert-ブチル―6-メチルフェニル)エチル亜リン酸エステルから選ばれる少なくとも1種である。
 フェノール系酸化防止剤(B)は、例えば、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-〔3-(3-tert-ブチル―4-ヒドロキシ―5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンから選ばれる少なくとも1種である。
 前述の6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン(例えば、住友化学株式会社製、スミライザーGP)のように、同一分子内にフォスファイト構造とフェノール構造を併せ持つ化合物については、スチレン系樹脂組成物に対して、リン系酸化防止剤とフェノール系酸化防止剤のそれぞれを含有すると考える。例えば、リン系―フェノール系化合物を0.1質量部含有する場合には、スチレン系樹脂組成物100質量部に対して、リン系酸化防止剤を0.1質量部、フェノール系酸化防止剤を0.1質量部含有すると考える。
 リン系酸化防止剤(A)、フェノール系酸化防止剤(B)、及びその他の添加剤の添加方法としては、スチレン系樹脂の重合工程、脱揮工程、造粒工程で添加混合する方法や成形加工時の押出機や射出成形機などで添加混合する方法、リン系酸化防止剤(A)、フェノール系酸化防止剤(B)を高濃度に調整した樹脂組成物を無添加のスチレン系樹脂によって目的の含有量に希釈混合する方法などが挙げられ、特に限定されることではない。
(その他の添加剤)
 スチレン系樹脂組成物は、本発明の効果を損なわない範囲で、イオウ系酸化防止剤、ラクトン系酸化防止剤、紫外線吸収剤、ヒンダードアミン系安定剤、帯電防止剤、親水性添加剤、流動パラフィン(ミネラルオイル)、ポリエチレンワックス、マイクロクリスタリンワックス、ブルーイング剤等の種々の添加剤を含有することができる。
 スチレン系樹脂組成物は、本発明の効果を損なわない範囲で、添加剤としてラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸、ステアリン酸アミド、エルカ酸アミド、エチレンビスステアリン酸アミド等の高級脂肪酸アミド、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等の高級アルコール等の離型剤を含んでもよいが、透過率を悪化させる場合があるので、必要以上に含有しないことが好ましい。離型剤の含有量としては、スチレン系樹脂組成物中、好ましくは500ppm以下であり、より好ましくは200ppm以下であり、さらに好ましくは100ppm以下である。高い透過率を得る観点からは、スチレン系樹脂組成物は実質的に離型剤を含まないことが好ましい。
 スチレン系樹脂組成物のビカット軟化温度は95~104℃であることが好ましく、97~104℃であることがより好ましい。ビカット軟化温度が95℃未満では耐熱性が不足し、使用環境によっては導光板が変形する可能性がある。
 スチレン系樹脂組成物の曇り度は、4mm厚みの成形品で、5%以下であることが好ましく、1%以下であることがより好ましい。
 スチレン系樹脂組成物の初期の光路長115mmでの波長380~780nmの平均透過率は、好ましくは80%以上、より好ましくは84%以上である。
 スチレン系樹脂組成物の長期耐久試験後の光路長115mmでの波長380~780nmの平均透過率は、好ましくは80%以上、より好ましくは83%以上である。
 スチレン系樹脂組成物の初期のYI値は、好ましくは7.0以下であり、より好ましくは6.0以下である。
 初期のYI値と、長期耐久試験後のYI値とのYI値の差(ΔYI)は、好ましくは3.0以下であり、より好ましくは2.0以下であり、さらに好ましくは1.5以下である。
 全光線透過率及びYI値は、次の手順にて測定を行った。スチレン系樹脂組成物のペレットを用い、シリンダー温度230℃、金型温度50℃にて射出成形を行い、127×127×3mm厚みの板状成形品を成形した。ここで長期の耐久性を評価するサンプル(長期耐久試験後のサンプル)は、80℃のオーブン内に1000時間保管した。次に、板状成形品から115×85×3mm厚みの試験片を切り出し、端面をバフ研磨によって研磨し、端面に鏡面を有する板状成形品を作成した。研磨後の板状成形品について、日本分光株式会社製の紫外線可視分光光度計V-670を用いて、大きさ20×1.6mm、広がり角度0°の入射光において、光路長115mmでの波長350nm~800nmの分光透過率を測定し、C光源における、視野2°でのYI値をJIS K7105に倣い算出した。また、波長380nm~780nmの平均透過率とは、全光線透過率である。
[導光板の製造方法]
