WO2020215286A1 - 波束失败的上报方法、装置及存储介质 - Google Patents

波束失败的上报方法、装置及存储介质 Download PDF

Info

Publication number
WO2020215286A1
WO2020215286A1 PCT/CN2019/084363 CN2019084363W WO2020215286A1 WO 2020215286 A1 WO2020215286 A1 WO 2020215286A1 CN 2019084363 W CN2019084363 W CN 2019084363W WO 2020215286 A1 WO2020215286 A1 WO 2020215286A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
secondary serving
target
signaling
terminal
Prior art date
Application number
PCT/CN2019/084363
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980000753.3A priority Critical patent/CN110226340B/zh
Priority to BR112021021136A priority patent/BR112021021136A2/pt
Priority to PCT/CN2019/084363 priority patent/WO2020215286A1/zh
Priority to KR1020217036039A priority patent/KR20210147041A/ko
Priority to US17/605,508 priority patent/US20220210683A1/en
Priority to EP19926066.2A priority patent/EP3962152B1/en
Priority to JP2021561850A priority patent/JP7426403B2/ja
Priority to PL19926066.2T priority patent/PL3962152T3/pl
Priority to SG11202111692VA priority patent/SG11202111692VA/en
Publication of WO2020215286A1 publication Critical patent/WO2020215286A1/zh
Priority to JP2023190658A priority patent/JP2024010195A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a method, device, and storage medium for reporting beam failure.
  • base stations and terminals can use beams to send and receive information.
  • the base station may send PDCCH (Physical Downlink Control Channel, physical downlink control channel) downlink control information to the terminal through a beam.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the beam configured by the base station for the terminal to receive downlink control information may have a beam failure problem.
  • the standard defines an RS set for detecting beam failure. When the terminal detects that the channel measurement parameters corresponding to all RSs in the RS set are lower than the first threshold, the terminal determines that a beam failure occurs.
  • the terminal can detect whether there is an L1-RSRP (Layer1-Reference Signal Received Power) in the RS set used to determine candidate beams according to the RS set configured by the base station to determine the candidate beam (candidate beam). The signal received power) is greater than the second threshold RS. If there is such an RS, the terminal sends the random access preamble corresponding to the RS on the random access time-frequency resource corresponding to the RS. In this way, it is implicit Inform the base station that a beam failure has occurred in the terminal and find a candidate beam. Subsequently, the terminal detects the response to the beam failure request sent by the base station, and waits for beam failure recovery (beam failure recovery).
  • L1-RSRP Layer1-Reference Signal Received Power
  • PCell Primary cell
  • the embodiments of the present disclosure provide a method, device and storage medium for reporting beam failure.
  • the technical solution is as follows:
  • a method for reporting beam failure including:
  • the terminal determines that a beam failure occurs in the target secondary serving cell among the n secondary serving cells accessed, where n is a positive integer;
  • the terminal sends a first MAC (Medium Access Control) CE (Control Element) signaling to the base station, where the first MAC CE signaling includes beam failure indication information, and the beam failure indication The information is used to indicate that beam failure occurs in the target secondary serving cell.
  • MAC Medium Access Control
  • Control Element Control Element
  • the beam failure indication information is represented by m-bit codewords, and the n-bit codewords in the m-bit codewords correspond to the n secondary serving cells in a one-to-one correspondence, and the m Is an integer greater than or equal to the n;
  • the i-th bit codeword in the n-bit codewords is used to indicate whether beam failure occurs in the i-th secondary serving cell in the n secondary serving cells, and the i is less than or equal to all The positive integer of n.
  • the beam failure indication information is represented by k-bit codewords, and the Indicates rounding up;
  • the k-bit codeword is the identification information of the target secondary serving cell.
  • the first MAC CE signaling further includes target beam indication information, where the target beam indication information is used to indicate a target beam selected from p candidate beams for beam failure recovery, where p is An integer greater than 1.
  • the method further includes:
  • the terminal sends second MAC CE signaling to the base station, where the second MAC CE signaling includes target beam indication information, and the target beam indication information is used to indicate a beam selected from the p candidate beams For the target beam that fails to recover, the p is an integer greater than 1.
  • the target beam indication information is represented by q-bit codewords, and the p-bit codewords in the q-bit codewords correspond to the p candidate beams in a one-to-one correspondence, where q is An integer greater than or equal to the p;
  • the j-th bit codeword in the p-bit codewords is used to indicate that the j-th candidate beam among the p candidate beams is selected as the target beam, and the j is less than or equal to The positive integer of p.
