WO2020215779A1 - 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机 - Google Patents

曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机 Download PDF

Info

Publication number
WO2020215779A1
WO2020215779A1 PCT/CN2019/128874 CN2019128874W WO2020215779A1 WO 2020215779 A1 WO2020215779 A1 WO 2020215779A1 CN 2019128874 W CN2019128874 W CN 2019128874W WO 2020215779 A1 WO2020215779 A1 WO 2020215779A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal force
crankshaft
force
balance weight
deformation
Prior art date
Application number
PCT/CN2019/128874
Other languages
English (en)
French (fr)
Inventor
魏会军
律刚
单彩侠
刘双来
方琪
马鹏
赵玉晨
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to US17/605,344 priority Critical patent/US11976652B2/en
Priority to EP19926355.9A priority patent/EP3926170A4/en
Publication of WO2020215779A1 publication Critical patent/WO2020215779A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/605Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Definitions

  • the embodiments of the present application relate to the field of scroll compressors, and in particular, to a crankshaft deformation balance method and device, and crankshafts and scroll compressors.
  • the shaft balance design of the high-speed scroll compressor has a greater impact on the vibration and noise of the whole machine.
  • the main reason is that the calculation method of the shaft balance is the overall force balance and torque balance, which meets the problem of force balance and torque balance. It must be able to meet the minimum deformation of the entire shaft system, and the crankshaft deformation is the main factor affecting the vibration and noise of the whole machine.
  • the deformation caused by the centrifugal force of the crankshaft is suppressed and overcome, and the component force of the balance weight is determined to balance the deformation of the crankshaft under high-speed operation, and the balance effect is poor.
  • the embodiments of the present application provide a crankshaft deformation balance method and device, as well as a crankshaft and a scroll compressor, to at least solve the technical problem that only the influence of the centrifugal force of the moving disk on the crankshaft is considered in the related art, and the balance effect is poor.
  • a crankshaft deformation balance method including: determining the centrifugal force required for each balance weight to overcome the combined action of the centrifugal force of the moving disc and the gas force to cause the crankshaft to deform; The centrifugal force component determines the balance weight; the deformation of the crankshaft is balanced by the balance weight; wherein the balance weight is arranged on the crankshaft.
  • determining the centrifugal component force required for each of the balance weights to overcome the centrifugal force of the moving disk and the gas force to cause the deformation of the crankshaft includes: determining according to the working condition of the crankshaft The number and position of the balance weight on the crankshaft; wherein the working conditions include at least one of the following: actual working environment, and the type of crankshaft.
  • the method further includes: determining that the crankshaft is at the crankshaft eccentric portion The first deformation amount of the crankshaft caused by the centrifugal force of the moving disc in the direction; and determining the second deformation amount of the crankshaft caused by the gas force of the crankshaft in the vertical direction of the crankshaft eccentric portion.
  • determining the centrifugal force required for each of the balance weights to overcome the centrifugal force of the moving disk and the gas force to cause the deformation of the crankshaft includes: according to the centrifugal force of the moving disk or the gas Force, preliminarily determine the direction and magnitude of the centrifugal force required by the balance weight to overcome the centrifugal force of the moving disc or overcome the gas force; simulate through simulation software, and adjust the magnitude of the centrifugal force , Change the first deformation amount or the second deformation amount output by the simulation software; when the first deformation amount or the second deformation amount reaches a preset value, determine the centrifugal force of the moving disc Or the size of the centrifugal force corresponding to the gas force.
  • the preliminary determination of the direction and magnitude of the centrifugal force required for the balance weight to overcome the centrifugal force of the moving plate or overcome the gas force includes:
  • the direction of the centrifugal force is determined according to the centrifugal force of the moving disc or the gas force, wherein, in the direction of the crankshaft eccentric portion, the direction of the centrifugal force of the moving disc is the same as the direction of the centrifugal force of the adjacent balance weight On the contrary, and the direction of the centrifugal force of two adjacent balance weights is opposite; in the vertical direction of the crankshaft eccentric part, the direction of the gas force is the same as the direction of the centrifugal force of the adjacent balance weight, And the centrifugal components of the two adjacent balance weights are opposite; according to the moment balance and force balance of the centrifugal force of the moving disk or the gas force and the centrifugal component, it is preliminarily determined that the balance weight overcomes
  • performing simulation through simulation software, and by adjusting the magnitude of the centrifugal force, changing the first deformation or the second deformation output by the simulation software includes: adjusting the centrifugal force and the The ratio of the centrifugal force of the moving disk or the gas force is used to adjust the magnitude of the centrifugal force; and the output first deformation amount or the second deformation amount is changed according to the adjusted centrifugal force.
  • determining the magnitude of the centrifugal force of the moving disk or the centrifugal force corresponding to the gas force includes: determining Whether the first deformation amount or the second deformation amount is within a preset threshold range; in the case that the first deformation amount or the second deformation amount is within a preset threshold range, determine the centrifugal force of the moving disc or the The size of the centrifugal force corresponding to the gas force.
  • crankshaft including: at least one balance weight is provided on the crankshaft, and the balance weight is determined according to any one of the above methods.
  • the crankshaft includes an eccentric part provided with an eccentric shaft, and a motor matching section, the eccentric part is provided with a first balance weight, and the motor matching section is provided with a second balance weight and a third balance weight
  • the centrifugal force of the first balance weight against the centrifugal force of the moving disc is opposite to the direction of the centrifugal force of the moving disc
  • the second balance weight overcomes the moving disc
  • the direction of the centrifugal force of the centrifugal force is the same as the direction of the centrifugal force of the moving plate
  • the direction of the centrifugal force of the third balance weight overcoming the centrifugal force of the moving plate is opposite to the direction of the centrifugal force of the moving plate; in the direction perpendicular to the eccentric part of the crankshaft
  • the centrifugal force of the first balance weight against the gas force is opposite to the direction of the gas force
  • a scroll compressor including the crankshaft as described in any one of the above.
  • a crankshaft deformation balancing device including: a first determining module configured to determine that each balance weight overcomes the combined action of the centrifugal force and the gas force of the moving disc to cause the crankshaft to deform The required centrifugal force; the second determining module is configured to determine the balance weight according to the centrifugal force; the balance module is configured to balance the deformation of the crankshaft through the balance weight; wherein, the balance The counterweight is provided on the crankshaft.
  • a storage medium includes a stored program, wherein when the program is running, the device where the storage medium is located is controlled to execute any one of the above Methods.
  • a processor is also provided, the processor is configured to run a program, wherein the method executes any one of the above methods when the program is running.
  • the centrifugal force required for each balance weight to overcome the deformation of the crankshaft under the combined action of the centrifugal force and the gas force is determined; the balance weight is determined according to the centrifugal force; the balance is balanced by the balance weight
