WO2020217293A1 - 光吸収発熱保温用複合体とその製造方法 - Google Patents

光吸収発熱保温用複合体とその製造方法 Download PDF

Info

Publication number
WO2020217293A1
WO2020217293A1 PCT/JP2019/017121 JP2019017121W WO2020217293A1 WO 2020217293 A1 WO2020217293 A1 WO 2020217293A1 JP 2019017121 W JP2019017121 W JP 2019017121W WO 2020217293 A1 WO2020217293 A1 WO 2020217293A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
heat
light
light absorption
mordant
Prior art date
Application number
PCT/JP2019/017121
Other languages
English (en)
French (fr)
Inventor
良信 上垣
治 阿部
佑一朗 塩澤
Original Assignee
山梨県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山梨県 filed Critical 山梨県
Priority to JP2019569988A priority Critical patent/JP6792108B1/ja
Priority to PCT/JP2019/017121 priority patent/WO2020217293A1/ja
Publication of WO2020217293A1 publication Critical patent/WO2020217293A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles

Definitions

  • the present invention relates to a light-absorbing heat-retaining composite that contains vanadium and absorbs light such as near-infrared rays to generate heat and retain heat, and a method for producing the same.
  • a heat storage and heat insulating material is known in which microparticles of functional ceramic having a function of converting light energy into heat are kneaded into the core of the fiber (Non-Patent Document 1).
  • Non-Patent Document 1 A heat storage and heat insulating material in which microparticles of functional ceramic having a function of converting light energy into heat are kneaded into the core of the fiber.
  • the heat generation due to the light irradiation of the natural material portion is low, so that the heat storage heat retention function cannot be sufficiently exhibited.
  • a binder is used to add functional particles to the natural material, the texture, which is a feature of the natural material, may be impaired.
  • the cheese dyeing method is a method in which fibers are wound multiple times on the outer surface of a porous cylinder, a dyeing solution is poured on the inner surface of the cylinder, then a dyeing solution is poured on the outer surface of the cylinder, and these are repeated to dye the fibers.
  • a dyeing solution in which functional solid fine particles such as ZrC or VO 2 are dispersed is used in the cheese dyeing method, the functional solid fine particles are trapped on the inner surface and outer fibers of the cylinder. Therefore, the functional solid fine particles do not adhere to the inner fibers. Therefore, the emergence of functional substances that are soluble in stains is desired.
  • the light-absorbing heat-retaining composite of one aspect of the present invention has natural fibers, vanadium adhering to the natural fibers, and a chemical dye, and absorbs light to exert a heat-generating function and a heat-retaining function.
  • the method for producing the light-absorbing heat-retaining composite includes a dipping step of immersing the natural fiber in a liquid containing vanadium ions at a concentration of 10 mM or more, and a dyeing step of dyeing the natural fiber with a chemical dye.
  • the light-absorbing heat-retaining composite of another aspect of the present invention has a resin having a functional group and is soluble in a hydrophilic solvent, and vanadium chemically bonded to the functional group, and absorbs light to generate heat and heat. Keep warm.
  • the method for producing the light-absorbing heat-retaining composite has a mixing step of mixing a vanadium salt dissolved in a hydrophilic solvent and a solution in which a resin is dissolved in a hydrophilic solvent.
  • a natural fiber product having light-absorbing heat-retaining performance utilizing the texture of a natural material can be obtained.
  • a resin product that absorbs light to generate heat and heat retention can be obtained.
  • the graph which shows the light transmittance and the light reflectance at a specific wavelength with respect to the vanadium mediator concentration The graph which shows the light absorption heat generation heat retention state of a black vanadium yarn-mordanting wool cloth, a black wool cloth, and a wool cloth.
  • the light-absorbing heat-retaining composite according to the first embodiment of the present invention absorbs light and exhibits a heat-generating function and a heat-retaining function. Examples of light include sunlight.
  • the light-absorbing heat-retaining composite of the present embodiment includes natural fibers and vanadium adhering to the natural fibers by binding due to electrostatic force.
  • the fact that the light absorption heat generation heat insulating complex of the present embodiment absorbs light and exerts a heat generation function means that the temperature of the light absorption heat generation heat insulating complex 10 minutes after light irradiation is provided with vanadium 10 minutes after light irradiation. It means that the temperature is 5 ° C or more higher than the temperature of unnatural fibers.
  • the light absorption heat generation heat retention complex absorbs light and exerts a heat retention function
  • the light irradiation is stopped 10 minutes after the light irradiation, and the temperature of the light absorption heat generation heat retention complex 1 minute after the stop is determined. It means that the light irradiation is stopped 10 minutes after the light irradiation, and the temperature is 1.0 ° C. or more higher than the temperature of the natural fiber without vanadium 1 minute after the stop.
  • the light-absorbing heat-retaining composite of the present embodiment particularly absorbs near-infrared rays having a wavelength of around 1000 nm and generates heat. This is probably because vanadium easily absorbs near infrared rays. Examples of natural fibers include wool, silk, cashmere, hemp, and cotton, and regenerated fibers made from natural fibers such as rayon or cupra.
  • Vanadium is attached to natural fibers. Vanadium is considered to be attached to natural fibers by binding due to electrostatic force such as ionic bonding. Since vanadium is attached to the natural fiber, it exhibits the function of the light-absorbing heat-retaining complex, that is, the function of absorbing light to generate heat and retain heat.
  • the light-absorbing heat-retaining composite of the present embodiment further includes a chemical dye.
  • the light-absorbing heat-retaining composite of the present embodiment has a function of absorbing light to generate heat and retain heat even if it contains a chemical dye.
  • the chemical dye of the light-absorbing heat-retaining complex of the present embodiment is replaced with a natural dye, the light durability is low except for the black complex and the green complex dyed with the caric acid of the plant pigment. , Not established as a textile product.
  • a natural fiber product that absorbs light and exerts a heat-generating function and a heat-retaining function and has abundant color variations can be obtained.
  • the chemical dye include a direct dye, an acidic dye, a basic dye, a bat dye, a reactive dye, an artificial dye such as a disperse dye, or a dye in which a pigment is dissolved.
  • the light-absorbing heat-retaining composite of the present embodiment is produced through a dipping step of immersing the natural fiber in a liquid containing vanadium ions at a concentration of 10 mM or more and a dyeing step of dyeing the natural fiber with a chemical dye.
  • a liquid containing vanadium ions at a concentration of 5 mM or less is used, the obtained complex does not exert a heat generating function.
  • the natural fiber is immersed in a solution having a vanadyl salt concentration of 10 mM or more, such as vanadyl sulfate, vanadyl oxalate, or vanadium pentoxide, and heat-treated as necessary with stirring.
  • soaping that is, heat treatment with an aqueous soap solution, rinsing with running water and drying. Vanadium thus adheres to the natural fibers.
  • the natural fiber is dipped in a solution of a chemical dye and heat-treated as necessary with stirring. After the dyeing process, it is soaped, rinsed with running water and dried. In this way, the chemical dye is fixed to the natural fiber.
  • the order of the dipping step and the dyeing step that is, whether it is pre-mordanting or post-mordanting, may be used. Further, the dipping step and the dyeing step may be performed together, that is, simultaneous mordanting.
  • the inventor of the present application dyed the fibers green with an aqueous solution containing vanadium ions having a concentration of 100 mM or more without using a chemical dye. However, these green fibers have extremely low light durability and turn dark green when irradiated with light. Therefore, this green fiber is not established as a product.
  • the light-absorbing heat-retaining composite according to the second embodiment of the present invention absorbs light to generate heat and retain heat.
  • the light-absorbing heat-retaining composite of the present embodiment includes a resin having a functional group and being soluble in a hydrophilic solvent, and vanadium chemically bonded to the functional group. Examples of the chemical bond include a bond due to electrostatic force such as an ionic bond.
  • Resins that are soluble in hydrophilic solvents include naturally occurring polymers such as starch or gelatin, semi-synthetic resins such as carboxymethyl cellulose (CMC) or methyl cellulose (MC), resol-type phenolic resins, methylolated urea (urea) resins, and methylol. Examples thereof include synthetic resins such as melamine resin, polyvinyl alcohol (PVA), polyacrylic acid-based polymer, polyacrylamide (PAM), and polyethylene oxide (PEO).