 本発明のエッジライト型導光板は、上記のスチレン系樹脂組成物を成形して得られ、成形方法としては、シート押出成形や、射出成形、圧縮成形等の公知の方法を用いることができるが、生産性、成形品の大型化が容易という点で、表面形状転写型を備えた連続シート押出成形であることが好ましい。該シート押出成形の例としては、樹脂を加熱溶融状態でフィードブロックに供給し、ダイから連続的に押し出しシートを作成する押出工程と、前記樹脂シートを、圧着ロールと冷却ロールで挟み込む押圧工程、前記押圧工程後、前記樹脂シートを前記冷却ロールに密着させながら搬送する搬送工程を有し、前記冷却ロールの表面に転写型を備える連続シート押出成形法が上げられ、該転写型の形状を変更することで、シート表面に任意の凹凸形状を転写することができる。
 また、本発明のエッジライト型導光板は、前面(発光面)に凹凸形状を有するが、背面には光を乱反射させる反射加工が施される。反射加工としては、例えば、シルク印刷やインクジェット印刷のほか、レーザー照射によりドット形状の凹凸を付与する方法が上げられ、ドットパターンの印刷には、光を拡散させる微粒子を有するインクを使用することができる。
2.エッジライト型面光源ユニット
 本発明のエッジライト型面光源ユニットは、エッジライト型導光板と、該導光板の端面に光を供給する光源を有する、エッジライト型面光源ユニットである。
 本発明のエッジライト型面光源ユニットは液晶表示装置用の面光源装置として好適に用いられる。
 以下に実施例をあげて本発明を更に詳細に説明する。また、これらはいずれも例示的なものであって、本発明の内容を限定するものではない。
(スチレン系樹脂PS-1~PS-3の製造)
 完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成し、表1に示す条件によりスチレン系樹脂の製造を実施した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。重合開始剤は、第1反応器の入口で表1に記載の添加濃度(原料スチレンに対する質量基準の濃度)となるように原料溶液に添加し、均一混合した。表1に記載の重合開始剤は次の通り
 重合開始剤-1 :2,2-ジ(4,4-t-ブチルパーオキシシクロヘキシル)プロパン(日油株式会社製パーテトラAを使用した。)
 重合開始剤-2 :1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(日油株式会社製パーヘキサCを使用した。)
 なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
 続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。
 メルトマスフローレート(MFR)は、JIS K 7210に従って、温度200℃、49N荷重の条件で、ビカット軟化温度は、JIS K 7206に従って、昇温速度50℃/hr、試験荷重50Nで測定した。
 重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
   GPC機種:昭和電工株式会社製Shodex GPC-101
   カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED-B
   移動相:テトラヒドロフラン
   試料濃度:0.2質量%
   温度:オーブン40℃、注入口35℃、検出器35℃
   検出器:示差屈折計
 分子量は単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
Figure JPOXMLDOC01-appb-T000001
[実施例1~19、比較例1~7]
<樹脂組成物の調製>
 表2及び表3に示す含有量にて、スチレン系樹脂PS-1、PS-2、PS-3とリン系酸化防止剤(A)及び/又はフェノール系酸化防止剤(B)をスクリュー径40mmの単軸押出機を用いて、シリンダー温度230℃、スクリュー回転数100rpmで溶融混錬してペレットを得た。
 なお、表2及び表3中のリン系酸化防止剤(A)及びフェノール系酸化防止剤(B)についてはそれぞれ下記の通りである。
(リン系酸化防止剤(A))
HP-10:2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス(株式会社ADEKA製 アデカスタブHP-10)
168:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト(BASFジャパン株式会社製 Irgafos 168)
PEP-36:3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカン(株式会社ADEKA製 アデカスタブ PEP-36)
P-EPQ:テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1ビフェニル]-4,4ジイルビホスホナイト(クラリアントCo.Ltd.製 Hostanox P-EPQ)
38:ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)エチル亜りん酸エステル、(BASFジャパン株式会社製 Irgafos 38)
(フェノール系酸化防止剤(B))
GP:6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン(住友化学株式会社製 スミライザーGP)
