WO2020216266A1 - 一种高效节能房 - Google Patents

一种高效节能房 Download PDF

Info

Publication number
WO2020216266A1
WO2020216266A1 PCT/CN2020/086255 CN2020086255W WO2020216266A1 WO 2020216266 A1 WO2020216266 A1 WO 2020216266A1 CN 2020086255 W CN2020086255 W CN 2020086255W WO 2020216266 A1 WO2020216266 A1 WO 2020216266A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
layer
film
connecting rod
frame
Prior art date
Application number
PCT/CN2020/086255
Other languages
English (en)
French (fr)
Inventor
蒋卫国
Original Assignee
蒋卫国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒋卫国 filed Critical 蒋卫国
Priority to US17/606,020 priority Critical patent/US20220205237A1/en
Publication of WO2020216266A1 publication Critical patent/WO2020216266A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • E04B1/7641Elements for window or door openings, or for corners of the building
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology

Definitions

  • the high-efficiency energy-saving house belongs to the field of construction.
  • This multi-layer cavity structure eliminates the metal frame and uses ultra-thin glass for each inner layer.
  • the overall weight is equivalent to the double-layer glass curtain wall, but the cost is lower than the glass curtain wall due to the elimination of the metal frame and all the keels.
  • the thermal effect can reach the level of a brick wall with thick insulation cotton.
  • the above-mentioned multi-layer cavity structure is used to manufacture windows, doors, curtain walls, and lighting roofs, which can be combined with brick walls, roofs, and floors with thick insulation cotton, so that all peripheral structures of the building are covered in the insulation structure to achieve the reality. Any level of insulation required.
  • the above-mentioned multi-layer cavity structure to manufacture windows, doors, curtain walls, and daylighting roofs not only has an overall cost lower than traditional windows, doors, curtain walls, and daylighting roofs, but the strength and life span can be improved.
  • These technologies have been proved by experiments and laid the foundation for promotion.
  • the above-mentioned multi-layer cavity structure can also be made of high-density materials, and can be replaced by a thin-film heat-insulating structure that greatly reduces costs.
  • the outer frame of the doors and windows and the outer wall of the building need to be provided with a cold and hot bridge, so that when the doors and windows are closed, the insulation structure of the doors and windows and the outer wall of the building
  • the layers are connected as a whole, and the outer frame is not affected by the external temperature through the broken bridge.
  • the transfer structure with the function of cold and hot bridge breaking shown in side view 1 can be adopted: at the outer frame of the door and window, the outer frame of the door and window 1 It is connected to the outer wall 2 by connecting rods 3 and connecting blocks 4 and 5 made of wood or other low thermal conductivity materials.
  • the connecting block 4 and the outer wall are firmly connected by the embedded parts, pre-assembled parts, rear embedded parts and other connecting parts on the outer wall and/or the house frame.
  • the connecting block 4 and the connecting rod 3 can be connected by bolts. Make a firm connection.
  • the connecting block 5 and the outer frame 1 of the door and window and the connecting rod 3 can be firmly connected by bolts or the like.
  • a heat conduction path made of wood or other low thermal conductivity materials is formed between the outer frame (1) of the door and window and the outer wall (2).
  • the length can be adjusted during the design to meet the requirements.
  • the thermal insulation function is formed between the outer frame (1) of the door and window and the outer wall (2).
  • transition structure with the function of cold and hot bridge breaking can not only be used as a cold and hot broken bridge between the outer frame of the door and window and the outer wall, but also can be installed at the same time or only in the outer wall of the double-wall insulation layer structure.
  • hot and cold broken bridge between the inner wall of the light material and the floor and/or ceiling please refer to the specific embodiments below for details.
  • multi-layer block constructed with glass or other materials through bolt assembly as described above, can be pre-embedded or pre-installed at the frame of the house
  • the connecting pieces are directly installed indoors on the outer wall and roof of the house to form a high-efficiency and energy-saving curtain wall and daylighting roof, which can be easily installed and disassembled (see the specification No. 0152—0163 in the patent document with application number 201610000457.1 for details Paragraph.
  • This patent document is hereinafter referred to as the "original patent document”).
  • the adjacent thermal insulation blocks should be watertight and airtight.
  • the following methods can also be used:
  • the multi-layer insulation blocks 21, 22 are located in the upper row, and the multi-layer insulation blocks 23, 24 are located in the lower row. (See rear view 2).
  • the left and right sides of each block are respectively provided with rain shields 35 and 36 (see enlarged top view 3), and the lower side of each block is provided with rain shield 57 (see enlarged side view 5).
  • the block 21 is installed first, and then the block 22 is installed and the rain plate 35 of the block 22 is topped inside the rain plate 36 of the block 21.
  • the same row of blocks 21 and 22 is filled with blocks, and the rainproof plates on the left and right sides of each block are overlapped with each other.
  • the upper or upper edge of the block 23 should be placed on the inner side of the rainproof 57 on the lower edge of the block 21 (see side view 5), and the blocks 23 and 24 should be placed on top of all other blocks in the same row.
  • the edge or upper edge rainproof plate is both topped on the inner side of the lower edge rainproof plate of the upper row of blocks.
  • the upper row of rainproof plates 35, 36 are connected to the lower row of rainproof plates 35, 36 respectively; and the lower part of the upper row of rainproof plates 36 is folded outward to wrap the upper part of the lower row of rainproof plates 36; The rain plate 35 is not folded outward, and is aligned with the lower row of rain plate 35.
  • the connection between the block and the gable wall can be covered by a cover plate on the top of the gable wall or the gable side to realize the overall rainproof; the connection between the block and the frame of the house can be rainproof by the outside of the frame
  • the heat insulation block can realize the overall rainproof. For details, please refer to the specific implementation mode later.
  • the rainproof plate of each block extends along its side to the inside of the block and forms a flat edge 38 around the inside of the block; as shown in the top view 3 and side views 6,7, As shown in 8, the side panels of each block extend to the inner side of the block and also form a flat edge 38 around the inner side of the block.
  • a good airtight effect can be achieved by sticking the tape on the adjacent side 38. Since there is a gap between adjacent blocks, in order to further improve the heat insulation function (and improve the appearance of the tape), fasteners and heat insulation strips can be installed on the inner side of each block where the tape is attached, and the heat insulation The strips are fixed with fasteners.
  • the heat insulation strip can play a dual role of heat insulation and decoration.
  • thermo insulation cotton structure on the side can be realized as follows:
  • the strip material (spacer) sandwiched in the multi-layer cavity structure is wooden material
  • the side insulation cotton structure can be used as shown in Figure 9: the horizontal wooden spacer 92 and the horizontal wooden spacer 92 in a cavity of the multi-layer cavity structure 91
  • the vertical wooden partition strips 93 can be connected by overlapping the bolt holes 94 around the cavity, and the bolts can pass through the wooden partition strips 92 and 93 at the same time.
  • the total thickness of the overlapping parts of the wooden spacers 92 and 93 reaches the thickness of the cavity where they are located, and the thickness of the non-overlapping parts all reach the thickness of the cavity where they are located.
  • the wooden partition bars 92 and 93 are provided with a connector 95 (the connector 95 can be set as a connecting port with a narrow outside and a wide inside), and the connector 95 is connected with the connector on the plastic (or other low thermal conductivity material) partition 96.
  • the spacer 96 is also provided with a connectable head 97 (the connecting head 97 can also be set as a connecting port with a narrow outside and a wide inside), so that they can be connected to each other.
  • the connecting heads of a plurality of plastic (or other low thermal conductivity materials) spacer strips 96 are connected with the wooden spacer strips 92 and 93 to form a continuous small frame 98.
  • the small frame 98 is filled with thermal insulation cotton, thereby minimizing the heat conduction between the multi-layered cavity on the peripheral side and the outside.
  • the spacers in the above-mentioned high-efficiency and energy-saving multilayer cavity structure can be connected in the manner shown in Figure 10: in a cavity of the multilayer cavity structure 101 in the figure
  • the spacer 102 forms a continuous horizontal frame
  • the spacer 103 forms a continuous vertical frame.
  • the horizontal frame and the vertical frame are connected at the bolt holes 104 on the periphery of the cavity by overlapping and other methods.
  • the horizontal frame of the spacer 102 and/or the vertical frame of the spacer 103 are provided with a ring at the bolt hole 104 and can be connected to the horizontal or vertical frame by means of spokes or the like.
  • the total thickness of the overlapping part of the horizontal frame of the spacer 102 and the vertical frame of the spacer 103 reaches the thickness of the cavity where it is located, and the thickness of the non-overlapping portion reaches the thickness of the cavity where it is located. If additional bolt holes are needed for the non-overlapping part of the horizontal frame and the vertical frame, it can also be connected with bolts by arranging rings and spokes.
  • the horizontal frame and the vertical frame are filled with thermal insulation cotton 105, thereby minimizing the heat conduction between the multi-layer cavity on the peripheral side and the outside.
  • the screw rod 111 is installed on the inner side of the outer wall and/or the lower side of the ceiling.
  • the center of the cross connector 112 has a circular hole 113, and the four end points can be provided with snaps and other connectors for connecting the film spacers.
  • 114 The protrusion of the snap button 114 with an arrow-shaped cross-section can be snapped into the corresponding groove; at the same time, there is a certain gap between the protrusion and the groove of the snap button 114, which can still be snapped into and clamp the film after being covered with a film.
  • the width of the snap button 114 is the same as the thickness of the connecting piece 112.
  • the circular hole 113 is provided with a circular ring 115 made of thermal insulation materials such as foamed polystyrene, and a hole with a diameter matching the screw 111 is provided in the center for the screw 111 to be inserted.
  • the circular hole 113 of the connecting piece 112 is sleeved on the ring 115, and then a film spacer with a width equivalent to the thickness of the connecting piece 112 is connected between every two adjacent screws 111 through the connecting piece 114.
  • the film structure is multi-layered. After the film spacers are connected between every two adjacent screws in the first layer, the large films, rings, cross connectors, and film spacers of the second layer are the same Way to install.
  • a plastic (or other low thermal conductivity material) gasket is installed at the end of the screw 111 on the outermost layer. The diameter of the gasket is larger than the circular hole 113. Then install a nut on the end of the screw 111, and cover the nut with a thick thermal insulation cover.
  • the molten plastic is directly formed into a multilayer film structure 121 by means of extrusion or the like.
  • the multilayer structure 121 includes an upper layer 122, a lower layer 123, a left side surface 124, a right side surface 125, and intermediate layers 126, 127, 128, and the like. Then the multilayer structure 121 is cut into sections and the two edges of each section are welded together along the cutting line. Then, the outer layer 122 of each section is perforated by a method such as puncture, which penetrates the middle layers 126, 127, 128, etc., but does not penetrate the outer layer 123.
  • each segment of the multilayer structure is inflated and sealed through the inflatable hole, each segment of the multilayer structure forms a box-like shape with flat sides 124 and 125, but the welding lines on both sides are triangular when viewed from the side.
  • the direction of the multi-layer structure of each row or each row must be unified, so that the flat sides 124 and 125 are connected to each other, and the triangle sides at the welding line overlap each other.
  • the above-mentioned direct molding method can realize semi-automatic and fully automatic production, which greatly saves labor and reduces costs.
  • the bracket can be removed, and then two other films are used to continuously weld the front and rear edges of the box 131 beyond the part of the film 132 (gluing can also be used, but the gluing is not good for environmental protection ), leaving no gaps, so that the frame 131 forms a 6-sided sealed multilayer film heat insulation structure.
  • the surface layer needs to be perforated by puncture and other methods, and air-filled holes that can be closed are provided at the perforation.
  • the air in the film insulation structure must be evacuated during storage and transportation to save space. When in use, open the sealing plug to inflate and then seal.
  • 2Flat edge stacking In the process of film production, blow molding is used to form a box-shaped body 141 shown in section 14 in the mold, with convex surfaces 142 on both sides and air pipe 143 on one side.
  • a box-shaped body 144 is produced in the same way, with convex surfaces 145 on both sides and a trachea 146 on one side. Then the two box-shaped bodies 141, 144 are inflated, close together, and their adjacent convex surfaces 142 and 145 are clamped together, leaving the part outside the clamping line; then the adjacent convex surfaces 142, 142 are placed outside the clamping line.
  • the two box-shaped bodies 141, 144 can be connected as a whole.
  • a plurality of box-shaped bodies can be welded into a whole to form a multilayer film heat insulation structure with any layer of cavities required in reality.
  • the air pipe of each box-shaped body can be connected to a main air pipe for simultaneous inflation, sealing or simultaneous exhaust.
  • the air in the film insulation structure must be evacuated during storage and transportation to save space. Inflate and seal when in use.
  • the above flat edge stacking method can realize semi-automatic and fully automatic production, which greatly saves labor and reduces costs.
  • the sealing body 168 is produced in the same manner as above, with convex surfaces 169 on both sides. Fold the two sealing bodies 167, 168 together to clamp the adjacent convex surfaces 155, 169 together and leave the part outside the clamping line, and then weld the adjacent convex surfaces 155, 169 on the part outside the clamping line Together, release the clamp after cooling. In this way, the two sealing bodies 167 and 168 can be connected as a whole. By analogy, multiple sealing bodies can be welded together to form a multilayer film heat-insulating structure with any layer of cavities required in reality.
  • the outermost layer needs to be perforated by puncture, etc., to penetrate all layers except the outermost layer, and to set up air-filled holes that can be closed at the perforation.
  • the air in the film insulation structure must be evacuated during storage and transportation to save space. When in use, open the sealing plug to inflate and then seal.
  • the above straight edge stacking method is easy for semi-automatic and fully automatic production, which can greatly save labor and reduce costs.
  • any layer of film 171, 172, 173, 174, etc. needed in reality can be connected along the horizontal connection lines 1711, 1712, 1713, 1714, etc. and 1721, 1722, 1723, 1724, etc.
  • Weld or glue leave a side 175 in the direction perpendicular to the connecting line of each layer of the film (as shown in the top view 18).
  • the edges 175 of the film are welded or glued together along the outside, and the welding or glue lines are connected to the outermost connecting lines 1711, 1721, etc. to form a closed .
  • each layer of the above-mentioned film structure are connected together, and the cross-section of the sides is close to a triangle after inflating; two adjacent film structures need to be overlapped at the triangle and are generally uneven; this structure can be called a triangular cross-section structure.
  • each double-layer film Weld along the end connecting lines of the connecting lines 1711, 1712, 1713, 1714, etc.; after completing the welding or gluing of each layer of the film along the connecting lines 1711, 1712, 1713, 1714, etc., pair the edges 175 of the upper and lower films (Film 171, 172 are in pairs, film 172, 173 are in pairs, 173, 174 are in pairs, and so on) Welding or gluing; this can avoid connecting all sides 175 as a whole, and make the side section relatively flat after inflating Straight; this structure can be called a straight section structure.
  • the mesh connection mode can be one or more of the above triangular cross-sectional structure, straight cross-sectional structure, and cylindrical film structure.
  • All the film thermal insulation structures in the above-mentioned layered connection mode and block connection mode can be used for the thermal insulation of various buildings such as energy-saving houses.
  • the number of layers and thickness of these thin-film heat-insulating structures can be set arbitrarily according to actual needs and reach any level of heat-insulation required in reality, and at least one layer of the film should be provided with reflective materials.
  • Figure 1 shows the hot and cold broken bridges at the outer frames of doors and windows.
  • Figures 2, 3, 4, 5, 6, 7, and 8 show how the high-efficiency and energy-saving multilayer block can achieve watertight and airtightness.
  • Figure 9 shows the connection of wooden partitions in a multi-layer cavity structure.
  • Figure 10 shows the connection of plastic spacers in a multilayer cavity structure.
  • Figure 11 shows the layered connection mode of the thin film insulation structure.
  • Figure 12 shows the direct forming method in the block connection mode of the film heat insulation structure.
  • Figure 13 shows the manual production method of the bonding and welding method in the block connection method of the film heat insulation structure.
  • Figure 14 shows the flat-edge stacking method of the bonding and welding forming method in the block connection method of the film heat insulation structure.
  • Figures 15 and 16 show the straight-edge stacking method of the stick-welding forming method in the block connection method of the film heat insulation structure.
  • Figures 17 and 18 show the mesh block method of the bonding and welding method in the block connection method of the film heat insulation structure.
  • Figures 19, 20, 21, and 22 show how to install the insulation strip.
  • Figure 23 shows the installation method of the horizontal insulation block.
  • Figures 24 and 25 show the installation method and rainproof method of the vertical insulation block.