  • the target beam indication information is represented by r-bit codewords, and the Indicates rounding up;
  • the r-bit codewords are identification information of the target beam.
  • the p candidate beams are beams configured by the base station through RRC (Radio Resource Control, radio resource control) signaling;
  • RRC Radio Resource Control, radio resource control
  • the p candidate beams are beams activated by MAC signaling among multiple beams configured by the base station through RRC signaling.
  • the method further includes:
  • the terminal receives the resource configuration information sent by the base station, where the resource configuration information is used to indicate PUSCH (Physical Uplink Shared Channel) resources for the terminal to send the first MAC CE signaling.
  • PUSCH Physical Uplink Shared Channel
  • the first MAC CE signaling is sent on a periodic PUSCH resource configured by the base station for the terminal.
  • the PUSCH resource is a resource on the target secondary serving cell; or,
  • the PUSCH resource is the resource on the primary serving cell accessed by the terminal; or,
  • the PUSCH resources are resources on the primary and secondary serving cells of the n secondary serving cells; or,
  • the PUSCH resources are resources on other secondary serving cells in the n secondary serving cells except for the target secondary serving cell.
  • an apparatus for reporting beam failure which is applied to a terminal, and the apparatus includes:
  • a target cell determining module configured to determine that a beam failure occurs in the target secondary serving cell among the n accessed secondary serving cells, where n is a positive integer;
  • the first signaling sending module is configured to send first MAC CE signaling to the base station, where the first MAC CE signaling includes beam failure indication information, and the beam failure indication information is used to indicate the target secondary serving cell A beam failure occurred.
  • the beam failure indication information is represented by m-bit codewords, and the n-bit codewords in the m-bit codewords correspond to the n secondary serving cells in a one-to-one correspondence, and the m Is an integer greater than or equal to the n;
  • the i-th bit codeword in the n-bit codewords is used to indicate whether beam failure occurs in the i-th secondary serving cell in the n secondary serving cells, and the i is less than or equal to all The positive integer of n.
  • the k-bit codeword is the identification information of the target secondary serving cell.
  • the first MAC CE signaling further includes target beam indication information, where the target beam indication information is used to indicate a target beam selected from p candidate beams for beam failure recovery, where p is An integer greater than 1.
  • the device further includes:
  • the second signaling sending module is configured to send second MAC CE signaling to the base station, where the second MAC CE signaling includes target beam indication information, and the target beam indication information is used to indicate from p candidates A target beam selected for beam failure recovery among beams, where p is an integer greater than 1.
  • the target beam indication information is represented by q-bit codewords, and the p-bit codewords in the q-bit codewords correspond to the p candidate beams in a one-to-one correspondence, where q is An integer greater than or equal to the p;
  • the j-th bit codeword in the p-bit codewords is used to indicate that the j-th candidate beam among the p candidate beams is selected as the target beam, and the j is less than or equal to The positive integer of p.
  • the target beam indication information is represented by r-bit codewords, and the Indicates rounding up;
  • the r-bit codewords are identification information of the target beam.
  • the p candidate beams are beams configured by the base station through RRC signaling
  • the p candidate beams are beams activated by MAC signaling among multiple beams configured by the base station through RRC signaling.
  • the device further includes:
  • the request sending module is configured to send an uplink scheduling request or a random access request to the base station, where the uplink scheduling request or the random access request is used to notify the base station that the terminal has a beam failure;
  • the configuration information receiving module is configured to receive resource configuration information sent by the base station, where the resource configuration information is used to indicate PUSCH resources for the terminal to send the first MAC CE signaling.
  • the first MAC CE signaling is sent on a periodic PUSCH resource configured by the base station for the terminal.
  • the PUSCH resource is a resource on the target secondary serving cell; or,
  • the PUSCH resource is the resource on the primary serving cell accessed by the terminal; or,
  • the PUSCH resources are resources on the primary and secondary serving cells of the n secondary serving cells; or,
  • the PUSCH resources are resources on other secondary serving cells in the n secondary serving cells except the target secondary serving cell.
  • an apparatus for reporting beam failure which is applied to a terminal, and the apparatus includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the first MAC CE signaling includes beam failure indication information, and the beam failure indication information is used to indicate that the target secondary serving cell has a beam failure.