  • the light-absorbing heat-retaining composite of the present embodiment absorbs sunlight including near-infrared light to generate heat and heat-retaining, so that it can be used for a greenhouse sheet or the like.
  • the light-absorbing heat-retaining composite of the present embodiment is produced through a mixing step of mixing a vanadium salt dissolved in a hydrophilic solvent and a solution in which a resin is dissolved in a hydrophilic solvent. More specifically, in the mixing step, for example, a vanadyl salt soluble in a hydrophilic solvent such as vanadyl sulfate, vanadyl oxalate, or vanadium pentoxide is added to a solution of a resin in a hydrophilic solvent and stirred. Heat as needed.
  • the resin may be colored by adding a dye to a solution of the resin in a hydrophilic solvent.
  • the light absorption heat generation and heat retention composite of the present embodiment is obtained.
  • the hydrophilic solvent include water. Since ZrC or VO 2 which is a conventional photoheating material is insoluble in a hydrophilic solvent, it is difficult to disperse it in a resin which is soluble in a hydrophilic solvent. On the other hand, in a substance that is easily dissolved and ionized in a hydrophilic solvent such as vanadyl sulfate, vanadium-containing ions can be bonded to the functional group of the resin that is soluble in the hydrophilic solvent by electrostatic force.
  • the light-absorbing heat-retaining composite of the present embodiment generates heat considerably higher than that of the conventional composite when it absorbs light.
  • the light-absorbing heat-retaining composite of the present embodiment may be obtained by contacting a resin having an ionic-bonding functional group with a vanadium salt solution dissolved in a hydrophilic solvent.
  • the ionic bonding functional group include a carboxyl group, a sulfonic acid group, a hydroxyl group, a halogen group, and an amide group. It is difficult for the inorganic particles of ZrC or VO 2 of the conventional photoheating material to be bonded to these functional groups.
  • Vanadium mordanting (Example and Comparative Example) and Iron Mordanting (Comparative Example) Vanadyl sulfate VOSO 4 (Kanto Kagaku Co., Ltd.) was dissolved in distilled water, and the concentrations were 1.0 ⁇ 10 -3 mol / L (comparative example), 5.0 ⁇ 10 -3 mol / L (comparative example), 1 Prepare 6 types of aqueous solutions: 0.0 ⁇ 10 -2 mol / L, 5.0 ⁇ 10 -2 mol / L, 1.0 ⁇ 10 -1 mol / L, and 5.0 ⁇ 10 -1 mol / L. did. Further, ferrous sulfate FeSO 4 (Kanto Chemical Co., Inc.) was dissolved in distilled water to prepare an aqueous solution having a concentration of 1.0 ⁇ 10 -1 mol / L.
  • rotary pot dyeing tester Texam Giken Co., Ltd.
  • 10 g of wool cloth JIS dyeing hard wax
  • the white cloth 1-1 for the degree test Japanese Standards Association
  • the cloth treated with 2.0 g / L Marcel soap solution is soaped at a bath ratio of 1:20, 50 ° C. for 20 minutes, and then washed with running water for 5 minutes. It was dried. In this way, vanadium mordant wool fabric and iron mordant wool fabric were obtained.
  • a light absorption heat generation heat retention performance test was conducted in the same manner as described above using a filter that cuts a specific wavelength region. That is, the size is located 1 cm above the 15 cm square wool cloth pre-injected with an aqueous solution of vanazine sulfate, an aqueous solution of ferrous sulfate, and zirconium carbide (Kanto Chemical Co., Ltd.) having a concentration of 1.0 ⁇ 10 -1 mol / L.
  • Three types of colored glass filters of 5 cm ⁇ 5 cm ⁇ 3 mm infrared filter IRA-10 manufactured by Toshiba Glass Co., Ltd., ultraviolet filter UV-29, and ultraviolet filter Y-46) were arranged.
  • the test environment was a temperature of 20 ° C. and a humidity of 65%.
  • the output wavelength characteristics of the photographic reflamp (PRF-500WD) were measured using a light receiver (PHOTONIC MULTI-CHANNEL ANALYZER, Hamamatsu Photonics Co., Ltd.) through a neutral density filter (03FNQ023 / OD 2.0, MELLES GRIOT). ..
  • Transmittance / reflectance measurement Light transmittance and light reflection of wool fabric after medium dyeing and / or dyeing using an ultraviolet-visible near-infrared spectrophotometer (UV-VIS NIR SPECTROPHOTOMETER SolidSpec-3700, Shimadzu Corporation) The rate was measured to evaluate the light absorption of the wool fabric.
  • the slit width was 32 nm, and the measurement wavelength range was 200 to 2500 nm.
  • the switching wavelength of the detector was 870 nm and 1650 nm, and the switching wavelength of the grating was 780 nm.
  • Iron is a medium dyeing agent used for black dyeing in combination with logwood.
  • the temperature difference between the iron mordant-dyed wool cloth and the unmordanted wool cloth ( ⁇ : blank) was 1.4 ° C. 10 minutes after light irradiation and 0.8 ° C. 1 minute after the light irradiation was stopped.
  • the temperature difference between the vanadium-mordanted wool fabric and the unmordanted wool fabric was 14.9 ° C. 10 minutes after light irradiation and 5.9 ° C. 1 minute after light irradiation was stopped.
  • the iron mordant wool fabric did not show light absorption, heat generation and heat retention performance.
  • the vanadium mordant wool fabric showed extremely high light absorption, heat generation and heat retention performance.
  • Vanadium mordant concentration and light absorption heat retention state Fig. 2 shows when the vanadium mordant concentration was changed (1.0 ⁇ 10 -3 mol / L ( ⁇ ) to 5.0 ⁇ 10 -1 mol / L ( ⁇ ). It shows the light absorption heat generation heat retention state of the vanadium mordant-dyed wool cloth (6 types) and the non-mordanted wool cloth ( ⁇ : 0 mol / L). When the concentration of the vanadium mediator was 5.0 ⁇ 10 -3 mol / L or less, the light absorption heat generation heat retention performance was not exhibited.
  • the concentration of the vanadium medium dyeing agent was 1.0 ⁇ 10 ⁇ 2 mol / L or more, the light absorption heat generation heat retention performance gradually improved as the concentration of the vanadium medium dyeing agent increased.
  • the VOSO 4 concentration is suppressed to 5 mM or less in order to suppress the coloring of the mediator itself.
  • FIG. 3 shows the results of the light absorption heat generation heat retention performance test when the three types of wavelength cut filters were used and when the wavelength cut filter was not used.
  • the infrared filter IRA-10 cuts wavelengths of 320 nm or less and 800 nm to 4800 nm (Fig. 3 (d)).
  • the ultraviolet filter UV-29 cuts wavelengths of 240 nm or less (FIG. 3 (b)).
  • the ultraviolet filter Y-46 cuts wavelengths of 430 nm or less (FIG. 3 (c)).
  • FIGS. 3 (b) and 3 (c) there was a tendency similar to that in FIG. 3 (a) in which the wavelength cut filter was not used. This indicates that the contribution of ultraviolet rays to the light absorption heat generation heat retention performance is small.
  • the light absorption, heat generation and heat retention were inferior (FIG. 3 (d)). From this, it was found that the light absorption of vanadium in the infrared region wavelength affects the light absorption heat generation heat retention performance.
  • the heat retention of the zirconium mordant wool fabric dyed with the mordant containing zirconium carbide showed the same tendency as the heat retention of the vanadium mordant wool cloth. From this, it is inferred that zirconium and vanadium absorb light with wavelengths in the infrared region, and the mordant wool fabric exhibits heat retention by a similar mechanism. Comparing the saturation reaching temperatures of vanadium and zirconium, vanadium is about 10 ° C higher. It is considered that this is because vanadium supplied from a water-soluble vanadium salt easily adheres to natural fibers by binding due to electrostatic force due to mordanting.
  • FIG. 4 shows the measurement results of light transmittance and light reflectance of vanadium-coated wool fabric.
  • concentration of the mediator increases, both the light transmittance (FIG. 4 (a)) and the light reflectance (FIG. 4 (b)) decrease.
  • the value obtained by subtracting the sum of the light transmittance and the light reflectance from 100% is the light absorption rate of the vanadium-coated wool fabric.
  • the light absorption of the vanadium-coated wool fabric in the visible region light wavelength of 380 nm to 780 nm is the absorption of the color of the vanadium-coated wool fabric.
  • the low reflectance can be said to be the high light absorption rate of the vanadium-coated wool fabric. It was found from FIG. 4 that at wavelengths of 300 nm to 380 nm and wavelengths of 780 nm to 1900 nm, the light absorption rate of the vanadium mordant wool fabric increased as the mordant concentration increased.
  • FIG. 5 shows the light transmittance ( ⁇ : T) and the light reflectance ( ⁇ : R) at a specific wavelength of the vanadium mordant wool fabric with respect to the vanadium mordant concentration.
  • ⁇ : T the light transmittance
  • ⁇ : R the light reflectance
  • FIGS. 5 (b) and 5 (c) as the vanadium mordant concentration is increased, both the light transmittance and the light reflectance of the vanadium mordant wool fabric decrease, and the mordant concentration is 5.0 ⁇ 10.
  • the vanadium mordant wool fabric has the highest light transmittance and is saturated.
