WO2020215919A1 - 电池单元和电池模组 - Google Patents

电池单元和电池模组 Download PDF

Info

Publication number
WO2020215919A1
WO2020215919A1 PCT/CN2020/078804 CN2020078804W WO2020215919A1 WO 2020215919 A1 WO2020215919 A1 WO 2020215919A1 CN 2020078804 W CN2020078804 W CN 2020078804W WO 2020215919 A1 WO2020215919 A1 WO 2020215919A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
current collecting
rib
electrode assembly
collecting member
Prior art date
Application number
PCT/CN2020/078804
Other languages
English (en)
French (fr)
Inventor
李星
卜祥艳
江青元
屈贵久
张小文
李全坤
朱凌波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2021555808A priority Critical patent/JP7434350B2/ja
Publication of WO2020215919A1 publication Critical patent/WO2020215919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, in particular to a battery unit and a battery module.
  • Rechargeable batteries have been widely used to power high-power devices, such as electric vehicles.
  • Rechargeable batteries can achieve greater capacity or power by connecting multiple battery cells in series or in parallel.
  • the current battery unit is provided with an electrode assembly in the shell.
  • the electrode assembly is formed by superimposing and winding the positive pole piece, the separator and the negative pole piece. Both the positive pole piece and the negative pole piece include a coated part and an uncoated part.
  • the covering part forms tabs, and the tabs on both sides of the electrode assembly are respectively connected with the positive and negative poles on the top of the casing through current collecting members.
  • a battery unit including:
  • the electrode assembly includes a main body and tabs extending from an end of the main body along the length direction of the electrode assembly;
  • Two current collecting members respectively electrically connect the tabs on both sides of the main body with the terminals on the same side;
  • the current collecting member includes a guide plate and a support plate.
  • the guide plate is located on one side of the main body along the length direction and extends along the width direction of the electrode assembly.
  • the guide plate is provided with a reinforcing part configured to reduce the guide The deformation of the plate toward the main body; the support plate is connected to the end of the guide plate in the width direction, and the tab is bent relative to the length direction and connected to the support plate.
  • the reinforcing portion includes ribs, which extend in the height direction or extend obliquely with respect to the height direction of the electrode assembly.
  • the reinforcing part includes a plurality of ribs arranged at intervals;
  • the reinforcing part includes a plurality of groups of ribs, the ribs in each group of ribs are arranged at intervals, and at least two groups of ribs are staggered.
  • the side of the rib near the electrode assembly is recessed inward with respect to the guide plate.
  • the side of the reinforcing part away from the electrode assembly protrudes outward relative to the guide plate.
  • the support plate includes a connecting part and a bent part, the bent part is connected to the guide plate and bent into an arc shape, and the tab is connected to the connecting part and is integrally folded along the surface of the bent part to the part away from the main body of the guide plate Side.
  • the reinforcing portion includes a rib
  • the rib includes a first rib
  • the first rib is covered by the connecting portion in the width direction
  • the first rib has a first protrusion height relative to the guide plate, and is curved
  • the portion has a third protrusion height relative to the guide plate, and the first protrusion height is less than or equal to the third protrusion height.
  • the two support plates are respectively connected to the two ends of the guide plate in the width direction and are bent relative to each other, and the connection parts of the two support plates are arranged at intervals along the width direction;
  • the rib also includes a second rib, the first rib is provided with two sections, the two first ribs are covered by different connecting parts, the second rib is located between the two first ribs, and the second rib Located in the space between the two connecting parts.
  • the second rib has a second protrusion height relative to the guide plate, and the second protrusion height is greater than or equal to the first protrusion height.
  • the curved portion has at least one of a through groove extending in the height direction and a groove, the through groove is provided in the middle area of the curved portion in the height direction, and the groove is provided inside the curved portion and above the through groove. At least one place in the lower area.
  • the reinforcement part passes through the support plate in the height direction.
  • the battery unit further includes a top cover plate and an insulating member, the terminals are provided on the top cover plate, and the insulating member is provided between the top cover plate and the electrode assembly;
  • the two current collecting members include a first current collecting member located on one side of the electrode assembly, and the two terminals include a negative terminal.
  • the first current collecting member connects the tab on the side with the negative terminal, and the reinforcing part of the first current collecting member is It extends to the lower side of the insulating member in the height direction.
  • the two current collecting members include a second current collecting member located on one side of the electrode assembly, the two terminals include a positive terminal, and the second current collecting member connects the tab on the side with the positive terminal.
  • the flow member further includes a heat dissipation part, which is provided in an area where the guide plate is located above the support plate.
  • the reinforcing part of the second current collecting member extends to the lower side of the heat dissipation part in the height direction.
  • the current collecting member further includes a clamping portion, which is provided at the bottom of the guide plate and protrudes toward the side away from the electrode assembly as a whole.
  • the surface of the clamping portion away from the guide plate is not higher than the surface of the tab that is away from the guide plate after the tab is folded back.
  • a battery module including: a plurality of battery cells of the above-mentioned embodiments, each battery cell being arranged side by side in the width direction.
  • a device using a secondary battery including the battery cell of the above-mentioned embodiment.
  • FIG. 1 is a schematic structural diagram of some embodiments of the battery unit of the present disclosure
  • FIG. 2 is a schematic diagram of the internal structure of some embodiments of the battery unit of the present disclosure.
  • FIG. 3 is a schematic structural diagram of some embodiments of electrode assemblies in the battery unit of the present disclosure.
  • Figure 4 is an exploded view of the battery unit shown in Figure 1;
  • Figure 5 is a top view of some embodiments of the battery unit of the present disclosure.
  • Figure 6 is a cross-sectional view of the battery unit shown in Figure 5 A-A;
  • Fig. 7A and Fig. 7B are respectively enlarged views of B and C in Fig. 6;
  • Figure 8 is a front view of the internal structure of the battery unit of the present disclosure.
  • Fig. 9 is a schematic diagram of the state in which the tabs are not folded back when cut at the position D-D in Fig. 8;
  • Fig. 10 is a schematic diagram of the state after cutting at position D-D in Fig. 8 and folding back the tab;
  • 11A and 11B are respectively a left view (corresponding to the positive terminal side) and right view (corresponding to the negative terminal side) of FIG. 8;
  • FIG. 12 is a perspective view of some embodiments of the first current collecting member (corresponding to the positive terminal) in the battery unit of the present disclosure
  • Figure 13 is a side view of the first collecting member shown in Figure 12;
  • Figure 14 is an enlarged cross-sectional view of E-E in Figure 13;
  • 15 is a side view of some embodiments of the second current collecting member (corresponding to the negative terminal) in the battery unit of the present disclosure
  • 16 is a perspective view of other embodiments of the current collecting member in the battery unit of the present disclosure.
  • Figure 17 is a side view of the current collecting member shown in Figure 16;
  • Fig. 18 is an enlarged view of the F-F section in Fig. 17.
  • Electrode assembly 11. Tabs; 12. Main body; 2. Cover plate; 21. Exhaust member; 22. Liquid injection hole; 3. Negative terminal; 4. Positive terminal; 5.
  • first and second appearing in the present disclosure are only for convenience of description, to distinguish different components with the same name, and do not indicate a sequence or a primary-secondary relationship.
  • the element when an element is referred to as being “on” another element, the element can be directly on the other element, or it can be indirectly on the other element with one or More intermediate components.
  • the element when an element is referred to as being “connected to” another element, the element may be directly connected to the other element, or may be indirectly connected to the other element with one or more interposed therebetween.
  • a middle element In the following, the same reference numerals denote the same elements.
  • the coordinate system in Figure 1 defines the various directions of the battery cell.
  • the x direction represents the length direction of the electrode assembly;
  • the y direction is perpendicular to the x direction in the horizontal plane, which represents the electrode.
  • the z direction is perpendicular to the plane formed by the x and y directions, indicating the height direction of the electrode assembly.
  • the description of the orientation or positional relationship indicated by "upper”, “lower”, “top”, “bottom”, “front”, “rear”, “inner” and “outer” is adopted. It is only for the convenience of describing the present disclosure, rather than indicating or implying that the device referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the protection scope of the present disclosure.
  • the current collecting members on both sides of the electrode assembly adopt a bending structure, so as to improve the reliability of welding and fixing with the tab by increasing its structural strength.
  • the tab is attached to the outer surface of the bending structure. Merge and turn back together. During the actual use of this battery cell, it was found that there were problems with poor electrochemical performance and safety performance.
  • the inventor found that the active material coated on the pole pieces in the electrode assembly had de-filming and powder-dropping phenomena. It was speculated that the battery cells may be assembled. In the process, the pole piece is subjected to external force.
  • the current collecting member When pressure is applied to the tabs 11 on both sides through the flat plate structure, the current collecting member will deform in a concave direction toward the main body 12 and press the main body 12 to transmit the pressure to at least part of the pole pieces in the main body 12 , It is easy to cause the pole piece coated with the active material to be mechanically removed or powder, thereby affecting the electrochemical performance and safety performance of the battery cell.
  • the inventor used a dial indicator to detect the amount of deformation of the guide plate 51 after the tab 11 and the support plate 52 were folded back and flattened during the assembly process, and found that the guide plate 51 would face the main body 12 Produce a larger amount of deformation.
  • an improved way is to provide clamping parts on both sides of the guide plate 51 located in the height direction of the tab 11, and the clamping parts protrude outward relative to the guide plate 51 And the inside is concave.
  • tooling is inserted into the recessed portion of the side of the clamping portion facing the main body 12 to provide supporting force.
  • this method can reduce the deformation of the guide plate 51, this When a structure supported at both ends bends the tabs, a large concave deformation will still occur in the middle area, which cannot substantially improve the deformation of the current collecting member.
  • inserting the tooling inside the clamping part requires a higher precision of the assembly equipment, and in practice, there is greater difficulty in assembly and low assembly efficiency. Therefore, further improvements to the battery cells are needed.
  • the embodiments of the present disclosure provide a battery cell and a battery module, which can improve the electrochemical performance of the battery.