1076:オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASFジャパン株式会社製 Irganox 1076)
245:エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕(BASFジャパン株式会社製 Irganox 245)
1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン株式会社製 Irganox 1010)
AO80:3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(株式会社ADEKA製 アデカスタブAO-80)
<樹脂組成物の光学特性評価>
 得られたペレットを用いて、シリンダー温度230℃、金型温度50℃にて射出成形を行い、127×127×3mm厚みの板状成形品を成形した。長期耐久性性を評価するため、得られた成形品を80℃のオーブン内で1000時間保管した。保管前の初期の成形品(初期のサンプル)と保管後の成形品(長期耐久試験後のサンプル)について光学特性を評価するため、板状成形品から115×85×3mm厚みの試験片を切り出し、端面をバフ研磨によって研磨し、端面に鏡面を有する板状成形品を作成した。研磨後の板状成形品について、日本分光株式会社製の紫外線可視分光光度計V-670を用いて、大きさ20×1.6mm、広がり角度0°の入射光において、光路長115mmでの波長350nm~800nmの分光透過率を測定し、C光源における、視野2°でのYI値をJIS K7105に倣い算出した。表2及び表3に示す全光線透過率とは、波長380nm~780nmの平均透過率を表す。
<導光板の製造>
 図3に示すように、得られたペレットを、スクリュー径120mm、L/D=32の単軸押出機5に供給し、シリンダー温度を150~230℃に設定し、溶融混錬した後、ギアポンプ7を経由し、樹脂温度260℃にて、幅1500mmのTダイ9より吐出し、シートを押し出した。続いて、押し出されたシートを、圧着ロール11(鏡面冷却ロール)と第1冷却ロール13(鏡面冷却ロール)で挟み込み、第1冷却ロール13に巻き付けた状態で搬送した後、更に、第1冷却ロール13と第2冷却ロール15(転写型装着ロール)とで挟み込み、樹脂シートの片面に凹凸形状を転写した後、第2冷却ロール15から剥離した樹脂シートを、引取ロール17により引取速度5.2m/分で引き取った。なお、圧着ロール11、第1冷却ロール13及び第2冷却ロール15にはクロムメッキが施されており、各ロールの温度は、圧着ロール11/第1冷却ロール13/第2冷却ロール15=80℃/85℃/90℃に設定した。また、第2冷却ロール15に装着する転写型の形状を変更することで、表2、表3に示す表面凸部形状を有する樹脂シートを得た。
 なお、表2及び表3中における「形状」、「高さP」、「ピッチP」、「H/P」は、それぞれ、前述で定義した値であり、「レンチ」とは「レンチキュラー」を示す。
<導光板の成形性及び強度評価>
 表2及び表3における導光板製造における押出安定性(目ヤニ)、ロール転写性、ロール離型性、及び導光板の強度について下記のように評価した。
(押出安定性(目ヤニ))
 ダイの樹脂温度を300℃に調整し、ダイ付近の目ヤニ発生状況を、以下の基準に基づき評価した。
  ○:シート押出開始後、30分を経過しても、目ヤニが確認されない。
  △:シート押出開始後、10~30分で目ヤニが確認される。
  ×:シート押出開始後、10分以内に目ヤニが確認される。
 なお、「目ヤニ」とは、ダイの出口ノズル周辺に発生する、茶色、若しくは黒色の樹脂劣化物であり、通常、押出量とともに増加し、所定の量を超えるとノズルより脱離し、シート表面に付着する。
(ロール転写性)
 下記式によりロール転写率Tを求め、ロール転写率Tが95%以上を○、85~95%を△、85%以下を×として、ロール転写性を評価した。
 ロール転写率T(%)=樹脂シートの凸部の高さH/転写型の溝部の深さH´×100
(ロール離型性)
 ダイの樹脂温度を270℃、290℃に調整し、各温度で30分間連続押出を行った後、シート表面の外観を観察した。290℃で外観に変化が無いものを○、290℃でシート表面に肌荒れや白化が生じ、280℃で外観に変化が無いものを△、280℃でシート表面に肌荒れや白化が生じるものを×として、ロール離型性を評価した。
(強度)
 前記で得られた樹脂シートから、200mm×200mmの試験片を切り出し、重量16.6gの球を使用し、JIS K-7211に従って、50%破壊高さを測定した。50%破壊高さが50cm以上のものを○、30~50cmのものを△、30cm以下のものを×として、導光板の強度を測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1:導光板、3A:凸部(レンチキュラー形状)、3B:凸部(プリズム形状)、5:単軸押出機、7:ギアポンプ、9:Tダイ、11:圧着ロール、13:第1冷却ロール、15:第2冷却ロール、17:引取ロール