  • FIG. 5B shows light irradiation with a wavelength of 500 nm in the visible light region, and shows that the degree of green color is deepened after vanadium mordanting.
  • FIG. 5C shows light irradiation having a wavelength of 1000 nm in the near infrared region.
  • the vanadium mordant wool cloth which is a natural fiber wool mordant dyed with vanadium and adhered with vanadium, absorbs light on the short wavelength side in the near infrared region such as 1000 nm and has high heat generation and heat retention. It became clear that it showed sex.
  • the solar energy spectrum that flows on the surface of the earth maximizes around 500 nm and attenuates on the long wavelength side. Since sunlight has a high energy intensity on the short wavelength side even in the near infrared region, vanadium-borne wool fabric is considered to be advantageous in terms of light absorption, heat generation and heat retention by sunlight.
  • FIG. 6 shows a light absorption heat generation heat retention state of the wool cloth ( ⁇ : V ⁇ GA).
  • FIG. 6 also shows the light absorption heat generation and heat retention state of the black wool cloth ( ⁇ : GA) in which the wool cloth is dyed with gallic acid without mordanting and the wool cloth ( ⁇ : blank) which is neither mordanted nor dyed.
  • the temperature difference between the black vanadium pre-mordanted wool fabric and the unmordanted or undyed wool fabric was 14.5 ° C. 10 minutes after light irradiation and 5.8 ° C. 1 minute after light irradiation was stopped. Since the light absorption heat generation heat retention performance of the black vanadium mordant wool fabric is the same before and after the black dyeing with gallic acid (see Fig. 1), the contribution of the blackness of the vanadium mordant wool fabric to the light absorption heat generation heat retention performance is small. it is conceivable that.
  • the concentration is 2.45% o. w. TLB and concentration of f 1.75o. w.
  • a dyeing agent containing 5 GW of f% (hereinafter, may be described as "TLB 2.45% o.w.f + 5 GW 1.75 o.w.f%".
  • TLB 2.45% o.w.f + 5 GW 1.75 o.w.f% The same description may be applied to other dyeing agents.
  • the color difference value ⁇ E00 of the chemically black wool fabric dyed with was in agreement with the standard.
  • ⁇ E00 was all less than 3.0.
  • These ⁇ E00 are levels at which color differences can hardly be recognized in a color separation comparison called a class A tolerance.
  • FIG. 7 shows the light absorption, heat generation and heat retention state of the chemically black vanadium pre-mordanted wool cloth ( ⁇ : V ⁇ black) dyed with the chemical dye of f and the wool cloth ( ⁇ : blank) which is neither mordant nor dyed.
  • the plots of the six types of chemical black wool fabrics almost overlapped. As shown in FIG. 7, the temperature difference between the chemically black wool fabric and the undyed or undyed wool fabric was 2.5 ° C.
  • FIG. 9 shows the light absorption, heat generation and heat retention state of the chemical green vanadium premordanting wool cloth ( ⁇ : V ⁇ green) dyed with a green chemical dye, and the unmordanted and undyed wool cloth ( ⁇ : blank).
  • FIG. 10 shows a light absorption heat generation heat retention state of a chemical blue vanadium premordanting wool cloth ( ⁇ : V ⁇ blue) dyed with a blue chemical dye and a wool cloth ( ⁇ : blank) that is neither mordant nor dyed.
  • the vanadium mordant wool fabric is dyed with the three primary color chemical dyes, the chemical red vanadium mordant wool fabric, the chemical green vanadium mordant wool fabric, and the chemical blue vanadium mordant wool fabric
  • the average value of the temperature difference of the undyed and undyed wool fabric was 16.5 ° C. 10 minutes after light irradiation and 6.4 ° C. 1 minute after the light irradiation was stopped. That is, the chemical red vanadium pre-mordanting wool cloth, the chemical green vanadium pre-mordanting wool cloth, and the chemical blue vanadium pre-mordanting wool cloth showed high light absorption, heat generation and heat retention performance.
  • the chemically red vanadium simultaneous mordant wool fabric also showed similar high light absorption, heat generation and heat retention performance.
  • the fact that the heat-retaining effect can be obtained even when dyeing with a mixed solution of an aqueous solution of vanadyl sulfate and a chemical dye leads to a reduction in dyeing cost by unifying the dyeing process.
  • the chemical red vanadium simultaneous mordant wool fabric can reduce the dyeing cost as compared with the chemical red vanadium premordanting wool fabric, but the L * value is slightly lower and the b * value indicating yellowness is also lower. .. From this, it is considered that the simultaneous mordanting is dyed in a purple system with low lightness, and it is necessary to adjust the color and hue of the fabric. It is considered that the reason why the low-brightness purple color is dyed is the vanadium-derived coloring due to the high concentration of vanadium in the mediator.
  • the color variation of the fiber is abundant, and the choices of dyes having high light resistance are increased without being limited to black.
  • the dye is limited to resin fibers that can be kneaded, and the color is also limited to gray to black.
  • fibers other than black or green have low light resistance.
  • various hues and colors can be dealt with by mordanting a natural material.
  • Vanadium pre-mordanting fibers exhibit light absorption, heat generation and heat retention performance even when dyed in various hues and colors with chemical dyes.
  • the effect is due to the light absorption of vanadium in the near infrared region, and it is considered that the contribution of vanadium light absorption in the ultraviolet region is small. ..
  • Zirconium carbide is also known to have absorption in the near infrared region of 2000 nm or less. It is presumed that vanadium also exhibits light absorption, heat generation and heat retention by the same action. For vanadium, it is considered that light absorption in the near-infrared region on the shorter wavelength side than around 2000 nm such as 1000 nm contributes to the heat-generating heat-retaining effect. Vanadium is excellent as a mordant because it can be introduced into natural materials, it is very effective with a small amount, and the color variation can be selected arbitrarily.
  • vanadyl sulfate n-hydrate (Deer Special Grade, Kanto Chemical Co., Inc.) was further added (VOSO 4 concentration 0.19%), and the mixture was stirred for 1 hour while maintaining a non-boiling temperature of 50 to 80 ° C.
  • the light absorption heat generation heat retention performance test of each sample of the PVA film and the vanadium-containing PVA film was carried out as follows.
  • Each of the square plate-shaped samples having a side of 5 cm was placed on a styrofoam sample table, and a photographic reflamp (Panasonic, PRF-500WB / D) was installed at a distance of 30 cm from the sample to irradiate the light.
  • the laboratory temperature was 20 ° C. and the relative humidity was 65%.
  • the temperature was measured by infrared thermography at regular intervals. After that, the temperature was measured at regular intervals even when the ref lamp was turned off.
  • a radiation thermometer was installed at a distance of 70 cm in a direction of about 45 ° from the sample surface to measure the temperature.
  • the surface temperature reached of the PVA film and the vanadium-containing PVA film was 39.4 ° C and 43.6 ° C, respectively.
  • 60 seconds after the ref lamp was turned off the surface temperature reached of the PVA film and the vanadium-containing PVA film was 30.8 ° C. and 35.6 ° C., respectively.
  • the vanadium-containing PVA film absorbed light and greatly generated heat and kept warm. Since the specific heat of the PVA film is smaller than that of the wool cloth, the vanadium-containing PVA film absorbs light to generate heat and retains heat less than the vanadium-borne wool cloth.
  • the VOSO 4- dispersed PVC was obtained by mixing VOSO 4 with a polyvinyl chloride solution so as to have a concentration of 1.6%, and curing it while defoaming under reduced pressure. After 270 seconds from turning on the ref lamp, the surface reaching temperatures of the VOSO 4- dispersed PVC film and the vanadium-containing PVA film were 40.6 ° C. and 43.0 ° C., respectively.
  • the surface reaching temperatures of the VOSO 4- dispersed PVC film and the vanadium-containing PVA film were 32.1 ° C. and 35.4 ° C., respectively.
  • the VOSO 4- dispersed PVC film had a higher vanadium concentration than the vanadium-containing PVC film, the degree of heat retention was lower than that of the vanadium-containing PVA film.
  • the composite in which vanadium is chemically bonded to the functional group of the resin as in this example is more transparent and lighter than the composite in which the functional particles are dispersed in the resin. The degree of absorption, heat generation and heat retention was high.
  • the light-absorbing heat-retaining composite of the present invention or a method for producing the same has a color-developing function and / or a function of converting light into heat energy, a vinyl sheet for a vinyl house with a heat function, a dye-sensitized solar cell, and a cosmetic product. It can be used for hair coloring, fiber dyeing, lacquer coating, dyes for recording layers of CD-R and DVD-R, dyes for toners of copiers, inks for ball pens, dye inks for inkjet printers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