  • the deformation of the crankshaft, in which the balance weight is set on the crankshaft, the crankshaft is deformed by considering the superimposed effect of the centrifugal force and the gas force of the moving disc, so as to determine the balance weight, and achieve the balance weight to more accurately balance the crankshaft deformation Therefore, the technical effect of improving the balance effect of the balance weight on the deformation of the crankshaft is realized, and the technical problem of the related technology that only considers the influence of the centrifugal force of the moving disk on the crankshaft and the poor balance effect is solved.
  • Fig. 1 is a flowchart of a crankshaft deformation balancing method according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a scroll compressor according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the distribution of the crankshaft R to the balance weight according to an embodiment of the present application
  • Fig. 4 is a schematic diagram of deflection and deformation of R-direction centrifugal force according to an embodiment of the present application
  • FIG. 5 is a broken line diagram of calculated values of deflection restrained deformation by centrifugal force in R direction according to an embodiment of the present application
  • Fig. 6 is a schematic diagram of the balance weight distribution of the crankshaft T according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of deflection and deformation of T-direction centrifugal force according to an embodiment of the present application.
  • Fig. 9 is a flowchart of a crankshaft deformation balancing device according to an embodiment of the present application.
  • a method embodiment of a crankshaft deformation balancing method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer executable instructions, and Although the logical sequence is shown in the flowchart, in some cases, the steps shown or described may be performed in a different order than here.
  • Fig. 1 is a flowchart of a crankshaft deformation balancing method according to an embodiment of the present application. As shown in Fig. 1, the method includes the following steps:
  • Step S102 Determine the centrifugal force required for each balance weight to overcome the centrifugal force of the moving disc and cause the deformation of the crankshaft under the combined action of the centrifugal force and the gas force;
  • Step S104 determining the balance weight according to the centrifugal force
  • Step S106 balance the deformation of the crankshaft through the balance weight
  • the balance weight is set on the crankshaft.
  • the aforementioned crankshaft will deform due to external forces or its own structure during high-speed rotation.
  • the aforementioned centrifugal force and gas force of the moving disc are the two resistances that mainly affect the deformation of the crankshaft in this embodiment.
  • the centrifugal force of the aforementioned moving disc is caused by the crankshaft itself.
  • the asymmetric structure is produced. Specifically, in the scroll compressor, the orbiting scroll rotates, and its radius of gyration is the eccentric amount of the crankshaft. When the orbiting scroll rotates, centripetal force is generated, which corresponds to the centripetal force.
  • the centrifugal force becomes the centrifugal force of the orbiting scroll, also known as the centrifugal force of the orbiting plate.
  • the above-mentioned gas force is generated by the working environment of the crankshaft.
  • the above-mentioned crankshaft can be used in a scroll compressor to generate gas force with the gas in the compressor, which affects the balanced rotation of the crankshaft, thereby deforming the crankshaft.
  • the orbiting scroll and the stationary scroll are subjected to the reaction force of the gas when the gas is compressed, generating gas force, which acts on the crankshaft and causes the crankshaft to deform.
  • the above determination of the centrifugal component force required for each balance weight to overcome the crankshaft deformation caused by the centrifugal force of the rotor and the gas force can be respectively determining the first centrifugal force of the balance weight to overcome the centrifugal force of the rotor, and the balance weight to overcome the gas
  • the second centrifugal force component of the force, the centrifugal force component is the resultant force of the first centrifugal force component and the second centrifugal force component.
  • the above determination of the centrifugal force required for each balance weight to overcome the centrifugal force and gas force of the crankshaft can also be determined by first determining the resultant force of the centrifugal force and gas force of the moving disk, and then determining the required balance weight to overcome the resultant force based on the resultant force. Centrifugal force.
  • the balance weight is determined according to the centrifugal force. After the centrifugal force of the balance weight is determined, the centrifugal force of the balance weight is determined according to the centrifugal force of the balance weight, and the balance weight is determined according to the centrifugal force.
  • the above determination of the centrifugal component force required for each balance weight to overcome the centrifugal force and gas force of the crankshaft can be calculated by dropping the centrifugal force and gas force of the moving plate in a fixed direction, which is convenient for calculation, and the calculation result is accurate.
  • the centrifugal force of the rotor is placed in the direction of the crank eccentric portion of the crankshaft, and the gas force is placed in the direction perpendicular to the crank eccentric portion of the crankshaft.
  • the balance weight is arranged on the crankshaft, and the number of the balance weight may be one or more, and the specific number depends on the balance weight requirements and working conditions of the crankshaft. For the same crankshaft, the higher the working speed, the heavier the balance weight required for deformation balance.
  • the balance weight can be distributed on the crankshaft. The more even the balance weight is distributed on the crankshaft, the more stable the balance state of the crankshaft under high-speed rotation. On the contrary, the more concentrated the balance weight is on the crankshaft, the more the crankshaft is The equilibrium state under high-speed rotation is more likely to be broken.
  • crankshaft When the above-mentioned crankshaft is in specific work, some parts need to be fixed, so at least two fixed positions on the crankshaft are required to be fixed on the frame to ensure the rotation of the crankshaft. At the installation position of the crankshaft, a balance weight cannot be set, otherwise it will As a result, the above crankshaft cannot be installed. In addition, different parts of the crankshaft have different spaces during operation, so the volume of the balance weight is also different. Therefore, it is necessary to specifically consider the specific working conditions of the crankshaft to determine the balance weight. In addition, the balance weight of the crankshaft may be installed on the crankshaft, or the balance weight may be fixed on the crankshaft by welding or the like. When the balance weight is fixed on the crankshaft, the installation of the crankshaft needs to be considered Process procedures such as disassembly, or fixing of balance weights, otherwise it may lead to abandonment of previous efforts.
  • determining the centrifugal component force required for each balance weight to overcome the centrifugal force and gas force of the moving disc to cause the crankshaft to deform it includes: determining the number of balance weights on the crankshaft according to the working condition of the crankshaft and Location; where the working conditions include at least one of the following: the actual working environment, the type of crankshaft.
  • the above actual working environment may include various parameters of the crankshaft during operation, for example, the rotation speed of the crankshaft, the rotation speed of the motor driving the crankshaft.
  • crankshaft can be divided according to the shape and structure of the crankshaft, for example, stepped eccentric shaft, eccentric optical shaft ; It can also be divided according to the operating conditions of the crankshaft, for example, the crankshaft used in the scroll compressor can be a scroll compressor crankshaft.
  • the actual working environment of the crankshaft of the scroll compressor may include: the compressor speed (10-160rpm), the centrifugal force generated by the moving disk arranged at the eccentric part of the crankshaft is greater than 3000N, and the tangential gas force borne by the moving disk is greater than 3500N.
  • determining the centrifugal component force required for each balance weight to overcome the crankshaft deformation caused by the combined action of the centrifugal force and gas force of the rotating disc it also includes: determining the first centrifugal force of the crankshaft caused by the centrifugal force of the rotating disc in the direction of the crankshaft eccentric part on the crankshaft. A deformation amount; and determining the second deformation amount of the crankshaft caused by the gas force of the crankshaft in the vertical direction of the crankshaft eccentric portion.
  • the influence of the centrifugal force of the rotor on the deformation of the crankshaft is determined, and the first deformation of the crankshaft can be compared with the crankshaft.