  • the battery unit of some embodiments of the present disclosure can increase the bending rigidity of the guide plate in the cross section perpendicular to the height direction of the electrode assembly by arranging the reinforcing part on the guide plate of the current collecting member.
  • the bending deformation of the guide plate toward the main body of the electrode assembly can be reduced, the active material coated on each pole piece in the electrode assembly can be prevented from being affected, and the battery cell's electricity can be improved. Chemical performance and safety performance.
  • FIG. 1 illustrates a schematic structural diagram of some embodiments of the battery unit of the present disclosure.
  • the battery cell may include an electrode assembly 1, a top cover plate 2, two terminals, and two current collecting members.
  • the electrode assembly 1 includes a main body 12 and tabs 11 extending from an end of the main body 12 in the longitudinal direction.
  • the main body 12 is the coating part of the electrode, and includes a first electrode and a second electrode with opposite polarities.
  • the first electrode is a negative electrode and the second electrode is a positive electrode.
  • the tab 11 is an uncoated part, which can extend outward from both ends of the main body 12 along the length direction.
  • the top cover plate 2 is provided on the top of the electrode assembly 1, and an insulating member 7 is provided between the top cover plate 2 and the electrode assembly 1.
  • the insulating member 7 can be The plate-like structure adapted to the plate 2 can be made of plastic materials.
  • the top cover plate 2 is provided with an exhaust member 21 and a liquid injection hole 22.
  • the exhaust member 21 is used to release the gas in the battery cell and play a safety role.
  • the liquid injection hole 22 is used to inject electrolyte into the battery cell, and It is sealed by a seal.
  • Two terminals are provided at both ends of the top cover plate 2 along the length direction, and include a negative terminal 3 connected to the negative electrode and a positive terminal 4 connected to the positive electrode.
  • the current collecting member may include a guide plate 51 and a support plate 52.
  • the guide plate 51 is located on one side of the main body 12 in the length direction and extends in the width direction.
  • the support plate 52 is connected to the end of the guide plate 51 in the width direction.
  • the tab 11 is bent relative to the length direction and connected to the support plate 52.
  • the tab 11 and the support plate 52 can be connected by welding. As shown in Figure 10, the tab 11 and the outer side of the support plate 52 are attached and bent inwardly toward the guide plate 51; or the tab 11 and the outer side of the support plate 52 are attached and bent outward together, and then bend together.
  • the guide plate 51 and the support plate 52 of the flow member may have a flat plate structure.
  • the electrode assembly 1 is also provided with a casing 8 connected with the cover plate, and the casing 8 is filled with electrolyte.
  • the battery module includes a battery frame and a plurality of battery cells, each battery cell is arranged in the battery frame and arranged side by side along the width direction, which can be connected in parallel and/or in series
  • each battery unit can be provided with a housing 8 separately, or the housing 8 can be omitted.
  • the electrode assembly 1 in the battery cell can be set individually, which is suitable for the case where the thickness of each electrode is small after being laminated.
  • two or more independently wound electrode assemblies 1 can also be arranged in the battery cell, and the tabs 11 corresponding to each electrode assembly 1 extend from the main body 12 in the width direction. Side lead.
  • the electrode assembly 1 has a large winding thickness, the size of the arc at the bottom will be larger, which will cause the electrode assembly 1 to have low space utilization outside the arc on both sides of the bottom, and splitting into multiple electrode assemblies can reduce the arc Size, make full use of the bottom space of the battery unit, reduce space waste, and increase the energy density of the main body.
  • the total thickness of the tab 11 is also reduced, which is also advantageous for bending after welding, and the length of a single tab 11 can be reduced.
  • Figure 3 shows a schematic diagram of some embodiments of the electrode assembly.
  • the two electrode assemblies 1 are superimposed in the width direction, and the tabs 11 corresponding to the two electrode assemblies 1 are respectively drawn from the outer side of the main body 12 in the width direction, and together with the support plate 52 are respectively drawn from the guide plate 51 in the width direction.
  • the sides are bent inwardly.
  • FIG 4 shows an exploded view of some embodiments of battery cells.
  • the two current collecting members include a first current collecting member 5 and a second current collecting member 6 arranged at both ends of the top cover plate 2 in the longitudinal direction.
  • the first current collecting member 5 is connected to the negative terminal 3, and the second current collecting member 6 is connected to the The positive terminal 4 is connected.
  • the first current collecting member 5 and the second current collecting member 6 are respectively located on both sides of the electrode assembly 1 in the length direction.
  • an insulating film 9 is provided between the electrode assembly 1 and the housing 8.
  • the insulating film 9 can be attached to the inner surface of the housing 8, or covered On the outer surface of the electrode assembly 1, the insulating film 9 can be folded in advance into a shape matching the case 8.
  • the current collecting member includes a guide plate 51, a supporting plate 52 and an adapter plate 53.
  • the guide plate 51 is located on the side of the main body 12 along the length direction and extends along the width direction.
  • the thickness direction of the guide plate 51 is parallel to the length direction;
  • the support plate 52 is connected to the guide plate 51 along the width At the end of the direction, the tab 11 is connected to the support plate 52, and the height of the support plate 52 is not less than the preset height to reduce the resistance of the current collecting member and prevent the temperature rise of the main body during use;
  • the adapter plate 53 is provided At the top end of the guide plate 51 and extending inwardly along the length direction of the main body 12, the adapter plate 53 is provided with holes for mounting terminals.
  • the guide plate 51 is provided with a reinforcement portion, which is configured to reduce the amount of deformation of the guide plate 51 toward the main body 12 side.
  • This embodiment of the present disclosure can increase the bending rigidity of the guide plate 51 in the direction perpendicular to the height of the electrode assembly 1 by providing a reinforcing part on the guide plate 51. After the tab 11 and the support plate 52 are folded back inward, When pressure is applied to the outside of the tab 11 through the flat plate structure, the bending deformation of the guide plate 51 toward the main body 12 can be reduced, and the active material coated on each pole piece in the electrode assembly 1 can be prevented from being affected, and the battery cell's electricity can be improved. Chemical performance and safety performance.
  • the embodiment of the present disclosure can reduce the amount of deformation from the angle of increasing the rigidity of the current collecting member itself, and can reduce the assembly
  • the accuracy of the equipment is required to prevent stress concentration at the location of the upper clamping part.
  • the two side ends of the guide plate 51 in the width direction are provided with support plates 52 to improve the reliability of welding and fixing with the lug 11 by increasing its structural strength.
  • the sides are pasted and folded back together.
  • Fig. 8 is a front view of the inside of the battery unit
  • Fig. 9 is a sectional view of the state where the support plate 52 and the tab 11 are not folded back along the DD position in Fig. 8.
  • the tab 11 is attached to the outer surface of the support plate 52 and It is perpendicular to the guide plate 51.
  • 10 is a cross-sectional view taken along the line D-D in FIG. 8, which is a state diagram of the supporting plate 52 and the tab 11 after being folded back.
  • the support plate 52 is provided only on one side of the guide plate 51 in the width direction.
  • the reinforcing portion includes ribs 511, which extend in the height direction or extend obliquely with respect to the height direction to increase the moment of inertia of the guide plate 51 to the z-axis in the cross section perpendicular to the height direction of the electrode assembly 1. Thereby, the bending rigidity of the guide plate 51 in the cross section perpendicular to the height direction of the electrode assembly 1 is increased.
  • the ribs 511 extending in the height direction can achieve a better strengthening effect, and the ribs 511 can adopt a continuous structure or a discontinuous structure.
  • the reinforcing part may also include a plurality of small bumps arranged according to a preset rule.
  • the reinforcing part may include one rib 511, or a plurality of ribs 511 arranged at intervals.
  • Each rib 511 is arranged independently, and each rib 511 can be arranged in parallel in the vertical direction, so that the current collecting member is in the height direction.
  • the bending stiffness of the section is relatively uniform, which can reduce the overall bending deformation, and the processing difficulty is low.
  • the guide plate 51 is provided with three ribs 511 arranged in parallel along the vertical direction.
  • the respective ribs 511 may also be arranged in a staggered manner, such as a grid-like rib that is staggered horizontally and vertically or diagonally.
  • the side of the reinforcing portion such as the rib 511 away from the electrode assembly 1 protrudes outward relative to the guide plate 51.
  • This structure can reduce the space occupied by the reinforcing portion on the side facing the electrode assembly 1, and reduce the amount of deformation of the current collecting member without reducing the energy density of the main body.
  • the reinforcing part may also protrude toward the electrode assembly 1 side.
  • FIG. 13 is a front view of the current collecting member
  • FIG. 14 is an E-E cross-sectional view of FIG. 13, the side of the rib 511 close to the electrode assembly 1 is recessed inward with respect to the guide plate 51.
  • the electrolyte will generate gas during the operation of the battery cell. After the gas is discharged from both sides of the electrode assembly 1 along the length direction, it can flow along the flow channel formed by the recessed portion of the rib 511, and from the upper and lower positions of the collecting member
  • the recessed part can also buffer the gas discharged from both sides of the electrode assembly 1, so that the gas in the electrolyte can escape smoothly, can reduce the bubbles in the electrolyte, and prevent the battery cell from lithium evolution.
  • the reinforcement part passes through the height area of the tab 11 in the height direction.
  • the top of the rib 511 is higher than the top of the tab 11, and the bottom of the rib 511 is lower than the bottom of the tab 11.
  • This structure can increase the bending rigidity of the guide plate 51 as much as possible.
  • the tab 11 and the support plate 52 are flattened by the flat structure, the deformation of the guide plate 51 toward the main body 12 can be minimized.
  • the support plate 52 includes a connecting portion 521 and a bent portion 522.
  • the bent portion 522 is connected to the guide plate 51 and bent into an arc shape.
  • the tab 11 is connected to the connecting portion 521 and runs along the bent portion 522 and the connecting portion. The entire outer surface of the 521 is folded back to the side of the guide plate 51 away from the main body 12.
  • the rib 511 includes a first rib 511A, the first rib 511A is covered by the connecting portion 521 in the width direction, the first rib 511A has a first protrusion height h 1 relative to the guide plate 51, The curved portion has a third protrusion height h 3 relative to the guide plate 51, and the first protrusion height h 1 is less than or equal to the third protrusion height h 3 .
  • This structure can prevent the connecting portion 521 from tilting and upturning, avoiding the current collecting member from occupying extra space on the side of the main body 12 along the length direction, and is convenient to install in the housing 8, and it is also convenient to provide insulation on the outer side of the tab 11 board.
  • the two support plates 52 are provided.