繊維との相互作用によって繊維に付着するバナジウムを含有する光吸収発熱保温用複合体を提供する。光吸収発熱保温用複合体は、天然繊維と、天然繊維に付着しているバナジウムと、化学染料とを有し、光を吸収して発熱機能および保温機能を発揮する。光吸収発熱保温用複合体の製造方法は、濃度10mM以上でバナジウムイオンを含む液体に、天然繊維を浸す浸漬工程と、化学染料で天然繊維を染色する染色工程とを有している。

Description

光吸収発熱保温用複合体とその製造方法
 本発明は、バナジウムを含有し、近赤外線などの光を吸収して発熱および保温する光吸収発熱保温用複合体と、その製造方法に関する。
 スポーツなどの特殊用途を除く日用品では、天然素材製品の方が人工素材製品より高い価値があると認識される場合が多い。ストール、マフラー、日傘、および衣類などでは、天然素材を用いた色彩豊かな製品の需要が近年高まっており、これらの製品開発が行なわれている。さらに高付加価値のある天然素材製品を実現するため、特に冬季に身に着ける天然繊維製品には、天然素材が備える特性に加えて、温熱機能などの性質を付与した製品の開発が望まれている。
 光エネルギーを熱に変換する機能を備える機能性セラミックのミクロ粒子を、繊維の芯部分に錬り込んだ蓄熱保温素材が知られている(非特許文献1)。しかしながら、この蓄熱保温素材と天然素材の交織や混紡では、天然素材部分の光照射による発熱が低いため、蓄熱保温機能が十分に発現できない。また、天然素材に機能性粒子を付加させるためにバインダーを用いると、天然素材の特長である風合いを損ねてしまうおそれがある。
 また、大量の繊維を染色するとき、チーズ染色方法がよく用いられている。チーズ染色方法は、多孔体製の円筒の外表面に繊維を多重に巻き、円筒の内表面に染色液を流し、その後円筒の外表面に染色液を流し、これらを繰り返して繊維を染色する方法である。チーズ染色方法に、ZrCまたはVOなどの機能性固体微粒子が分散している染色液を用いると、円筒の内表面および外側の繊維に機能性固体微粒子が捕捉されてしまう。このため、内側の繊維に機能性固体微粒子が付着されない。したがって、染色液に溶ける機能性物質の出現が望まれている。
ユニチカトレーディング株式会社、"素材特徴で見る|サーモトロン"、http.www.unitrade.co.jp/products/materials、平成29年11月15日検索
 本発明のある態様は、上記の事情に鑑みてなされたものであり、繊維との相互作用などによって繊維に付着するバナジウムを含有する光吸収発熱保温用複合体を提供することを目的とする。また、本発明の他の態様は、バナジウムが官能基に化学結合している樹脂を備える光吸収発熱保温用複合体を提供することを目的とする。
 本発明のある態様の光吸収発熱保温用複合体は、天然繊維と、天然繊維に付着しているバナジウムと、化学染料とを有し、光を吸収して発熱機能および保温機能を発揮する。この光吸収発熱保温用複合体の製造方法は、濃度10mM以上でバナジウムイオンを含む液体に、天然繊維を浸す浸漬工程と、化学染料で天然繊維を染色する染色工程を有する。
 本発明の他の態様の光吸収発熱保温用複合体は、官能基を備え、親水性溶媒に溶ける樹脂と、官能基に化学結合しているバナジウムとを有し、光を吸収して発熱および保温する。この光吸収発熱保温用複合体の製造方法は、親水性溶媒に溶けるバナジウム塩と、樹脂を親水性溶媒に溶かした溶液とを混合する混合工程を有する。
 本発明のある態様の光吸収発熱保温用複合体によれば、天然素材の風合いを活かした光吸収発熱保温性能を備える天然繊維製品が得られる。また、本発明の他の態様の光吸収発熱保温用複合体によれば、光を吸収して発熱および保温する樹脂製品が得られる。
バナジウム媒染ウール布帛、鉄媒染ウール布帛、およびウール布帛の光吸収発熱保温状態を示すグラフ。 バナジウム媒染剤濃度を変化させたときのバナジウム媒染ウール布帛の光吸収発熱保温状態を示すグラフ。 3種類の波長カットフィルターを用いたとき((b)、(c)、(d))と、波長カットフィルターを用いなかったとき((a))のバナジウム媒染ウール布帛、鉄媒染ウール布帛、ジルコニウム媒染ウール布帛、およびウール布帛の光吸収発熱保温状態を示すグラフ。 バナジウム媒染ウール布帛の光透過率((a))と光反射率((b))を示すグラフ。 バナジウム媒染剤濃度に対する特定波長における光透過率および光反射率を示すグラフ。 黒色バナジウム先媒染ウール布帛、黒色ウール布帛、およびウール布帛の光吸収発熱保温状態を示すグラフ。 化学黒色ウール布帛、化学黒色バナジウム先媒染ウール布帛、およびウール布帛の光吸収発熱保温状態を示すグラフ。 赤色の化学染料で染色した各種ウール布帛の光吸収発熱保温状態を示すグラフ。 緑色の化学染料で染色した各種ウール布帛の光吸収発熱保温状態を示すグラフ。 青色の化学染料で染色した各種ウール布帛の光吸収発熱保温状態を示すグラフ。
 以下、本発明の光吸収発熱保温用複合体および光吸収発熱保温用複合体の製造方法について、実施形態と実施例に基づいて説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「~」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれる。
 本発明の第一実施形態に係る光吸収発熱保温用複合体は、光を吸収して発熱機能および保温機能を発揮する。光としては太陽光が挙げられる。本実施形態の光吸収発熱保温用複合体は、天然繊維と、静電気力による結合によってこの天然繊維に付着しているバナジウムとを備えている。本実施形態の光吸収発熱保温用複合体が光を吸収して発熱機能を発揮するとは、光照射10分後の光吸収発熱保温用複合体の温度が、光照射10分後のバナジウムを備えていない天然繊維の温度と比べて、5℃以上高いことをいう。
 また、光吸収発熱保温用複合体が光を吸収して保温機能を発揮するとは、光照射10分後に光照射を停止し、停止から1分後の光吸収発熱保温用複合体の温度が、光照射10分後に光照射を停止し、停止から1分後のバナジウムを備えていない天然繊維の温度と比べて、1.0℃以上高いことをいう。本実施形態の光吸収発熱保温用複合体は、特に波長1000nm付近の近赤外線を吸収して発熱する。バナジウムが近赤外線を吸収しやすいからだと考えられる。天然繊維としては、羊毛、絹、カシミヤ、麻、および木綿、ならびにレーヨンまたはキュプラのように、天然繊維を原料とした再生繊維等が挙げられる。
 バナジウムは天然繊維に付着している。バナジウムは、イオン結合のような静電気力による結合によって、天然繊維に付着していると考えられる。バナジウムが天然繊維に付着しているため、光吸収発熱保温用複合体の機能、すなわち光を吸収して発熱および保温する機能を発揮する。本実施形態の光吸収発熱保温用複合体は、化学染料をさらに備えている。本実施形態の光吸収発熱保温用複合体は、化学染料を含有していても、光を吸収して発熱および保温する機能を有する。
 また、本実施形態の光吸収発熱保温用複合体の化学染料を天然染料に代えた場合、植物色素の没食子酸によって染色された黒色の複合体および緑色の複合体以外では、光耐久性が低く、繊維製品として成立しない。このように、本実施形態の光吸収発熱保温用複合体によれば、光を吸収して発熱機能および保温機能を発揮し、カラーバリエーションが豊富な天然繊維製品が得られる。化学染料としては、直接染料、酸性染料、塩基性染料、建染染料、反応染料、もしくは分散染料等の人工染料、または顔料を溶いたもの等が挙げられる。
 本実施形態の光吸収発熱保温用複合体は、濃度10mM以上でバナジウムイオンを含む液体に、天然繊維を浸す浸漬工程と、化学染料で天然繊維を染色する染色工程を経て製造される。濃度5mM以下でバナジウムイオンを含む液体を用いると、得られた複合体が発熱機能を発揮しないからである。より具体的には、浸漬工程では、例えば、硫酸バナジル、シュウ酸バナジル、または五酸化バナジウム等のバナジウム塩の濃度10mM以上の溶液に天然繊維を浸し、撹拌しながら必要に応じて加熱処理する。浸漬工程の後、ソーピング、すなわちセッケン水溶液で加熱処理し、流水ですすいで乾燥させる。こうしてバナジウムが天然繊維に付着する。
 染色工程では、化学染料を用いた一般的な天然繊維の染色が行われる。例えば、化学染料の溶液に天然繊維を浸し、撹拌しながら必要に応じて加熱処理する。染色工程の後、ソーピングし、流水ですすいで乾燥させる。こうして、化学染料が天然繊維に定着する。浸漬工程と染色工程の順番、すなわち、先媒染であるか後媒染であるかは、どちらでもよい。さらに、浸漬工程と染色工程を一緒に、すなわち同時媒染を行ってもよい。なお、本願発明者は、化学染料を用いずに、濃度100mM以上のバナジウムイオンを含む水溶液を用いて、繊維を緑色に染色した。しかしながら、この緑色の繊維は、光耐久性が極めて低く、光を照射すると濃緑色に変色してしまう。このため、この緑色の繊維は製品として成立しない。