  • the magnitude of the centrifugal force is a function.
  • the second deformation of the crankshaft caused by the gas force of the crankshaft in the vertical direction of the crankshaft eccentric portion the influence of the gas force on the deformation of the crankshaft is determined, and the second deformation of the crankshaft can be compared with the gas force.
  • the magnitude of is a function.
  • determining the centrifugal component force required for each balance weight to overcome the centrifugal force or gas force of the moving plate to cause the crankshaft to deform under the combined action of the moving plate includes: according to the centrifugal force or gas force of the moving plate, initially determining that the balance weight overcomes the centrifugal force or gas of the moving plate The direction and magnitude of the centrifugal force required by the force; the simulation software is used to simulate the centrifugal force by adjusting the magnitude of the centrifugal force to change the first deformation or the second deformation output by the simulation software; in the first deformation or the second deformation When the amount reaches the preset value, determine the size of the centrifugal force corresponding to the centrifugal force or gas force of the moving disc.
  • the aforementioned simulation software may be ANSYS software.
  • the magnitude of the centrifugal force is determined. It may be the case where the aforementioned first deformation amount or the second deformation amount is equal to zero. It may also be that the first deformation amount or the second deformation amount is in a certain numerical range including zero.
  • the direction and size of the centrifugal force required by the balance weight to overcome the centrifugal force or gas force of the moving plate are preliminarily determined, and the size of the centrifugal force of the balance weight in the equilibrium state is preliminarily determined, And it is simulated in the simulation software to determine the optimal solution of the above-mentioned centrifugal force.
  • the centrifugal force the first or second deformation of the crankshaft output by the above-mentioned simulation software is small, and the equilibrium state stable.
  • the size of the centrifugal force corresponding to the centrifugal force of the moving disk is determined according to the first deformation
  • the size of the centrifugal force corresponding to the gas force is determined according to the second deformation.
  • the preliminary determination of the direction and magnitude of the centrifugal force required by the balance weight to overcome the centrifugal force or gas force of the moving plate includes: determining the centrifugal force according to the centrifugal force or gas force of the moving plate The direction, in which, in the direction of the crankshaft eccentric part, the direction of the centrifugal force of the moving disc is opposite to the direction of the centrifugal force of the adjacent balance weight, and the direction of the centrifugal force of the two adjacent balance weights is opposite; In the vertical direction of the crankshaft eccentric part, the direction of the gas force is the same as the direction of the centrifugal force of the adjacent balance weight, and the centrifugal force of the two adjacent balance weights is opposite; according to the centrifugal force or gas force of the moving disc With the torque balance and force balance of the centrifugal force, the size of the centrifugal force required by the balance weight to overcome the crankshaft deformation
  • the simulation is carried out through simulation software, and by adjusting the magnitude of the centrifugal force, changing the first deformation or the second deformation output by the simulation software includes: adjusting the ratio of the centrifugal force to the centrifugal force of the moving disc or the gas force. The size of the centrifugal force; according to the adjusted centrifugal force, the first deformation or the second deformation of the output is changed.
  • the adjustment object is determined according to the relationship between the first deformation amount or the second deformation amount and the centrifugal force. For example, when the amount of deformation is proportional to the square of the above-mentioned centrifugal force, it is difficult to determine the relationship between the two in order to adjust the centrifugal force and determine the amount of deformation. It is also inconvenient for data post-processing, and the resulting image error is relatively large. Large, but with the square of the centrifugal force as the adjustment object, the deformation is proportional to the independent variable, which is convenient for post-processing, and the error of post-data processing is small.
  • the amount of deformation of the crankshaft is proportional to the ratio of the centrifugal force to the centrifugal force or gas force of the rotor. Therefore, in this embodiment, the ratio of the centrifugal force to the centrifugal force or gas force of the rotor is As an adjustment object.
  • the first deformation output by the simulation software is changed; or, by adjusting the ratio of the centrifugal force and the gas force, the second deformation output by the simulation software is changed.
  • determining the magnitude of the centrifugal force corresponding to the centrifugal force or the gas force of the moving disc includes: determining whether the first deformation amount or the second deformation amount is In the preset threshold range; in the case that the first deformation amount or the second deformation amount is in the preset threshold range, the magnitude of the centrifugal force corresponding to the centrifugal force or the gas force of the moving disc is determined.
  • first deformation amount or the second deformation amount is within a preset threshold range, it may be whether the first deformation amount and the second deformation amount are within a certain range around zero, for example, 0.02mm ⁇ -0.02mm, 0.01mm ⁇ -0.01mm, or other values within the range of 0.01mm ⁇ 0.02mm.
  • the deformation of the upper crankshaft varies with different parts. In this embodiment, the deformation of the crankshaft is mainly divided into the deformation of the eccentric part and the deformation of the electromechanical fitting part.
  • Whether the first deformation amount and the second deformation amount are within the preset threshold range can be determined by judging whether the first deformation amount or the second deformation amount corresponds to whether the deformation component of the eccentric part of the crankshaft and the motor matching part is zero, wherein the first The deformation components corresponding to the eccentric part of the crankshaft and the electromechanical fitting part can be the first deformation component and the second deformation component, and the second deformation corresponding to the deformation component of the eccentric part and the electromechanical fitting part of the crankshaft can be the third deformation component.
  • the fourth deformation component when the deformation component of the eccentric part of the crankshaft and the motor matching part is zero, that is, the first deformation component and the second deformation component are both equal to zero, or the third deformation component and the fourth deformation component When both are equal to zero, determine the size of the centrifugal force.
  • the structure and force conditions of the eccentric part and the electromechanical mating part are different, which makes it difficult for the deformation of the eccentric part and the electromechanical mating part to be zero at the same time.
  • the above judgment crankshaft Whether the deformation component of the eccentric part and the motor mating part is zero it can also be judged whether the deformation component of the crankshaft eccentric part and the motor mating part is within a certain range around zero. If the deformation component is within a certain range of zero, it can be Determine the size of the aforementioned centrifugal force.
  • the value range of the centrifugal force can be determined according to the centrifugal force.
  • This embodiment provides a shaft system balance design method during high-speed scroll operation. On the basis of shaft system balance, it can meet the minimum crankshaft deformation.
  • the crankshaft has large flexural deformation under high-speed rotation; 2.
  • the whole machine has high vibration and noise under high-speed rotation; the beneficial effect of this embodiment: realizes the flexural deformation of the scroll compressor crankshaft under high-speed rotation Small, reduce the vibration and noise of the whole machine.
  • Fig. 2 is a schematic diagram of a scroll compressor according to an embodiment of the present application.
  • a schematic structural diagram of a high-speed scroll compressor The low-temperature and low-pressure refrigerant enters the stationary scroll 5 and the movable scroll through the suction port 1 In the compression cavity formed by the rotating disk 6, the motor drives the eccentric crankshaft 9 to rotate.