  • the two support plates 52 are respectively connected to the two ends of the guide plate 51 in the width direction and are bent relative to each other. Along the width direction, the two support plates 52
  • the connecting portions 521 are arranged at intervals.
  • the rib 511 also includes a second rib 511B.
  • the first rib 511A has two sections.
  • the two first ribs 511A are covered by different connecting portions 521.
  • the second rib 511B is located between the two first ribs 511A.
  • the second rib 511B is located in the space between the two connecting parts 521. This structure can prevent the second rib 511B from overlapping the connecting portion 521, and can reduce the occupied space.
  • the second rib 511B has a second protrusion height h 2 relative to the guide plate 51, and the second protrusion height h 2 is greater than or equal to the first protrusion height h 1 .
  • one of the first ribs 511A, the second rib 511B, and the other first rib 511A are arranged side by side in the width direction, and the first protrusion height of the two first ribs 511A is 0 ⁇ h 1 ⁇ 2mm, preferably 0.3 ⁇ h 1 ⁇ 0.9mm, a second rib 511B of the second protruding height 0 ⁇ h 2 ⁇ 3mm, preferably 0.3 ⁇ h 2 ⁇ 2mm, a first projection height h 1 and the second protrusion height h 2 need to consider space and strengthening effect at the same time in design.
  • the second rib 511B located in the interval between the two support plates 52 is designed to have a larger protrusion height, which can maximize the bending stiffness of the guide plate 51 in the middle area along the width direction, thereby further reducing the guide plate.
  • the deformation of the lead plate 51 can also prevent the tab 11 from tilting and upturning after bending.
  • the first rib 511A covered by the support plate 52 is designed to have a small protrusion height, which can minimize the occupation of the current collecting member on the side of the electrode assembly 1 while ensuring the bending rigidity of the guide plate 51 With a certain size of the battery cell, the energy density of the electrode assembly can be increased.
  • the first current collecting member 5 and the second current collecting member 6 are designed as a different structure.
  • FIG. 5 is a top view of the battery unit of the present disclosure. After being cut along the A-A section, the cross-sectional view shown in FIG. 6 is formed, showing the side structures of the first current collecting member 5 and the second current collecting member 6.
  • FIG. 7A is an enlarged view of B in FIG. 6.
  • the battery unit further includes a top cover plate 2 and an insulating member 7.
  • the terminals are provided on the top cover plate 2, and the insulating member 7 is provided between the top cover plate 2 and the electrode assembly 1.
  • the two current collecting members include a first current collecting member 5 located on one side of the electrode assembly 1, and the two terminals include a negative terminal 3.
  • the first current collecting member 5 connects the tab 11 on the side with the negative terminal 3, and the first collecting member 5
  • the reinforcing portion of the flow member 5 extends to the bottom surface of the insulator 7 in the height direction.
  • This structure can extend the length of the reinforcement part such as ribs 511 in the height direction as much as possible while ensuring that the reinforcement part does not interfere with the insulator 7, so as to increase the overall rigidity of the current collecting member in the height direction and minimize The amount of deformation when flattening the tab 11.
  • the support portion 52 partially covers the rib 511 in the height direction.
  • the current collecting member further includes a clamping portion 512 which is provided at the bottom of the guide plate 51 and protrudes in a direction away from the electrode assembly 1 as a whole.
  • the bottom end of the reinforcing portion extends downward to be adjacent to the top end of the clamping portion 512, but there is still a preset gap between the two, and the bottom end of the clamping portion 512 is a free end and maintains a protrusion. height.
  • a tool can be provided between the clamping portion 512 and the electrode assembly 1 to support it, so as to reduce the deformation of the guide plate 51 toward the main body 12 when the tab 11 is flattened.
  • the rib 511 protrudes toward the side away from the electrode assembly 1 relative to the plane where the guide plate 51 is located to form a convex rib, the rib 511 extends along the height direction of the guide plate 51, and the top end of the rib 511 extends upward to the insulating member On the bottom surface of 7, the bottom end of the rib 511 extends downward to connect with the clamping portion 512.
  • This structure can maximize the length of the ribs 511 in the height direction, thereby increasing the rigidity of the first current collecting member 5 in the entire height direction, and minimize the amount of deformation when the tab 11 is flattened.
  • the surface of the clamping portion 512 away from the guide plate 51 is not higher than the surface of the tab 11 away from the guide plate 51 after being folded back.
  • the size of the battery cell along the length direction will not be additionally increased; and when the insulating plate is arranged on the side of the electrode assembly 1 along the length direction, the insulating plate and the tab 11 bonding, thereby increasing insulation reliability, and by increasing the bonding area of the insulation board, the installation of the insulation board can be made firmer.
  • the two current collecting members include a second current collecting member 6 located on the other side of the electrode assembly 1, the two terminals include a positive terminal 4, and the second current collecting member 6 connects the tab 11 on the side with the positive electrode.
  • the terminal 4 is connected, and the second current collecting member 6 further includes a heat dissipation portion 54 provided in the area of the guide plate 51 above the tab 11. Since the second current collecting member 6 and the positive terminal 4 are usually made of aluminum material, and the first current collecting member 5 and the negative terminal 3 are usually made of copper material, the current is guided along the second current collecting member 6.
  • the plate 51 flows upward to the adapter plate 53, it needs to go through a bending structure, which will generate a large amount of heat.
  • the heat dissipation performance of aluminum is poorer than that of copper.
  • the heat dissipation part 54 can accelerate the heat release and avoid the second episode.
  • the temperature in the local area of the flow member 6 is too high, which affects the battery performance and improves the safety of the battery unit.
  • the effect of increasing the rigidity of the second current collecting member 6 can also be achieved.
  • the heat dissipation portion 54 includes a thickened portion, and the thickened portion is provided on a side of the guide plate 51 away from the electrode assembly 1.
  • heat dissipation ribs can also be provided on the thickened part to further optimize the heat dissipation effect by increasing the heat dissipation surface.
  • the protruding direction of the reinforcing part and the thickening part are arranged on the same side of the guide plate 51, which can reduce the occupied space of the second current collecting member 6 in the longitudinal direction, so as to increase the energy density of the battery cell.
  • the thickened portion may adopt a rectangular plate structure, located in the upper area of the guide plate 51, and its width is adapted to the width of the guide plate 51 to optimize the heat dissipation effect by increasing the heat dissipation surface area.
  • the thickened part may be connected to the guide plate 51 by welding, or the thickened part may be formed to be attached and fixed to the guide plate 51 by folding.
  • the reinforcing portion of the second current collecting member 6 extends to the bottom surface of the heat dissipation portion 54 in the height direction.
  • the top end of the rib 511 may extend to the bottom adjacent to the thickened portion, and the bottom end of the rib 511 extends to adjacent to the clamping portion 512.
  • This structure can take into account the heat dissipation and rigidity of the second current collecting member 6 at the same time.
  • the length of the ribs 511 in the height direction can be maximized, thereby increasing the rigidity of the first current collecting member 5 , Reduce the amount of deformation when flattening the tab 11.
  • the curved portion 522 has at least one of a through groove 523 and a groove 524 extending in the height direction.
  • the through groove 523 is provided in the middle area of the curved portion 522 in the height direction.
  • the long rectangular groove reduces the force-bearing area. Under certain pressure conditions, the strength of the bent portion 522 can be reduced, and the stress generated during bending is smaller. Moreover, the size of the through-slot 523 should not be too small. Overcurrent requirements of current collecting components.
  • the groove 524 is provided in at least one of the areas above and below the through groove 523 on the inner side of the curved portion 522.
  • the groove is a notch extending in the height direction provided on the inner side of the curved portion 522, which can help weaken the strength of the bending area. , And accurately locate the bend.
  • Fig. 17 is a front view of such a collecting member
  • Fig. 18 is a cross-sectional view taken along line F-F in Fig. 17.
  • This structure can reduce the strength of the support plate 52 in the bending area, and it is easy to fold back the support plate 52 of the current collecting member, and in the process of folding back, it can avoid transferring the stress in the bending area to other current collecting members as much as possible. Area to protect the electrode assembly 1 from mechanical damage and improve the electrochemical performance of the battery cell.
  • the process of folding back the tab 11 and the supporting plate 52 includes pre-folding and final folding.
  • the pre-folding is to fold the supporting plate 52 perpendicular to the guide plate 51 back to a partial angle
  • the final folding is to continue the supporting plate 52 inward. Fold back into place.
  • the amount of deformation of the guide plate 51 in the middle area in the height direction is detected by a dial indicator.
  • the Base group has no reinforcement on the guide plate 51 of the current collecting member, and only clamps are provided in the upper and lower regions of the tab 11;
  • the A group is arranged on the outer surface of the guide plate 51 in the height direction Three-section ribs 511, the ribs 511 extend to the position adjacent to the upper and lower clamping parts;
  • the difference between the B group and the A group is that a thickened part is provided on the outer side of the top area of the guide plate 51 as the heat dissipation part 54;
  • C Compared with the A group, the difference is that the through groove 523 is provided in the bending area of the support plate 52.
  • Table 1 below illustrates the deformation of the first current collecting member 5 and the second current collecting member 6 toward the electrode assembly 1 after being folded back.
  • the additional ribs 511 in the A group can reduce the deformation of the guide plate 51 in the two current collecting members; on the basis of the A group, the upper Replacing the clamping part with the heat dissipation part 54 can further reduce the amount of deformation; on the basis of the group A, adding the through slot 523 through the group C can also further reduce the amount of deformation.
  • increasing the ribs 511 has the most significant effect on reducing the deformation of the guide plate 51.
  • the ribs 511, the heat dissipation portion 54 and the through slot 523 can be combined to minimize the deformation of the guide plate 51; or in other embodiments, On the basis of the rib 511, a heat dissipation portion 54 or a through groove 523 is superimposed.
  • the following table 2 gives the variance of the deformation of the guide plate 51 by testing multiple battery cells.
  • the first collecting member 5 The second collection component 6 Base group 0.23 0.34 Group A 0.18 0.28 Group B 0.05 0.17 Group C 0.07 0.16
  • the present disclosure also provides a device using a secondary battery.
  • the battery includes the battery unit of the above-mentioned embodiment.
  • the devices using secondary batteries include vehicles, ships or drones. Since the battery cell of the present disclosure has high electrochemical performance and safety performance, it can improve the working performance of the device using the secondary battery and improve the power performance and safety of the device.