  • a non-transitory computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • the terminal When the terminal determines that the target secondary serving cell of the multiple secondary serving cells accessed has a beam failure, it sends the MAC CE signaling containing the beam failure indication information to the base station to notify the target secondary serving cell that has the beam failure to The base station thus provides a report scheme for the terminal when the beam failure occurs in the secondary serving cell, and realizes the reporting of the beam failure condition of the secondary serving cell.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for reporting beam failure according to an exemplary embodiment
  • Fig. 3 is a flowchart showing a method for reporting beam failure according to another exemplary embodiment
  • Fig. 4 shows a block diagram of a device for reporting beam failure according to an exemplary embodiment
  • Fig. 5 shows a block diagram of a device for reporting beam failure according to another exemplary embodiment
  • Fig. 6 is a schematic structural diagram showing a terminal according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment.
  • the network architecture may include: a base station 110 and a terminal 120.
  • the base station 110 is deployed in the access network.
  • the access network in the 5G NR (New Radio) system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 110 and the terminal 120 communicate with each other through a certain air interface technology, for example, may communicate with each other through cellular technology.
  • the base station 110 is a device deployed in an access network to provide the terminal 120 with a wireless communication function.
  • the base station 110 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in a 5G NR system, they are called gNodeB or gNB. As communication technology evolves, the name "base station" may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 120 are collectively referred to as base stations.
  • the base station 110 may also be an in-vehicle device, which is suitable for communication between vehicles in the Internet of Vehicles. When communicating between vehicles, the channels or signaling in the present disclosure are all channels or signaling suitable for sidelinks.
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in a cell managed by each base station 110.
  • the terminal 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), terminal device (terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the terminal 120 may also be an in-vehicle device, which is suitable for scenarios of communication between vehicles in the Internet of Vehicles.
  • the channels or signaling in the present disclosure are all channels or signaling suitable for side links.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system and the 5G NR vehicle networking system.
  • This application defines relevant definitions for the reporting and recovery process of the terminal when the beam fails on the SCell (Secondary Cell).
  • Fig. 2 is a flow chart showing a method for reporting beam failure according to an exemplary embodiment. This method can be applied to the terminal shown in FIG. 1. The method can include the following steps (201-202).
  • step 201 the terminal determines that beam failure occurs in the target secondary serving cell among the n secondary serving cells accessed, and n is a positive integer.
  • a terminal may have multiple serving cells (serving cells), and the multiple serving cells may be divided into a primary serving cell and at least one secondary serving cell.
  • the primary serving cell refers to a serving cell working on the primary frequency band, and the terminal can perform an initial connection establishment process with the primary serving cell, or perform a connection re-establishment process.
  • the secondary serving cell refers to a cell working on the secondary frequency band, and the secondary serving cell can provide additional wireless resources to improve the throughput of the terminal.
  • the terminal can access multiple secondary serving cells at the same time.
  • the beam configured by the base station for the terminal to receive the downlink control information sent by the secondary serving cell may have a beam failure problem. Further, the terminal may detect whether there is a beam failure in a secondary serving cell among the multiple secondary serving cells accessed, and determine the target secondary serving cell where the beam failure occurs.
  • the base station configures the terminal with an RS set for detecting beam failure of each secondary serving cell configured with PDCCH, and when the terminal detects that the channel measurement parameters corresponding to all RSs in the RS set are lower than the threshold, The terminal determines that a beam failure occurs in the secondary serving cell.
  • step 202 the terminal sends the first MAC CE signaling to the base station, and the first MAC CE signaling includes beam failure indication information.
  • the terminal When the terminal determines that the target secondary serving cell of the multiple secondary serving cells accessed has a beam failure, it may indicate to the base station that the target secondary serving cell has a beam failure through the first MAC CE signaling.
  • the first MAC CE signaling includes the foregoing beam failure indication information, and the beam failure indication information is used to indicate that a beam failure occurs in the target secondary serving cell.
  • the foregoing target secondary serving cell may be one or more secondary serving cells among the n secondary serving cells accessed by the terminal.
  • the beam failure indication information is represented by m-bit codewords, and the n-bit codewords among the m-bit codewords correspond to the n auxiliary serving cells one to one, and m is greater than or equal to an integer of n; where the i-th bit codeword in the n-bit codeword is used to indicate whether beam failure occurs in the i-th secondary serving cell among the n secondary serving cells, and i is a positive value less than or equal to n Integer.