  • Figure 26 shows the rain cover of the connecting rod of the transverse insulation block.
  • Figure 27 shows the rainproof method of the horizontal insulation block.
  • Figure 28 shows the rain cover of the connecting rod of the outer wall multi-layer block.
  • Figure 29 shows another rainproof method of the horizontal insulation block.
  • Figures 30 and 31 show the rainproof board on the multi-layer block of the outer wall.
  • Figures 32, 33, and 34 show the rainproof method of roof columnar protrusions.
  • Figures 35, 36, 37 show fasteners with a multi-layer cavity structure with thermal and thermal break bridges.
  • the doors and windows of high-efficiency energy-saving rooms can achieve any level of insulation required in reality through the application of a multi-layer cavity structure that eliminates the cold and hot bridges.
  • the outer frames of the doors and windows need to be covered with an insulation layer.
  • these covered thermal insulation layers also need to be set very thick and wide, which will inevitably increase the cost and affect the appearance and the opening and closing functions of doors and windows.
  • the thermal insulation layer covering the outer frame of the door and window can be eliminated.
  • the connecting rod 3 and connecting blocks 4 and 5 in Figure 1 should be arranged between the outer frame of the door and window and the outer wall in the direction perpendicular to the door and window panel (the outer frame of the door and window should be Located on the inner side of the outer wall), and set around the door or window hole on the outer wall.
  • the gap between the connecting rod 3 and the connecting blocks 4 and 5 must be installed with thermal insulation cotton, and the thermal insulation cotton should be connected to the thermal insulation cotton on the inner side of the outer wall to avoid a gap between the two.
  • the insulation cotton here is installed between the outer frame of the door and window and the outer wall, and is a way to connect the insulation structure of the door and window itself with the insulation cotton inside the outer wall, which is different from the insulation cotton covered on the other side of the outer frame of the door and window.
  • the latter does not have a broken bridge between the outer frame of the door and window and the outer wall.
  • the covered insulation cotton must cross the outer frame of the door and window to connect the insulation structure of the door and window with the insulation cotton inside the outer wall, which will hinder the opening and closing of the door and window.
  • the installation method of doors and windows is basically the same (the high-efficiency and energy-saving glass curtain wall can be regarded as a brick wall with thick insulation): install on the outer frame of the door and window
  • the above-mentioned broken bridge usually a steel structure curtain wall building or a reinforced concrete frame curtain wall building is provided with a corresponding structural frame around the door and window.
  • the outer frame of the door and window can be installed on the structural frame through the broken bridge), and the door and window
  • the thermal insulation cotton at the broken bridge is squeezed on the glass curtain wall, so that the heat insulation of the doors and windows and the heat insulation of the outer wall form a seamless connection.
  • the outer wall of the double wall structure will form a cold and hot bridge between the inner wall and the inner wall through the house frame beams at the floor and ceiling.
  • one method is to cover the floor and ceiling of the inner wall with insulation. This kind of insulation layer needs to be very wide and thick, which will increase the cost.
  • Another method is to set the outer wall of the double-wall structure as the main wall, build the inner wall with thin lightweight concrete, and apply the same breaks as the doors and windows where the inner wall meets the floor and ceiling. Bridge structure.
  • the structure of double wall with thermal insulation cotton for external wall can be used for permanent thermal insulation, but the cost is relatively high, and it is generally suitable for luxurious buildings.
  • installing a multi-layer thermal insulation structure produced with polymer materials on the inside of a single wall can achieve the same thermal insulation effect and richer decorative effects, and the cost is greatly reduced, but it needs to be replaced every few years (ie Replace the material when it is aging. For better quality materials, the replacement time can reach about 20 years).
  • the multi-layer block with rain-proof board described in the preceding paragraph can be installed indoors or outdoors; specifically Indoor or outdoor installation depends on the direction of the connecting rod between the multi-layer block and the house frame: when the connecting rod is pointing indoors, it is installed indoors, otherwise, it is installed outdoors. Most buildings, especially high-rise buildings, are suitable for indoor installation; bungalows and low-rise buildings can be installed indoors or outdoors. When installing outdoors, the installation sequence of each block is opposite to that of indoor installation.
  • the fixing and rainproof of the glass or other material blocks at the external wall can be completed by the outer-pointing screw and height adjustment device and the sealant at the screw located at the frame of the house (see paragraph 0118-0121 in the original patent document) ).
  • the rainproof of the screw can also be completed by installing a rain cover on the upper side of the screw on the outer wall block: the screw is set on the lower edge of the upper block, and the block on the upper side of the screw is directly formed, welded, and folded.
  • the rain cover is arranged to cover the screw by bending etc.; the rain cover can be extended to the outside of the lower block of the screw, because the lower block is installed before the upper block when installed outdoors; the rain cover is on the lower side of the screw and Leave enough space outside, so as not to hinder the installation of gaskets, nuts, and heat preservation covers on the screw.
  • each multi-layer block can be integrated with the outer layer of the block as shown in Figure 3 (through direct molding, bending, etc.), or can be separately installed on the side of the block as shown in Figure 4.
  • the integrated method is helpful to protect its rainproof function, but it will increase the production cost to a certain extent; the additional installation method can simplify the processing, but it needs to be strictly sealed at the junction of the rainproof plate and the outer layer of the block.
  • the rainproof plate 57 under each multi-layer block can be separately installed on the underside of the block as shown in Figure 5, or can be extended from the outer layer of the block in one or more of the ways shown in Figures 6, 7, and 8. to make.
  • the additional installation method can simplify the processing, but it needs to be strictly sealed at the junction of the rainproof plate and the outer layer of the block.
  • the extension of the outer layer helps to ensure its rainproof function, but in Figure 6, the bottom of the outer layer needs to be formed into an outward-folding rain plate 57 through direct molding, bending, etc., so that the upper and lower blocks overlap.
  • each block needs to be wider than the upper part, so that the upper and lower blocks can overlap; in Figure 8 each block needs to be installed obliquely , So that the upper and lower blocks can overlap.
  • the left and right rainproof plates 35, 36 and the lower rainproof plate 57 of each block can be connected as a whole by means of direct molding, or they can be separated from each other. If they are connected as a whole, the rainproof plates 35 and 36 of the adjacent upper and lower blocks need to be connected, and the rainproof plates 57 of the adjacent blocks on the left and right shall no longer overlap. If they are separated from each other, the rainwater on the rainproof boards 35 and 36 shall be allowed to fall on the lower rainproof board 57; at this time, the lower rainproof boards 57 of the adjacent blocks on the left and right shall overlap each other and be adjacent to each other.
  • the weatherproof boards 35 and 36 of the block are no longer connected between the upper and lower rows.
  • the fasteners and heat insulation strips described in the previous paragraph can be set up as shown in Figures 19, 20, 21, and 22:
  • the body 192 is provided with rainproof plates 193 and 194 respectively;
  • the left and right multi-layer blocks (191, 192) are provided with a connector 195 at the inner junction (the connector can be set as a buckle) (see top view 19 and side view 20);
  • a flat hole 2161 is provided on the heat insulation strip 216 (see rear view 21).
  • the end of the ratchet 227 see cross-section figure 22.
  • the figure is clearly shown and enlarged) is provided with a connecting piece 2271 (the connecting piece can be set as a "U"-shaped buckle), and the connecting piece 2271 can be connected to the connecting head 195 to connect
  • the ratchet 227 is connected to the multilayer blocks 191 and 192.
  • the ratchet 227 can pass through the flat hole 2161.
  • the flat hole 2161 can buckle the ratchet (the flat hole can be set to expand inwardly and narrowly, so that the narrow part can buckle the ratchet), so that it can only be pulled out but not inward, thereby fixing the heat insulation strip 216 and It can be pressed tightly at the junction inside the left and right multilayer blocks.
  • the connecting piece 2271 After the connecting piece 2271 is connected to the connecting head 195, it can be rotated, so that the flat hole 2161 can be turned to the flat hole 2161 and passed through the flat hole 2161 without being aligned with the connecting head 195.
  • the flat hole 2161 can be set to be longer, thereby allowing the position of the connector 195 to vary within a certain range.
  • the width of the ratchet 227 can be enlarged to increase the strength of the connection.
  • the ratchet 227 can be arranged separately from the multilayer block or directly connected as a whole, that is, the ratchet is directly connected with the multilayer block and/or the components fixed to the multilayer block.
  • the inner side of the house is taped to the junction of the inner side of the multi-layer blocks to seal.
  • the connecting piece 2271 of the ratchet 227 is connected to the connecting head 195. Then place the heat insulation strip 216 at the junction of the inner side of the multi-layer block, and pass the ratchet strip 227 through the flat holes 2161 on both sides of the heat insulation strip 216 and tighten, so that the heat insulation strip 216 is tightly pressed inside the multi-layer block At the junction of the power supply, further enhance its thermal insulation function.
  • Each heat insulation strip 216 should be provided with at least one flat hole 2161 on each side, and each flat hole 2161 is connected to the multi-layer blocks 191 and 192 through a ratchet 227. Notches can be provided at the joints of adjacent heat insulation strips to be aligned with each other. In addition to a flat hole on each side of the long heat insulation strip, flat holes must be provided at intervals in the middle and connected to the ratchet strips. In addition, the insulation strip must be made of lightweight materials to ensure safety.
  • the connecting piece and thermal insulation block at the frame of the external wall can be installed as follows:
  • the outer shell 232 of the transverse heat-insulating block 231 has a certain thickness, and it can be connected to the connecting rod 233 and the connecting cylinder 234 on the outer shell 232 or other appropriate parts of the heat-insulating block through direct molding, welding, etc.,
  • the connecting cylinder 234 is located on the outer circumference of the connecting rod 233.
  • the connecting rod 233 of the heat insulation block is inserted into the connecting tube 235 of the house frame connecting rod 237, while the connecting tube 235 of the frame connecting rod 237 is inserted into the connecting tube 234 of the heat insulating block.
  • the connecting rod 233 of the heat-insulating block passes through the connecting tube 235 of the frame connecting rod 237, and the end is provided with a thread and a nut 236 (other stoppers such as a plug can also be provided), thereby connecting the connecting rod 233 of the heat-insulating block and the connecting tube 234 It is fixed on the connecting tube 235 of the frame link 237.
  • the frame connecting rod 237 is connected to the transverse part 238 of the house frame by means of pre-embedding, pre-installation, etc.
  • the house frame can be a concrete or steel structure, etc.; the root of the connecting rod 237 (joining the frame 238) can hang down or be provided with rainwater barriers , So as to prevent rainwater from flowing to the frame of the house.
  • the shell 232 of the thermal insulation block 231 can be combined with two parts, and the cavity is filled with thermal insulation cotton 239.
  • the edge of the heat insulation block 231 can be provided with a groove, and an elastic rubber strip 2310 is installed in the groove, so that after the heat insulation block 231 and the outer wall block 2311 are installed, the edge of the heat insulation block tightly presses on the outer wall block 2311, Achieve better overall heat insulation effect.
  • the installation method of the vertical insulation block is similar to that of the horizontal insulation block.
  • the vertical heat insulation block 241 is connected to the vertical frame 242 of the house, and the root 2431 of the connecting rod 243 can hang down or be provided with rainwater blocking members.
  • connection method of the vertical insulation block (241) and the connecting rod (243) of the house frame is the same as the connection method of the horizontal insulation block (231) and the connecting rod (237) of the house frame as described above: vertical insulation block (241) is provided with a connecting tube and a connecting rod, and the connecting rod (243) of the house frame is provided with a connecting tube; the connecting tubes are inserted into each other, and the connecting rod of the insulation block passes through the connecting tube of the house frame and has a thread at the end And other blocking parts such as nuts or bolts.
  • the vertical frame also needs to be covered by insulation blocks.
  • the installation can be as shown in the top view 25: the vertical insulation block 251 is connected to the vertical part 252 of the frame at the corner of the house; if the corner of the house is 90 degrees , The connecting tube on the connecting rod 253 of the house frame can be set at a 45-degree angle with the facade of the building, and the connecting rod and the connecting tube on the heat insulation block 251 are also set at a corresponding 45-degree angle, so that the two directions are consistent; The angle between the connecting tube on the connecting rod 253, the connecting rod on the heat insulation block 251, and the connecting tube and the building facade needs to be adjusted accordingly, but the connecting tube on the connecting rod 253 and the heat insulation block 251 The connecting rod and the connecting cylinder are kept in the same direction, so that the connecting rod on the heat insulation block 251 can be pushed into the connecting cylinder on the connecting rod 253 of the house frame along with the heat insulation block 251 and fixed by installing other blocking parts such as nuts or bolts.
  • the connecting tube on the connecting rod 253 can be inserted into the connecting tube on the heat insulating block 251, so that the heat insulating block 251 is firmly installed on the connecting rod 253; the root 2531 of the connecting rod 253 can hang down or be provided with rainwater blocking parts.
  • rainwater can flow into the inner side of the transverse heat insulation block 231.
  • the connecting rod 237 and the connecting cylinder 235 have no rain cover, they must be made of stainless steel, aluminum alloy and other materials that are not easy to rust and corrode, and be tested regularly. If a rain cover is installed on the connecting rod 237 and the connecting cylinder 235, they can be made of conventional steel.
  • the root of the connecting rod 261 (the junction with the transverse frame of the house) is sag and then folded upward, or a rainwater block is set so that rainwater cannot flow to the root of the connecting rod 261 and cannot
  • the connecting cylinder 262 flows upward;
  • the root of the connecting rod 261 is provided with a hole 2611;
  • the rain cover 263 can be made of plastic material, covering the lower part of the connecting rod 261 and holes are provided on both sides of the upper hole 2611; the rain cover 263 is beyond the lower side
  • the bottom end of the connecting rod 261 is bent, and holes 2631 are provided on both sides below the bottom end of the connecting rod 261 (the figure shows the connecting rod 261, which reduces the area of the rain cover 263.
  • the actual installation is The rain cover 263 should extend upward to prevent raindrops from splashing on the connecting rod 261.
  • the upper right side of the connecting rod 261 can also be provided with a connection hole for the rain cover 263).
  • the rain cover 263 is sleeved on the connecting rod 261 and fixed by the holes 2611 and 2631 respectively with a tie or the like.
  • a rain cover 264 can be installed at the lower part of the connecting rod 261 and the lower connecting tube.
  • the rain cover 264 can be made of plastic material to prevent rainwater from splashing on the lower part of the connecting rod 261 and the lower connecting tube;
  • the rain cover 264 can be fixed by a cable tie or the like through the holes 2612, 2613 in the middle of the connecting rod 261 and the rain cover 264 at the same position on both sides of the hole.
  • the upper rain cover (263) and the lower rain cover (264) can also be fixed on the connecting rod (261) by one or more of buckle, glue, welding, inlay, riveting, and bolt connection. ; At the same time, the upper rain cover (263) and the lower rain cover (264) can be separated or integrated.
  • heat insulation block 272 is installed outside the transverse part 271 of the house frame; the outer wall multi-layer block 273 on the upper side of the frame 271 and the outer wall multi-layer on the lower side
  • the blocks 274 are respectively inserted into the connecting rods 275 and 276 in the room, and are fixed by gaskets and nuts at their end points (see paragraphs 0153 and 0154 of the original patent document for details).
  • a protruding edge 2731 can be provided on the outer side of the block 273 (At the same time/or set the lower side of the block 273 to be inclined outward), and make the outside of the block 273 exceed the position of the frame 271, so that rainwater cannot flow from the outside of the block 273 to the frame 271.
  • a protruding edge 2741 is provided along the inner side of the block 274 (at the same time/or the upper side of the block 274 is inclined outward), and the position of the block 274 exceeds the frame 271 and is aligned with the block 273. In this way, rainwater can flow from the block 273 to the outside of the block 274 and avoid flowing into the room.
  • the sealing strip installed in the groove needs to be cut into two or more sections with a drainage gap; the upper edge of the insulation block 272 can be provided with two grooves to seal The rubber strip is folded outward to facilitate drainage.
  • the connecting rods of the blocks 273 and 274 and the connecting rods of the heat insulating block 272 are fixed to the frame 271 by pre-embedding, pre-assembly, etc., and the positions of the two are staggered; the outer sides of the blocks 273 and 274 surround the connecting rods 275, 276 Set grooves to prevent rainwater from flowing into the block.