Abstract

一种电池单元和电池模组,其中,电池单元包括电极组件(1),包括主体部(12)和从其端部延伸出的极耳(11);两个端子(3,4);和两个集流构件(5,6),分别将主体部(12)两侧的极耳(11)与同侧的端子(3,4)电联接;集流构件(5,6)包括导引板(51)和支撑板(52),导引板(51)位于主体部(12)沿长度方向的一侧并沿宽度方向延伸,导引板(51)上设有加强部(511,511A,511B,511C),用于减小导引板(51)朝向主体部(12)一侧的变形;支撑板(52)连接在导引板(51)沿宽度方向的端部,极耳(11)相对于长度方向弯折并连接于支撑板(52)。

Description

电池单元和电池模组
本公开是以申请号为 201910337415.0,申请日为 2019年4月25日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及电池技术领域,尤其涉及一种电池单元及电池模组。
背景技术
近年来,可充电电池被广泛地应用于为高功率的装置提供动力,例如电动车辆等。可充电电池通过将多个电池单元串联或并联连接以实现较大的容量或功率。
目前的电池单元在壳体内设有电极组件,电极组件通过将正极极片、隔膜和负极极片叠加卷绕形成,正极极片和负极极片均包括涂覆部分和未涂覆部分,未涂覆部分形成极耳,电极组件两侧的极耳分别通过集流构件与壳体顶部的正负极柱连接。
发明内容
根据本公开的一方面,提供了一种电池单元,包括:
电极组件,包括主体部和从主体部沿电极组件的长度方向的端部延伸出的极耳;
两个端子,设在电极组件顶部;和
两个集流构件,分别将主体部两侧的极耳与同侧的端子电联接;
其中,集流构件包括导引板和支撑板,导引板位于主体部沿长度方向的一侧并沿电极组件的宽度方向延伸,导引板上设有加强部,被配置为减小导引板朝向主体部的变形;支撑板连接在导引板沿宽度方向的端部,极耳相对于长度方向弯折并连接于支撑板。
在一些实施例中,加强部包括筋条,筋条沿高度方向延伸,或者相对于电极组件的高度方向倾斜延伸。
在一些实施例中,加强部包括多个间隔设置的筋条;或者
加强部包括多组筋条,每组筋条中的各筋条间隔设置,至少两组筋条之间交错设置。
在一些实施例中,筋条靠近电极组件的一侧相对于导引板向内凹入。
在一些实施例中,加强部远离电极组件的一侧相对于导引板向外凸出。
在一些实施例中,支撑板包括连接部和弯曲部,弯曲部与导引板相连并弯曲为弧形,极耳连接于连接部并沿弯曲部的表面整体折叠到导引板的远离主体部的一侧。
在一些实施例中,加强部包括筋条,筋条包括第一筋条,第一筋条在宽度方向上被连接部覆盖,第一筋条相对于导引板具有第一凸出高度,弯曲部相对于导引板具有第三凸出高度,第一凸出高度小于或者等于第三凸出高度。
在一些实施例中,支撑板设有两个,两个支撑板分别连接于导引板沿宽度方向的两端且彼此相对弯折,沿宽度方向,两个支撑板的连接部间隔设置;
筋条还包括第二筋条,第一筋条设有两段,两段第一筋条被不同的连接部覆盖,第二筋条位于两段第一筋条之间,且第二筋条位于两个连接部的间隔区域内。
在一些实施例中,第二筋条相对于导引板具有第二凸出高度,第二凸出高度大于或者等于第一凸出高度。
在一些实施例中,弯曲部具有沿高度方向延伸的通槽和凹槽中的至少一个,通槽设在弯曲部沿高度方向的中间区域,凹槽设在弯曲部内侧并位于通槽上方和下方区域的至少一处。
在一些实施例中,加强部在高度方向上覆穿过支撑板。
在一些实施例中,电池单元还包括顶盖板和绝缘件,端子设在顶盖板上,绝缘件设在顶盖板与电极组件之间;
两个集流构件包括位于电极组件一侧的第一集流构件,两个端子包括负极端子,第一集流构件将所在侧的极耳与负极端子连接,第一集流构件的加强部在高度方向上延伸至绝缘件的下侧。
在一些实施例中,两个集流构件包括位于电极组件一侧的第二集流构件,两个端子包括正极端子,第二集流构件将所在侧的极耳与正极端子连接,第二集流构件还包括散热部,散热部设在导引板位于支撑板上方的区域。
在一些实施例中,第二集流构件的加强部在高度方向上延伸至散热部的下侧。
在一些实施例中,集流构件还包括夹持部,夹持部设在导引板的底部,且整体朝向远离电极组件的一侧凸出。
在一些实施例中,沿长度方向,夹持部远离导引板的表面不高于极耳折回后远离导引板的表面。
根据本公开的另一方面,提供了一种电池模组,包括:多个上述实施例的电池单 元,各个电池单元沿宽度方向并排设置。
根据本公开的再一方面,提供了一种使用二次电池的装置,电池包括上述实施例的电池单元。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开电池单元的一些实施例的结构示意图;
图2为本公开电池单元的一些实施例的内部结构示意图;
图3为本公开电池单元中电极组件的一些实施例的结构示意图;
图4为图1所示电池单元的分解图;
图5为本公开电池单元的一些实施例的俯视图;
图6为图5所示电池单元的A-A剖视图;
图7A和图7B分别为图6中的B处和C处放大图;
图8为本公开电池单元内部结构的主视图;
图9为图8中在D-D位置剖切且极耳未折回的状态示意图;
图10为图8中在D-D位置剖切且极耳折回后的状态示意图;
图11A和图11B分别为图8的左视图(对应正极端子侧)和右视图(对应负极端子侧);
图12为本公开电池单元中第一集流构件(对应正极端子)的一些实施例的立体图;
图13为图12所示第一集流构件的侧视图;
图14为图13中的E-E剖视放大图;
图15为本公开电池单元中第二集流构件(对应负极端子)的一些实施例的侧视图;
图16为本公开电池单元中集流构件的另一些实施例的立体图;
图17为图16所示集流构件的侧视图;
图18为图17中的F-F剖视放大图。
附图标记说明
1、电极组件;11、极耳;12、主体部;2、顶盖板;21、排气构件;22、注液孔;3、负极端子;4、正极端子;5、第一集流构件;51、导引板;511、筋条;511A、第一筋条;511B、第二筋条;511C、第三筋条;512、夹持部;52、支撑板;521、连接部;522、弯曲部;523、通槽;524、凹槽;53、转接板;54、散热部;6、第二集流构件;7、绝缘件;8、壳体;9、绝缘膜。
具体实施方式
以下详细说明本公开。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本公开中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
此外,当元件被称作“在”另一元件“上”时,该元件可以直接在所述另一元件上,或者可以间接地在所述另一元件上并且在它们之间插入有一个或更多个中间元件。另外,当元件被称作“连接到”另一元件时,该元件可以直接连接到所述另一元件,或者可以间接地连接到所述另一元件并且在它们之间插入有一个或更多个中间元件。在下文中,同样的附图标记表示同样的元件。
为了在以下实施例中清楚地描述各个方位,例如图1中的坐标系对电池单元的各个方向进行了定义,x方向表示电极组件的长度方向;y方向在水平面内与x方向垂直,表示电极组件的宽度方向;z方向垂直于x和y方向形成的平面,表示电极组件的高度方向。基于此种方位定义,采用了“上”、“下”、“顶”、“底”、“前”、“后”、“内”和“外”等指示的方位或位置关系的描述,这仅是为了便于描述本公开,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
在发明人所知晓的相关技术中,电极组件两侧的集流构件均采用弯折结构,以便通过增加自身结构强度提高与极耳焊接固定的可靠性,极耳与弯折结构的外侧面贴合并一起折回。此种电池单元在实际使用的过程中,发现存在电化学性能及安全性能较差的问题。
发明人在注意到现有电池单元存在电化学性能和安全性能较差的问题之后,发现电极组件中极片上涂覆的活性物质存在脱膜和掉粉现象,由此推测可能是电池单元在装配过程中使极片受到外力作用。
通过对电池单元的装配过程进行分析,参考图9和图10,在将两侧的极耳11连同集流构件的支撑板52相对向内弯折的过程中,首先需要通过滚轮在极耳11外侧施力使其逐渐向内折回,在大致折回到位后,使集流构件的导引板51远离电极组件主体部12的侧面朝上放置,再通过平板结构将两侧极耳11压平,平板结构覆盖两个极耳11对应的区域。在通过平板结构向两侧极耳11施加压力时,集流构件会朝向主体部12的方向产生凹入变形,并压向主体部12,从而将压力传递至主体部12中的至少部分极片,容易导致涂覆有活性物质的极片受到机械力而脱膜或掉粉,从而影响电池单元的电化学性能及安全性能。
为了验证这一分析,发明人在装配过程中通过千分表检测导引板51在极耳11连同支撑板52折回并压平后产生的变形量,发现导引板51朝向主体部12方向会产生较大的变形量。