  • the bit code length (ie, m) of the above-mentioned beam failure indication information may be pre-defined by the protocol, which means that the beam failure conditions of m secondary serving cells can be indicated at most once.
  • m is 8, 16, 32 or other values.
  • the aforementioned n-bit codewords may be the first n-bit codewords among the m-bit codewords, and the n-bit codewords correspond to the n secondary serving cells in a one-to-one correspondence.
  • the terminal can simultaneously report one or more target secondary serving cells where the beam failure occurs.
  • the beam failure indication information is represented by a 5-bit codeword.
  • the first 3 bit codewords in the four bit codewords correspond to SCell#1, SCell#2, and SCell#3 in sequence.
  • the beam failure indication information is 01000, it means that SCell#2 has beam failure, and SCell#1 and SCell#3 have no beam failure; when the beam failure indication information is 10100, it means that SCell#1 and SCell#3 have occurred. If the beam fails, SCell#2 has no beam failure; when the beam failure indication information is 11100, it means that SCell#1, SCell#2, and SCell#3 all have beam failure.
  • the beam failure indication information is represented by k-bit codewords, Indicates rounding up; where the k-bit codeword is the identification information of the target secondary serving cell.
  • k both takes 2; when n is 5 to 8, k both takes 3; when n is 9 to 16, k both takes 4, and so on.
  • the identification information of the target secondary serving cell is used to uniquely identify the target secondary serving cell.
  • the terminal can report only one target secondary serving cell where the beam occurs at the same time.
  • n 4
  • n 4
  • k 2 bit codes Word representation.
  • the 2-bit codeword is 00
  • SCell#1 has beam failure
  • the 2-bit codeword 01
  • SCell#2 has beam failure
  • the 2-bit codeword is 10
  • SCell#3 has a beam failure
  • SCell#4 has a beam failure.
  • the terminal when it determines that the target secondary serving cell of the multiple secondary serving cells that it accesses has a beam failure, it sends a MAC CE containing beam failure indication information to the base station. Signaling informs the base station of the target secondary serving cell where the beam failure occurs, thereby providing a report scheme for the terminal when the beam failure occurs in the secondary serving cell, and realizes the reporting of the beam failure condition of the secondary serving cell.
  • the above embodiment introduces and explains the beam failure reporting of the secondary serving cell, and the following describes and explains the beam failure recovery of the secondary serving cell after a beam failure occurs.
  • the terminal may also select a target beam for beam failure recovery from p candidate beams, and then send target beam indication information to the base station.
  • the target beam indication information is used to indicate the selected target beam, and p is an integer greater than 1.
  • p candidate beams are beams configured by the base station through RRC signaling; or, p candidate beams are configured by the base station through RRC signaling Among multiple beams, the beam activated by MAC signaling.
  • the terminal may select a candidate beam with a signal quality greater than a preset threshold from the multiple candidate beams corresponding to the target secondary serving cell as the target beam.
  • the above-mentioned signal quality can be L1-RSRP (Layer 1-Reference Signal Receiving Power), or L1-SINR (Layer 1-Signal to Interference plus Noise Ratio, Layer 1-Signal to Interference and Noise Ratio) ), it may also be L1-RSRQ (Layer1-Reference Signal Receiving Quality, layer one reference signal reception quality), etc., which is not limited in the embodiment of the present disclosure.
  • the above-mentioned target beam may be one or multiple.
  • the first MAC CE signaling further includes target beam indication information. That is, when the terminal reports the beam failure condition of the secondary serving cell to the base station through the first MAC CE signaling, it also reports the target beam found by the terminal for beam failure recovery through the first MAC CE signaling.
  • the terminal sends second MAC CE signaling to the base station, and the second MAC CE signaling includes target beam indication information.
  • the second MAC CE signaling is another signaling different from the first MAC CE signaling. That is, the terminal separately reports the beam failure condition of the secondary serving cell and the target beam found by the terminal for beam failure recovery through two different MAC CE signalings.
  • the first MAC CE signaling and the second MAC CE signaling may be sent at the same time or at different times. For example, the first MAC CE signaling is sent first, and the second MAC CE signaling is sent later.
  • the target beam indication information can be expressed in the following two ways:
  • the target beam indication information is represented by q-bit codewords, and p-bit codewords among the q-bit codewords correspond to p candidate beams one-to-one, and q is greater than or equal to p
  • the j-bit codeword in the p-bit codewords is used to indicate that the j-th candidate beam among the p candidate beams is selected as the target beam, and j is a positive integer less than or equal to p.