  • the connecting rods 275, 276 of the blocks 273 and 274 and the connecting rods of the heat-insulating block 272 must be made of stainless steel and other materials that are not easy to rust and corrode, otherwise a rain cover must be installed on them.
  • the rain cover of the connecting rod of the heat insulation block 272 is described in part C above and FIG. 26.
  • the rain cover of the upper connecting rod 275 and the lower connecting rod 276 of the blocks 273 and 274 can be set according to the side view 28: the middle rain cover 281 and the upper rain cover 282 are installed on the upper connecting rod, and the lower border guard is installed on the lower connecting rod. Rain cover 283.
  • the lower section of the upper connecting rod is provided with a hole 284 or a number of additional holes, and the rain cover 281 is provided with a hole at the position of the hole 284 correspondingly.
  • the two sides of the lower part of the rain cover 281 exceed the bottom end of the bending part of the connecting rod, and holes 2811 are provided on both sides at a position lower than the bottom end of the bending part of the connecting rod.
  • the upper rain cover 282 covers the rightward extending part of the upper connecting rod and is provided with a hole at the position of the hole 285, and at the same time a protrusion 2821 is provided on the left of the hole 285 position;
  • the protrusion 2821 can prevent rainwater from flowing to the right end.
  • the outer folded part of the lower part of the rain cover 282 can cover the top of the rain cover 281; the outer folded part on the left side of the rain cover 282 can prevent rainwater from flowing to the inner side of the rain cover 282.
  • the upper hole 286 of the lower connecting rod or a number of additional holes, the lower rain cover 283 is provided with corresponding holes at the position of the lower connecting rod hole; the lower edge of the lower connecting rod extends to the right and a hole 287 is provided at the end point, the rain cover 283 covers the lower connection
  • the part where the rod extends to the right is provided with a hole at the position of the hole 287, and a protrusion 2831 is provided at the left of the position of the hole 287; the protrusion 2831 can prevent rainwater from flowing to the right end.
  • the rainproof cover 283 When installing, push the rainproof cover 283 from right to left onto the lower connecting rod and clamp the lower connecting rod, and then use a cable tie to fix it through the holes 287 and 286; the notch on the right side of the hole 287 is used to fix the cable tie Position to prevent the rain cover from loosening.
  • the outer folds of the lower side of the upper section and the left side of the lower section of the rain cover 283 can prevent rainwater from flowing to the inner side of the rain cover 283.
  • one or more of the middle rain cover (281), the upper rain cover (282), and the lower rain cover (283) can also be buckled, glued, welded, embedded, riveted, bolted, etc. One or more of them are fixed on the connecting rod
  • the horizontal insulation block 293 is formed by one or more of direct forming, welding, bending, and bonding.
  • the rain plate 294 is provided so that rainwater will not flow into the gap between the heat insulating block 293 and the block 292.
  • the connecting rods of the multilayer block 292 and the connecting rods of the heat insulating block 293 can be made of conventional steel, and there is no need to install a rain cover on them.
  • the rainproof plate 294 on the outer side of the multi-layer block 292 it needs to be firmly installed on the outer layer of the block 292.
  • double grooves 295 and 296 need to be provided at the upper edge of the heat insulation block 293, and elastic rubber strips 297 or other elastic materials are installed in the double grooves, and the upper part of the elastic rubber strips 297 or other elastic materials is provided with protrusions 2971.
  • the height of the protrusion 2971 is higher than the lower edge of the rain plate 294.
  • the weatherproof plate 294 hits the protrusion 2971, and then presses the protrusion 2971 down and over the protrusion 2971, and the protrusion 2971 returns to its original shape. Since the protrusion 2971 is higher than the lower edge of the rainproof plate 294, rainwater cannot pass the protrusion 2971 and enter the inner side of the heat insulation block 293.
  • the method of bending When installing the weatherproof board on the multi-layer outer wall block above the above-mentioned heat insulation block, if the method of bending is adopted, it can be carried out in the manner in the side views 30 and 31.
  • the outer layer 3011 of the multi-layer block 301 on the upper side of the horizontal frame of the house is folded outward at a height slightly higher than the horizontal insulation block, thereby forming a rain-proof board 294 above the horizontal insulation block;
  • the lower outer layer 3021 is installed at the outer layer of the 301 lower than the rainproof plate 294, and the outer layer 3021 extends to the bottom end of the block 301; this method can be called an up-folding type.
  • the outer layer of the multi-layer block 311 on the upper side of the horizontal frame of the house is cut at a height slightly higher than the horizontal insulation block to form the upper outer layer board 3111, and the cutting surface is inclined outward; in the block 311
  • the lower outer layer board 3121 is installed on the outer layer of the outer layer lower than the upper outer layer board.
  • the top end of the outer layer board 3121 coincides with the inclined surface of the upper outer layer board 3111, and at the same time, it is folded outward to form a rainproof board 294;
  • the lower part of the 3121 extends to the bottom end of the block 311; this method can be called a downward folding type.
  • the insulation blocks 241 and 251 are installed on the outside of the mullions 242 and 252 respectively, and then the multi-layer block 244 on one side of the mullion 242 and the other
  • the multi-layer block 245 on one side, the multi-layer block 254 on one side of the mullion 252, and the multi-layer block 255 on the other side can be installed indoors by inserting connecting rods respectively; blocks 244, 245, 254, 255 Straight-edged or folded-edge rainproof plates 2441, 2451, 2541, and 2551 are respectively provided on the sides of the slabs.
  • the roof has columnar protrusions such as decorative chimneys, the protrusions and the surrounding blocks can be protected from rain in the following ways:
  • the pillar 321 is surrounded by a rain plate 322, and the outer block 323 and the inner block 324 of the roof have holes at the position of the pillar 321 (see Figure 32).
  • the blocks 323 and 324 are folded up at the joint and around the opening.
  • the upper flange 3231 of the block 323 covers the upper flange 3241 of the block 324.
  • the upper folded edge of the block 323 extends upward along the upper side surface 3211 of the pillar 321 to form an extended edge 3232.
  • the extension edge 3232 is connected to the upper flange 3231 as a whole, and crosses the upper flange 3241, and is located on the upper side of the upper flange of the block 324 along the opening on the side of the block 324.
  • the peripheral edge of the extended side 3232 is folded upwards, which can further block the rainwater on the upper flange 3231 from flowing into the gap around the pillar; the peripheral upward-folded part of the extended side 3232 does not contact the blocks 323 and 324, leaving a large gap, thereby Conducive to drainage.
  • the rainproof plate 322 of the pillar 321 and the roof blocks 323 and 324 are connected by an intermediate rainproof plate 331 (see FIG. 33).
  • the rain plate 331 is divided into two parts, an upper side 341 and a lower side 342 (see Figure 34. The figure is clearly shown and enlarged).
  • An arrow-shaped protrusion 3421 can be provided on the lower rainproof plate 342, and a corresponding groove 3411 may be provided on the upper rainproof plate. Push the arrow-shaped protrusion 3421 into the groove 3411 to push the rainproof plate 341 and 342 are buckled together; the two parts can also be connected by welding, gluing, binding, etc.
  • the wooden partitions are mainly used for the cavity structure assembled with glass plates. If the wooden partition is not oily material, structural glue can be used to bond the wooden partition with the glass plate. As long as the number of layers of the glass cavity structure is not too many and the total thickness is not too large, the structural glue and the bolts that connect each layer of glass in series can avoid the dislocation of each layer of glass. If the strength of the structural adhesive is not enough, or the wood spacers are made of oily material, or the number and thickness of the cavity are too large, each layer of glass is likely to be misaligned due to gravity, vibration, etc. To avoid this problem, the triangular fasteners described in paragraphs 0027 and 0028 of the original patent document can be used.
  • Plastic spacers with a multilayer cavity structure are mainly used for cavity structures assembled with polymer materials, etc., and can also be used for cavity structures assembled with glass. If the multi-layer cavity structure assembled by glass uses plastic spacers, then fasteners need to be installed on the sides.
  • the outer side panel and the inner side panel of the multi-layer cavity structure are respectively connected by bolts to the outer fastening plate (351), the inner upper fastening plate (362), and the inner lower fastening plate (363 ).
  • the inside of the fastening plates 351 and 362 can be provided with an inclined plate 374 (see side view 37. The figure is clearly shown and enlarged), and the wooden block 355 (or other low thermal conductivity materials) can be provided with a corresponding inclined plate 374. Slots, so that the wooden block 355 can be inserted on each inclined plate 374 from the side.
  • the fastening plates 351 and 362 are connected together by a wooden block 355; after the wooden block 355 is inserted on the inclined plate, its front end rests on the flanges 356 of the fastening plates 351 and 362 (see perspective figures 35 and 36), The rear end is fixed by a pin 377 (see side view 37); the pin 377 passes through the pin hole 358 on the inclined plate (see perspective views 35 and 36).
  • the rotating piece 379 on the fastening plate 351 is provided with a connecting head, which can be a cylinder 3710 (see side view 37); the rotating piece 3711 on the fastening plate 363 is provided with a hole, through which the screw 3712 passes, and the screw 3712 is connected Head, which can be a cylinder 3713.
  • the two ends of the connecting piece 3714 of wood are respectively connected to the connecting head of the rotating piece (379) and the screw (3712).
  • the screw 3712 is provided with nut caps on both sides of the hole of the rotating member 3711. By rotating the nut, the distance between the rotating members 379 and 3711 can be adjusted to avoid misalignment between the outer panel and the inner panel.
  • grooves 3715 are formed on the middle-layer plates, and the wooden blocks 355 are located in the grooves 3715 and abut on the lower edges of the middle-layer plates, so as to prevent these plates from sinking and dislocation due to gravity and vibration.
  • the above-mentioned fasteners can effectively avoid the hot and cold bridges on the fasteners in the original patent document, and further improve the thermal insulation performance of the multilayer cavity structure.
  • the cross-shaped connecting piece can be replaced by a triangle or a star to reduce or increase the number of its end points.
  • the position of the screw can form a square shape, a diamond shape, a honeycomb shape, etc.
  • the spacers directly connected between the film spacers can also be formed in various shapes.
  • the front side can be set to square, diamond, or other shapes that can be continuously connected; the back side needs to be connected with double-sided tape It can be easily glued to the inside of the outer wall, the underside of the ceiling, and the inside of doors and windows (also can be installed by hanging, buckle, etc.. The method depends on the weight of the film insulation structure and the specific structure and material inside the room.
  • the inside of the brick wall house is flat and smooth and the weight of the thin film insulation structure is lighter, it can be glued; if the inside of the wooden structure house is uneven or the weight of the thin film insulation structure is large, it can be hung), and Paste or lay it flat on the floor where there is no need to walk.
  • the sides can also be connected with double-sided tape, buckles, etc., for example, the inner side of the outer wall of a wooden structure house can only be hung on the top row of film heat insulation structures, and the others can be connected to each other. Where people need to walk on the floor, you can lay polystyrene high-strength foam board and wrap it with a wear-resistant vinyl protective film, or you can lay other insulation mats.
  • the heat transfer coefficients of the materials in each part should be matched to avoid large gaps that may cause poor thermal insulation and material waste.
  • each thin film insulation structure has two sides of a triangular cross-section, and two adjacent partitions When the thermal structure is overlapped, the insulation structure will tilt. Although it can create another visual effect when it is regularly tilted, it will occupy more indoor space than the film insulation structure produced by other methods mentioned above, and is generally only suitable for rooms with more indoor space.
  • this multilayer structure includes the upper layer 122, the lower layer 123, the left side 124, and the right side in the figure.
  • this multilayer structure includes the upper layer 122, the lower layer 123, the left side 124, and the right side in the figure.
  • one side surface can be simultaneously formed in the front and rear direction. After molding, only the other side in the front and back direction is missing. This last side can be welded on manually or mechanically.
  • each layer in this structure is relatively large, which cannot reach the thickness of a conventional film, so the cost is increased. But it can be used in buildings that do not require the use of conventional films.
  • the mesh block film heat insulation structure produced by cylindrical film described in 4Bb4 ( Figures 17, 18) needs to install an inflatable hole that can be closed in each layer of the cavity, because between the upper and lower cavities No closure, air leakage after puncture.
  • the double-layer film is welded along the end connecting lines of 1711, 1712, 1713, 1714, etc., so as to avoid no sealing between the upper and lower cavities , There will be no air leakage after the puncture between the upper and lower cavities, so each heat insulation structure only needs to install a closed inflatable hole.
  • the various film heat insulation structures formed by bonding and welding and the film heat insulation structures directly formed by extrusion molding as described in the foregoing (Summary of the Invention 4) can be used independently.
  • the straight edge stacking and flat edge stacking method can also produce specific shapes through corresponding molds in the process of blow molding and suction molding.
  • Various thin-film thermal insulation structures can create colorful appearance effects by designing different shapes and/or using different colors, patterns, and adding different lights.
  • the various thin-film heat-insulating structures formed by bonding and welding as well as the thin-film heat-insulating structures directly formed by extrusion molding can also be installed in an outer casing with a matching shape to form a core film.
  • the thin film insulation structure directly formed by extrusion molding and the single-layer mesh block film insulation structure have a triangular cross section after inflating, and the mesh block film insulation structure produced by cylindrical film has some cavities after inflating. Closed, if you put it in a jacket, you can use your strengths to avoid weaknesses. At the same time, the jacket is easily processed into a variety of decorative shapes and matched with various types of rooms.
  • thermal insulation cotton is installed between the double-layer walls and a broken bridge structure is installed, which can achieve any required insulation level in reality and can be put into permanent use.
  • the cost of this structure is higher than that of a single-wall structure, and it can be mainly used in luxury buildings.
  • the broken bridge structure described in the foregoing can be applied to energy-saving doors and windows of brick-wall buildings and curtain-wall buildings and put into permanent use, so that it can reach any level of insulation required in reality.
  • the energy-saving wall and roof blocks described above can be applied to curtain wall buildings of various materials to achieve watertightness and airtightness between the blocks.
  • These curtain wall buildings can achieve the purpose of high efficiency and energy saving (to achieve any level of insulation required in reality) and realize prefabricated construction (see paragraphs 0152-0165 of the original patent document for details), greatly simplifying construction links, improving construction efficiency and reducing Construction cost.
  • the multi-layer thermal insulation structure of the curtain wall can also be used for the thermal insulation and decoration of existing buildings, which can achieve the same energy-saving effect and reduce costs (see paragraphs 0166 and 0167 of the original patent document).
  • the assembly method of the multi-layer cavity structure described in the foregoing can further improve the thermal insulation function of doors and windows.
  • the doors and windows of this multi-layer heat insulation structure can also achieve the corresponding anti-theft function by strengthening the strength of the outer sheet, and achieve any desired appearance effect through the skin.
  • the various thin-film insulation structures described in the foregoing have very light weight and very low cost. Except for the layered connection method (see Invention Content 4A), the installation and replacement of other various thin-film insulation structures are very convenient. They can play an irreplaceable role in the popularization of high-efficiency energy-saving houses: they can be installed on the inside of the exterior walls, under the ceilings, inside doors and windows, and on the floor where no people need to walk; when the number of floors reaches There are about 5 floors and the total thickness reaches about 10cm. At the same time, after installing the insulation board in the room where people are walking, the whole room can save more than 90% of heating and air conditioning energy (if higher or lower Insulation level, need to adjust the number and thickness of film insulation structure). For new houses that want to achieve high efficiency and energy saving, the application of these film structures is also one of the options.
  • the application of the above-mentioned film insulation structure can solve the problems caused by severe cold and heat; in economically developed areas, these film insulation structures can also greatly save energy and promote the sustainable development of society.
  • the above-mentioned high-efficiency and energy-saving double-wall structure and multilayer insulation structure are also useful.
  • the high-efficiency and energy-saving multi-layer thermal insulation structure can be produced with glass or polymer materials; when the number of layers reaches about 4 layers and the total thickness reaches about 10cm, its thermal insulation function can reach or exceed the thickness of 8.5cm thermal insulation cotton.
  • the layered insulation structure can be applied to interior decoration to achieve the same insulation effect and achieve any desired appearance effect through the skin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Building Environments (AREA)