为了减小导引板51的变形量,一种改进方式为在导引板51位于极耳11沿高度方向的两侧均设置夹持部,夹持部相对于导引板51向外凸起且内侧凹入。极耳弯折并压平的过程中,在夹持部朝向主体部12的一侧的凹入部分内插入工装提供支撑力,此种方式虽然能减小导引板51的变形量,但是这种两端支撑的结构弯折极耳时在中间区域仍会产生较大的下凹变形,无法从实质上改善集流构件的变形问题。而且,在夹持部内侧插入工装对装配设备的精度要求较高,在实际中存在较大的装配难度,装配效率低。因此,需要进一步对电池单元进行改进。
有鉴于此,本公开的实施例提供了一种电池单元和电池模组,能够提高电池的电化学性能。
基于上述技术方案,本公开一些实施例的电池单元,通过在集流构件的导引板上设置加强部,可增加导引板在垂直于电极组件高度方向的截面弯曲刚度,在将极耳和支撑板弯折并压平的过程中,可减小导引板朝向电极组件主体部一侧产生的弯曲变形,防止电极组件中各极片上涂覆的活性物质受到影响,能够提高电池单元的电化学性能和安全性能。
为了使本领域技术人员清楚地了解本公开的改进点,首先对电池单元的整体结构进行说明。
图1示意出了本公开电池单元的一些实施例的结构示意图。电池单元可包括电极组件1、顶盖板2、两个端子和两个集流构件。
其中,电极组件1包括主体部12和从主体部12沿长度方向的端部延伸出的极耳11。其中,主体部12为电极的涂覆部分,包括极性相反的第一电极和第二电极,例如,第一电极为负电极,第二电极为正电极。极耳11为未涂覆部分,可从主体部12沿长度方向的两端分别向外延伸。
如图2所示的电池单元内部结构示意图,顶盖板2设在电极组件1顶部,且顶盖板2与电极组件1之间设有绝缘件7,例如,绝缘件7可呈与顶盖板2适配的板状结构,可采用塑胶材料。顶盖板2上设有排气构件21和注液孔22,排气构件21用于释放电池单元内的气体,起到安全作用,注液孔22用于向电池单元内注入电解液,并通过密封件封口。两个端子设在顶盖板2上沿长度方向的两端,包括与负电极连接的负极端子3和与正电极连接的正极端子4。
参考图9和图10,两个集流构件分别将主体部12沿长度方向两侧的极耳11与同侧的端子电联接。集流构件可包括导引板51和支撑板52,导引板51位于主体部12沿长度方向的一侧并沿宽度方向延伸,支撑板52连接在导引板51沿宽度方向的端部。极耳11相对于长度方向弯折并连接于支撑板52,例如,极耳11与支撑板52可采用焊接的方式连接。如图10所示,极耳11与支撑板52外侧贴合并一起朝向导引板51向内侧弯折;或者极耳11与支撑板52外侧贴合并一起向外侧弯折,弯折后集流构件的导引板51和支撑板52可以为平板结构。
在电池单元独立使用时,电极组件1外还设有与盖板连接的壳体8,壳体8填充电解液。在将多个电池单元形成电池模组时,电池模组包括电池框架和多个电池单元,各个电池单元设在电池框架内且沿所述宽度方向并排设置,可采用并联和/或串联的方式联接,各个电池单元可以单独设置壳体8,或者省去壳体8。
电池单元内的电极组件1可以设置单个,适合于各个电极层叠后厚度较小的情况。在各个电极层叠后厚度较大时,也可在电池单元内设置两个或更多个独立卷绕的电极组件1,各个电极组件1对应的极耳11分别从主体部12沿宽度方向的两侧引出。在电极组件1卷绕厚度较大时,底部的圆弧尺寸较大,会导致电极组件1在底部两侧圆弧外侧的空间利用率低,而拆分为多个电极组件可减小圆弧尺寸,充分利用电池单元的底部空间,减少空间浪费,增加主体部能量密度。而且,极耳11的总厚度也减小,也利于在焊接后弯折,可减小单个极耳11的长度。
图3给出了电极组件的一些实施例的结构示意图。两个电极组件1沿宽度方向叠加设置,两个电极组件1对应的极耳11分别从主体部12沿宽度方向的外侧引出,并与支撑板52一起分别从导引板51沿宽度方向的两侧相对向内弯折。
图4给出了电池单元的一些实施例的分解图。两个集流构件包括设在顶盖板2沿长度方向两端的第一集流构件5和第二集流构件6,第一集流构件5与负极端子3连接,第二集流构件6与正极端子4连接。第一集流构件5和第二集流构件6分别位于电极组件1沿长度方向的两侧。为了保证电极组件1与壳体8之间的绝缘性,在电极组件1与壳体8之间设有绝缘膜9,绝缘膜9可贴设在壳体8的内表面上,或者包覆在电极组件1的外表面上,绝缘膜9可预先折叠成与壳体8相匹配的形状。
在上面给出电池单元整体结构的基础上,下面参考图12所示的第一集流构件5的结构示意图来说明本公开的改进点,但下面给出的实施例不局限于图12中的特征。
结合图2和图12,集流构件包括导引板51、支撑板52和转接板53。其中,导引板51位于主体部12沿长度方向的侧面,并沿宽度方向延伸,优选地,导引板51的厚度方向平行于长度方向;支撑板52连接在导引板51沿所述宽度方向的端部,极耳11连接于支撑板52,支撑板52的高度不小于预设高度,以减小集流构件电阻,防止主体部在使用过程中温升较大;转接板53设在导引板51的顶端并沿主体部12的长度方向朝内侧延伸,转接板53上设有孔,用于安装端子。导引板51上设有加强部,被配置为减小导引板51朝向主体部12一侧的变形量。
本公开的该实施例通过在导引板51上设置加强部,可增加导引板51在垂直于电极组件1高度方向的截面弯曲刚度,在极耳11连同支撑板52向内折回后,在通过平板结构向极耳11外侧施加压力时可减小导引板51朝向主体部12方向产生的弯曲变形,防止电极组件1中各极片上涂覆的活性物质受到影响,能够提高电池单元的电化学性能和安全性能。而且,与在导引板位于极耳沿高度方向的两侧均设置夹持部的方案相比,本公开的实施例可从增加集流构件自身刚度的角度减小变形量,可降低对装配设备的精度要求,并防止在上夹持部所在位置产生应力集中。
如图12所示,导引板51沿宽度方向的两个侧端均设置支撑板52,以通过增加自身结构强度提高与极耳11焊接固定的可靠性,极耳11与支撑板52的外侧面贴合并一起折回。图8为电池单元内部的主视图,图9为沿图8中D-D位置剖切且支撑板52和极耳11未折回的状态图,此时极耳11与支撑板52的外侧面贴合且与导引板51垂直。图10为图8中的D-D剖视图,为支撑板52和极耳11折回后的状态图。可选 地,仅在导引板51沿宽度方向的一侧设置支撑板52。
参考图12,加强部包括筋条511,筋条511沿高度方向延伸,或者相对于高度方向倾斜延伸,以增加导引板51在垂直于电极组件1高度方向的截面对z轴的惯性矩,从而增加导引板51在垂直于电极组件1高度方向的截面弯曲刚度。沿高度方向延伸的筋条511可达到较优的加强效果,筋条511可采用连续结构或间断结构。除此之外,加强部也可包括多个按预设规则排布的小凸块等。
加强部可包括一个筋条511,或者包括多个间隔设置的筋条511,各个筋条511之间独立设置,各个筋条511可沿竖直方向平行设置,使集流构件在高度方向上的截面弯曲刚度较为均匀,可减小整体弯曲变形量,且加工难度低。如图12所示,导引板51上设有三个沿竖直方向平行设置的筋条511。可选地,各个筋条511也可交错设置,例如横纵交错或者倾斜交错的网格状筋条。
参考图14,例如筋条511等加强部远离电极组件1的一侧相对于导引板51向外凸出。此种结构可减小加强部在朝向电极组件1一侧占用的空间,在不减小主体部能量密度的情况下减小集流构件的变形量。可替代地,加强部也可朝向电极组件1一侧凸出。
图13为集流构件的主视图,图14为图13的E-E剖视图,筋条511靠近电极组件1的一侧相对于导引板51向内凹入。电池单元在工作过程中电解液会产生气体,气体从电极组件1沿长度方向的两侧排出后,可顺着筋条511的凹入部分形成的流道流动,并从集流构件的上下位置排出,而且凹入部分还能对从电极组件1两侧排出的气体起到缓存作用,以使电解液中的气体顺利逸出,能够减少电解液中的气泡,防止电池单元产生析锂现象。
如图12所示,加强部在高度方向上穿过极耳11的高度区域。在图12中,筋条511的顶部高于极耳11顶部,筋条511的底部低于极耳11底部。此种结构能够尽量增加导引板51的截面弯曲刚度,在通过平板结构压平极耳11和支撑板52时,能够尽量减小导引板51朝向主体部12一侧的变形量。
如图12所示,支撑板52包括连接部521和弯曲部522,弯曲部522与导引板51相连并弯曲为弧形,极耳11连接于连接部521,并沿弯曲部522和连接部521的外表面整体回折到导引板51远离主体部12的一侧。此种极耳11向内弯折的结构,电池单元的宽度尺寸取决于主体部12的宽度,由此可减小支撑板52在电极组件1宽度方向占用的空间,从而减小电池单元的宽度尺寸。
仍参考图12,筋条511包括第一筋条511A,第一筋条511A在宽度方向上被连接部521覆盖,第一筋条511A相对于导引板51具有第一凸出高度h 1,弯曲部相对于导引板51具有第三凸出高度h 3,第一凸出高度h 1小于或者等于第三凸出高度h 3。此种结构可防止连接部521倾斜上翘,避免集流构件在主体部12沿长度方向的侧面占用额外的空间,便于装入壳体8内,而且也便于在极耳11的外侧面设置绝缘板。
如图12和图14所示,支撑板52设有两个,两个支撑板52分别连接于导引板51沿宽度方向的两端且彼此相对弯折,沿宽度方向,两个支撑板52的连接部521间隔设置。筋条511还包括第二筋条511B,第一筋条511A设有两段,两段第一筋条511A被不同的连接部521覆盖,第二筋条511B位于两段第一筋条511A之间,且第二筋条511B位于两个连接部521的间隔区域内。此种结构可防止第二筋条511B与连接部521重叠,可减小占用空间。