 本発明の第二実施形態に係る光吸収発熱保温用複合体は、光を吸収して発熱および保温する。本実施形態の光吸収発熱保温用複合体は、官能基を備え、親水性溶媒に溶ける樹脂と、官能基に化学結合しているバナジウムとを備えている。化学結合としては、イオン結合のような静電気力による結合などが挙げられる。親水性溶媒に溶ける樹脂としては、デンプンもしくはゼラチンなどの天然由来高分子、カルボキシメチルセルロース(CMC)もしくはメチルセルロース(MC)などの半合成樹脂、またはレゾール型フェノール樹脂、メチロール化ユリア(尿素)樹脂、メチロール化メラミン樹脂、ポリビニルアルコール(PVA)、ポリアクリル酸系ポリマー、ポリアクリルアミド(PAM)、もしくはポリエチレンオキシド(PEO)などの合成樹脂などが挙げられる。
 本実施形態の光吸収発熱保温用複合体は、近赤外光を含む太陽光を吸収して発熱および保温するので、ビニールハウスのシート等に利用できる。本実施形態の光吸収発熱保温用複合体は、親水性溶媒に溶けるバナジウム塩と、樹脂を親水性溶媒に溶かした溶液とを混合する混合工程を経て製造される。より具体的には、混合工程では、例えば、硫酸バナジル、シュウ酸バナジル、または五酸化バナジウム等の親水性溶媒に溶けるバナジウム塩を、樹脂を親水性溶媒に溶かした溶液に添加して攪拌し、必要に応じて加熱する。なお、樹脂を親水性溶媒に溶かした溶液に染料を加えて、樹脂を着色してもよい。
 そして、攪拌と加熱をやめて室温で静置して気泡を取り除くと、本実施形態の光吸収発熱保温用複合体が得られる。親水性溶媒としては水などが挙げられる。従来の光発熱材料のZrCまたはVOは、親水性溶媒に溶けないため、親水性溶媒に溶ける樹脂に高分散させることが難しい。これに対して、硫酸バナジル等の親水性溶媒に容易に溶けてイオン化する物質は、バナジウムを含有するイオンが、親水性溶媒に溶ける樹脂の官能基と静電気力による結合をすることができる。
 このため、バナジウムが高分散でこの樹脂に付着する。したがって、本実施形態の光吸収発熱保温用複合体は、光を吸収すると、従来の複合体よりかなり高く発熱する。また、イオン結合性の官能基を有する樹脂に、親水性溶媒に溶かしたバナジウム塩溶液を接触させて、本実施形態の光吸収発熱保温用複合体を得てもよい。イオン結合性の官能基としては、カルボキシル基、スルホン酸基、ヒドロキシル基、ハロゲン基、またはアミド基などが挙げられる。なお、従来の光発熱材料のZrCまたはVOの無機粒子は、これらの官能基に結合させることは困難である。
〔天然繊維を含む複合体〕
A:実験
1.バナジウム媒染(実施例と比較例)と鉄媒染(比較例)
 蒸留水に硫酸バナジルVOSO(関東化学株式会社)を溶解し、濃度が1.0×10-3mol/L(比較例)、5.0×10-3mol/L(比較例)、1.0×10-2mol/L、5.0×10-2mol/L、1.0×10-1mol/L、および5.0×10-1mol/Lの6種類の水溶液を調製した。また、蒸留水に硫酸第一鉄FeSO(関東化学株式会社)を溶解して、濃度が1.0×10-1mol/Lの水溶液を調製した。
 小型の回転式ポット染色試験機MINI COLOUR(テクサム技研株式会社)(以下、単に「回転式ポット染色試験機」ということがある)を用いて、上記の各媒染剤水溶液にウール布帛10g(JIS染色堅ろう度試験用添付白布1-1号、財団法人日本規格協会)を浴比1:20となるように浸漬し、100℃で1時間処理した。そして、回転式ポット染色試験機を用いて、2.0g/Lのマルセル石鹸溶液で処理後の布帛を、浴比1:20、50℃、20分間ソーピングし、その後、5分間流水で洗って乾燥させた。こうして、バナジウム媒染ウール布帛と鉄媒染ウール布帛を得た。
2.染色
(1)天然染料での染色
 天然染料として植物由来ポリフェノール(タンニン)の構成成分である没食子酸GA(関東化学株式会社)と蒸留水を用いて2.5wt%水溶液を調製した。回転式ポット染色試験機を用いて、この染料水溶液にウール布帛、バナジウム媒染ウール布帛、または鉄媒染ウール布帛を50%o.w.f、浴比1:20となるように浸漬し、100℃で1時間染色した。そして、回転式ポット染色試験機を用いて、2.0g/Lのマルセル石鹸溶液で染色後の各ウール布帛を、浴比1:20、50℃、20分間ソーピングし、その後、5分間流水で洗って乾燥させた。こうして、黒色バナジウム先媒染ウール布帛と黒色鉄先媒染ウール布帛を得た。
(2)先媒染化学染料での染色
 また、回転式ポット染色試験機を用いて、赤色染料Red GRN、緑色染料Green 5GW、または青色染料Cyanine 5R(いずれもKayanol Milling)で、5.0×10-2mol/LのVOSO水溶液で媒染したバナジウム媒染ウール布帛を、濃度2.0%o.w.f.で染色した。他の染色条件はGAでの染色条件と同じであった。染色後、GAでの染色と同条件でソーピング、水洗、および乾燥を行った。こうして、化学赤色バナジウム先媒染ウール布帛、化学緑色バナジウム先媒染ウール布帛、および化学青色バナジウム先媒染ウール布帛を得た。
(3)同時媒染化学染料での染色
 また、VOSO(5.0×10-2mol/Lの)とRed GRN(2.0%o.w.f)を溶解させた水溶液を用いて、GAでの染色と同じ条件でウール布帛を染色した。染色後、GAでの染色と同条件でソーピング、水洗、および乾燥を行った。こうして、化学赤色バナジウム同時媒染ウール布帛を得た。
(4)媒染なし化学染料
 また、回転式ポット染色試験機を用いて、表1に示す配合染料(Kayanol Milling、日本化薬株式会社)と、1.0%o.w.fの均染剤(ニューボンE-1 K、日華化学株式会社)および1.0g/LのpH調整剤(オプチシド VS)の助剤で、ウール布帛を浴比1:20で黒色に染色して比較例の化学黒色ウール布帛を作製した。なお、染色工程では、30分間かけて20℃から90℃まで昇温し、90℃に達した時点で酸を加えて35分間保持した。その後、冷却して15分間流水で洗浄した。
Figure JPOXMLDOC01-appb-T000001
3.色彩評価
 分光測色計(SD-6000、日本電色工業株式会社)を用いて、測定径φ6.4mm、光源D65、10°視野、正反射光を含むモードで媒染後および/または染色後のウール布帛の色彩を測定し、数値化した。そして、色彩管理ソフト(Color Mate Pro、日本電色工業株式会社)のL表色系および色差(ΔE00)で媒染後および/または染色後のウール布帛の色彩を評価した。
4.光吸収発熱保温性能試験
 ボーケン法(BQE-A法)を用いて、媒染後および/または染色後のウール布帛の光吸収発熱保温性能試験を行った。すなわち、裏面中央部に熱電対温度センサーを設けた発泡スチロール製試料台に、15cm四方の各種ウール布帛を並列に置き、30cm離れた位置から写真用レフランプ(PRF-500WB/D、パナソニック株式会社、またはPRF-500WD、岩崎電気株式会社)で10分間照射した。その後、レフランプを消し、10分間続けて温度の測定を行った。
 また、特定の波長領域をカットするフィルターを用いて、上記と同様にして光吸収発熱保温性能試験を行った。すなわち、濃度1.0×10-1mol/Lの硫酸バナジル水溶液、硫酸第一鉄水溶液、および炭化ジルコニウム(関東化学株式会社)でそれぞれ先媒染した15cm四方のウール布帛の上方1cm地点に、サイズ5cm×5cm×3mmの3種類の色ガラスフィルター(東芝硝子株式会社製の赤外線フィルターIRA-10、紫外線フィルターUV-29、および紫外線フィルターY-46)を配置した。
 BQE-A法と同様に、試験環境は温度20℃、湿度65%であった。写真用レフランプ(PRF-500WD)の出力波長特性は、減光フィルター(03FNQ023/OD 2.0、MELLES GRIOT社)を通して、受光器(PHOTONIC MULTI-CHANNEL ANALYZER、浜松ホトニクス株式会社)を用いて測定した。
5.透過率・反射率測定
 紫外可視近赤外分光光度計(UV-VIS NIR SPECTROPHOTOMETER SolidSpec-3700、株式会社島津製作所)を用いて、媒染後および/または染色後のウール布帛の光透過率と光反射率を測定して、ウール布帛の光吸収性を評価した。なお、スリット幅は32nm、測定波長範囲は200~2500nmとした。検出器の切替波長は870nmおよび1650nm、グレーティングの切替波長は780nmとした。
B:結果
1.バナジウム媒染ウール布帛と鉄媒染ウール布帛の光吸収発熱保温状態
 濃度1.0×10-1mol/Lでのバナジウム媒染ウール布帛(▲:V)と鉄媒染ウール布帛(□:Fe)の光吸収発熱保温性能試験の結果を図1に示す。なお、光照射開始時が経過時間0分である(図2、図3、および図6~図10も同様)。媒染後に光吸収発熱保温性能を示すことの指標は、媒染後と媒染前の温度差が、光照射10分後で5℃以上、その後の光照射停止1分後で1.0℃以上である。
 鉄は、ログウッドとの組み合わせによる黒色染色に用いられる媒染剤である。鉄媒染ウール布帛と、媒染してないウール布帛(●:blank)の温度差は、光照射10分後で1.4℃、光照射停止1分後で0.8℃であった。一方、バナジウム媒染ウール布帛と、媒染してないウール布帛の温度差は、光照射10分後で14.9℃、光照射停止1分後で5.9℃であった。鉄媒染ウール布帛は光吸収発熱保温性能を示さなかった。これに対して、バナジウム媒染ウール布帛は、非常に高い光吸収発熱保温性能を示した。