Abstract

一种高效节能房,在现有的节能房技术基础上,通过在门窗的外框与房屋的外墙、框架之间设置具有冷热断桥功能的转接结构,并在节能房的多层空腔结构中设置可以填充保温棉的木隔条、塑料隔条和有冷热断桥功能的紧固件而进一步提高房屋的整体隔热性能;通过在节能房外墙、屋面的多层块体设置可以互相搭接的防雨板,并在房屋框架处设置有防雨功能的隔热块而实现更便利的防雨功能;通过在外墙、屋面多层块体的内侧设置粘接面和隔热条而实现更便利的气密功能;通过薄膜隔热结构的分层连接方式、直接成型的块形连接方式、以及手工粘焊成型、自动化的平边叠加、直边叠加、网状连接的块形连接方式而为已建房屋和新建房屋更快捷地实现高效节能。

Description

一种高效节能房 技术领域
本高效节能房属于建筑领域。
背景技术
在现代,实现建筑高效节能的条件已经具备,但实现其高效节能并控制建设成本所需的技术尚未普及。要使建筑的节能效果提高90%以上并使总体建设成本保持不变甚至下降,在申请号为201610000457.1的专利文件中提供了一系列技术。其中用到无金属框的多层玻璃,玻璃周边打孔并串上螺栓组装起来,同时玻璃周边设隔条,隔条被各层玻璃夹住而形成多层空腔。这种多层的空腔结构取消了金属边框,其各内层使用超薄玻璃,总体重量与双层玻璃幕墙相当,但成本因取消了金属边框和所有的龙骨而低于玻璃幕墙,然而隔热效果却可以达到设厚保温棉的砖墙水平。用上述多层的空腔结构制造窗户、门、幕墙、采光顶,可以与设厚保温棉的砖墙、屋面、地板结合,使建筑的所有外围结构都覆盖在保温结构内,达到现实中所需的任意隔热水平。与此同时,用上述多层的空腔结构制造窗户、门、幕墙、采光顶,不但总体造价均低于传统的窗户、门、幕墙、采光顶,而强度与寿命可以提高。这些技术通过了实验证明,为推广打下了基础。上述多层的空腔结构除了用玻璃,还可用高分材料等制造,并可用大幅度降低成本的薄膜隔热结构取代。
在实际应用时,上述专利文件中所提供的各类方案能解决所有关键的问题。然而在其隔热性能的完善、安装方式的便利、水密和气密方式的完善、薄膜隔热结构的完善等方面还可以进一步提升。
发明内容
基于上述专利文件中所公开的可以达到现实中所需的任意隔热水平的节能房,将其用玻璃或其他材料所建造的节能门窗安装在传统建筑时,要消除与建筑结合部位的冷热桥,可以采用常规的安装保温棉的方式,也可以采用下述更有效的方式。安装其用玻璃或其他材料所建造的节能墙体、屋面时,各块体之间实现水密、气密的方式除了上述专利文件中所述的内容,也可以采用下述更便利的方式。上述多层的空腔结构,其具体组装可以通过下述方式实现更完善的隔热性能。上述专利文件中所述的薄膜隔热结构,也可以通过下述方式实现更便利的制造和安装。
1)节能门窗安装在传统建筑时,消除与建筑结合部位冷热桥的方式
节能门窗安装在传统建筑时,要达到高效节能的状态,其门窗的外框与建筑的外墙之间需设冷热断桥,从而使门窗关闭时,门窗的保温结构与建筑外墙的保温层连为一体,同时其外框通过断桥而不受外界温度的影响。
在新建高效节能的房屋或对已建的砖墙房屋进行节能改造时,可采用侧视图1中所示具备冷热断桥功能的转接结构:在门窗的外框处,门窗的外框1与外墙2之间通过木材或其他低导热材料制造的连杆3和连接块4、5而连接起来。连接块4与外墙之间通过外墙和/或房屋框架上的预埋件、预装件、后埋件等连接件加以牢固的连接,连接块4与连杆3之间可通过螺栓而进行牢固的连接。连接块5与门窗的外框1及连杆3之间可通过螺栓等而进行牢固的连接。
通过上述连接方式,门窗的外框(1)与外墙(2)之间形成一条用木材或其他低导热材料所制成的导热必经路径,其长度可以在设计时调整,足以达到所需的隔热功能。
上述具有冷热断桥功能的转接结构除了可用作门窗外框与外墙之间的冷热断桥,还可以同时或仅安装在双墙夹保温层结构的外墙中,用作其轻质材料的内层墙壁与地板和/或天花板之间的冷热断桥,详见后文的具体实施方式。
2)节能墙体、屋面的各块体之间实现水密、气密的方式
A)实现水密的方式
用玻璃或其他材料通过前文所述的螺栓组装等方式所建造的高效节能的多层空腔结构(为方便起见,下文简称“多层块体”),可以通过房屋框架处预埋或预装的连接件而在室内直接安装于房屋的外墙、屋面的位置,形成高效节能的幕墙与采光顶,并可方便地安装和拆卸(详见申请号为201610000457.1的专利文件中说明书第0152—0163段。此专利文件以下简称“原专利文件”)。这些多层隔热块体与房屋的框架连接之后,各相邻隔热块体之间要实现水密、气密,除了用原专利文件中所述的方式,还可采用以下方式:
在外墙和/或屋面,如图2、3、4、5、6、7、8所示,多层隔热块体21、22位于上排,多层隔热块体23、24位于下排(见后视图2)。为了防止雨水进入房间内层,各块体的左右两边分别设防雨板35、36(见放大的俯视图3),各块体的下边设防雨板57(见放大的侧视图5)。在室内安装时,先安装块体21,然后安装块体22并让块体22的防雨板35顶在块体21的防雨板36内侧。以此类推,将块体21、22的同一排装满块体,并让各块体左右的防雨板互相搭接。
上排块体安装之后,将下排块体23、24及同排所有的其他块体用与上排相同的方式进行安装,使各块体左右的防雨板搭接起来;与此同时,块体23的上沿或上沿的防雨板要顶在块体21下沿的防雨板57的内侧(见侧视图5),并且块体23、24同排的所有其他块体的上沿或上沿防雨板均顶在上排块体下沿防雨板的内侧。此外,上排的防雨板35、36分别与下排防雨板35、36对接;并且上排的防雨板36的下部外折,包住下排防雨板36的上部;上排防雨板35则不外折,与下排防雨板35对齐。通过这种方式,不管多个块体是安装在屋顶还是外墙的位置,各块体之间都可以完全实现防雨的功能。块体与山墙连接的部位可以通过在山墙顶或山墙腰设覆盖块体的盖板而实现整体的防雨;块体与房屋框架连接的部位则可以通过在 框架外侧所设的有防雨功能的隔热块而实现整体防雨,详见后文的具体实施方式。
B)实现气密的方式
如俯视图4及侧视图5所示,各块体的防雨板沿其侧面延伸到块体的内侧并在块体内侧的四周形成一个平整的边38;如俯视图3及侧视图6、7、8所示,各块体的侧面板延伸到块体的内侧并同样在块体内侧的四周形成一个平整的边38。用胶带贴在相邻的边38上,即可达到良好的气密效果。由于相邻的块体之间有一道间隙,为进一步完善隔热功能(并提高胶带的外观效果),可在各块体的内侧贴胶带的位置设扣件和隔热条,并将隔热条用扣件固定。隔热条可以起到隔热和装饰的双重作用。
上述各块体之间实现水密、气密的方式比原专利文件中所述的方式(参见原专利文件中说明书的0156、0157、0159段)大为简化,安装效率更高,成本更低。
3)多层空腔结构的组装方式
在高效节能房的多层空腔结构的组装中,如果在原专利文件所述(见其第0014—0025段)的基础上增设可以阻止多层空腔结构侧面传热的保温棉结构,则可以进一步完善其隔热性能。其侧面的保温棉结构可按以下方式实现:
A)木质隔条的连接
如多层空腔结构中所夹的条形材料(隔条)为木质材料,其侧面保温棉结构可用图9中的方式:多层空腔结构91的一个空腔中横向木隔条92与竖向木隔条93可通过在空腔周边的螺栓孔94处重合等方式而连接,螺栓可同时穿过木隔条92、93。木隔条92、93重合的部分总厚度达到其所在空腔的厚度,非重合部分的厚度均分别达到其所在空腔的厚度。木隔条92、93上设连接头95(连接头95可设成外窄内宽的连接口),连接头95与塑料(或其他低导热材料)隔条96上的连接头相接。隔条96上还设可连接头97(连接头97也可设成外窄内宽的连接口),从而可互相连接。将多个塑料(或其他低导热材料)隔条96的连接头与木隔条92、93进行连接,即可形成连续的小框98。小框98中填充保温棉,从而可将多层空腔在四周侧面与外界的热传导降到最低。
B)塑料或其他低导热材料隔条的连接
上述高效节能的多层空腔结构中的隔条,如不用木材而全部用塑料或其他低导热材料生产,其连接可用图10中的方式:图中多层空腔结构101的一个空腔中隔条102形成连续的横向框,隔条103形成连续的竖向框。横向框与竖向框在空腔周边的螺栓孔104处通过重合等方式相接。与此同时,隔条102的横向框和/或隔条103的竖向框在螺栓孔104处设圆环并可通过辐条等方式连接到横向框或竖向框。隔条102的横向框与隔条103的竖向框重合的部分总厚度达到其所在空腔的厚度,非重合部分的厚度均分别达到其所在空腔的厚度。横向框与竖向框非重合的部分如需增设螺栓孔,也可以通过设圆环和辐条而和螺栓连接。横向框与竖向框中填充保温棉105,从而可将多层空腔在四周侧面与外界的热传导降到最低。
4)薄膜隔热结构的安装方式
当上述多层空腔结构的各层板材用薄膜代替时,可以在保持其隔热性能的前提下大幅度降低重量、节约材料,从而可大大提高高效节能房的普及率。为了实现这种薄膜隔热结构的功能,使其在使用时保持一定的形状、体积、位置、结构等,可应用原专利文件中说明书第0168—0180段中所述的方式,也可应用下述更便捷的分层连接、手工粘焊成型的块形连接、直接成型的块形连接、平边叠加的块形连接、直边叠加的块形连接、网状连接的块形连接等方式中的一种或多种:
A)分层连接方式
如前视图11所示,螺杆111安装在外墙的内侧和/或天花板的下侧,十字连接件112的中心有圆孔113,四个端点可设揿扣等用于连接薄膜隔条的连接件114。揿扣114剖面呈箭头形的突起可以揿入与之对应的凹槽;同时揿扣114的突起与凹槽之间有一定的间隙,在蒙上薄膜后仍能揿入,并夹紧薄膜。揿扣114的宽度与连接件112的厚度相同。圆孔113中设泡沫聚苯乙烯等保温材料所制造的圆环115,其中心设直径与螺杆111相配的孔,以便插入螺杆111。在墙壁内侧和/或天花板下侧安装好多个螺杆111以后,将第一层大块薄膜在螺杆111处开孔,然后将薄膜插入螺杆111,并将圆环115插入螺杆111。然后相邻的薄膜可用胶带连接。接着,将连接件112的圆孔113套在圆环115上,然后将宽度与连接件112厚度相当的薄膜隔条通过连接件114连接在每两个相邻的螺杆111之间。薄膜结构设多层,在第一层每两个相邻的螺杆之间都连接好薄膜隔条之后,将第二层的大块薄膜、圆环、十字连接件、薄膜隔条等以同样的方式安装。以此类推,将所有层的薄膜都安装以后,在最外层将螺杆111的端点装上塑料(或其他低导热材料)垫片,垫片的直径要大于圆孔113。然后在螺杆111的端点装上螺帽,螺帽上套上厚的保温盖。
B)块形连接方式
a)直接成型法
如侧视图12所示,用挤塑等方式将熔融的塑料直接成型为多层薄膜结构121。多层结构121中有上层122、下层123、左侧面124、右侧面125,以及中间层126、127、128等。然后将多层结构121切割成段并将每一段的两边沿切割线焊接起来。然后在每一段的外层122上用穿刺等方法打孔,贯穿中间层126、127、128等,但不贯穿外层123。同时在外层122的打孔处设可以封闭的充气孔(充气孔可由气管、塞子构成。气管根部与外层122连接在一起)。将每一段多层结构通过充气孔充气、密封之后,每一段多层结构形成一个盒子状,其侧面124、125平整,但两边的焊接线处从侧面看呈三角形。安装时需将每一排或每一列的多层结构统一方向,从而使平整的侧面124、125互相连贯,同时使焊接线处的三角形边互相搭接。
上述直接成型的方式可实现半自动和全自动生产,大幅度节约劳动力、降低成本。
b)粘焊成型法
①手工生产:将筒状薄膜剪成段,或将单片薄膜焊接成筒状;然后用支架将一段筒状薄膜撑开成侧视图13所示大方框131;在方框131内将宽度与之相当的多层单片薄膜132的两 边1321、1322分别焊接或胶接在方框131的左右侧面135、136上;其焊接或胶接不必连续,使薄膜132在端点和中间的若干点与侧面连接即可。方框131在前后方向的长度大于薄膜132。上述焊接或胶接完成后可将支架移开,然后用另外两块薄膜分别与方框131的前后边缘超出薄膜132的部分进行连续焊接(也可以用胶接的方式,但胶接不利于环保),不留空隙,从而使方框131形成一个6面密封的多层薄膜隔热结构。其表层需用穿刺等方法打孔,并在打孔处设可以封闭的充气孔。库存、运输时需排空薄膜隔热结构内的空气,以节约空间。使用时打开密封塞充气,然后密封。
②平边叠加:在薄膜生产的过程中,用吹塑等方式使薄膜在模具中形成剖面图14所示的盒状体141,其两边有凸面142,一个侧面有气管143。用同样的方式生产盒状体144,其两边有凸面145,一个侧面有气管146。然后将两盒状体141、144充气、靠在一起,并将其相邻凸面142和145夹在一起,留出夹线外的部分;然后在夹线外的部分将相邻的凸面142、145焊接在一起,冷却后松开夹线,从而可将两盒状体141、144连为一体。以此类推,可将多个盒状体焊接成一体,形成有现实中所需的任意层空腔的多层薄膜隔热结构。在这个有多层空腔的薄膜隔热结构形成后,可将每个盒状体的气管连接到一个总气管以便同时充气、密封或同时排气。库存、运输时需排空薄膜隔热结构内的空气,以节约空间。使用时充气、密封。
上述平边叠加的方式可实现半自动和全自动生产,大幅度节约劳动力、降低成本。
③直边叠加:在薄膜生产的过程中,用吸塑等方式在模具中使薄膜形成侧视图15所示的半盒状体151,其上有凸面152和边153。与此同时,在另一个形状相同的模具中通过吸塑等方式使薄膜形成半盒状体154,其上有凸面155和边156。在薄膜未冷却并具有熔接性能时,将两半盒状体151和154的边153、156压在一起(见侧视图16),冷却后即熔接在一起,形成内部充满气体的密封体167,其两边分别有凸面152、155。用上述同样的方式生产密封体168,其两边有凸面169。将两密封体167、168叠在一起,即可将其相邻的凸面155、169夹在一起并留出夹线外的部分,然后在夹线外的部分将相邻的凸面155、169焊接在一起,冷却后松开夹线。这样两密封体167、168就可连为一体。以此类推,可将多个密封体焊接成一体,就可形成有现实中所需的任意层空腔的多层薄膜隔热结构。在这个薄膜隔热结构形成后,需在其最外层用穿刺等方法打孔,贯穿除最外层之外的所有各层,并在打孔处设可以封闭的充气孔。库存、运输时需排空薄膜隔热结构内的空气,以节约空间。使用时打开密封塞充气,然后密封。
上述直边叠加的方式易于半自动和全自动生产,可大大节约劳动力、降低成本。
④网状连接:如剖面图17,可将现实中所需的任意层薄膜171、172、173、174等沿横向连接线1711、1712、1713、1714等及1721、1722、1723、1724等进行熔接或胶接;在各层薄膜与连接线垂直的方向留出边175(如俯视图18)。所有沿上述连接线的熔接或胶接完成以后,再将薄膜的边175沿外侧熔接或胶接在一起,并使其熔接或胶接线与最外侧的连接线1711、1721等相连,以形成封闭。在上述工作完成后,在最外层薄膜打孔,贯穿除最外层以外的各层薄膜。在最上层薄膜的打孔处设有可以封闭的充气孔。充气以后薄膜171、172、173、174等之间被空气隔开距离。