  • the motor includes a motor stator 10 and a motor rotor 11.
  • the eccentric crankshaft 9 drives the orbiting scroll 6 to move in translation.
  • the compression cavity moves from the outer circumference to the inside, and the area gradually decreases.
  • the low-temperature and low-pressure refrigerant is compressed to form a high-temperature and high-pressure refrigerant that is discharged from the center hole of the stationary scroll 5 into the housing 18, and finally discharged from the exhaust port 2 of the housing 18.
  • R direction is the direction of the crankshaft eccentric part
  • T direction is the vertical direction of the crankshaft eccentric part
  • Fc, Fr1, Fr2, Fr3 are distributed in the R direction of the crankshaft
  • Ft, Ft1, Ft2, Ft3 are distributed in the T direction of the crankshaft.
  • Fig. 3 is a schematic diagram of the distribution of the crankshaft R to the balance weight according to an embodiment of the present application. As shown in Fig. 3, the direction of the centrifugal force Fc of the crankshaft R on the upper moving disc is opposite to the direction of the eccentric part. Set the R-up balance weight 17-1, the R-direction middle balance weight 15-1, and the R-down balance weight 16-1.
  • the direction of the centrifugal force Fr1 of the R-up balance weight 17-1 is opposite to the direction of the crankshaft eccentric portion
  • the direction of the centrifugal force Fr2 of the R-direction middle balance weight 15-1 is the same as the direction of the crankshaft eccentric portion
  • the centrifugal force of the R-down balance weight 16-1 Fr3 is opposite to the direction of the crankshaft eccentric part.
  • Fc, Fr1, Fr2, and Fr3 satisfy force balance and moment balance in the direction of crankshaft R.
  • the centrifugal force Fc of the moving disc causes the crankshaft to flex
  • the centrifugal force Fr1 and Fc of the R upward balance weight are set in opposite directions.
  • FIG. 5 is a broken line diagram of the calculated value of deflection restrained by centrifugal force deflection in the R direction according to the embodiment of the present application. As shown in FIG.
  • FIG. 6 is a schematic diagram of the balance weight distribution of the crankshaft T according to an embodiment of the present application.
  • the crankshaft T is the influence of the balance gas force Ft on the deformation of the crankshaft, and the T upward balance weight 17-2 is set, T Balance weight 15-2 in the middle, and balance weight 16-2 in T downward.
  • the centrifugal force generated under the operation of T upward balance weight 17-2 is Ft1
  • the centrifugal force generated under the operation of T balance weight 15-2 is Ft2
  • the centrifugal force generated under the operation of T downward balance weight 16-2 is Ft3.
  • Fig. 7 is a schematic diagram of deflection deformation of the T-direction centrifugal force according to an embodiment of the present application. As shown in Fig. 7, a simple beam structure is also adopted, and ANSYS software is used to calculate the deformation trend of the crankshaft in the T-direction. Fig.
  • FIG. 8 is a broken line diagram of calculated values of deflection restrained deformation by centrifugal force in T direction according to an embodiment of the present application.
  • Ft2/Ft>1.2 times the deformation of the motor section is close to 0, and the deformation of the eccentric part is relatively small.
  • Ft2/Ft>1.2 times “over-balance” occurs.
  • the R-direction and T-direction balance weights are integrated according to the size and direction, Fr1 and Ft1 are integrated into the upper balance weight F1, Fr2 and Ft2 are integrated into the upper balance weight F2, and Fr3 and Ft3 are integrated into the upper balance weight F3.
  • crankshaft including: at least one balance weight is arranged on the crankshaft, and the balance weight is determined according to any one of the above methods.
  • the crankshaft includes an eccentric part provided with an eccentric shaft and a motor matching section.
  • the eccentric part is provided with a first balance weight
  • the motor matching section is provided with a second balance weight and a third balance weight.
  • the crankshaft is eccentric
  • the direction of the centrifugal force of the first balance weight against the centrifugal force of the moving disc is opposite to the direction of the centrifugal force of the moving disc.
  • the centrifugal force of the second balance weight overcoming the centrifugal force of the moving disc is in the same direction as the centrifugal force of the moving disc.
  • the direction of the centrifugal force of the centrifugal force of the moving disc is opposite to the direction of the centrifugal force of the moving disc; in the vertical direction of the crankshaft eccentric part of the crankshaft, the centrifugal force of the first balance weight overcomes the gas force and the direction of the gas force is opposite, and the second balance weight overcomes the gas force
  • the direction of the centrifugal force of the third balance weight is the same as that of the gas force, and the direction of the centrifugal force of the third balance weight against the gas force is opposite to the direction of the gas force.
  • a scroll compressor including a crankshaft as described above.
  • Fig. 9 is a flowchart of a crankshaft deformation balancing device according to an embodiment of the present application. As shown in Fig. 9, according to another aspect of the embodiments of the present application, a crankshaft deformation balancing device is also provided, including: a first determination The module 92 and the second determining module 94 will be described in detail below.
  • the first determining module 92 is configured to determine the centrifugal component force required for each balance weight to overcome the deformation of the crankshaft under the combined action of the centrifugal force and the gas force of the moving disc; the second determining module 94 is connected to the first determining module 92 and is configured In order to determine the balance weight according to the centrifugal force, the balance module 96 is connected to the second determination module 94 and is configured to balance the deformation of the crankshaft through the balance weight; wherein the balance weight is arranged on the crankshaft.
  • the first determination module 92 is used to determine the centrifugal component force required for each balance weight to overcome the deformation of the crankshaft under the combined action of the centrifugal force and the gas force of the moving disc; the second determination module 94 determines the balance weight according to the centrifugal force;
  • the deformation of the crankshaft is balanced by the balance weight.
  • the balance weight is set on the crankshaft, and the deformation of the crankshaft is considered by considering the superimposed effect of the centrifugal force of the moving disc and the gas force to determine the balance weight and achieve a more accurate balance weight.
  • the purpose of performing deformation balance on the crankshaft is to achieve the technical effect of improving the balance effect of the balance weight on the deformation of the crankshaft, thereby solving the technical problem of poor balance effect in the related art that only considers the influence of the centrifugal force of the moving disk on the crankshaft.
  • a storage medium is also provided.
  • the storage medium includes a stored program, wherein the device where the storage medium is located is controlled to execute any of the above methods when the program is running.
  • a processor which is configured to run a program, wherein the program executes any one of the above methods when the program is running.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as force-component components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code .
  • It can be an automated device for manufacturing crankshafts, or a calculator or control device that can control the above-mentioned automated devices. Specifically, by determining the centrifugal force required for each balance weight to overcome the centrifugal force of the moving disc and the gas force to cause the crankshaft to deform under the combined action The balance weight is determined according to the centrifugal force; the deformation of the crankshaft is balanced by the balance weight, thereby determining the above balance weight.
  • the balance weight is determined by considering the superimposed effect of the centrifugal force of the moving disk and the gas force on the crankshaft to determine the balance weight, which can instruct the above-mentioned automation equipment to process the crankshaft according to the determined balance weight, achieving the effect of improving the balance ability of the crankshaft and running more stable. It solves the technical problem that the balance weight of the crankshaft in the related technology only considers the influence of the centrifugal force of the moving disc on the crankshaft, and the balance effect is poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种曲轴变形平衡方法、装置,以及具有按照该方法确定的平衡配重的曲轴及其涡旋压缩机。该方法包括:确定每个平衡配重克服动盘(6)离心力和气体力共同作用下引起的曲轴(9)变形所需的离心分力;根据离心分力确定平衡配重;其中,平衡配重设置在曲轴(9)上。该方法解决了相关技术中仅考虑动盘离心力对曲轴的影响,平衡效果较差的技术问题。