2.バナジウム媒染剤濃度と光吸収発熱保温状態
 図2は、バナジウム媒染剤濃度を変化させたとき(1.0×10-3mol/L(■)~5.0×10-1mol/L(◇)の6種類)のバナジウム媒染ウール布帛および媒染していないウール布帛(〇:0mol/L)の光吸収発熱保温状態を示している。バナジウム媒染剤の濃度が5.0×10-3mol/L以下では、光吸収発熱保温性能を示さなかった。
 一方、バナジウム媒染剤の濃度が1.0×10-2mol/L以上では、バナジウム媒染剤の濃度が上昇するにつれて、光吸収発熱保温性能が徐々に向上することがわかった。なお、植物染料の発色バリエーションを増やす目的で、媒染剤VOSOを繊維に導入することが知られている(「植物染料五倍子染色におけるバナジウム先媒染の最適条件」、繊維製品消費科学、2014年)。しかし、媒染剤自体の着色を抑えるために、VOSO濃度は5mM以下に抑えられている。
 光照射10分後の染色バナジウム先媒染ウール布帛と染色ウール布帛(バナジウム媒染なし)の温度差が10.0℃以上となるためには、濃度1.0×10-2mol/L以上の媒染剤で媒染することが必要であることがわかった。なお、高濃度1.0×10-1mol/Lのバナジウム媒染剤で処理したバナジウム先媒染ウール布帛の皮膚一次刺激性は、蒸留水およびワセリン程度の低刺激性であることが確認されている。
3.光源波長が光吸収発熱保温状態に及ぼす影響
 バナジウム媒染ウール布帛(□:V)、鉄媒染ウール布帛(▲:Fe)、ジルコニウム媒染ウール布帛(◇:Zr)、およびウール布帛(●:no mordant)の発熱保温性に影響を及ぼす特性波長を調べた。媒染剤VOSO、ZrC、およびFeSOの濃度は、いずれも1.0×10-1mol/Lとした。3種類の波長カットフィルターを用いたときと、波長カットフィルターを用いなかったときの光吸収発熱保温性能試験の結果を図3に示す。
 赤外線フィルターIRA-10は波長320nm以下および800nm~4800nmをカットする(図3(d))。紫外線フィルターUV-29は波長240nm以下をカットする(図3(b))。紫外線フィルターY-46は波長430nm以下をカットする(図3(c))。図3(b)と図3(c)では、波長カットフィルターを用いなかった図3(a)と変わらない傾向が見られた。これは、紫外線の光吸収発熱保温性能に対する寄与が小さいことを示している。一方、赤外線カットフィルターを用いると光吸収発熱保温性が劣った(図3(d))。これより、バナジウムの赤外線領域波長の光吸収が、光吸収発熱保温性能に影響を及ぼしていることがわかった。
 また、炭化ジルコニウムを含有する媒染剤で媒染したジルコニウム媒染ウール布帛の発熱保温性も、バナジウム媒染ウール布帛の発熱保温性と同様の傾向を示した。これより、ジルコニウムとバナジウムは、赤外線領域波長の光を吸収して、似たようなメカニズムによって媒染ウール布帛が発熱保温性を示すと推察される。バナジウムとジルコニウムの飽和到達温度を比較すると、バナジウムの方が約10℃高い。これは、水に溶けるバナジウム塩から供給されるバナジウムが、媒染により、静電気力による結合で天然繊維に付着しやすいからだと考えられる。
4.バナジウム媒染ウール布帛の光透過率と光反射率
 バナジウム媒染ウール布帛の光透過率と光反射率の測定結果を図4に示す。媒染剤濃度を高くしていくと、光透過率(図4(a))および光反射率(図4(b))はともに低くなっていく。100%から光透過率と光反射率の和を引いた数値がバナジウム媒染ウール布帛の光吸収率である。可視領域光波長380nm~780nmにおけるバナジウム媒染ウール布帛の光吸収は、バナジウム媒染ウール布帛の色に関する吸収である、このため、波長380nm~780nmを除いた領域におけるバナジウム媒染ウール布帛の光透過率と光反射率の低さは、バナジウム媒染ウール布帛の光吸収率の高さといえる。波長300nm~380nmおよび波長780nm~1900nmでは、媒染剤濃度を高くしていくとバナジウム媒染ウール布帛の光吸収率が高くなることが図4からわかった。
 バナジウム媒染剤濃度に対するバナジウム媒染ウール布帛の特定波長における光透過率(□:T)および光反射率(●:R)を図5に示す。紫外線領域の波長200nmと、近赤外線領域の長波長側の波長2000nmにおいては、バナジウム媒染剤濃度を高くしてもバナジウム媒染ウール布帛の光吸収率に変化が見られなかった(図5(a)と図5(d))。これは、これらの波長が光吸収発熱保温性能にあまり寄与しないことを意味している。
 一方、図5(b)および図5(c)では、バナジウム媒染剤濃度を高くしていくと、バナジウム媒染ウール布帛の光透過率および光反射率がともに下がり、媒染剤の濃度が5.0×10-2mol/L以上で、バナジウム媒染ウール布帛の光吸収率が最も高く飽和している。図5(b)は、可視光領域の波長500nmの光照射であり、バナジウム媒染後に緑色の度合いが深まっていることを示している。図5(c)は、近赤外線領域の波長1000nmの光照射である。バナジウム媒染剤の濃度が5.0×10-2mol/L以上で1000nmの光吸収率が飽和していることは、バナジウム媒染ウール布帛の光吸収発熱保温性能が、このバナジウム媒染剤濃度で飽和していると推察される。
 これらの結果から、天然繊維であるウール布帛をバナジウム媒染して、バナジウムを付着させたバナジウム媒染ウール布帛は、1000nm等の近赤外線領域の中で特に短波長側の光を吸収し、高い発熱保温性を示すことが明らかとなった。地球表面にそそぐ太陽エネルギースペクトルは500nm付近を極大として長波長側は減衰する。太陽光は近赤外領域においても短波長側のエネルギー強度が高いことから、バナジウム媒染ウール布帛は、太陽光による光吸収発熱保温に関して有利であると考えられる。
5.黒色バナジウム先媒染ウール布帛の光吸収発熱保温状態
 濃度1.0×10-1mol/Lのバナジウム媒染剤で媒染したバナジウム媒染ウール布帛を、ポリフェノール構成成分である没食子酸GAで染色した黒色バナジウム先媒染ウール布帛(▲:V→GA)の光吸収発熱保温状態を図6示す。また、媒染せずにウール布帛を没食子酸で染色した黒色ウール布帛(□:GA)と、媒染も染色もしていないウール布帛(●:blank)の光吸収発熱保温状態も図6に示す。黒色バナジウム先媒染ウール布帛と媒染も染色もしていないウール布帛の温度差は、光照射10分後で14.5℃、光照射停止1分後で5.8℃であった。黒色バナジウム先媒染ウール布帛の光吸収発熱保温性能が没食子酸での黒色染色前後で同等であることから(図1参照)、バナジウム媒染ウール布帛の黒色度の光吸収発熱保温性能への寄与は小さいと考えられる。
6.化学黒色ウール布帛の光吸収発熱保温状態
 バナジウム媒染剤で媒染したバナジウム媒染ウール布帛を没食子酸で染色した黒色バナジウム先媒染ウール布帛と、媒染していないウール布帛を化学染料の黒色染料TLB(Kayanol Milling)、またはTLBおよび緑色染料Green 5GW(以下、単に5GWと記載することがある)(Kayanol Milling)の混合物で染色した化学黒色ウール布帛の明度L値と、クロマティクネス指数a値およびb値と、色差値ΔE00を表2に示す。なお、ΔE00は黒色バナジウム先媒染ウール布帛を基準とした。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、濃度2.45%o.w.fのTLBと濃度1.75o.w.f%の5GWを含有する染色剤(以下、「TLB2.45%o.w.f+5GW1.75o.w.f%」と記載することがある。他の染色剤についても同様の記載をすることがある)で染色した化学黒色ウール布帛の色差値ΔE00は、基準と一致した。また、他の染色剤での染色では、ΔE00が全て3.0未満であった。これらのΔE00は、A級許容差と呼ばれる色の離間比較においてほとんど色差を認識することができないレベルである。黒色バナジウム先媒染ウール布帛のb値はプラスであり、化学黒色ウール布帛のb値はすべて0に近いマイナスであった。これらの結果から、基準色となる黒色バナジウム先媒染ウール布帛は黄色系の黒色であり、化学黒色ウール布帛は青味を若干帯びた黒色であることがわかる。しかし、これらの色差は目視でほとんど認識できない。
 6種類の化学黒色ウール布帛の平均(□:black)、濃度が5.0×10-2mol/Lのバナジウム媒染剤で媒染したバナジウム媒染ウール布帛を、TLB2.45%o.w.f+5GW1.75%o.w.fの化学染料で染色した化学黒色バナジウム先媒染ウール布帛(▲:V→black)、および媒染も染色もしていないウール布帛(●:blank)の光吸収発熱保温状態を図7示す。なお、6種類の化学黒色ウール布帛のプロットはほぼ重なっていた。図7に示すように、化学黒色ウール布帛と媒染も染色もしていないウール布帛の温度差は、光照射10分後で2.5℃、光照射停止1分後で1.4℃であった。したがって、化学染料で天然繊維のウール布帛を黒色染色すると、従来の発熱保温素材の指標程度の効果は得られるが、それほど高い効果は期待できない。