上述薄膜结构各层的边175连接在一起,充气后其边的剖面接近三角形;两个相邻的薄膜结构需在三角形处搭接,总体不平;这种结构可叫三角形剖面结构。如在一些应用中需使其边更平直,可将上述各单层薄膜(171、172、173、174)等除最外和最里层以外,中间均用双层代替;各双层薄膜沿连接线1711、1712、1713、1714等的端点连接线进行焊接;完成各层薄膜沿连接线1711、1712、1713、1714等的熔接或胶接后,将上、下薄膜的边175成对(薄膜171、172成对,薄膜172、173成对、173、174成对,以此类推)熔接或胶接;这样可以避免将所有的边175连为一体,充气后使边的剖面相对平直;这种结构可叫平直剖面结构。
如果直接使用吹膜而成的筒状薄膜,可将其折成双层,并在沿横向连接线1711、1712、1713、1714等焊接时,将两头最外侧的横向连接线加以延伸,贯穿薄膜的宽度,从而将筒状薄膜封闭起来,同时省去边175的焊接。这种结构可叫筒状薄膜结构。其在边175位置的上下双层薄之间无焊接,充气后会形成诸多横向贯穿薄膜结构而且无封闭的空腔,这对隔热会造成一定的不利影响。
网状连接方式可用以上三角形剖面结构、平直剖面结构、筒状薄膜结构中的一种或多种。
C)上述分层连接方式和块形连接方式中的所有薄膜隔热结构可用于节能房等各类建筑的保温。这些薄膜隔热结构的层数和厚度均可以根据现实所需任意设定并达到现实所需的任意隔热水平,各层薄膜中应在至少一层上加反光材料。
附图说明
图1为门窗外框处的冷热断桥。
图2、3、4、5、6、7、8为高效节能的多层块体实现水密、气密的方式。
图9为多层空腔结构中木隔条的连接。
图10为多层空腔结构中塑料隔条的连接。
图11为薄膜隔热结构的分层连接方式。
图12为薄膜隔热结构块形连接方式中的直接成型法。
图13为薄膜隔热结构块形连接方式中粘焊成型法的手工生产方式。
图14为薄膜隔热结构块形连接方式中粘焊成型法的平边叠加方式。
图15、16为薄膜隔热结构块形连接方式中粘焊成型法的直边叠加方式。
图17、18为薄膜隔热结构块形连接方式中粘焊成型法的网状块方式。
图19、20、21、22为隔热条的安装方式。
图23为横向隔热块的安装方式。
图24、25为竖向隔热块的安装方式和防雨方式。
图26为横向隔热块连杆的防雨盖。
图27为横向隔热块的防雨方式。
图28为外墙多层块体连接杆的防雨盖。
图29为横向隔热块的另一种防雨方式。
图30、31为外墙多层块体上的防雨板。
图32、33、34为屋顶柱状伸出物的防雨方式。
图35、36、37为多层空腔结构带冷热断桥的紧固件。
具体实施方式
1)节能门窗与双墙结构中冷热断桥的实施
A)高效节能房的门窗自身通过应用取消了冷热桥的多层空腔结构可以达到现实中所需的任意隔热水平。在这些门窗安装到房屋的外墙时,如果不设断桥,则需在门窗的外框处覆盖保温层。在房屋整体隔热的要求很高时,这些覆盖的保温层也需设得很厚、很宽,势必增加造价并影响外观和门窗的开关功能。用前文(发明内容1)所述的断桥,则可以取消在门窗外框处覆盖的保温层。
在高效节能门窗的外框处安装上述断桥时,图1中的连杆3和连接块4、5应在与门窗面板垂直的方向设在门窗外框与外墙之间(门窗外框应位于外墙内侧),并围绕外墙上的门洞或窗洞而设。同时,连杆3与连接块4、5的两侧及中间的空隙须安装保温棉,并让此保温棉与外墙内侧的保温棉对接,避免二者之间出现间隙。这里的保温棉是安装在门窗的外框与外墙之间,是连接门窗自身的保温结构与外墙内侧保温棉的途径,与在门窗外框的另一侧覆盖的保温棉不同。后者没有门窗外框与外墙之间的断桥,所覆盖的保温棉须越过门窗外框才能使门窗自身的保温结构与外墙内侧的保温棉连接,这样会妨碍门窗的开关。
通过上述设断桥的方式,可以避免影响门窗的开关功能,同时使门窗的隔热与外墙内侧保温棉的隔热形成无缝对接,使门窗的隔热与外墙、屋面(或天花板)、地板的隔热相结合,达到现实中所需的任意隔热水平。
对于用上述多层空腔结构制造的玻璃(或其他材料)幕墙建筑,门窗的安装方式基本相同(可将高效节能的玻璃幕墙视为设厚保温层的砖墙):在门窗的外框安装上述断桥(通常钢结构的幕墙建筑或钢筋混凝土框架的幕墙建筑围绕门窗的位置设有相应的结构框,这时可将门窗的外框通过断桥安装在结构框上),并使门窗外框断桥处的保温棉挤压在玻璃幕墙上,从而使门窗的隔热与外墙的隔热形成无缝对接。
B)外墙用双墙结构并在双墙之间安装保温棉时,虽然可以大幅度提高房屋的整体隔热功能,但要达到节约90%以上取暖、空调能耗的目的,双墙结构中的内、外侧墙壁之间用螺栓型连接时(见专利文件201510155539.9所述),螺栓需用木质材料或其他低导热材料取代;用钢筋型连接时(见同一专利文件),钢筋也需用木质材料或其他低导热材料取代;这样才能避免金属连接件形成内、外侧墙壁之间的冷热桥。与此同时,双墙结构中的外侧墙壁在地板与天花板处会通过房屋框架梁等形成与内侧墙壁之间的冷热桥。要避免这种冷热桥带来的负面效果,一种方法是在内侧墙壁的地板与天花板处覆盖保温层。这种保温层需设得很宽、很厚,会提高造价。还有一种方法是将双墙结构中的外侧墙壁设为主墙,将内侧墙壁用薄的轻 质混凝土砌筑,并在内侧墙壁与地板、天花板相接的地方应用与上述门窗处相同的断桥结构。这种内侧墙壁的断桥结构与门窗处断桥结构的区别在于安装方向的不同:内侧墙壁的断桥设在墙壁的上、下侧,断桥与墙壁在同一个平面;门窗处的断桥设在门窗外框的侧面,与门窗的面板垂直。
外墙用双墙夹保温棉的结构可用作永久性保温,但造价较高,一般适用于豪华型建筑。如在单墙的内侧安装用高分子材料等生产的多层隔热结构,可以达到同样的隔热效果和更丰富的装饰效果,而且造价大幅度降低,但需每隔若干年更换一次(即材料老化时更换。质量较好的材料,更换的时间可达20年左右)。
2)节能墙体、屋面的各块体之间水密、气密方式的实施
A)前文(发明内容2A,图2、3、4、5、6、7、8)所述的带防雨板的多层块体,既可在室内安装,也可在室外安装;具体是室内还是室外安装取决于多层块体与房屋框架之间所设连接杆的方向:连接杆指向室内时则室内安装,反之则室外安装。绝大部分建筑,尤其是高层建筑适于室内安装;平房和低层建筑可室内或室外安装。在室外安装时,各块体的安装顺序与室内安装相反。外墙处玻璃或其他材料块体的固定和防雨可通过在房屋框架处所设的指向外侧的螺杆和高度调节装置以及螺杆处的密封胶而完成(见原专利文件中0118—0121段所述)。其螺杆的防雨还可通过在外墙块体上螺杆的上侧设防雨盖而完成:螺杆设在其上侧块体的下沿,在螺杆上侧的块体上通过直接成型、熔接、折弯等方式设置覆盖螺杆的防雨盖;防雨盖可以延伸到螺杆下侧块体的外侧,因为在室外安装时下侧块体先于上侧块体安装;防雨盖在螺杆的下侧和外侧留出足够的空间,从而不妨碍螺杆上垫片、螺帽、保温盖的安装。
各多层块体左右侧的防雨板35、36既可如图3与块体的外层一体化(通过直接成型、折弯等方式),又可如图4在块体侧面另行安装。一体化的方式利于保障其防雨功能,但会在一定程度上提高生产的成本;另行安装的方式可以简化加工,但需要在防雨板与块体外层的交接处进行严格的密封。
各多层块体下边的防雨板57既可如图5在块体的下侧另行安装,也可以如图6、7、8中的一种或多种方式由块体的外层延伸而成。另行安装的方式可以简化加工,但需要在防雨板与块体外层的交接处进行严格的密封。外层延伸的方式利于保障其防雨功能,但在图6中需将外层的底部通过直接成型、折弯等方式制成防外折的雨板57而使上、下块体搭接,会在一定程度上提高生产的成本;在图7中需将各块体的下部设为宽于上部,从而使上、下块体可以搭接;在图8中需将各块体进行倾斜安装,这样才能使上、下块体搭接。
在各块体的左右侧防雨板35、36和下侧防雨板57相接的地方,可以通过直接成型等方式连为一体,也可互相分开。如果连为一体,需让上下相邻块体的防雨板35、36进行对接,并让左右相邻块体的防雨板57之间不再搭接。如果互相分开,需让防雨板35、36上的雨水均落在下侧防雨板57上;此时需让左右相邻块体的下侧防雨板57互相搭接,并让上下相邻块体的防雨板35、36在上下排之间不再对接。
B)前文(发明内容2B)所述的扣件和隔热条,可按图19、20、21、22中的方式设置: 外墙和/或屋顶左边多层块体191、右边多层块体192上分别设防雨板193、194;左右多层块体(191、192)在内侧的交界处均设连接头195(连接头可设成扣环)(见俯视图19、侧视图20);隔热条216上设扁孔2161(见后视图21)。棘条227(见剖面图22。图中为清晰显示,进行了放大)的端点设连接件2271(连接件可设成“U”形扣),连接件2271可以连在连接头195上而将棘条227连接在多层块体191、192上。棘条227可以穿过扁孔2161。扁孔2161可以扣住棘条(可将扁孔设成内扩外窄,让窄的部分扣住棘条),使其只能往外拉而不能内拉,从而将隔热条216固定,并可紧压在左右多层块体内侧的交界处。连接件2271连在连接头195上之后,可以转动,从而可在扁孔2161没有与连接头195对齐的情形下也转向扁孔2161并从中穿过。扁孔2161可设得较长,从而可允许连接头195的位置在一定的范围内变动。棘条227的宽度可以加大,从而增大连接的强度。棘条227可以与多层块体分开设置或直接连为一体,即棘条与多层块体和/或固定于多层块体的组件直接连为一体。
多层块体191、192安装之后,在房屋的内侧用胶带粘贴在多层块体内侧的交界处,从而密封。此后,将棘条227的连接件2271连在连接头195上。然后将隔热条216置于多层块体内侧的交界处,将棘条227穿过隔热条216两边的扁孔2161并拉紧,从而将隔热条216紧压在多层块体内侧的交接处,进一步增强其隔热功能。每一个隔热条216上应至少在四周各设一个扁孔2161,并将各扁孔2161通过棘条227连接在多层块体191、192上。相邻隔热条的连接处可以设槽口而互相对齐。长的隔热条除在四周各设一个扁孔外,还须在中间每隔一段距离设扁孔并连接棘条。此外,隔热条须用轻质材料制造,以确保安全。
C)外墙框架处隔热块的安装方式
原专利文件中所述的隔热块(见其说明书的0155段)安装时,外墙框架处的连接件与隔热块可按如下方式:
如侧视图23所示,横向隔热块231的外壳232有一定的厚度,可在外壳232上或隔热块的其他适当部位通过直接成型、熔接等方式与连接杆233及连接筒234相连,连接筒234位于连接杆233的外周。隔热块的连接杆233插入房屋框架连杆237的连接筒235,同时框架连杆237的连接筒235插入隔热块的连接筒234。隔热块的连接杆233穿过框架连杆237的连接筒235并在末端设螺纹和螺帽236(也可设插销等其他阻挡件),从而将隔热块的连接杆233与连接筒234固定在框架连杆237的连接筒235上。框架连杆237通过预埋、预装等方式连接在房屋框架的横向部分238,房屋框架可为混凝土或钢结构等;连杆237的根部(与框架238结合处)可下垂或设雨水阻挡件,从而避免雨水流向房屋框架。隔热块231的外壳232可由两部分组合起来,其空腔中填充保温棉239。
隔热块231的边缘可设置凹槽,凹槽中安装弹性胶条2310,从而使隔热块231和外墙块体2311安装后,隔热块的边缘紧密地顶在外墙块体2311上,达到更好的总体隔热效果。
竖向隔热块的安装方式与横向隔热块类似。在除房屋转角处以外的位置,其安装见俯视图24:竖向隔热块241连接在房屋的竖向框架242中,连杆243的根部2431可下垂或设雨水阻挡件。竖向隔热块(241)与房屋框架的连杆(243)的连接方式和上文所述横向隔热块(231)与房屋框架连杆(237)的连接方式相同:竖向隔热块(241)上设连接筒和连接杆, 房屋框架的连接杆(243)上设连接筒;其连接筒互相插接,同时隔热块的连接杆穿过房屋框架的连接筒并在末端设螺纹和螺帽或插销等其他阻挡件。
在房屋的转角处,竖向框架亦需由隔热块覆盖,其安装可如俯视图25:竖向隔热块251连接在房屋转角处框架的竖向部分252中;若房屋的转角为90度,房屋框架的连杆253上的连接筒与房屋立面之间可设45度角,隔热块251上的连接杆和连接筒亦相应设45度角,从而使二者方向一致;如转角不是90度,连杆253上的连接筒、隔热块251上的连接杆和连接筒与房屋立面之间的角度需相应调整,但连杆253上的连接筒和隔热块251上的连接杆、连接筒保持方向一致,从而使隔热块251上的连接杆可以随隔热块251推入房屋框架的连杆253上的连接筒并安装螺帽或插销等其他阻挡件而固定,同时连杆253上的连接筒可以插入隔热块251上的连接筒,使隔热块251牢固地安装在连杆253上;连杆253的根部2531可下垂或设雨水阻挡件。
如图23,横向隔热块231的内侧可以流入雨水,如果连杆237和连接筒235无防雨盖,则须用不锈钢、铝合金等不易生锈、腐蚀的材料制造,并定期检测。如果连杆237和连接筒235上安装防雨盖,则可以用常规钢材制造。安装防雨盖时,可按侧视图26设置:连杆261的根部(与房屋横向框架的结合处)下垂然后向上折,或设雨水阻挡件,从而使雨水不能流向连杆261的根部并且不能流向上边的连接筒262;连杆261的根部设孔2611;防雨盖263可用塑性材料制造,覆盖连杆261的下部并在上部孔2611位置的两边设孔;防雨盖263在下部两边超越连接杆261折弯处的底端,并在低于连接杆261折弯处底端的位置在两边设孔2631(图中为显示连杆261,缩小了防雨盖263的面积。实际设置时防雨盖263应向上延伸,以防止雨滴溅射到连杆261。同时连杆261的上部右侧还可设防雨盖263的连接孔)。安装时将防雨盖263套在连杆261上并用扎带等分别通过孔2611、2631而固定。另一方面,连杆261的下部及下边的连接筒处可以安装防雨盖264,防雨盖264可用塑性材料制造,用于防止雨水溅射到连杆261的下部和下边的连接筒;防雨盖264可由扎带等通过连杆261中部的孔2612、2613及防雨盖264在其两侧相同位置的孔而固定。
作为替代方案,上边防雨盖(263)、下边防雨盖(264)还可用扣、粘、焊、嵌、铆、螺栓连接等方式中的一种或多种固定在连杆(261)上;同时,上边防雨盖(263)、下边防雨盖(264)可以分开或者合为一体。
竖向的隔热块中不会流入雨水(见下文D部分的最后两段所述),因此其连杆和连接筒可用常规钢材制造。
D)隔热块处的防雨
横向隔热块处的防雨:如侧视图27所示,房屋框架的横向部分271的外侧安装隔热块272;框架271上侧的外墙多层块体273、下侧的外墙多层块体274均在室内分别插入连接杆275、276,并通过其端点的垫片、螺帽固定(具体见原专利文件的0153、0154段所述)。雨水顺块体273流淌时,会有一部分流入隔热块272与块体273之间的间隙;为避免雨水落在框架271上而流入室内,可在块体273的外侧下沿设突出边2731(同时/或将块体273的下侧 设为向外倾斜),并使块体273的外侧超越框架271的位置,这样雨水就无法从块体273的外侧流到框架271上。与此同时,块体274的内侧上沿设突出边2741(同时/或将块体274的上侧设为向外倾斜),并使块体274的位置超越框架271,与块体273对齐。这样可使雨水从块体273流到块体274的外侧,避免流入室内。此外,隔热块272的下部边缘处需将安装在凹槽中的密封胶条割成两段或以上并留排水的间隙;隔热块272的上部边缘处可设两道凹槽而将密封胶条外折,以利于排水。块体273、274的连接杆与隔热块272的连杆均通过预埋、预装等方式固定在框架271上,二者的位置错开;块体273、274的外侧围绕连接杆275、276设凹槽,可以防止雨水流入块体中。