Claims (8)

  1.  スチレン系樹脂組成物を含むエッジライト型導光板であって、
     前記導光板の表面に複数のレンチキュラー形状及び/又はプリズム形状の凸部を有し、
     前記導光板の厚みTが1.0~3.0mmであり、
     前記スチレン系樹脂組成物が、スチレン系樹脂と、リン系酸化防止剤(A)及び/又はフェノール系酸化防止剤(B)と、を含有し、
     下記の(1)及び(2)の少なくとも一方を満たす、
     (1)前記凸部の高さHが10~500μmである
     (2)前記凸部のピッチPが30~800μmである
     エッジライト型導光板。
  2.  前記凸部の高さHが10~500μmであり、前記凸部のピッチPが30~800μmである、請求項1に記載のエッジライト型導光板。
  3.  前記スチレン系樹脂組成物100質量部に対して、前記リン系酸化防止剤(A)0.001~0.5質量部と、前記フェノール系酸化防止剤(B)0.001~0.5質量部と、を含有する請求項1又は請求項2に記載のエッジライト型導光板。
  4.  前記リン系酸化防止剤(A)が、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、3,9-ビス(2,6-ジ―tert-ブチル―4-メチルフェノキシ)-2,4,8,10-テトラオキサ―3,9-ジホスファスピロ〔5,5〕ウンデカン、テトラキス(2,4-ジ―tert-ブチルフェニル)〔1,1ビフェニル〕―4,4ジイルビホスホナイト、ビス(2,4-ジ―tert-ブチル―6-メチルフェニル)エチル亜リン酸エステルから選ばれる少なくとも1種である、請求項1~請求項3のいずれか1項に記載のエッジライト型導光板。
  5.  前記フェノール系酸化防止剤(B)が、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-〔3-(3-tert-ブチル―4-ヒドロキシ―5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンから選ばれる少なくとも1種である、請求項1~請求項4のいずれか1項に記載のエッジライト型導光板。
  6.  前記スチレン系樹脂の重量平均分子量(Mw)が20万~40万で、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.0~3.0である、請求項1~請求項5のいずれか1項に記載のエッジライト型導光板。
  7.  前記スチレン系樹脂組成物の初期の光路長115mmでの波長380~780nmの平均透過率が80%以上である、請求項1~請求項6のいずれか1項に記載のエッジライト型導光板。
  8.  請求項1~請求項7のいずれか1項に記載のエッジライト型導光板と、前記エッジライト導光板の端面に光を供給する光源を有する、エッジライト型面光源ユニット。
PCT/JP2019/050667 2019-04-26 2019-12-24 エッジライト型導光板及びエッジライト型面光源ユニット WO2020217590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980095817.2A CN113748375A (zh) 2019-04-26 2019-12-24 边缘发光型导光板及边缘发光型面光源单元
SG11202111615VA SG11202111615VA (en) 2019-04-26 2019-12-24 Edge-light-type light guide plate and edge-light-type surface light source unit
KR1020217038108A KR20220002423A (ko) 2019-04-26 2019-12-24 에지 라이트형 도광판 및 에지 라이트형 면광원 유닛
JP2021515783A JP7344961B2 (ja) 2019-04-26 2019-12-24 エッジライト型導光板及びエッジライト型面光源ユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019086666 2019-04-26
JP2019-086666 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020217590A1 true WO2020217590A1 (ja) 2020-10-29