Description

曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机
本申请要求于2019年4月24日提交至中国国家知识产权局、申请号为201910334854.6、发明名称为“曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机”的专利申请的优先权。
技术领域
本申请实施例涉及涡旋压缩机领域,具体而言,涉及一种曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机。
背景技术
高转速涡旋压缩机轴系平衡设计对整机的振动和噪音有较大的影响,主要原因在于轴系平衡的计算方法是整体的力平衡和力矩平衡,满足力平衡和力矩平衡的解不一定能满足轴系整体的变形最小,而曲轴变形是影响整机振动和噪音的主要因素。相关技术中通过对曲轴的动盘离心力产生的变形进行抑制和克服,确定平衡配重的分力,以平衡曲轴的在高速运转下产生的变形,平衡效果较差。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机,以至少解决相关技术中仅考虑动盘离心力对曲轴的影响,平衡效果较差的技术问题。
根据本申请实施例的一个方面,提供了一种曲轴变形平衡方法,包括:确定每个平衡配重克服动盘离心力和气体力共同作用下引起所述曲轴的变形所需的离心分力;根据所述离心分力确定所述平衡配重;通过所述平衡配重平衡所述曲轴的变形;其中,所述平衡配重设置在所述曲轴上。
可选的,确定每个所述平衡配重克服所述动盘离心力和所述气体力共同作用下引起所述曲轴的变形所需的离心分力之前包括:根据所述曲轴的工作情况,确定所述曲轴上的平衡配重数量和位置;其中,所述工作情况包括下列至少之一:实际工作环境,曲轴的种类。
可选的,确定每个所述平衡配重克服所述动盘离心力和所述气体力共同作用下引 起所述曲轴的变形所需的离心分力之前还包括:确定所述曲轴在曲轴偏心部方向上的动盘离心力对所述曲轴造成的第一变形量;以及,确定所述曲轴在曲轴偏心部的垂直方向上的气体力对所述曲轴造成的第二变形量。
可选的,确定每个所述平衡配重克服所述动盘离心力和所述气体力共同作用下引起所述曲轴的变形所需的离心分力包括:根据所述动盘离心力或所述气体力,初步确定所述平衡配重克服所述动盘离心力,或克服所述气体力所需的所述离心分力的方向和大小;通过仿真软件进行仿真,通过调整所述离心分力的大小,改变所述仿真软件输出的所述第一变形量或所述第二变形量;在所述第一变形量或所述第二变形量达到预设值的情况下,确定所述动盘离心力或所述气体力对应的所述离心分力的大小。
可选的,根据所述动盘离心力或所述气体力,初步确定所述平衡配重克服所述动盘离心力,或克服所述气体力所需的所述离心分力的方向和大小包括:根据所述动盘离心力或者所述气体力确定所述离心分力的方向,其中,在曲轴偏心部方向上,所述动盘离心力的方向,与相邻的平衡配重的离心分力的方向相反,且相邻的两个平衡配重的离心分力的方向相反;在曲轴偏心部的垂直方向上,所述气体力的方向,与相邻的平衡配重的离心分力的方向相同,且相邻的两个平衡配重的离心分力相反;根据所述动盘离心力或所述气体力与所述离心分力的力矩平衡和力平衡,初步确定所述平衡配重克服所述动盘离心力或所述气体力所需的所述离心分力的大小。
可选的,通过仿真软件进行仿真,通过调整所述离心分力的大小,改变所述仿真软件输出的所述第一变形量或所述第二变形量包括:通过调整所述离心分力与所述动盘离心力或者所述气体力的比,调整所述离心分力的大小;根据调整的所述离心分力,改变输出的所述第一变形量或所述第二变形量。
可选的,在所述第一变形量或所述第二变形量达到预设值的情况下,确定所述动盘离心力或所述气体力对应的所述离心分力的大小包括:判断所述第一变形量或所述第二变形量是否处于预设阈值范围;在所述第一变形量或所述第二变形量处于预设阈值范围的情况下,确定所述动盘离心力或所述气体力对应的所述离心分力的大小。
根据本申请实施例的另一方面,还提供了一种曲轴,包括:所述曲轴上设置至少一个平衡配重,所述平衡配重按照如上述中任意一项所述的方法确定。
可选的,所述曲轴包括设置有偏心轴的偏心部,和电机配合段,所述偏心部设置有第一平衡配重,所述电机配合段设置第二平衡配重和第三平衡配重,在所述曲轴的曲轴偏心部方向上,所述第一平衡配重克服所述动盘离心力的离心分力与所述动盘离心力方向相反,所述第二平衡配重克服所述动盘离心力的离心分力与所述动盘离心力 方向相同,所述第三平衡配重克服所述动盘离心力的离心分力与所述动盘离心力方向相反;在所述曲轴的曲轴偏心部垂直方向上,所述第一平衡配重克服所述气体力的离心分力与所述气体力方向相反,所述第二平衡配重克服所述气体力的离心分力与所述气体力方向相同,所述第三平衡配重克服所述气体力的离心分力与所述气体力方向相反。
可选的,所述第一平衡配重满足,Fr1=1.2~1.5Fc,其中,Fr1为所述第一平衡配重克服所述动盘离心力的离心分力大小,Fc为所述动盘离心力的大小。
可选的,所述第二平衡配重满足,Ft2=1~1.2Ft,其中,Ft1为所述第二平衡配重克服所述气体力的离心分力大小,Fc为所述气体力的大小。
根据本申请实施例的另一方面,还提供了一种涡旋压缩机,包括如上述中任意一项所述的曲轴。
根据本申请实施例的另一方面,还提供了一种曲轴变形平衡装置,包括:第一确定模块,设置为确定每个平衡配重克服动盘离心力和气体力共同作用下引起所述曲轴的变形所需的离心分力;第二确定模块,设置为根据所述离心分力确定所述平衡配重;平衡模块,设置为通过所述平衡配重平衡所述曲轴的变形;其中,所述平衡配重设置在所述曲轴上。
根据本申请实施例的另一方面,还提供了一种存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行上述中任意一项所述的方法。
根据本申请实施例的另一方面,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述中任意一项所述的方法。
在本申请实施例中,采用确定每个平衡配重克服动盘离心力和气体力共同作用下引起所述曲轴的变形所需的离心分力;根据离心分力确定平衡配重;通过平衡配重平衡曲轴的变形,其中,平衡配重设置在曲轴上的方式,通过考虑动盘离心力和气体力的叠加作用对曲轴变形,从而确定平衡配重,达到了使平衡配重更准确的对曲轴进行变形平衡的目的,从而实现了提高平衡配重对曲轴变形的平衡效果的技术效果,进而解决了相关技术中仅考虑动盘离心力对曲轴的影响,平衡效果较差的技术问题。
附图说明
此处所说明的附图用来提供对本申请实施例的进一步理解,构成本申请的一部分,本申请实施例的示意性实施例及其说明用于解释本申请实施例,并不构成对本申请实 施例的不当限定。在附图中:
图1是根据本申请实施例的一种曲轴变形平衡方法的流程图;
图2是根据本申请实施例的一种涡旋压缩机的示意图;
图3是根据本申请实施例的曲轴R向平衡配重分布的示意图;
图4是根据本申请实施例的R向离心力挠曲变形的示意图;
图5是根据本申请实施例的R向离心力挠曲抑制变形计算值的折线图;
图6是根据本申请实施例的曲轴T向平衡配重分布的示意图;
图7是根据本申请实施例的T向离心力挠曲变形的示意图;
图8是根据本申请实施例的T向离心力挠曲抑制变形计算值的折线图;
图9是根据本申请实施例的一种曲轴变形平衡装置的流程图。
其中,上述附图包括以下附图标记:
1—吸气口;2—排气口;3—上盖;4—下盖;5—静涡旋盘;6—动涡旋盘;7—十字滑环;8—上支架;9—曲轴;10—电机定子;11—电机转子;12—油泵;13—支撑环;14—下支架;15—中平衡块;16—下平衡块;17—上平衡块;18—壳体;19—主轴;20—偏心轴;15-1—R向中平衡配重;16-1—R向下平衡配重;17-1—R向上平衡配重;15-2—T向中平衡配重;16-2—T向下平衡配重;17-2—T向上平衡配重。
具体实施方式
为了使本技术领域的人员更好地理解本申请实施例方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列 出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例,提供了一种曲轴变形平衡方法的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本申请实施例的一种曲轴变形平衡方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力;