块体273、274的连接杆275、276和隔热块272的连杆均需用不锈钢等不易生锈、腐蚀的材料制造,否则须在其上安装防雨盖。隔热块272连杆的防雨盖见上文C部分所述及图26。块体273、274的上部连接杆275、下部连接杆276的防雨盖可按侧视图28设置:上部连接杆上安装中间防雨盖281、上边防雨盖282,下部连接杆上安装下边防雨盖283。上部连接杆的下段设孔284或增设若干孔,防雨盖281在孔284的位置相应设孔。防雨盖281下部两边超越连接杆折弯处的底端,并在低于连接杆折弯处底端的位置在两边设孔2811。安装时将防雨盖281盖在上部连接杆的下段,并用扎带等分别通过孔284或多孔而固定。上部连接杆的上边向右延伸并在端点设孔285,上边防雨盖282包住上部连接杆向右延伸的部分并在孔285的位置设孔,同时在孔285位置的左边设突起2821;突起2821可以防止雨水流向右端。安装时将防雨盖282从右向左推到上部连接杆的上段并夹住上部连接杆,然后用扎带等通过孔285而固定;孔285右边的槽口用于固定扎带的位置,防止防雨盖松动。防雨盖282下部的外折部分可以盖住防雨盖281的顶端;防雨盖282左边的外折部分可以防止雨水流向防雨盖282的内侧。下部连接杆上孔286或增设若干孔,下边防雨盖283在下部连接杆孔的位置相应设孔;下部连接杆的下边向右延伸并在端点设孔287,防雨盖283包住下部连接杆向右延伸的部分并在孔287的位置设孔,同时在孔287位置的左边设突起2831;突起2831可以防止雨水流向右端。安装时将防雨盖283从右向左推到下部连接杆上并夹住下部连接杆,然后用扎带等分别通过孔287、286而固定;孔287右边的槽口用于固定扎带的位置,防止防雨盖松动。防雨盖283的上段下边和下段左边的外折部分可以防止雨水流向防雨盖283的内侧。
作为替代方案,中间防雨盖(281)、上边防雨盖(282)、下边防雨盖(283)中的一个或多个还可用扣、粘、焊、嵌、铆、螺栓连接等方式中的一种或多种固定在连杆上
横向隔热块处的防雨除了上述方式,还可用如下另一种更利于隔热的方式:
如侧视图29,在房屋框架的横向部分291上侧的外墙多层块体292上沿横向隔热块293通过直接成型、熔接、折弯、粘接等方式中的一种或多种而设防雨板294,这样雨水就不会流入隔热块293与块体292之间的间隙。采用这种方式时多层块体292的连接杆和隔热块293的连杆可用常规钢材制造并且不需在其上安装防雨盖。但在多层块体292的外侧安装防雨板294时需要在块体292的外层将其牢固地进行安装。与此同时,在隔热块293上部的边缘处需设置双凹槽295、296,双凹槽中安装弹性胶条297或其他弹性材料,弹性胶条297或其他弹性材料的上部设突起2971。突起2971的高度比防雨板294的下沿高。在安装的过程中,先安装隔热块293,然后安装多层块体292。安装多层块体292时,随着块体292沿连接杆 298往外推,防雨板294碰到突起2971,然后将突起2971往下压并越过突起2971,此时突起2971恢复原状。由于突起2971高于防雨板294的下沿,雨水无法越过突起2971进入隔热块293的内侧。
在上述隔热块的上方安装外墙多层块体上的防雨板时,如采用折弯的方式,可按侧视图30、31中的方式进行。在图30中,房屋横向框架上侧的多层块体301的外层3011在略高于横向隔热块的高度向外折,从而形成横向隔热块上方的防雨板294;在块体301的外层处低于防雨板294的地方安装下部外层板3021,外层板3021延伸到块体301的底端;这种方式可称为上折式。
在图31中,房屋横向框架上侧的多层块体311的外层在略高于横向隔热块的高度进行切割,形成上部外层板3111,并使切割面向外倾斜;在块体311的外层处低于上部外层板的地方安装下部外层板3121,外层板3121的顶端与上部外层板3111的倾斜面吻合,同时向外折,形成防雨板294;外层板3121的下部延伸到块体311的底端;这种方式可称为下折式。
左右相邻的隔热块之间亦需防雨。其方式与左右相邻的多层块体相同(见发明内容2A)。
竖向隔热块处的防雨:如俯视图24、25所示,竖框242、252的外侧先分别安装隔热块241、251,此后竖框242一侧的多层块体244、另一侧的多层块体245、竖框252一侧的多层块体254、另一侧的多层块体255均可在室内分别插入连接杆而完成安装;块体244、245、254、255的侧面分别设直边或折边防雨板2441、2451、2541、2551,雨水顺多层块体244、245、254、255流淌时,无法越过防雨板2441、2451、2541、2551,因此不能流入室内。
上下相邻的隔热块之间亦需防雨,其方式与上下相邻的多层块体相同(见发明内容2A)。
E)屋顶柱状物的防雨
在屋顶安装多层块体时,如屋顶有装饰性烟囱等柱状伸出物,伸出物与其四周的块体可以通过以下方式实现防雨:
如图32、33、34所示,柱状物321的四周设防雨板322,屋顶的外侧块体323与内侧块体324在柱状物321的位置开洞(见图32)。块体323、324在相接处上折,并围绕开洞处上折。同时,在块体323、324的相接处,块体323的上折边3231盖住块体324的上折边3241。此外,块体323的上折边沿柱状物321的上侧面3211的方向往上延伸,形成延伸边3232。延伸边3232与上折边3231连为一体,越过上折边3241,在块体324一侧位于块体324沿开洞的上折边上侧。延伸边3232的周边上折,可进一步阻挡上折边3231上的雨水流入柱状物四周的缝隙;延伸边3232的周边上折部分不与块体323、324接触,而留出大的间隙,从而利于排水。
柱状物321的防雨板322与屋顶的块体323、324之间通过中间防雨板331而连接(见图33)。防雨板331分上侧341和下侧342两部分(见图34。图中为清晰显示,进行了放大)。可在下侧的防雨板342上设剖面为箭头形的突起3421,上侧的防雨板上设与之对应的凹槽3411,将箭头形突起3421推入凹槽3411,从而将防雨板341、342扣在一起;也可通过焊、粘、扎等方式将两部分连接在一起。
安装时先将块体323、324扣在一起,然后将防雨板341、342扣在一起,即可使雨水无法进入柱状物321与块体323、324之间的间隙,形成严密的防水。
3)多层空腔结构组装方式的实施
前文(发明内容3)所述的多层空腔结构,其木隔条主要用于用玻璃板组装的空腔结构。如果木隔条不是油性材质,可用结构胶将木隔条与玻璃板进行粘接。只要玻璃空腔结构的层数不是太多、总厚度不是太大,结构胶和串连各层玻璃的螺栓可以避免各层玻璃错位。如果结构胶的强度不够,或木隔条为油性材质,或空腔的层数和厚度过大,则各层玻璃由于重力、震动等原因容易引起错位。为避免这个问题,可以采用原专利文件的0027、0028段所述的三角形紧固件。
多层空腔结构的塑料隔条主要用于高分子材料等组装的空腔结构,也可用于用玻璃组装的空腔结构。如玻璃组装的多层空腔结构使用塑料隔条,那么其侧面需安装紧固件。
上述有木隔条和塑料隔条的多层空腔结构,在使用紧固件时,原专利文件中所述的三角形紧固件的结构可以进一步发展如下:
如前视图35、后视图36所示,多层空腔结构的外侧面板、内侧面板分别通过螺栓连接外侧紧固板(351)、内侧上紧固板(362)、内侧下紧固板(363)。紧固板351、362的内侧均可设斜板374(见侧视图37。图中为清晰显示,进行了放大),同时木块355(或其他低导热材料)上可设与之相应的斜槽,从而可将木块355从侧面插在各斜板374上。紧固板351、362之间通过木块355连接在一起;木块355插在斜板上之后,其前端顶在紧固板351、362的折边356上(见透视图35、36),其后端通过插销377固定(见侧视图37);插销377穿过斜板上的插销孔358(见透视图35、36)。紧固板351上的转动件379设连接头,其可为圆筒3710(见侧视图37);紧固板363上的转动件3711中设孔,孔中穿过螺杆3712,螺杆3712设连接头,其可为圆筒3713。木质(或其他低导热材料)连接件3714两头分别连接在转动件(379)与螺杆(3712)的连接头上。螺杆3712在转动件3711的孔两边设螺帽,通过旋转螺帽,可以调节转动件379、3711之间的距离,从而避免外侧面板与内侧面板之间错位。与此同时,各中间层板块上开槽3715,木块355位于槽3715中并顶在各中间层板块的下沿,从而可避免这些板块因重力和震动而下沉、错位。
上述紧固件可以有效地避免原专利文件中紧固件上的冷热桥,进一步提高多层空腔结构的隔热性能。
4)薄膜隔热结构的实施
A)在前文(发明内容4A)所述的分层连接方式中,如果外墙的内侧或天花板的下侧所安装的螺杆数量较少,为了避免每层空腔的面积过大而影响隔热性能,可在两条平行的薄膜隔条之间直接设若干横向的薄膜隔条,还可在横向的薄膜隔条之间再设薄膜隔条。通过这种方法,当两条平行的薄膜隔条安装在十字连接件上之后,其间的薄膜隔条也同时安装,从而可将每层空腔分割成更多的空间。
在上述分层连接方式中,十字形连接件可以用三角形或星形代替,可减少或增加其端点的数量。螺杆的位置可以构成田字形、菱形、蜂窝形等。薄膜隔条之间直接相连的隔条也可以构成多种形状。
B)前文(发明内容4B)所述块形连接方式中的所有薄膜隔热结构,其正面均可设为方形、菱形、或其他可以连续相接的形状;其背面需设双面胶等连接方式,从而可方便地粘在外墙内侧、天花板下侧、以及门窗内侧(也可用挂、扣等方式安装。其方式依薄膜隔热结构的重量和房间内侧的具体结构、材料而定。比如,若砖墙房屋的内侧平整、光滑同时薄膜隔热结构的重量较轻,则可用粘的方式;若木结构房屋的内侧不平或薄膜隔热结构的重量较大,则可用挂的方式),并可粘贴或平放在地板上不需走人的地方。其侧面亦可设双面胶、扣环等而互相连接,比如木结构房屋的外墙内侧可只挂最上一排薄膜隔热结构,其他可以互相连接。在地板上需走人的地方,可以铺设聚苯乙烯高强泡沫板并将其裹一层耐磨的乙烯基保护膜,也可铺其他保温地垫。
在房间的六面均安装薄膜隔热结构或铺设保温地垫时,各个部位材料的传热系数应匹配,以避免其出现大的差距而造成不良的隔热效果和材料浪费。
C)用前文(发明内容4Ba、4Bb④及图12、17、18)所述挤塑、网状连接等方式生产时,每一个薄膜隔热结构有两边的剖面呈三角形,两个相邻的隔热结构搭接时会导致隔热结构倾斜。虽然其有规律倾斜时可以营造另一种视觉效果,但比用前文所述其他方式生产的薄膜隔热结构会占据更多的室内空间,一般只适用于室内空间有余的房间。
发明内容4Ba所述的多层结构(见图12)如用注塑等方式将熔融的塑料直接成型,则这个多层结构中除有图中的上层122、下层123、左侧面124、右侧面125,以及中间层126、127、128等外,还可在前后方向同时让一个侧面一起成型。成型之后只差前后方向的另一个侧面。这最后一个侧面可通过手工或机械工序焊接上去。
这种结构中每层的厚度较大,不能达到常规薄膜的厚度,因而成本提高。但在不要求用常规薄膜的建筑中可以使用。
发明内容4Bb④(图17、18)所述的用筒状薄膜生产的网状块薄膜隔热结构需在每一层空腔中均安装一个可以封闭的充气孔,因其上下层空腔之间无封闭,穿刺后会漏气。所述的用双层薄膜生产的网状块薄膜隔热结构,将其双层薄膜沿1711、1712、1713、1714等的端点连接线进行焊接,则可避免上、下层空腔之间无封闭,上下层空腔之间穿刺后不会漏气,因此每个隔热结构只需安装一个可以封闭的充气孔。
D)前文(发明内容4)所述粘焊成型的各种薄膜隔热结构以及用挤塑等方式直接成型的薄膜隔热结构均可以独立使用。而且其中的直边叠加和平边叠加方式还可以在吹塑、吸塑的过程中通过相应的模具而生产特定的造型。各种薄膜隔热结构可以通过设计不同的造型和/或使用不同的颜色、图案、加入不同的灯光等而营造丰富多彩的外观效果。
上述粘焊成型的各种薄膜隔热结构以及用挤塑等方式直接成型的薄膜隔热结构还可装在 形状与之匹配的外套内而构成芯膜。其中挤塑等方式直接成型的薄膜隔热结构和单层网状块薄膜隔热结构充气后有些边的剖面呈三角形,用筒状薄膜生产的网状块薄膜隔热结构充气后有些空腔无封闭,如将其装在外套内,则可扬长避短。同时,外套易于加工成多种装饰造型并与各种类型的房间匹配。
5)高效节能房的应用与普及
前文(具体实施方式1B)所述的双层外墙,在双层墙壁之间安装保温棉并安装断桥结构,可以达到现实中所需的任意隔热水平并可投入永久性使用。但这种结构的造价高于单墙结构,可主要用于豪华型建筑。
前文(发明内容1)所述的断桥结构,可应用于砖墙建筑和幕墙建筑的节能门窗中并投入永久性使用,使其达到现实中所需的任意隔热水平。
前文(发明内容2)所述的节能墙体、屋面的各块体之间实现水密、气密的方式,可应用于多种材质的幕墙建筑。这些幕墙建筑可以达到高效节能目的(达到现实中所需的任意隔热水平)并实现装配式建造(详见原专利文件第0152—0165段),大幅度简化建设的环节、提高施工效率并降低建设成本。同时其幕墙的多层隔热结构还可以用于已建房的保温装修,可到达同样的节能效果并降低成本(见原专利文件的0166、0167段)。
前文(发明内容3)所述的多层空腔结构的组装方式,可进一步完善门窗的隔热功能。与此同时,这种多层隔热结构的门窗还可以通过加强外层板材的强度而达到相应的防盗功能,并通过蒙皮而实现任意所需的外观效果。
前文(发明内容4)所述的各类薄膜隔热结构重量非常轻、造价非常低,除分层连接方式(见发明内容4A)外,其他各类薄膜隔热结构的安装和更换非常方便。它们在高效节能房的普及中能发挥不可替代的作用:可以安装在各类已建房的外墙内侧、天花板下侧、门窗内侧、以及地板上不需走人的地方;当其层数达到5层左右、总厚度到达10cm左右,同时房间里在走人的地方安装保温效果与之匹配保温板之后,整房可以节约九成以上的取暖、空调能源(如要达到更高或更低的隔热水平,需调整薄膜隔热结构的层数和厚度)。对要达到高效节能水平的新建房而言,应用这些薄膜结构也是可选方式之一。
在经济不发达地区,应用上述薄膜隔热结构可以解决严寒、酷热带来的困扰;在经济发达地区,这些薄膜隔热结构也可以大幅度节约能源、促进社会的持续发展。另一方面,上述高效节能的双墙结构、多层隔热结构等亦有用武之地。尤其是高效节能的多层隔热结构,可用玻璃或高分子材料等生产;当其层数达到4层左右、总厚度达到10cm左右时,其保温功能达到甚至超过厚度8.5cm的保温棉,可以使整房节约九成以上的取暖、空调能源;其装配式建造可以保持玻璃幕墙的外观特点、达到高效节能目的又大幅度降低建造成本,有望在许多地区成为房屋建造的主流;同时这种多层隔热结构可应用于室内装修,达到同样的隔热效果并通过蒙皮而实现任意所需的外观效果。