7.化学赤色ウール布帛、化学緑色ウール布帛、化学青色ウール布帛の光吸収発熱保温状態
 媒染していないウール布帛を赤色の化学染料で染色した化学赤色ウール布帛(□:red)、濃度が5.0×10-2mol/Lのバナジウム媒染剤で媒染したバナジウム媒染ウール布帛を、赤色の化学染料で染色した化学赤色バナジウム先媒染ウール布帛(▲:V→red)、濃度が5.0×10-2mol/Lのバナジウム媒染剤と赤色の化学染料を含む染色剤で同時媒染した化学赤色バナジウム同時媒染ウール布帛(◇:V+red)、および媒染も染色もしていないウール布帛(●:blank)の光吸収発熱保温状態を図8示す。なお、同時媒染は、媒染および染色の工程の省力化のために検討した。
 同様に、媒染していないウール布帛を緑色の化学染料で染色した化学緑色ウール布帛(□:green)、濃度が5.0×10-2mol/Lのバナジウム媒染剤で媒染したバナジウム媒染ウール布帛を、緑色の化学染料で染色した化学緑色バナジウム先媒染ウール布帛(▲:V→green)、および媒染も染色もしていないウール布帛(●:blank)の光吸収発熱保温状態を図9示す。
 また同様に、媒染していないウール布帛を青色の化学染料で染色した化学青色ウール布帛(□:blue)、濃度が5.0×10-2mol/Lのバナジウム媒染剤で媒染したバナジウム媒染ウール布帛を、青色の化学染料で染色した化学青色バナジウム先媒染ウール布帛(▲:V→blue)、および媒染も染色もしていないウール布帛(●:blank)の光吸収発熱保温状態を図10示す。
 図8から図10に示すように、バナジウム媒染ウール布帛を3原色の化学染料で染色しても、化学赤色バナジウム先媒染ウール布帛、化学緑色バナジウム先媒染ウール布帛、および化学青色バナジウム先媒染ウール布帛と、媒染も染色もしていないウール布帛の温度差の平均値は、光照射10分後で16.5℃、光照射停止1分後で6.4℃であった。すなわち、化学赤色バナジウム先媒染ウール布帛、化学緑色バナジウム先媒染ウール布帛、および化学青色バナジウム先媒染ウール布帛は、高い光吸収発熱保温性能を示した。また、化学赤色バナジウム同時媒染ウール布帛も、同様の高い光吸収発熱保温性能を示した。硫酸バナジル水溶液と化学染料の混合溶液による染色を行っても発熱保温効果が得られることは、染色工程の一元化による染色コスト低減につながる。
 化学赤色バナジウム先媒染ウール布帛、化学緑色バナジウム先媒染ウール布帛、および化学青色バナジウム先媒染ウール布帛と、バナジウム媒染剤と赤色の化学染料を含む染色剤で同時媒染した化学赤色バナジウム同時媒染ウール布帛(表中に「mixed」の記載あり)のL値、a値、およびb値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 化学赤色バナジウム同時媒染ウール布帛は、化学赤色バナジウム先媒染ウール布帛と比べて、染色コストの低減化が可能であるが、L値が若干下がり、黄色味を示すb値も低下している。これより、同時媒染では、明度の低い紫系に染色されており、布帛の色彩と色相の調色が必要となってくると考えられる。明度の低い紫系に染色されるのは、媒染剤のバナジウム高濃度によるバナジウム由来の着色が要因であると考えられる。
 本発明によれば、化学染料による染色を用いることで繊維のカラーバリエーションが豊富になり、黒色に限定されずに耐光性の高い染料の選択肢が増加する。従来の炭化ジルコニウムを用いた繊維の染色方法では、染料が練り込みできる樹脂系繊維に限定され、また色彩も灰色から黒系に限定されていた。また、天然染料による染色では、黒色または緑色以外の繊維は耐光性が低い。一方、本発明では、天然素材への媒染によって、様々な色相や色彩に対応可能である。
 以上より、ウール布帛にバナジウムを付着することによって、高い光吸収発熱保温性能が得られることが明らかになった。バナジウムの付着はウール布帛のみならずシルクやナイロンにも可能で、さらに改質することでセルロース系素材にも適用できる。したがって、様々な天然素材に光吸収発熱保温機能を持たせることができると考えられる。バナジウム先媒染繊維は、化学染料で様々な色相や色彩に染色しても光吸収発熱保温性能が発揮される。特殊な波長カットフィルターを用いて光照射した光吸収発熱保温性能試験の結果、その効果は近赤外線領域におけるバナジウムの光吸収によるものであり、紫外線領域におけるバナジウムの光吸収の寄与は小さいと考えられる。
 炭化ジルコニウムも2000nm以下の近赤外線領域に吸収を持つことが知られている。バナジウムも同様の作用で光吸収発熱保温性を示すものと推察される。バナジウムは、特に1000nm等の2000nm付近よりも短波長側における近赤外線領域の光吸収が発熱保温性効果に寄与していると考えられる。バナジウムは、天然素材への導入が可能である点、少量で効果が非常に高い点、およびカラーバリエーションを任意に選べる点で、媒染物質として優れている。
〔樹脂を含む複合体〕
 親水性溶媒に溶ける樹脂としてポリビニルアルコール(PVA)を用い、光吸収発熱保温用複合体であるバナジウム含有PVAフィルムを作製した。PVAは無色透明のため、染料と複合化することで様々な色のバナジウム含有ポリビニルアルコールフィルムを作製することができる。純水200mLにPVA(n=1500~1800、和光純薬工業株式会社)10gを加えて溶かした。硫酸バナジル・n水和物(鹿特級、関東化学株式会社)0.4gをさらに加え(VOSO濃度0.19%)、沸騰しない温度の50~80℃に保ちながら1時間攪拌した。
 加熱と攪拌をやめ、室温で1時間静置して気泡を取り除いた。樹脂溶液の上部に形成された樹脂固形分を取り除いた。水平な金属板上に水溶液を静かにキャストし、樹脂溶液を薄く伸ばした。乾燥機で40℃、20時間、キャストした樹脂溶液を加熱および乾燥した後、放冷して樹脂フィルムを形成した。金属板から樹脂フィルムを剥がし取り、バナジウム含有PVAフィルムを得た。得られたバナジウム含有PVAフィルムは、従来の光発熱材料のZrCまたはVOの無機粒子が分散されているPVAフィルムと異なり、高い透明性を備えていた。無機粒子が分散されているPVAフィルムは、無機粒子が光を散乱して、艶消し効果が発現するためだと考えられる。
 以下のようにして、PVAフィルムとバナジウム含有PVAフィルムの各試料の光吸収発熱保温性能試験を行った。発砲スチロール製試料台の上に、一辺が5cmの正方形板状の各試料を置き、試料から30cmの距離に写真用レフランプ(パナソニック、PRF-500WB/D)を設置して光を照射した。実験室の温度は20℃で、相対湿度は65%であった。光照射中、一定時間毎に赤外線サーモグラフィで温度を測定した。その後、レフランプを消灯した状態でも、一定時間毎に温度を測定した。試料の表面温度は、非接触小型放射温度計(NEC Avio赤外線テクノロジー(株)、赤外線サーモグラフィ InfReC Thermo GEAR G100)を用いて、放射率E=0.94で測定した。試料面から約45°の方向で、70cmの距離に放射温度計を設置して温度測定した。
 レフランプ点灯から270秒後、PVAフィルムおよびバナジウム含有PVAフィルムの表面到達温度は、それぞれ39.4℃および43.6℃であった。また、レフランプ消灯から60秒後、PVAフィルムおよびバナジウム含有PVAフィルムの表面到達温度は、それぞれ30.8℃および35.6℃であった。このように、バナジウム含有PVAフィルムは、光を吸収して、大きく発熱および保温した。なお、ウール布帛の比熱と比べてPVAフィルムの比熱が小さいので、バナジウム含有PVAフィルムは、バナジウム媒染ウール布帛よりも、光を吸収して発熱および保温する程度が低かった。
 同様の方法で、バナジウム含有PVAフィルムと、VOSO粒子が分散されているポリ塩化ビニルフィルム(VOSO分散PVCフィルム)が、光を吸収して発熱および保温する程度を比べた。なお、VOSO分散PVCは、濃度1.6%となるようにポリ塩化ビニル溶液にVOSOを混合し、減圧脱泡しながら硬化させて得た。レフランプ点灯から270秒後、VOSO分散PVCフィルムおよびバナジウム含有PVAフィルムの表面到達温度は、それぞれ40.6℃および43.0℃であった。
 また、レフランプ消灯から60秒後、VOSO分散PVCフィルムおよびバナジウム含有PVAフィルムの表面到達温度は、それぞれ32.1℃および35.4℃であった。VOSO分散PVCフィルムは、バナジウム含有PVAフィルムよりバナジウム濃度が高かったにも関わらず、バナジウム含有PVAフィルムより保温の程度が低かった。このように、機能性粒子が樹脂中に分散している複合体よりも、本実施例のような樹脂の官能基にバナジウムが化学結合している複合体の方が、透明性と、光を吸収して発熱および保温する程度が高かった。
 本発明の光吸収発熱保温用複合体またはその製造方法は、発色機能および/または光を熱エネルギーに変換する機能を有するので、温熱機能付きのビニールハウス用ビニールシート、色素増感太陽電池、化粧品、ヘアカラー、繊維の染色、漆の塗膜、CD-RやDVD-Rの記録層の色素、コピー機のトナー用色素、ボールペンのインク、インクジェットプリンタの染料インクなどに利用できる。