步骤S104,根据离心分力确定平衡配重;
步骤S106,通过平衡配重平衡曲轴的变形;
其中,平衡配重设置在曲轴上。
通过上述步骤,采用确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力;根据离心分力确定平衡配重;通过平衡配重平衡曲轴的变形,其中,平衡配重设置在曲轴上的方式,通过考虑动盘离心力和气体力的叠加作用对曲轴变形,从而确定平衡配重,达到了使平衡配重更准确的对曲轴进行变形平衡的目的,从而实现了提高平衡配重对曲轴变形的平衡效果的技术效果,进而解决了相关技术中仅考虑动盘离心力对曲轴的影响,平衡效果较差的技术问题。
上述曲轴在高速转动过程中会由于外力或者自身结构产生变形,上述动盘离心力和气体力是本实施例中,对曲轴变形起主要影响作用的两个阻力,其中上述动盘离心力是由于曲轴自身的非对称的结构产生,具体的,在涡旋压缩机中,动涡旋盘做回转运行,其回转半径为曲轴的偏心量,在动涡旋盘做回转运行过程中会产生向心力,与其向心力对应的离心力成为动涡旋盘离心力,也称动盘离心力。上述气体力由曲轴的工作环境产生,上述曲轴可以应用在涡旋压缩机中,与压缩机中的气体产生气体力,对曲轴的平衡转动产生影响,从而使曲轴变形。具体的,在涡旋压缩机中,动涡旋盘和静涡旋盘压缩气体时会受到的气体的反作用力,产生气体力,作用在曲轴上,引起曲轴变形。
上述确定每个平衡配重克服动盘离心力和气体力引起的曲轴变形所需的离心分力,可以是分别确定上述平衡配重克服动盘离心力的第一离心分力,以及上述平衡配重克服气体力的第二离心分力,上述离心分力为上述第一离心分力和第二离心分力的合力。 上述确定每个平衡配重克服曲轴的动盘离心力和气体力所需的离心分力,还可以是先确定上述动盘离心力和气体力的合力,然后针对上述合力确定上述平衡配重克服该合力所需的离心分力。
上述根据离心分力确定平衡配重,在平衡配重的离心分力确定后,根据平衡配重的离心分力确定平衡配重的离心力,根据上述离心力确定平衡配重。其中,上述确定每个平衡配重克服曲轴的动盘离心力和气体力所需的离心分力,可以是将上述动盘离心力和气体力落在固定的方向上,进行计算,方便计算,而且计算结果准确。例如,将上述动盘离心力落在曲轴的曲轴偏心部方向,将上述气体力落在曲轴的曲轴偏心部的垂直方向。
上述平衡配重设置在曲轴上,上述平衡配重的数量可以为一个或者多个,其具体的数量取决于上述曲轴的平衡配重要求和工作情况。对于同一个曲轴,工作速度越高,其需要的变形平衡的平衡配重越重。上述平衡配重可以在上述曲轴上分布,上述平衡配重在曲轴上的分布越均匀,曲轴在高速转动下的平衡状态越稳定,反之,上述平衡配重在曲轴上的分布越集中,曲轴在高速转动下的平衡状态越容易被打破。上述曲轴在具体工作时,有的部位需要进行固定,因此在曲轴上至少需要两个固定位置固定在机架上,从而保证曲轴的转动,在曲轴的安装位置,不能设置平衡配重,否则会导致上述曲轴无法安装。另外,曲轴在工作时不同的部位,其空间不同,因此设置平衡配重的体积大小也不同。因此,需要具体考虑上述曲轴的具体工作情况来确定上述平衡配重。另外,曲轴的平衡配重可以是安装在上述曲轴上,还可以是将平衡配重通过焊接等方式固定在上述曲轴上,在平衡配重固定在上述曲轴上的情况下,需要考虑曲轴的安装拆卸,或者平衡配重的固定等工艺程序,否则有可能会导致前功尽弃。
在本申请的一些实施例中,在确定每个平衡配重克服动盘离心力和气体力引起曲轴的变形所需的离心分力之前包括:根据曲轴的工作情况,确定曲轴上的平衡配重数量和位置;其中,工作情况包括下列至少之一:实际工作环境,曲轴的种类。上述实际工作环境可以包括曲轴在工作时的多种参数,例如,曲轴的转速,带动曲轴的电机的转速,上述曲轴的种类可以按照曲轴的形状结构划分,例如,阶梯状偏心轴,偏心光轴;也可以按照曲轴的使用工况进行划分,例如,应用在涡旋压缩机的曲轴可以程为涡旋压缩机曲轴。上述涡旋压缩机曲轴的实际工作环境可以包括:压缩机转速(10-160rpm),曲轴偏心部处配置的动盘产生的离心力大于3000N,动盘承受的切向气体力大于3500N。
可选的,确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力之前还包括:确定曲轴在曲轴偏心部方向上的动盘离心力对曲轴造成 的第一变形量;以及,确定曲轴在曲轴偏心部的垂直方向上的气体力对曲轴造成的第二变形量。
通过确定曲轴在曲轴偏心部方向上的动盘离心力共同作用下对曲轴造成的第一变形量,确定上述动盘离心力对上述曲轴的变形的影响,上述曲轴的第一变形量可以与上述动盘离心力的大小成函数关系。类似的,通过确定曲轴在曲轴偏心部的垂直方向上的气体力对曲轴造成的第二变形量,确定上述气体力对上述曲轴的变形的影响,上述曲轴的第二变形量可以与上述气体力的大小成函数关系。
可选的,确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力包括:根据动盘离心力或气体力,初步确定平衡配重克服动盘离心力或气体力所需的离心分力的方向和大小;通过仿真软件进行仿真,通过调整离心分力的大小,改变仿真软件输出的第一变形量或第二变形量;在第一变形量或第二变形量达到预设值的情况下,确定动盘离心力或气体力对应的离心分力的大小。
上述仿真软件可以是ANSYS软件。上述在第一变形量或第二变形量达到预设值的情况下,确定离心分力的大小。可以是上述第一变形量或第二变形量等于零的情况。还可以是上述第一变形量或第二变形量处于包括零的一定数值范围。上述根据动盘离心力或气体力,初步确定平衡配重克服动盘离心力或气体力所需的离心分力的方向和大小,初步确定在平衡状态下,上述平衡配重的离心分力的大小,并将其在仿真软件中进行仿真,从而确定上述离心分力的最优解,在该离心分力下,上述仿真软件输出的曲轴的第一变形量或第二变形量较小,且平衡状态稳定。其中,根据第一变形量确定动盘离心力对应的离心分力的大小,根据第二变形量确定气体力对应的离心分力的大小。
在本实施例中,根据动盘离心力或气体力,初步确定平衡配重克服动盘离心力或气体力所需的离心分力的方向和大小包括:根据动盘离心力或者气体力确定离心分力的方向,其中,在曲轴偏心部方向上,动盘离心力的方向,与相邻的平衡配重的离心分力的方向相反,且相邻的两个平衡配重的离心分力的方向相反;在曲轴偏心部的垂直方向上,气体力的方向,与相邻的平衡配重的离心分力的方向相同,且相邻的两个平衡配重的离心分力相反;根据动盘离心力或气体力与离心分力的力矩平衡和力平衡,初步确定平衡配重克服动盘离心力或气体力共同作用下引起的曲轴变形所需的离心分力的大小。
可选的,通过仿真软件进行仿真,通过调整离心分力的大小,改变仿真软件输出的第一变形量或第二变形量包括:通过调整离心分力与动盘离心力或者气体力的比,调整离心分力的大小;根据调整的离心分力,改变输出的第一变形量或第二变形量。
在对仿真软件进行调整之前,根据上述第一变形量或第二变形量与上述离心分力的关系确定调节对象。例如,当变形量与上述离心分力的平方成正比的情况下,调节离心分力,确定变形量,二者的关系难以有规律的确定,对于数据后期处理也不方便,生成的图像误差较大,但是以上述离心分力的平方作为调节对象,上述变形量与该自变量成正比关系,方便后期处理,后期数据处理的误差小。在本实施例中,上述曲轴的变形量与上述离心分力与动盘离心力或者气体力的比成比例关系,因此在本实施例中,将上述离心分力与动盘离心力或者气体力的比作为调节对象。
具体的,通过调节离心分力与动盘离心力的比值,改变仿真软件输出的第一变形量;或者,通过调节离心分力与气体力的比值,改变仿真软件输出的第二变形量。
可选的,在上述第一变形量或第二变形量达到预设值的情况下,确定动盘离心力或气体力对应的离心分力的大小包括:判断第一变形量或第二变形量是否处于预设阈值范围;在第一变形量或第二变形量处于预设阈值范围的情况下,确定动盘离心力或气体力对应的离心分力的大小。