Family

ID=72942629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050667 WO2020217590A1 (ja) 2019-04-26 2019-12-24 エッジライト型導光板及びエッジライト型面光源ユニット

Country Status (6)

Country Link
JP (1) JP7344961B2 (ja)
KR (1) KR20220002423A (ja)
CN (1) CN113748375A (ja)
SG (1) SG11202111615VA (ja)
TW (1) TWI831923B (ja)
WO (1) WO2020217590A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094642A1 (ja) * 2011-12-20 2013-06-27 東洋スチレン株式会社 光学用スチレン系樹脂組成物、成形品および導光板
JP2014086158A (ja) * 2012-10-19 2014-05-12 Toppan Printing Co Ltd 導光板、バックライトユニット、及び画像表示装置
JP2014175057A (ja) * 2013-03-06 2014-09-22 Toppan Printing Co Ltd 導光板及びこれを用いたバックライトユニット並びに表示装置
JP2017141459A (ja) * 2012-07-13 2017-08-17 東洋スチレン株式会社 光学用スチレン系樹脂組成物、成形品および導光板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075648A (ja) 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk 導光板
TWI417577B (zh) * 2010-11-16 2013-12-01 Chi Mei Corp Light transfer plate with light structure and light guide plate
CN108912519A (zh) * 2018-05-28 2018-11-30 重庆鑫翎创福光电科技股份有限公司 一种光学用聚苯乙烯系树脂组合物及其形成的导光板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094642A1 (ja) * 2011-12-20 2013-06-27 東洋スチレン株式会社 光学用スチレン系樹脂組成物、成形品および導光板
JP2017141459A (ja) * 2012-07-13 2017-08-17 東洋スチレン株式会社 光学用スチレン系樹脂組成物、成形品および導光板
JP2014086158A (ja) * 2012-10-19 2014-05-12 Toppan Printing Co Ltd 導光板、バックライトユニット、及び画像表示装置
JP2014175057A (ja) * 2013-03-06 2014-09-22 Toppan Printing Co Ltd 導光板及びこれを用いたバックライトユニット並びに表示装置

Also Published As

Publication number Publication date
TW202106860A (zh) 2021-02-16
JP7344961B2 (ja) 2023-09-14
TWI831923B (zh) 2024-02-11
JPWO2020217590A1 (ja) 2020-10-29
SG11202111615VA (en) 2021-11-29
KR20220002423A (ko) 2022-01-06
CN113748375A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
TWI585142B (zh) A styrene resin composition for optics, a molded article, and a light guide plate
JP6496339B2 (ja) 光学用スチレン系樹脂組成物、成形品および導光板
JP5715830B2 (ja) 導光板用スチレン系樹脂組成物および導光板
JP7129430B2 (ja) スチレン系樹脂組成物、成形品及び導光板
WO2020217590A1 (ja) エッジライト型導光板及びエッジライト型面光源ユニット
WO2021199501A1 (ja) 光学用スチレン系樹脂組成物、導光板及びエッジライト型面光源ユニット
JP5715829B2 (ja) 導光板用スチレン系樹脂組成物および導光板
JP6039907B2 (ja) スチレン系樹脂板状成形品および導光板
WO2020217718A1 (ja) スチレン系樹脂組成物、成形品及び導光板
CN111655784B (zh) 光学用苯乙烯系树脂组合物以及光学部件
WO2023218994A1 (ja) 光学用スチレン系樹脂組成物、導光板、エッジライト型面光源ユニット、光拡散版、及び直下型面光源ユニット
JP2021147561A (ja) スチレン系樹脂組成物及びその製造方法、成形品および導光板
WO2021132001A1 (ja) 光拡散板及び直下型面光源ユニット
JP2016190425A (ja) 光学用スチレン系多層成形品および導光板
JP2007153921A (ja) 光学用樹脂成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038108

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19925899

Country of ref document: EP

Kind code of ref document: A1