Claims (19)

  1. 一种高效节能房,其特征是:在节能房的多层空腔结构中设置可以阻止多层空腔结构侧面传热的保温棉结构而进一步提高房屋的整体隔热性能。
  2. 根据权利要求1所述的高效节能房,其特征在于多层空腔结构中设置的可以填充保温棉的木质隔条:
    多层空腔结构(91)的一个空腔中横向木隔条(92)与竖向木隔条(93)在空腔周边的螺栓孔(94)处相接,木隔条(92、93)上设连接头(95),连接头(95)与塑料或其他低导热材料的隔条(96)上的连接头相接;将多个塑料或其他低导热材料的隔条(96)的连接头与木隔条(92、93)进行连接,即可形成连续的小框(98);小框(98)中填充保温棉,从而可将多层空腔在四周侧面与外界的热传导降到最低。
  3. 根据权利要求1所述的高效节能房,其特征在于多层空腔结构中设置可以填充保温棉的塑料或其他低导热材料的隔条:
    多层空腔结构(101)的一个空腔中,塑料或其他低导热材料的隔条(102)形成连续的横向框,塑料或其他低导热材料的隔条(103)形成连续的竖向框;横向框与竖向框在空腔周边的螺栓孔(104)处相接;与此同时,隔条(102)的横向框和/或隔条(103)的竖向框在螺栓孔(104)处设圆环,圆环连接到其横向框或竖向框;横向框与竖向框中填充保温棉(5),从而可将多层空腔在四周侧面与外界的热传导降到最低;
  4. 根据权利要求1所述的高效节能房,其特征在于多层空腔结构中设置有冷热断桥功能的紧固件:
    多层空腔结构的外侧面板、内侧面板分别通过螺栓连接外侧紧固板(351)、内侧上紧固板(362)、内侧下紧固板(363);紧固板(351、362)之间通过木块(355)连接在一起;紧固板(351)上的转动件(379)设连接头,紧固板(363)上设转动件(3711),转动件(3711)中设孔,孔中穿过螺杆(3712),螺杆(3712)设连接头;木质或其他低导热材料的连接件(3714)两头分别连接在转动件(379)与螺杆(3712)的连接头上;螺杆(3712)在转动件(3711)的孔两边设螺帽,通过旋转螺帽,可以调节转动件(379、3711)之间的距离,从而避免外侧面板与内侧面板之间错位。
    上述紧固件可以形成冷热断桥,进一步提高多层空腔结构的隔热性能。
  5. 根据权利要求1所述的高效节能房,其特征在于外墙和/或屋面多层块体的内侧设有隔热条:
    外墙和/或屋顶左边多层块体(191)、右边多层块体(192)的内侧交界处均设连接头(195),隔热条(216)上设扁孔(2161),棘条(227)的端点设连接件(2271);连接件(2271)可以连在连接头(195)上而将棘条(2271)连接在多层块体(191、192)上;棘条(227)可 以穿过扁孔(2161);扁孔(2161)可以扣住棘条,使其只能往外拉而不能内拉,从而可将隔热条(216)固定;
    棘条(227)可以与多层块体分开设置或直接连为一体。
  6. 根据权利要求1所述的高效节能房,其特征在于节能房屋顶的柱状伸出物处设有防雨板:
    柱状物(321)的四周设防雨板(322),屋顶的外侧块体(323)与内侧块体(324)在柱状物(321)的位置开洞;块体(323、324)在相接处上折,并围绕开洞处上折;同时,在块体(323、324)的相接处,块体(323)的上折边(3231)盖住块体(324)的上折边(3241);此外,块体(323)的上折边沿柱状物(321)的上侧面(3211)的方向往上延伸,形成延伸边(3232);延伸边(3232)与上折边(2131)连为一体,越过上折边(3241),在块体(324)一侧位于块体(324)沿开洞的上折边上侧;延伸边(3232)的周边上折,可进一步阻挡上折边(3231)上的雨水流入柱状物四周的缝隙;延伸边(3232)的周边上折部分不与块体(323、324)接触,而留出大的间隙,从而利于排水;
    柱状物(321)的防雨板(322)与屋顶块体(323、324)之间通过中间防雨板(331)而连接:防雨板(331)分上侧(341)和下侧(342)两部分;上侧的防雨板(341)与下侧的防雨板(342)连接在一起。
  7. 一种节能房框架处具备防雨功能的横向隔热块,其特征是:
    横向隔热块(231)与连接杆(233)及连接筒(234)相连,连接筒(234)位于连接杆(233)的外周;隔热块的连接杆(233)插入房屋框架连杆(237)的连接筒(235),同时框架连杆(237)的连接筒(235)插入隔热块的连接筒(234);隔热块的连接杆(233)穿过框架连杆(237)的连接筒(235)并在末端设螺纹和螺帽(236)或插销等其他阻挡件,从而将隔热块的连接杆(233)与连接筒(234)固定在框架连杆(237)的连接筒(235)上;框架连杆(237)房屋框架的横向部分(238)。,
  8. 一种节能房框架的横向隔热块处的防雨结构,其特征如下:
    房屋框架的横向部分(271)的外侧安装隔热块(272);框架(271)上侧的外墙多层块体(273)、下侧的外墙多层块体(274)均可在室内分别插入连接杆(275、276),并通过其端点的垫片、螺帽固定;;块体(273)的外侧下沿设突出边(2731),同时/或将块体(273)的下侧设为向外倾斜,并使块体(273)的外侧超越框架(271)的位置,从而使雨水就无法从块体(273)的外侧流到框架(271)上;与此同时,块体(274)的内侧上沿设突出边(2741),同时/或者将块体(274)的上侧设为向外倾斜,并使块体(274)的位置超越框架(271),与块体(273)对齐,从而使雨水从块体(273)流到块体(274)的外侧,避免流入室内;
    以上防雨结构还可用如下另一种更利于隔热的结构替代:
    在房屋框架的横向部分(291)上侧的外墙多层块体(292)上沿横向隔热块(293)设防雨板(294),这样雨水就不会流入隔热块(293)与块体(292)之间的间隙;与此同时,在 隔热块(293)上部的边缘处设置双凹槽(295、296),双凹槽中安装弹性胶条(297)或其他弹性材料,弹性胶条(297)或其他弹性材料的上部设突起(2971);突起(2971)的高度比防雨板(294)的下沿高;安装后,防雨板(294)的下沿越过突起(2971),突起(2971)恢复原状;由于突起(291)高于防雨板(294)的下沿,雨水无法越过突起(291)进入隔热块(293)的内侧;
    隔热块(293)上方的外墙多层块体上所安装的防雨板,其连接可用折弯的方式;折弯可为上折式或下折式;在上折式中,房屋横向框架上侧的多层块体(301)的外层(3011)在略高于横向隔热块的高度向外折,形成横向隔热块上方的防雨板(294);在块体(301)的外层处低于防雨板(294)的地方设下部外层板(3021),外层板(3021)延伸到块体(301)的底端;
    在下折式中,房屋横向框架上侧的多层块体(311)的外层在略高于横向隔热块的高度切割,形成上部外层板(3111,并使切割面向外倾斜;在块体(311)的外层处低于上部外层板的地方设下部外层板(3121),外层板(3121)的顶端与上部外层板(3111)的倾斜面吻合,同时向外折,形成防雨板(294);外层板(3121)的下部延伸到块体(311)的底端。
  9. 根据权利要求8所述的防雨结构,块体(273)的上部连接杆(275)、块体(274)的下部连接杆(276)的防雨盖结构为:
    上部连接杆上设有中间防雨盖(281)、上边防雨盖(282),下部连接杆上设有下边防雨盖(283);上部连接杆的下段设孔(284)或增设若干孔,防雨盖(281)在上部连接杆的下段孔的位置相应设孔;安装后防雨盖(281)盖在上部连接杆的下段,并由扎带等分别通过孔(284)或多孔而固定;上部连接杆的上边向右延伸并在端点设孔(285),上边防雨盖(282)包住上部连接杆向右延伸的部分并在孔(285)的位置设孔,同时在孔(285)位置的左边设突起(2821);安装后上边防雨盖(282)夹住上部连接杆,并由扎带等通过孔(285)而固定;;下部连接杆上设孔(286)或增设若干孔,下边防雨盖(283)在下部连接杆孔的位置相应设孔;下部连接杆的下边向右延伸并在端点设孔(287),防雨盖(283)包住下部连接杆向右延伸的部分并在孔(287)的位置设孔,同时在孔(287)位置的左边设突起(2831);安装后防雨盖(283)夹住下部连接杆,并由扎带等分别通过孔(287)、孔(286)而固定;
    作为替代方案,中间防雨盖(281)、上边防雨盖(282)、下边防雨盖(283)中的一个或多个还可用扣、粘、焊、嵌、铆、螺栓连接方式中的一种或多种固定在连杆上。
  10. 一种节能房框架处具备防雨功能的竖向隔热块:
    在除房屋转角处以外的位置,竖向隔热块(241)连接在房屋框架的竖向部分;竖向隔热块(241)与房屋框架的连杆(243)的连接方式和权利要求8中所述横向隔热块(231)与房屋框架连杆(237)的连接方式相同:竖向隔热块(241)上设连接筒和连接杆,房屋框架的连接杆(243)上设连接筒;其连接筒互相插接,同时隔热块的连接杆穿过房屋框架的连接筒并在末端设螺纹和螺帽或插销等其他阻挡件;
    在房屋的转角处,竖向隔热块(251)连接在房屋转角处框架的竖向部分(252)中;若 房屋的转角为直角,房屋框架的连杆(253)上的连接筒与房屋立面之间的角度设其一半,隔热块(251)上的连接杆和连接筒亦相应设其一半角度,二者方向一致;如转角不是直角,连杆(253)上的连接筒、隔热块(251)上的连接杆和连接筒与房屋立面之间的角度有相应调整,但连杆(253)上的连接筒和隔热块(251)上的连接杆、连接筒保持方向一致,从而使隔热块(251)上的连接杆可以随隔热块(251)推入房屋框架的连杆(253)上的连接筒并通过螺帽或插销等其他阻挡件而固定,同时连杆(253)上的连接筒插入隔热块(251)上的连接筒,使隔热块(251)牢固地安装在连杆(253)上。
  11. 一种用于建筑保温的薄膜隔热结构,其特征是薄膜隔热结构有如下一种或多种连接方式:
    分层连接、手工粘焊成型的块形连接、直接成型的块形连接、平边叠加的块形连接、直边叠加的块形连接、网状连接的块形连接。
  12. 根据权利要求11所述的薄膜隔热结构,其特征在于薄膜隔热结构的分层连接方式:
    螺杆(111)安装在建筑外墙的内侧和/或天花板的下侧,十字连接件(112)的中心有圆孔(113),四个端点有用于连接薄膜隔条的连接件(114);圆孔(113)中设泡沫聚苯乙烯等保温材料所制造的圆环(115),其中心设直径与螺杆(111)相配的孔,以便插入螺杆(111);
    外墙内侧和/或天花板下侧的第一层大块薄膜在螺杆(111)处开孔并插入螺杆(111);相邻的薄膜加以连接;圆环(115)插入螺杆(111),连接件(112)的圆孔(113)套在圆环(115)上;薄膜隔条通过连接件(114)连接在每两个相邻的螺杆(111)之间;
    薄膜结构设多层,第二层和其他各层的大块薄膜、圆环、十字连接件、薄膜隔条等的连接方式与第一层相同;在最外层,螺杆(111)上装有塑料或其他低导热材料的垫片,垫片的直径大于圆孔(113);螺杆(111)的端点装有螺帽,螺帽上装有保温盖;
    在分层连接方式中,十字形连接件还可用三角形或星形代替,可减少或增加其端点的数量。
  13. 根据权利要求11所述的薄膜隔热结构,其特征在于薄膜隔热结构直接成型块的形连接方式:
    直接成型的多层薄膜结构(121)中有上层(122)、下层(123)、左侧面(124)、右侧面(125),以及多个中间层(126、127、128)等;多层结构(121)切割成段并且每一段的两边沿切割线焊接起来;每一段的外层(122)上打孔,贯穿中间层(126、127、128)等,但不贯穿外层(123);同时在外层(122)的打孔处设有可以封闭的充气孔。
  14. 根据权利要求11所述的薄膜隔热结构,其特征在于薄膜隔热结构手工粘焊成型的块形连接方式:
    成段的筒状薄膜撑开成大方框(131);在方框(131)内宽度与之相当的多层单片薄膜(132)的两边(1321、1322)分别焊接或胶接在方框(131)的左右侧面(133、134)上;其焊接点 位于薄膜(132)与侧面连接处的端点和中间若干点;方框(131)在前后方向的长度大于薄膜(132);另有两块薄膜分别与方框(131)的前后边缘超出薄膜(132)的部分有连续、不留间隙的焊接或胶接;方框(131)形成一个六面密封的多层薄膜隔热结构,其表层打孔,打孔处设可以封闭的充气孔。
  15. 根据权利要求11所述的薄膜隔热结构,其特征在于薄膜隔热结构平边叠加的块形连接方式:
    在模具中形成的薄膜盒状体(141)的两边有凸面(142),一个侧面有气管(143);用同样的方式生产的薄膜盒状体(144)的两边有凸面(145),一个侧面有气管(146);两盒状体(141、144)相邻的凸面(142、145)焊接在一起,将两盒状体(141、444)连为一体;多层薄膜隔热结构由多个焊接成一体的盒状体构成。
  16. 根据权利要求11所述的薄膜隔热结构,其特征在于薄膜隔热结构直边叠加的块形连接方式:
    在模具中形成的薄膜半盒状体(151)上有凸面(152)和边(153);与此同时,在另一个形状相同的模具中形成的薄膜半盒状体(154)上有凸面(155)和边(156);两半盒状体(151)和(154)的边(153、156)熔接在一起,形成内部充满气体的密封体(167),其两边分别有凸面(152、155);与这种结构相同的密封体(168)的两边有凸面(169);两密封体(167、168)相邻的凸面(155、169)焊接在一起,将两密封体(167、168)连为一体;多层薄膜隔热结构由多个用这种方式焊接成一体的密封体构成;这个多层隔热结构在最外层打孔,贯穿除最外层之外的所有各层,并在打孔处设可以封闭的充气孔。
  17. 根据权利要求11所述的薄膜隔热结构,其特征在于薄膜隔热结构网状连接的块形连接方式;这种连接方式可用以下三角形剖面结构、平直剖面结构、筒状薄膜结构中的一种或多种:
    在三角形剖面结构中,多层薄膜(171、172、173、174)等沿横向连接线(1711、1712、1713、1714)等及(1721、1722、1723、1724)等进行熔接或胶接;各层薄膜与连接线垂直的方向留出边(175);边(175)也沿外侧熔接或胶接在一起,同时其熔接或胶接线与最外侧的连接线(1711、1721)等相连,形成封闭;最外层薄膜打孔,贯穿除最外层以外的各层薄膜;在最外层薄膜的打孔处设有可以封闭的充气孔;充气以后薄膜(171、172、173、174)之间被空气隔开距离;各层的边(175)连接在一起,充气后其边的剖面接近三角形;
    在平直剖面结构中,,各单层薄膜(171、172、173、174)等除最外和最里层以外,中间均用双层薄膜代替;各层薄膜沿连接线(1711、1712、1713、1714)等进行熔接或胶接;薄膜的边(175)成对熔接或胶接;充气后边的剖面相对平直;
    在筒状薄膜结构中,筒状薄膜折成双层,各双层薄膜沿横向连接线(1711、1712、1713、1714)等焊接;两头最外侧的横向连接线延伸并贯穿薄膜的宽度,将筒状薄膜封闭起来;同时省去边(175)的焊接。
  18. 一种节能房多层隔热块体上可以互相搭接的防雨板,其特征是:
    在外墙和/或屋面,多层隔热块体(21、22)位于上排,多层隔热块体(23、24)位于下排,各块体的左右两边分别设防雨板(35)、防雨板(36),各块体的下边设防雨板(57);各块体安装以后,块体(22)的防雨板(35)顶在块体(21)的防雨板(36)内侧;上排各块体左右的防雨板互相搭接;下排块体(23、24)及同排其他块体左右的防雨板同样搭接起来;与此同时,块体(23)的上沿或上沿的防雨板顶在块体(21)下沿的防雨板(57)的内侧,并且块体(23、24)同排的所有其他块体的上沿或上沿防雨板均顶在上排块体下沿防雨板的内侧;此外,上排防雨板(36)的下部外折,包住下排防雨板(36)的上部;上排防雨板(35)则不外折,与下排防雨板(35)对齐;
    各多层块体下边的防雨板(57)在块体的下侧另行安装,或由块体的外层延伸而成;在外层延伸的方式中,可用如下三种上、下块体搭接类型中的一种或多种:
    外层的底部通制成外折的防雨板而使上、下块体搭接,
    各块体的下部设为宽于上部而使上、下块体搭接,
    各块体进行倾斜安装而使上、下块体搭接。
  19. 一种节能房中具备冷热断桥功能的转接结构,其特征是:
    在门窗的外框处,门窗的外框(1)与外墙(2)之间通过木材或其他低导热材料制造的连杆(3)和连接块(4、5)而连接起来;连接块(4)与外墙之间通过外墙和/或房屋框架上的的连接件加以牢固的连接,连接块(4)与连杆(3)之间进行牢固的连接;连接块(5)与门窗的外框(1)及连杆(3)之间进行牢固的连接;
    门窗的外框(1)与外墙(2)之间形成一条用木材或其他低导热材料所制成的导热必经路径,其长度可以在设计时调整、足以达到所需的隔热功能;
    这种具有冷热断桥功能的转接结构除了可以安装在门窗的外框与外墙之间,还可以同时或仅安装在双墙夹保温层结构外墙的轻质材料内层墙壁与地板和/或天花板之间。
PCT/CN2020/086255 2019-04-23 2020-04-23 一种高效节能房 WO2020216266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/606,020 US20220205237A1 (en) 2019-04-23 2020-04-23 Highly Efficient Energy-saving House