在上述第一变形量或第二变形量是否处于预设阈值范围,可以是上述第一变形量和第二变形量是否处于零的周围一定范围内,例如,0.02mm~-0.02mm,0.01mm~-0.01mm,或者其他零上下0.01mm~0.02mm的数值范围之内。上曲轴的变形是随着不同的部位发生不同的变化,在本实施例中,将曲轴的变形主要划分为偏心部的变形和机电配合部的变形。上述第一变形量和第二变形量是否处于预设阈值范围,可以是判断第一变形量或第二变形量,对应在曲轴的偏心部和电机配合部的变形分量是否为零,其中,第一变形量对应在曲轴的偏心部和机电配合部的变形分量可以为第一变形分量和第二变形分量,第二变形量对应在曲轴的偏心部和机电配合部分变形分量可以为第三变形分量和第四变形分量;在曲轴的偏心部和电机配合部的变形分量为零的情况下,也即是第一变形分量与第二变形分量均等于零,或者,第三变形分量与第四变形分量均等于零的情况下,确定离心分力的大小。由于在实际工作情况中,偏心部和机电配合部的结构和受力状况均不同,导致上述偏心部和机电配合部的变形量往往难以同时为零,因此,在本实施例中,上述判断曲轴偏心部和电机配合部的变形分量是否为零,也可以是判断上述曲轴偏心部和电机配合部的变形分量是否处于零的周围一定范围内,在上述变形分量处于零的一定范围内,就可以确定上述离心分力的大小。
另外,在上述离心分力的大小确定后,可以根据该离心分力确定离心分力的取值范围。
需要说明的是,本实施例还提供了一种可选的实施方式,下面对该实施方式进行详细说明。
本实施方式提供一种高速涡旋运转过程中轴系平衡设计方法,轴系平衡的基础上,能够满足曲轴变形量最小。本实施方式解决的技术问题:1、曲轴高速旋转下挠曲变形大;2、整机高转速旋转下振动噪音大;本实施方式的有益效果:实现涡旋压缩机曲轴高速旋转下挠曲变形小,降低整机振动噪音。
本实施方式的创造点在于:R向利用上平衡配重抑制动盘离心力对曲轴变形的影响,T向利用中平衡配重抑制气体力对曲轴变形的影响,Fr1=1.2~1.5Fc,Ft2=1~1.2Ft;R向上平衡配重与动盘离心力反向设置,T向中平衡配重与气体力同向设置。
图2是根据本申请实施例的一种涡旋压缩机的示意图,如图2所示,高转速涡旋压缩机结构示意图,低温低压冷媒经吸气口1进入静涡旋盘5和动涡旋盘6形成的压缩腔,电机驱动偏心曲轴9旋转,其中,电机包括电机定子10和电机转子11,偏心曲轴9驱动该动涡旋盘6平动,随着动涡旋盘的平动,压缩腔由外周向内部推移,面积逐渐减小,低温低压冷媒经压缩形成高温高压冷媒由静涡旋盘5中心孔排出到壳体18内部,最终从壳体18排气口2处排出。
符号方向说明:R向为曲轴偏心部方向;T向为曲轴偏心部的垂直方向;Fc、Fr1、Fr2、Fr3分布在曲轴R向,Ft、Ft1、Ft2、Ft3分布在曲轴T向。
图3是根据本申请实施例的曲轴R向平衡配重分布的示意图,如图3所示,曲轴R向上动盘离心力Fc的方向与偏心部方向相反,高转速下动盘离心力Fc较大,设置R向上平衡配重17-1、R向中平衡配重15-1、R向下平衡配重16-1。其中,R向上平衡配重17-1的离心力Fr1与曲轴偏心部方向相反,R向中平衡配重15-1的离心力Fr2与曲轴偏心部方向相同,R向下平衡配重16-1的离心力Fr3与曲轴偏心部方向相反。Fc、Fr1、Fr2、Fr3在曲轴R向上满足力平衡、力矩平衡。动盘离心力Fc导致曲轴挠曲,R向上平衡配重的离心力Fr1与Fc反向设置,采用简支梁结构,利用ANSYS软件计算曲轴R向的变形量趋势,图4是根据本申请实施例的R向离心力挠曲变形的示意图,如图4所示的简支梁结构,随着Fr1/Fc比值的增加,从左向右顺序,Fr1/Fc较小时,曲轴向右侧弯曲,Fr1/Fc较大时,曲轴向左弯曲,图5是根据本申请实施例的R向离心力挠曲抑制变形计算值的折线图,如图5所示,当Fr1/Fc=1.5时,曲轴偏心部和电机段的变形量相等,接近0,此时两部分的变形均较小,此种状态在高转速下曲轴R向的变形最小。相反当Fr1/Fc>1.5时,称之为‘过平衡’,此种状态上平衡配重17-1的离心力较大,质量相对较重,同样方向设置平衡配重,加剧曲轴R向变形。本发明申请实施例上述平衡配重大小取值Fr1=1.2~1.5Fc。
图6是根据本申请实施例的曲轴T向平衡配重分布的示意图,如图6所示,曲轴T向为平衡气体力Ft对曲轴变形的影响,设置T向上平衡配重17-2,T向中平衡配重 15-2,和T向下平衡配重16-2。T向上平衡配重17-2运转下产生的离心力为Ft1,T向中平衡配重15-2运转下产生的离心力为Ft2,T向下平衡配重16-2运转下产生的离心力为Ft3。T向上平衡配重17-2的离心力Ft1方向与Ft方向相反,T向中平衡配重15-2的离心力方向Ft2与Ft方向相同,T向下平衡配重16-2的离心力方向Ft3与Ft方向相反,其中Ft1、Ft2、Ft3在曲轴T向上满足力平衡、力矩平衡。图7是根据本申请实施例的T向离心力挠曲变形的示意图,如图7所示,同样采用简支梁结构,利用ANSYS软件计算曲轴T向的变形量趋势。图8是根据本申请实施例的T向离心力挠曲抑制变形计算值的折线图,如图8所示,随着Ft2/Ft比值增加,曲轴变形先减小后增加,当Ft2/Ft=1.2倍时,电机段变形接近0,偏心部变形相对较小,当Ft2/Ft>1.2倍时,产生‘过平衡’,同样的方向设置,中平衡配重的离心力增加,质量增加,加剧曲轴变形。本发明申请实施例的T向平衡配重的大小取值Ft2=1~1.2Ft。
将R向和T向的平衡配重按照大小和方向集成,Fr1与Ft1集成为上平衡配重F1,Fr2与Ft2集成为上平衡配重F2,Fr3与Ft3集成为上平衡配重F3。
根据本申请实施例的另一方面,还提供了一种曲轴,包括:曲轴上设置至少一个平衡配重,平衡配重按照如上述中任意一项的方法确定。
可选的,曲轴包括设置有偏心轴的偏心部,和电机配合段,偏心部设置有第一平衡配重,电机配合段设置第二平衡配重和第三平衡配重,在曲轴的曲轴偏心部方向上,第一平衡配重克服动盘离心力的离心分力与动盘离心力方向相反,第二平衡配重克服动盘离心力的离心分力与动盘离心力方向相同,第三平衡配重克服动盘离心力的离心分力与动盘离心力方向相反;在曲轴的曲轴偏心部垂直方向上,第一平衡配重克服气体力的离心分力与气体力方向相反,第二平衡配重克服气体力的离心分力与气体力方向相同,第三平衡配重克服气体力的离心分力与气体力方向相反。
可选的,第一平衡配重满足,Fr1=1.2~1.5Fc,其中,Fr1为第一平衡配重克服动盘离心力的离心分力大小,Fc为动盘离心力的大小。
可选的,第二平衡配重满足,Ft2=1~1.2Ft,其中,Ft1为第二平衡配重克服气体力的离心分力大小,Fc为气体力的大小。
根据本申请实施例的另一方面,还提供了一种涡旋压缩机,包括如上述中任意一项的曲轴。
图9是根据本申请实施例的一种曲轴变形平衡装置的流程图,如图9所示,根据本申请实施例的另一方面,还提供了一种曲轴变形平衡装置,包括:第一确定模块92和第二确定模块94,下面对该装置进行详细说明。
第一确定模块92,设置为确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力;第二确定模块94,与上述第一确定模块92相连,设置为根据离心分力确定平衡配重;平衡模块96,与上述第二确定模块94相连,设置为通过平衡配重平衡曲轴的变形;其中,平衡配重设置在曲轴上。
通过上述装置,采用第一确定模块92确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力;第二确定模块94根据离心分力确定平衡配重;通过平衡配重平衡曲轴的变形,其中,平衡配重设置在曲轴上的方式,通过考虑动盘离心力和气体力的叠加作用对曲轴变形,从而确定平衡配重,达到了使平衡配重更准确的对曲轴进行变形平衡的目的,从而实现了提高平衡配重对曲轴变形的平衡效果的技术效果,进而解决了相关技术中仅考虑动盘离心力对曲轴的影响,平衡效果较差的技术问题。
根据本申请实施例的另一方面,还提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述中任意一项的方法。
根据本申请实施例的另一方面,还提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述中任意一项的方法。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分力部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请实施例的保护范围。
工业实用性
可以是制造曲轴的自动化设备,或者可以控制上述自动化设备的计算器或者控制设备,具体的,通过确定每个平衡配重克服动盘离心力和气体力共同作用下引起曲轴的变形所需的离心分力;根据离心分力确定平衡配重;通过平衡配重平衡曲轴的变形,从而确定上述平衡配重。通过考虑动盘离心力和气体力的叠加作用对曲轴变形,从而确定平衡配重,从而可以指示上述自动化设备根据确定的平衡配重加工曲轴,达到了提高曲轴的平衡能力,运行更稳定的效果,进而解决了相关技术中曲轴的平衡配重仅考虑动盘离心力对曲轴的影响,平衡效果较差的技术问题。