Claims (7)

  1.  天然繊維と、前記天然繊維に付着しているバナジウムと、化学染料とを有し、光を吸収して発熱機能および保温機能を発揮する光吸収発熱保温用複合体。
  2.  請求項1において、
     バナジウムが、静電気力による結合によって、前記天然繊維に付着している光吸収発熱保温用複合体。
  3.  請求項1または2の光吸収発熱保温用複合体の製造方法であって、
     濃度10mM以上でバナジウムイオンを含む液体に、前記天然繊維を浸す浸漬工程と、
     前記化学染料で前記天然繊維を染色する染色工程と、
     を有する光吸収発熱保温用複合体の製造方法。
  4.  官能基を備え、親水性溶媒に溶ける樹脂と、前記官能基に化学結合しているバナジウムとを有し、光を吸収して発熱および保温する光吸収発熱保温用複合体。
  5.  請求項4の光吸収発熱保温用複合体の製造方法であって、
     親水性溶媒に溶けるバナジウム塩と、前記樹脂を親水性溶媒に溶かした溶液とを混合する混合工程を有する光吸収発熱保温用複合体の製造方法。
  6.  請求項5おいて、
     前記親水性溶媒が水である光吸収発熱保温用複合体の製造方法。
  7.  請求項1、2、または4において、
     前記光が近赤外光である光吸収発熱保温用複合体。
PCT/JP2019/017121 2019-04-23 2019-04-23 光吸収発熱保温用複合体とその製造方法 WO2020217293A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019569988A JP6792108B1 (ja) 2019-04-23 2019-04-23 光吸収発熱保温用複合体とその製造方法
PCT/JP2019/017121 WO2020217293A1 (ja) 2019-04-23 2019-04-23 光吸収発熱保温用複合体とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017121 WO2020217293A1 (ja) 2019-04-23 2019-04-23 光吸収発熱保温用複合体とその製造方法

Publications (1)

Publication Number Publication Date
WO2020217293A1 true WO2020217293A1 (ja) 2020-10-29

Family

ID=72941623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017121 WO2020217293A1 (ja) 2019-04-23 2019-04-23 光吸収発熱保温用複合体とその製造方法

Country Status (2)

Country Link
JP (1) JP6792108B1 (ja)
WO (1) WO2020217293A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087620A1 (ja) * 2013-12-11 2015-06-18 富士高分子工業株式会社 蓄熱性組成物
JP2018091556A (ja) * 2016-12-02 2018-06-14 日本ペイント・サーフケミカルズ株式会社 熱交換器、及び熱交換器の親水化処理方法
WO2019111864A1 (ja) * 2017-12-05 2019-06-13 山梨県 光吸収発熱保温用複合体とその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013096A (ja) * 2002-06-11 2004-01-15 Fujitsu Ltd 液晶表示装置及びその製造方法
JP2017043670A (ja) * 2015-08-25 2017-03-02 三菱マテリアル株式会社 二酸化バナジウム分散液及び二酸化バナジウム塗料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087620A1 (ja) * 2013-12-11 2015-06-18 富士高分子工業株式会社 蓄熱性組成物
JP2018091556A (ja) * 2016-12-02 2018-06-14 日本ペイント・サーフケミカルズ株式会社 熱交換器、及び熱交換器の親水化処理方法
WO2019111864A1 (ja) * 2017-12-05 2019-06-13 山梨県 光吸収発熱保温用複合体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHINOBU UEGAKI , SHIOZAWA YUICHIRO , XIU YASUNAGA METER: "Photothermal Conversion and Thermal Preservation Effect on Fabrics Made by Vanadium-Treatment and Dyeing", JOURNAL OF THE JAPAN RESEARCH ASSOCIATION FOR TEXTILE END-USES, vol. 60, no. 1, 25 January 2019 (2019-01-25), pages 52 - 62, XP055758194, ISSN: 0037-2072, DOI: 10.11419/senshoshi.60.1_52 *

Also Published As

Publication number Publication date
JPWO2020217293A1 (ja) 2021-05-06
JP6792108B1 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2019111864A1 (ja) 光吸収発熱保温用複合体とその製造方法
Shabbir et al. Application of Terminalia chebula natural dye on wool fiber—evaluation of color and fastness properties
Gürses et al. Dyes and pigments
Little et al. Textile applications of photochromic dyes. Part 2: factors affecting the photocoloration of textiles screen‐printed with commercial photochromic dyes
Feng et al. New insights into solar UV-protective properties of natural dye
Billah et al. Direct coloration of textiles with photochromic dyes. Part 1: Application of spiroindolinonaphthoxazines as disperse dyes to polyester, nylon and acrylic fabrics
Iqbal et al. Effect of UV radiation on dyeing of cotton fabric with extracts of henna leaves
Rather et al. Coloration, UV protective, and antioxidant finishing of wool fabric via natural dye extracts: cleaner production of bioactive textiles
Arroyo‐Figueroa et al. Cotton fabric dyeing with cochineal extract: influence of mordant concentration
Sinha et al. Dyeing of modified cotton fiber with natural t erminalia arjuna dye: optimization of dyeing parameters using response surface methodology
Kanniappan Assessment of dyeing properties and quality parameters of natural dye extracted from Lawsonia inermis
Miah et al. Comparative analysis of colour strength and fastness properties on extracts natural dye from onion’s outer shell and its use in eco-friendly dyeing of silk fabric
JP6792108B1 (ja) 光吸収発熱保温用複合体とその製造方法
JP6980238B2 (ja) 光吸収発熱保温用複合体
JP3180230B2 (ja) 着色スエード調合成皮革の製造方法
Atav et al. An Ecofriendly Dyeing Method for Polyester Fibers: To Bring Traditional Natural Dyeing into Industrial Production
He et al. Polyphenol-assisted natural coloration on various synthetic textile materials
EP4377262A1 (en) Nanoporous cerium oxide nanoparticle macro-structure
JP2006240011A (ja) スクリーン印刷用メッシュおよびこれを用いてなるスクリーン印刷用原板
Samanta et al. Studies on color interaction parameters and color fastness properties for dyeing of cotton fabrics with binary mixtures of jackfruit wood and other natural dyes
Wang et al. Preparation of Tungsten‐Based Polyvinyl Alcohol Waterborne Coating and Development of Photochromic Composite Fabric
Islam et al. Reflectance spectroscopic optimization of dyeing process and color characterization of ammonia post‐treated wool dyed with Tectona grandis L. leaves extract
Mansour et al. Environmental assessment of osage orange extraction and its dyeing properties on protein fabrics part II: Dyeing properties
JP2006176941A (ja) 赤外線低反射加工織編物
JP5617114B2 (ja) 赤外線吸収能繊維及び赤外線吸収能付与方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569988

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925682

Country of ref document: EP

Kind code of ref document: A1