进一步地,第二筋条511B相对于导引板51具有第二凸出高度h 2,第二凸出高度h 2大于或者等于第一凸出高度h 1
例如,在一个具体实施例中,其中一个第一筋条511A、第二筋条511B和另一个第一筋条511A沿宽度方向并排设置,两个第一筋条511A的第一凸出高度0≤h 1≤2mm,优选地为0.3≤h 1≤0.9mm,第二筋条511B的第二凸出高度0≤h 2≤3mm,优选为0.3≤h 2≤2mm,第一凸出高度h 1和第二凸出高度h 2在设计时需要同时考虑空间与加强效果。
此种结构将将位于两个支撑板52间隔区域的第二筋条511B设计为较大的凸出高度,能够尽量增加导引板51在沿宽度方向中间区域的弯曲刚度,从而进一步减小导引板51的变形量,同时也可避免极耳11在弯折后发生倾斜上翘。同时,将支撑板52弯折后覆盖的第一筋条511A设计为较小的凸出高度,可在保证导引板51弯曲刚度的情况下,尽量减小集流构件在电极组件1侧面占用的尺寸,在电池单元尺寸一定的情况下,可增加电极组件的能量密度。
在上述各实施例的基础上,根据负极端子3对应的第一集流构件5和正极端子4对应的第二集流构件6的工作特点,可将第一集流构件5和第二集流构件6设计为不同的结构。
首先给出第一集流构件5可采用的实施例。图5为本公开电池单元的俯视图,在沿A-A截面剖切后形成图6所示的剖面图,示意出了第一集流构件5和第二集流构件6的侧面结构。
为了能够更清楚地看出第一集流构件5的具体结构,图7A为图6的B处放大图。电池单元还包括顶盖板2和绝缘件7,端子设在顶盖板2上,绝缘件7设在顶盖板2与电极组件1之间。两个集流构件包括位于电极组件1一侧的第一集流构件5,两个端子包括负极端子3,第一集流构件5将所在侧的极耳11与负极端子3连接,第一集流构件5的加强部在高度方向上延伸至绝缘件7的底面。此种结构能够在保证加强部与绝缘件7不干涉的情况下,尽量延长例如筋条511等加强部沿高度方向的长度,从而增加集流构件在沿高度方向的整体刚度,最大限度地减小压平极耳11时的变形量。如图11A所示,支撑部52在高度方向上部分覆盖筋条511。
如图7A所示,集流构件还包括夹持部512,夹持部512设在导引板51的底部,且整体朝向远离电极组件1的方向凸出。为了发挥夹持部512的作用,加强部的底端向下延伸至邻近夹持部512顶端,但是两者之间仍具有预设间隙,夹持部512的底端为自由端并保持凸起高度。在需要对折弯后的极耳11压平时,可在夹持部512与电极组件1之间设置工装进行支撑,以减小压平极耳11时导引板51朝向主体部12的变形量。
具体地,筋条511相对于导引板51所在平面朝向远离电极组件1的一侧凸出形成凸棱,筋条511沿导引板51的高度方向延伸,筋条511顶端向上延伸至绝缘件7的底面,筋条511底端向下延伸至与夹持部512连接。此种结构能够最大限度地增加筋条511沿高度方向的长度,从而增加第一集流构件5在整个高度方向的刚度,最大限度地减小压平极耳11时的变形量。
如图7A和图7B所示,在长度方向上,夹持部512远离导引板51的表面不高于极耳11折回后远离导引板51的表面。此种结构在设置夹持部512的情况下,也不会额外增加电池单元沿长度方向的尺寸;而且在电极组件1沿长度方向的侧部设置绝缘板时,也能使绝缘板与极耳11贴合,从而增加绝缘可靠性,而且通过增加绝缘板的贴合面积还能使绝缘板安装更牢固。
接下来给出第二集流构件6可采用的实施例。如图7B所示,两个集流构件包括位于电极组件1另一侧的第二集流构件6,两个端子包括正极端子4,第二集流构件6将所在侧的极耳11与正极端子4连接,第二集流构件6还包括散热部54,散热部54设在导引板51位于极耳11上方的区域。由于第二集流构件6与正极端子4对应通常采用铝材料制成,而第一集流构件5与负极端子3对应通常采用铜材料制成,电流沿着第二集流构件6的导引板51向上流动至转接板53时,需要经过弯折结构,会产生 较大的发热量,而铝的散热性能与铜相比较差,通过设置散热部54可加快热量释放,避免第二集流构件6局部区域温度过高而影响电池性能,并提高电池单元工作的安全性。而且,通过设置散热部54,也可起到增加第二集流构件6刚度的效果。
如图15所示,散热部54包括加厚部,加厚部设在导引板51上远离电极组件1的一侧。例如,在加厚部上还可设置散热筋等,以通过增加散热表面的方式进一步优化散热效果。加强部的凸出方向和加厚部的设在导引板51的同一侧,可减小第二集流构件6在长度方向上的占用空间,以提高电池单元的能量密度。
例如,加厚部可采用矩形板状结构,位于导引板51的上部区域,其宽度与导引板51的宽度相适配,以通过增加散热表面积的方式优化散热效果。加厚部可通过焊接的方式连接在导引板51上,或者加厚部通过折叠的方式形成与导引板51贴合固定。
仍参考图15,第二集流构件6的加强部在高度方向上延伸至散热部54的底面。例如,筋条511的顶端可延伸至邻近加厚部的底部,筋条511的底端延伸至邻近夹持部512。此种结构能够同时兼顾了第二集流构件6的散热及刚度,在保证散热效果的基础上,可最大限度地增加筋条511沿高度方向的长度,从而增加第一集流构件5的刚度,减小压平极耳11时的变形量。
如图16所示,弯曲部522具有沿高度方向延伸的通槽523和凹槽524中的至少一个,通槽523设在弯曲部522沿高度方向的中间区域,例如采用沿高度方向延伸的细长矩形槽,由于减小了受力面积,在压力一定的情况下,可减小弯曲部522的强度,在折弯时产生的应力更小,而且通槽523的尺寸不宜过小,要保证集流构件的过流要求。凹槽524设在弯曲部522内侧位于通槽523上方和下方区域的至少一处,例如,凹槽为设在弯曲部522内侧的沿高度方向延伸的刻痕,可辅助减弱弯折区域的强度,且对弯折处进行准确定位。图17为此种集流构件的主视图,图18为图17中的F-F剖视图。
此种结构可减小支撑板52在折弯区域的强度,易于将集流构件的支撑板52折回,而且在折回的过程中可尽量避免将折弯区域受到的应力传递到集流构件的其它区域,以保护电极组件1受到机械损伤,提高电池单元内的电化学性能。
为了说明本公开各改进点的效果,下面通过实验数据对比分析其优点。下面的试验数据针对于两端均设置支撑板52的集流构件的实施例给出。在极耳11和支撑板52折回的过程中,包括预折和终折,预折为将垂直于导引板51的支撑板52向内折回部分角度,终折为将支撑板52继续向内折回到位。在此过程中,通过千分表检测导引 板51沿高度方向中间区域的变形量。
在试验中为了单独对比出每一个结构改进的效果,给出四个实验组。其中,Base组在集流构件的导引板51上未设加强部,仅在极耳11的上下方区域分别设置夹持部;A组为在导引板51的外侧面上沿高度方向设置三段筋条511,筋条511延伸至邻近上下夹持部的位置;B组与A组相比,区别为在导引板51的顶部区域的外侧面设置加厚部作为散热部54;C组与A组相比,区别为在支撑板52的折弯区域设置通槽523。下表1示意出了第一集流构件5和第二集流构件6在折回后朝向电极组件1的变形量。
表1集流构件在折回过程中的变形量
Figure PCTCN2020078804-appb-000001
从表1可以看出,在Base组的基础上,通过A组增设筋条511可减小两个集流构件中导引板51的变形量;在A组的基础上,通过B组将上夹持部更换为散热部54,可进一步减小变形量;在A组的基础上,通过C组增加通槽523,也可进一步减小变形量。通过比较,增加筋条511对于减小导引板51变形量的影响最为显著。因此,在一些具体的实施例中,可以将筋条511、散热部54和通槽523组合设置,以最大限度地减小导引板51的变形量;或者在其它实施例中,也可在筋条511的基础上叠加设置散热部54或通槽523。
下面再通过表2给出通过对多个电池单元进行试验,导引板51变形量的方差。
表2集流构件的导引板51在折回后的变形量标准差
组别 第一集流构件5 第二集流构件6
Base组 0.23 0.34
A组 0.18 0.28
B组 0.05 0.17
C组 0.07 0.16
从表2可以看出,通过对多样本进行试验,在Base组的基础上,通过A组增设 筋条511可减小两个集流构件中导引板51变形量的方差;在A组的基础上,通过B组将上夹持部更换为散热部54,可进一步减小变形量的方差;在A组的基础上,通过C组增加通槽523,也可进一步减小变形量的方差。由此,通过本公开的结构改进,可使导引板51的变形量较为稳定,可降低对工装夹具的精度要求,可提高批生产的稳定性。
最后,本公开还提供了一种使用二次电池的装置,电池包括上述实施例的电池单元。该使用二次电池的装置包括车辆、轮船或无人机等。由于本公开的电池单体具有较高的电化学性能和安全性能,因此能够提高使用该二次电池的装置的工作性能,并提高装置的动力性能和安全性。
以上对本公开所提供的一种电池单元和电池模组进行了详细介绍。本文中应用了具体的实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (18)