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910326343.X 2019-04-23
CN201910326343.XA CN109972751A (zh) 2019-04-23 2019-04-23 一种高效节能房

Publications (1)

Publication Number Publication Date
WO2020216266A1 true WO2020216266A1 (zh) 2020-10-29

Family

ID=67085797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086255 WO2020216266A1 (zh) 2019-04-23 2020-04-23 一种高效节能房

Country Status (3)

Country Link
US (1) US20220205237A1 (zh)
CN (2) CN109972751A (zh)
WO (1) WO2020216266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114775820A (zh) * 2022-04-22 2022-07-22 北京首钢建设集团有限公司 一种建筑外墙节能保温结构
CN116576340A (zh) * 2023-07-11 2023-08-11 河北海润管道制造有限公司 一种防腐保温管道

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109972751A (zh) * 2019-04-23 2019-07-05 蒋卫国 一种高效节能房

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204126068U (zh) * 2014-09-19 2015-01-28 江西省辉煌建设集团有限公司 一种窗台外保温结构
CN105507432A (zh) * 2016-01-04 2016-04-20 蒋卫国 一种节能房及节能幕墙、装饰墙、粉刷墙
CN106121131A (zh) * 2016-08-23 2016-11-16 蒋卫国 一种节能阳光板
CN207296732U (zh) * 2017-07-28 2018-05-01 河北三山建材科技有限公司 门窗保温连接结构
WO2018211066A1 (en) * 2017-05-19 2018-11-22 Hilti Aktiengesellschaft Process for assembling a fireproof system within a stick build exterior dynamic curtain wall façade
CN208329255U (zh) * 2018-04-05 2019-01-04 深圳市中科建设集团有限公司 一种防潮保温建筑墙体
CN109972751A (zh) * 2019-04-23 2019-07-05 蒋卫国 一种高效节能房

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204126068U (zh) * 2014-09-19 2015-01-28 江西省辉煌建设集团有限公司 一种窗台外保温结构
CN105507432A (zh) * 2016-01-04 2016-04-20 蒋卫国 一种节能房及节能幕墙、装饰墙、粉刷墙
CN106121131A (zh) * 2016-08-23 2016-11-16 蒋卫国 一种节能阳光板
WO2018211066A1 (en) * 2017-05-19 2018-11-22 Hilti Aktiengesellschaft Process for assembling a fireproof system within a stick build exterior dynamic curtain wall façade
CN207296732U (zh) * 2017-07-28 2018-05-01 河北三山建材科技有限公司 门窗保温连接结构
CN208329255U (zh) * 2018-04-05 2019-01-04 深圳市中科建设集团有限公司 一种防潮保温建筑墙体
CN109972751A (zh) * 2019-04-23 2019-07-05 蒋卫国 一种高效节能房

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114775820A (zh) * 2022-04-22 2022-07-22 北京首钢建设集团有限公司 一种建筑外墙节能保温结构
CN114775820B (zh) * 2022-04-22 2023-07-14 北京首钢建设集团有限公司 一种建筑外墙节能保温结构
CN116576340A (zh) * 2023-07-11 2023-08-11 河北海润管道制造有限公司 一种防腐保温管道
CN116576340B (zh) * 2023-07-11 2023-09-12 河北海润管道制造有限公司 一种防腐保温管道

Also Published As

Publication number Publication date
CN109972751A (zh) 2019-07-05
CN111456261A (zh) 2020-07-28
US20220205237A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
WO2020216266A1 (zh) 一种高效节能房
US10253497B2 (en) Board with pre-applied sealing material
WO2017118342A1 (zh) 一种节能房及节能幕墙、装饰墙、粉刷墙
US7603822B2 (en) Panelized wall system with foam core insulation
WO2013166834A1 (zh) 一种组合建筑结构及安装方法、房子、卫生间
US20090255194A1 (en) Transparent sustainable wall system
CN102146705B (zh) 通风预制组合墙板结构
CN108252427A (zh) 一种一体化装配式保温外墙
CN108978857B (zh) 一种装配式房屋用保温装饰一体化屋顶板
CN104532949B (zh) 太阳能集装箱房屋
JP2008038564A (ja) 木造外張り断熱の外壁構造
CN206157975U (zh) 一种屋顶的屋面结构
CN212613167U (zh) 一种分层组装式耐久装饰墙体
JP2015531035A (ja) 防湿層を確保した壁システム
CN210067146U (zh) 环保节能安全的简易被动房
JPH10205015A (ja) 通気層を備えた建物
CN213837077U (zh) 一种岩棉夹芯板的防水结构
CN214994765U (zh) 一种用于近零能耗幕墙围护系统连接处的密封结构
CN216892983U (zh) 一种发泡陶瓷单面复合板墙体
CN219753773U (zh) 一种轻型钢骨架一体化外挂墙板
CN114351935A (zh) 线桁大幅真空板及其装配方法
CN220058386U (zh) 一种框格面板下的外墙空气间层反射幕帘保温结构
CN214785303U (zh) 一种装配式节能墙体
CN215054304U (zh) 外波浪内平面双层单元呼吸式幕墙
CN211973919U (zh) 建筑墙体模块及具有其的活动房屋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794789

Country of ref document: EP

Kind code of ref document: A1