Claims (15)

  1. 一种曲轴变形平衡方法,包括:
    确定每个平衡配重克服动盘离心力和气体力共同作用下引起所述曲轴的变形所需的离心分力;
    根据所述离心分力确定所述平衡配重;
    通过所述平衡配重平衡所述曲轴的变形;
    其中,所述平衡配重设置在所述曲轴上。
  2. 根据权利要求1所述的方法,确定每个所述平衡配重克服所述动盘离心力和所述气体力共同作用下引起所述曲轴的变形所需的离心分力之前包括:
    根据所述曲轴的工作情况,确定所述曲轴上的平衡配重数量和位置;
    其中,所述工作情况包括下列至少之一:实际工作环境,曲轴的种类。
  3. 根据权利要求2所述的方法,确定每个所述平衡配重克服所述动盘离心力和所述气体力共同作用下引起所述曲轴的变形所需的离心分力之前还包括:
    确定所述曲轴在曲轴偏心部方向上的动盘离心力对所述曲轴造成的第一变形量;
    以及,
    确定所述曲轴在曲轴偏心部的垂直方向上的气体力对所述曲轴造成的第二变形量。
  4. 根据权利要求3所述的方法,确定每个所述平衡配重克服所述动盘离心力和所述气体力共同作用下引起所述曲轴的变形所需的离心分力包括:
    根据所述动盘离心力或所述气体力,初步确定所述平衡配重克服所述动盘离心力,或克服所述气体力所需的所述离心分力的方向和大小;
    通过仿真软件进行仿真,通过调整所述离心分力的大小,改变所述仿真软件输出的所述第一变形量或所述第二变形量;
    在所述第一变形量或所述第二变形量达到预设值的情况下,确定所述动盘离心力或所述气体力对应的所述离心分力的大小。
  5. 根据权利要求4所述的方法,根据所述动盘离心力或所述气体力,初步确定所述平衡配重克服所述动盘离心力,或克服所述气体力所需的所述离心分力的方向和大小包括:
    根据所述动盘离心力或者所述气体力确定所述离心分力的方向,其中,在曲轴偏心部上,所述动盘离心力的方向,与相邻的平衡配重的离心分力的方向相反,且相邻的两个平衡配重的离心分力的方向相反;在曲轴偏心部的垂直方向上,所述气体力的方向,与相邻的平衡配重的离心分力的方向相反,且相邻的两个平衡配重的离心分力相反;
    根据所述动盘离心力与所述离心分力的力矩平衡和力平衡,或者,所述气体力与所述离心分力的力矩平衡和力平衡,初步确定所述平衡配重克服所述动盘离心力或所述气体力所需的所述离心分力的大小。
  6. 根据权利要求4所述的方法,通过仿真软件进行仿真,通过调整所述离心分力的大小,改变所述仿真软件输出的所述第一变形量或所述第二变形量包括:
    通过调整所述离心分力与所述动盘离心力或者所述气体力的比,调整所述离心分力的大小;
    根据调整的所述离心分力,改变输出的所述第一变形量或所述第二变形量。
  7. 根据权利要求4所述的方法,在所述第一变形量或所述第二变形量达到预设值的情况下,确定所述动盘离心力或所述气体力对应的所述离心分力的大小包括:
    判断所述第一变形量或所述第二变形量是否处于预设阈值范围;
    在所述第一变形量或所述第二变形量处于预设阈值范围的情况下,确定所述动盘离心力或所述气体力对应的所述离心分力的大小。
  8. 一种曲轴,包括:所述曲轴上设置至少一个平衡配重,所述平衡配重按照如权利要求1至7中任意一项所述的方法确定。
  9. 根据权利要求8所述的曲轴,所述曲轴包括设置有偏心轴的偏心部,和电机配合段,所述偏心部设置有第一平衡配重,所述电机配合段设置第二平衡配重和第三平衡配重,
    在所述曲轴的曲轴偏心部方向上,所述第一平衡配重克服所述动盘离心力的离心分力与所述动盘离心力方向相反,所述第二平衡配重克服所述动盘离心力的离心分力与所述动盘离心力方向相同,所述第三平衡配重克服所述动盘离心力的 离心分力与所述动盘离心力方向相反;
    在所述曲轴的曲轴偏心部垂直方向上,所述第一平衡配重克服所述气体力的离心分力与所述气体力方向相反,所述第二平衡配重克服所述气体力的离心分力与所述气体力方向相同,所述第三平衡配重克服所述气体力的离心分力与所述气体力方向相反。
  10. 根据权利要求9所述的曲轴,所述第一平衡配重满足,Fr1=1.2~1.5Fc,其中,Fr1为所述第一平衡配重克服所述动盘离心力的离心分力大小,Fc为所述动盘离心力的大小。
  11. 根据权利要求9所述的曲轴,所述第二平衡配重满足,Ft2=1~1.2Ft,其中,Ft1为所述第二平衡配重克服所述气体力的离心分力大小,Fc为所述气体力的大小。
  12. 一种涡旋压缩机,包括如权利要求8至11中任意一项所述的曲轴。
  13. 一种曲轴变形平衡装置,包括:
    第一确定模块,设置为确定每个平衡配重克服动盘离心力和气体力共同作用下引起所述曲轴的变形所需的离心分力;
    第二确定模块,设置为根据所述离心分力确定所述平衡配重;
    平衡模块,设置为通过所述平衡配重平衡所述曲轴的变形;
    其中,所述平衡配重设置在所述曲轴上。
  14. 一种存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至7中任意一项所述的方法。
  15. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至7中任意一项所述的方法。
PCT/CN2019/128874 2019-04-24 2019-12-26 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机 WO2020215779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/605,344 US11976652B2 (en) 2019-04-24 2019-12-26 Method and device for balancing crankshaft deformation, crankshaft, and scroll compressor
EP19926355.9A EP3926170A4 (en) 2019-04-24 2019-12-26 METHOD AND DEVICE FOR BALANCING CRANKSHAFT DEFORMATION AND CRANKSHAFT AND SCROLL COMPRESSORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910334854.6 2019-04-24
CN201910334854.6A CN110080978B (zh) 2019-04-24 2019-04-24 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2020215779A1 true WO2020215779A1 (zh) 2020-10-29

Family

ID=67416606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128874 WO2020215779A1 (zh) 2019-04-24 2019-12-26 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机

Country Status (4)

Country Link
US (1) US11976652B2 (zh)
EP (1) EP3926170A4 (zh)
CN (1) CN110080978B (zh)
WO (1) WO2020215779A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080978B (zh) 2019-04-24 2020-11-20 珠海格力节能环保制冷技术研究中心有限公司 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机
CN111734637A (zh) * 2020-06-01 2020-10-02 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270654A (ja) * 2003-03-12 2004-09-30 Denso Corp 回転型圧縮機
CN103814219A (zh) * 2011-09-30 2014-05-21 大金工业株式会社 涡旋压缩机
CN103827496A (zh) * 2011-09-30 2014-05-28 大金工业株式会社 涡旋压缩机
CN109312737A (zh) * 2016-06-14 2019-02-05 三菱电机株式会社 涡旋式压缩机
CN110080978A (zh) * 2019-04-24 2019-08-02 珠海格力节能环保制冷技术研究中心有限公司 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233927B2 (en) * 2012-03-23 2019-03-19 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor counterweight with axially distributed mass
US8925528B2 (en) * 2012-06-26 2015-01-06 Ford Global Technologies, Llc Engine balancing supercharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270654A (ja) * 2003-03-12 2004-09-30 Denso Corp 回転型圧縮機
CN103814219A (zh) * 2011-09-30 2014-05-21 大金工业株式会社 涡旋压缩机
CN103827496A (zh) * 2011-09-30 2014-05-28 大金工业株式会社 涡旋压缩机
CN109312737A (zh) * 2016-06-14 2019-02-05 三菱电机株式会社 涡旋式压缩机
CN110080978A (zh) * 2019-04-24 2019-08-02 珠海格力节能环保制冷技术研究中心有限公司 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926170A4

Also Published As

Publication number Publication date
EP3926170A4 (en) 2022-06-08
US11976652B2 (en) 2024-05-07
CN110080978A (zh) 2019-08-02
US20220228589A1 (en) 2022-07-21
EP3926170A1 (en) 2021-12-22
CN110080978B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2020215779A1 (zh) 曲轴变形平衡方法、装置,以及曲轴,涡旋压缩机
CN106837426B (zh) 一种发动机核心机转子质心偏心的优化方法
JPS6365177A (ja) 可変容量斜板式圧縮機
Appiah et al. Effects of the geometrical conditions on the performance of a side channel pump: A review
WO2021244013A1 (zh) 压缩机
CN111460677A (zh) 一种基于几何代数理论建立转子堆叠精度预测模型的方法
JP2007179456A (ja) 機構構造物の設計装置および設計方法
WO2022073152A1 (zh) 一种惯性比自适应调节惯容器的设计方法
CN110929419A (zh) 基于围带零阻尼的汽轮机转子系统失稳极限快速预测方法
CN104696217A (zh) 涡旋干式真空泵及其制造方法、真空系统
Ivlev et al. Parameterization of an air motor based on multiobjective optimization and decision support
CN107084156A (zh) 离心泵及其平衡控制方法
CN102680173A (zh) 改善变频空调器的单转子压缩机音质的控制方法
JP2004270654A (ja) 回転型圧縮機
CN104595183B (zh) 具有卸荷器配重部组件的压缩机
CN114357649A (zh) 一种空气涡轮起动机涡轮转子弹性支承设计优化方法
JP2010169124A (ja) 回転体のバランス調整方法
CN205089618U (zh) 多缸旋转式压缩机
CN202612115U (zh) 改善变频空调器的单转子压缩机音质的控制装置
KR20180005928A (ko) 압축 장치
Kawabata et al. Calculation of internal flow in a compressor with valve motion
CN117150665A (zh) 压缩机曲轴系统动平衡的优化设计方法、设备和装置
EP3417969A1 (en) Double cutting disc with curved deformation lines
JP4424948B2 (ja) 多気筒型圧縮機
Ramchandran et al. Simulation of 1D flow coupled with 3D multi-body dynamics model of a double-acting swashplate compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019926355

Country of ref document: EP

Effective date: 20210917