  1. 一种电池单元,包括:
    电极组件(1),包括主体部(12)和从所述主体部(12)沿所述电极组件(1)的长度方向的端部延伸出的极耳(11);
    两个端子,设在所述电极组件(1)顶部;和
    两个集流构件,分别将所述主体部(12)两侧的极耳(11)与同侧的所述端子电联接;
    其中,所述集流构件包括导引板(51)和支撑板(52),所述导引板(51)位于所述主体部(12)沿所述长度方向的一侧并沿所述电极组件(1)的宽度方向延伸,所述导引板(51)上设有加强部,被配置为减小所述导引板(51)朝向所述主体部(12)的变形;所述支撑板(52)连接在所述导引板(51)沿所述宽度方向的端部,所述极耳(11)相对于所述长度方向弯折并连接于所述支撑板(52)。
  2. 根据权利要求1所述的电池单元,其中所述加强部包括筋条(511),所述筋条(511)沿所述电极组件(1)的高度方向延伸,或者相对于所述高度方向倾斜延伸。
  3. 根据权利要求2所述的电池单元,其中,
    所述加强部包括多个间隔设置的所述筋条(511);或者
    所述加强部包括多组所述筋条(511),每组所述筋条(511)中的各筋条(511)间隔设置,至少两组所述筋条(511)之间交错设置。
  4. 根据权利要求2所述的电池单元,其中所述筋条(511)靠近所述电极组件(1)的一侧相对于所述导引板(51)向内凹入。
  5. 根据权利要求1所述的电池单元,其中所述加强部远离所述电极组件(1)的一侧相对于所述导引板(51)向外凸出。
  6. 根据权利要求5所述的电池单元,其中所述支撑板(52)包括连接部(521)和弯曲部(522),所述弯曲部(522)与所述导引板(51)相连并弯曲为弧形,所述极耳(11)连接于所述连接部(521)并沿弯曲部(522)的表面整体折叠到所述导引板(51)的远离所述主体部(12)的一侧。
  7. 根据权利要求6所述的电池单元,其中所述加强部包括筋条(511),所述筋条(511)包括第一筋条(511A),所述第一筋条(511A)在所述宽度方向上被所述连接部(521)覆盖,所述第一筋条(511A)相对于所述导引板(51)具有第一凸出 高度h 1,所述弯曲部(522)相对于所述导引板(51)具有第三凸出高度h 3,所述第一凸出高度h 1小于或者等于所述第三凸出高度h 3
  8. 根据权利要求7所述的电池单元,其中所述支撑板(52)设有两个,两个所述支撑板(52)分别连接于所述导引板(51)沿所述宽度方向的两端且彼此相对弯折,沿所述宽度方向,两个所述支撑板(52)的连接部(521)间隔设置;
    所述筋条(511)还包括第二筋条(511B),所述第一筋条(511A)设有两段,两段所述第一筋条(511A)被两侧的所述连接部(521)覆盖,所述第二筋条(511B)位于两段所述第一筋条(511A)之间,且所述第二筋条(511B)位于两个所述连接部(521)的间隔区域内。
  9. 根据权利要求8所述的电池单元,其特征在于,所述第二筋条(511B)相对于所述导引板(51)具有第二凸出高度h 2,所述第二凸出高度h 2大于或者等于所述第一凸出高度h 1
  10. 根据权利要求6-9所述的电池单元,其中所述弯曲部(522)具有沿高度方向延伸的通槽(523)和凹槽(524)中的至少一个,所述通槽(523)设在所述弯曲部(522)沿高度方向的中间区域,所述凹槽(524)设在所述弯曲部(522)内侧并位于所述通槽(523)上方和下方区域的至少一处。
  11. 根据权利要求1-10所述的电池单元,其中所述加强部在高度方向上穿过所述支撑板(52)。
  12. 根据权利要求1-11所述的电池单元,还包括顶盖板(2)和绝缘件(7),所述端子设在所述顶盖板(2)上,所述绝缘件(7)设在所述顶盖板(2)与所述电极组件(1)之间;
    所述两个集流构件包括位于所述电极组件(1)一侧的第一集流构件(5),所述两个端子包括负极端子(3),所述第一集流构件(5)将所在侧的极耳(11)与所述负极端子(3)连接,所述第一集流构件(5)的加强部在所述高度方向上延伸至所述下绝缘件(7)的下侧。
  13. 根据权利要求1-12所述的电池单元,其中所述两个集流构件包括位于所述电极组件(1)一侧的第二集流构件(6),所述两个端子包括正极端子(4),所述第二集流构件(6)将所在侧的极耳(11)与所述正极端子(4)连接,所述第二集流构件(6)还包括散热部(54),所述散热部(54)设在所述导引板(51)位于所述支撑板(52)上方的区域。
  14. 根据权利要求13所述的电池单元,其特征在于,所述第二集流构件(6)的加强部在所述高度方向上延伸至所述散热部(54)的下侧。
  15. 根据权利要求1-14所述的电池单元,其中所述集流构件还包括夹持部(512),所述夹持部(512)设在所述导引板(51)的底部,且整体朝向远离所述电极组件(1)的一侧凸出。
  16. 根据权利要求15所述的电池单元,其中沿所述长度方向,所述夹持部(512)远离所述导引板(51)的表面不高于所述极耳(11)折回后远离所述导引板(51)的表面。
  17. 一种电池模组,包括:
    多个权利要求1-16任一所述的电池单元,各个所述电池单元沿所述宽度方向并排设置。
  18. 一种使用二次电池的装置,电池包括权利要求1-16任一所述的电池单元。
PCT/CN2020/078804 2019-04-25 2020-03-11 电池单元和电池模组 WO2020215919A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021555808A JP7434350B2 (ja) 2019-04-25 2020-03-11 電池ユニットおよび電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910337415.0A CN111864172A (zh) 2019-04-25 2019-04-25 电池单元和电池模组
CN201910337415.0 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020215919A1 true WO2020215919A1 (zh) 2020-10-29

Family

ID=69055780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078804 WO2020215919A1 (zh) 2019-04-25 2020-03-11 电池单元和电池模组

Country Status (7)

Country Link
US (1) US11936049B2 (zh)
EP (1) EP3731318B1 (zh)
JP (1) JP7434350B2 (zh)
CN (1) CN111864172A (zh)
HU (1) HUE063147T2 (zh)
PL (1) PL3731318T3 (zh)
WO (1) WO2020215919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022115110A (ja) * 2021-01-28 2022-08-09 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563560B (zh) * 2021-02-23 2021-05-18 江苏时代新能源科技有限公司 电池单体、电池、用电装置及电池单体的制造方法
CN112701422B (zh) * 2021-03-24 2022-01-07 江苏时代新能源科技有限公司 电池单体、电池及用电设备
CN113851788A (zh) * 2021-08-19 2021-12-28 湖北亿纬动力有限公司 连接结构及电池
CN114744373A (zh) * 2022-05-20 2022-07-12 远景动力技术(江苏)有限公司 一种电池制造方法
CN115241610A (zh) * 2022-05-20 2022-10-25 远景动力技术(江苏)有限公司 一种集流构件、电池单元及电子设备
WO2024026829A1 (zh) * 2022-08-05 2024-02-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111090A1 (en) * 2013-10-17 2015-04-23 Samsung Sdi Co., Ltd. Secondary battery and manufacturing method thereof
CN108198989A (zh) * 2018-01-16 2018-06-22 宁德时代新能源科技股份有限公司 连接构件和充电电池
CN108199072A (zh) * 2018-01-16 2018-06-22 宁德时代新能源科技股份有限公司 充电电池
CN108598353A (zh) * 2018-01-16 2018-09-28 宁德时代新能源科技股份有限公司 充电电池
CN108735957A (zh) * 2017-04-19 2018-11-02 宁德时代新能源科技股份有限公司 电池模组
CN109360932A (zh) * 2018-11-19 2019-02-19 国轩新能源(苏州)有限公司 一种用于圆柱全极耳锂离子电池的集流盘

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066172A (ko) * 2002-02-05 2003-08-09 삼성에스디아이 주식회사 전극 탭 및 이를 구비한 밀폐전지
WO2003100886A1 (en) * 2002-05-27 2003-12-04 Japan Storage Battery Co., Ltd. Battery
JP4514434B2 (ja) 2003-11-06 2010-07-28 三洋電機株式会社 二次電池
US8268478B2 (en) * 2009-08-17 2012-09-18 Sb Limotive Co., Ltd. Rechargeable battery having anti-vibration member
WO2011046319A2 (ko) * 2009-10-13 2011-04-21 주식회사 엘지화학 구조적 안정성이 우수한 전지모듈
KR101222247B1 (ko) * 2010-12-24 2013-01-16 로베르트 보쉬 게엠베하 이차전지
JP5663415B2 (ja) 2011-06-24 2015-02-04 日立オートモティブシステムズ株式会社 二次電池
US9287550B2 (en) * 2012-06-11 2016-03-15 Samsung Sdi Co., Ltd. Rechargeable battery
KR101675621B1 (ko) * 2013-04-18 2016-11-11 삼성에스디아이 주식회사 이차 전지
KR102306495B1 (ko) * 2013-12-04 2021-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전체 및 전자 기기
JP6872143B2 (ja) 2017-04-28 2021-05-19 トヨタ自動車株式会社 二次電池および集電端子
KR102371196B1 (ko) 2017-08-31 2022-03-07 삼성에스디아이 주식회사 이차 전지
EP3451415B1 (en) 2017-08-31 2020-03-25 Samsung SDI Co., Ltd. Secondary battery
KR102450146B1 (ko) 2017-08-31 2022-10-04 삼성에스디아이 주식회사 이차 전지
KR102571487B1 (ko) 2017-08-31 2023-08-28 삼성에스디아이 주식회사 이차 전지 및 그 조립 방법
CN111969166B (zh) 2018-01-16 2022-11-29 宁德时代新能源科技股份有限公司 集流构件和电池
CN208014793U (zh) * 2018-01-16 2018-10-26 宁德时代新能源科技股份有限公司 连接构件和充电电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111090A1 (en) * 2013-10-17 2015-04-23 Samsung Sdi Co., Ltd. Secondary battery and manufacturing method thereof
CN108735957A (zh) * 2017-04-19 2018-11-02 宁德时代新能源科技股份有限公司 电池模组
CN108198989A (zh) * 2018-01-16 2018-06-22 宁德时代新能源科技股份有限公司 连接构件和充电电池
CN108199072A (zh) * 2018-01-16 2018-06-22 宁德时代新能源科技股份有限公司 充电电池
CN108598353A (zh) * 2018-01-16 2018-09-28 宁德时代新能源科技股份有限公司 充电电池
CN109360932A (zh) * 2018-11-19 2019-02-19 国轩新能源(苏州)有限公司 一种用于圆柱全极耳锂离子电池的集流盘

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022115110A (ja) * 2021-01-28 2022-08-09 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
JP7304372B2 (ja) 2021-01-28 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Also Published As

Publication number Publication date
JP2022529883A (ja) 2022-06-27
EP3731318B1 (en) 2023-07-05
JP7434350B2 (ja) 2024-02-20
US20200343559A1 (en) 2020-10-29
PL3731318T3 (pl) 2023-11-27
US11936049B2 (en) 2024-03-19
CN111864172A (zh) 2020-10-30
HUE063147T2 (hu) 2023-12-28
EP3731318A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2020215919A1 (zh) 电池单元和电池模组
US8771863B2 (en) Battery module and manufacturing method of battery module
JP2005302719A (ja) 電極組立体とこれを備えた二次電池
CN216850253U (zh) 电池及电池组
US11233297B2 (en) Secondary battery including plural electrode units with tabs smaller than end face of electrode unit, and battery module including the same
US11811017B2 (en) Battery unit and battery module
CN216850226U (zh) 电池组
US11177539B2 (en) Current collector and secondary battery
WO2020133675A1 (zh) 二次电池以及电池模组
CN216850254U (zh) 电池及电池组
EP3675203B1 (en) Secondary battery and battery module
CN114639926A (zh) 电池及电池的装配方法
US20210328293A1 (en) Secondary battery and battery module
CN217086806U (zh) 电池及电池组
US20230335867A1 (en) Battery, battery assembly method, and battery pack
CN208622878U (zh) 二次电池和电池模组
WO2020134748A1 (zh) 二次电池、电池模组以及二次电池的制造方法
CN217239531U (zh) 电池及电池组
CN216980824U (zh) 电池
CN215008510U (zh) 电池、电池模组以及电池包
CN217086681U (zh) 电池及电池组
CN217086828U (zh) 电池及电池组
CN219873839U (zh) 电池
CN217086814U (zh) 电池及电池组
CN219917356U (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795184

Country of ref document: EP

Kind code of ref document: A1