  • the bit code length (that is, q) of the target beam indication information can be predetermined by the protocol.
  • q is 4, 8, 16, or other numerical values.
  • the aforementioned p-bit codewords may be the first p-bit codewords among the q-bit codewords.
  • the base station configures 3 candidate beams (beam#1, beam#2, and beam#3, respectively) for the terminal, and the target beam indication information is represented by a 4-bit codeword.
  • the first 3 bit codewords of a bit codeword correspond to beam#1, beam#2, and beam#3 in sequence. Assume 1 indicates that it is selected as the target beam, and 0 indicates that it is not selected as the target beam.
  • the target beam indication information is 0100, it means beam#2 is selected as the target beam, beam#1 and beam#3 are not selected as the target beam; when the target beam indication information is 1010, it means beam#1 and beam #3 is selected as the target beam, beam#2 is not selected as the target beam; when the target beam indication information is 1110, it means that beam#1, beam#2, and beam#3 are all selected as the target beam.
  • the terminal can report one or more target beams for beam failure recovery at the same time.
  • the target beam indication information is represented by r-bit codewords, Indicates rounding up; where r bit codewords are the identification information of the target beam.
  • r both take 2; when p is 5-8, r takes 3; when p is 9-16, r takes 4, and so on.
  • the identification information of the target beam is used to uniquely identify the target beam.
  • the terminal can only report one target beam for beam failure recovery at the same time.
  • the target beam indication information is represented by a 2-bit codeword.
  • the 2-bit codeword is 00, it means that beam#1 of the 4 candidate beams is selected as the target beam; when the 2-bit codeword is 01, it means that beam#2 of the 4 candidate beams is selected. Is selected as the target beam; when the 2-bit codeword is 10, it means that beam#3 of the 4 candidate beams is selected as the target beam; when the 2-bit codeword is 11, it means 4 candidates Beam#4 in the beam is selected as the target beam.
  • the identification information of the foregoing target beam may also be the serial number sequence of the target beam in the candidate beam.
  • the number sequence may be the TCI (transmission configuration indication) state number sequence corresponding to the candidate beam.
  • TCI transmission configuration indication
  • beam#1 corresponds to TCI#2
  • beam#2 corresponds to TCI#7
  • beam#3 corresponds to TCI#14
  • beam#4 corresponds to TCI#18.
  • the target beam selected by the terminal for beam failure recovery is notified to the base station by sending target beam indication information to the base station, thereby providing a terminal in the auxiliary service
  • the recovery scheme when beam failure occurs in the cell realizes the beam failure recovery of the secondary serving cell.
  • Fig. 3 is a flowchart showing a method for reporting beam failure according to another exemplary embodiment. This method can be applied to the terminal shown in FIG. 1. The method can include the following steps (301-304).
  • step 301 the terminal determines that beam failure occurs in the target secondary serving cell among the n secondary serving cells accessed, and n is a positive integer.
  • step 201 is the same as or similar to the introduction of step 201 in the embodiment of FIG. 2, and will not be repeated here.
  • the terminal may indicate to the base station that a beam failure has occurred, including the following steps 302 and 303.
  • step 302 the terminal sends an uplink scheduling request or random access request to the base station.
  • SR Service Request, uplink scheduling request
  • Random Access Random Access
  • the above SR may be a general SR, that is, the SR is the same as the SR used by the terminal to request the base station to configure and send uplink data resources; the above SR may also be an SR dedicated to reporting beam failure, that is, the SR and the terminal are used for The SRs that request the base station to configure and send uplink data resources are different.
  • the aforementioned random access request resource may be a random access time-frequency code resource specifically used to indicate beam failure, that is, the base station configures a special random access time-frequency code resource for the terminal, and the base station receives the time-frequency code resource on the time-frequency resource.
  • the base station knows that the terminal has a beam failure, but if the base station needs to further know which serving cell or cells the terminal is in, it needs to further configure PUSCH resources to the terminal to send the beam failure Identification information of the failed target secondary serving cell.
  • the aforementioned SR is sent on a PUCCH (Physical Uplink Control Channel, physical uplink control channel) resource.
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the PUCCH resource is the resource on the target secondary serving cell; or, the PUCCH resource is the resource on the primary serving cell that the terminal accesses; or, the PUCCH resource is the PSCell (Primary Secondary Cell, the primary cell) in n secondary serving cells.
  • the resources on the secondary serving cell); or, the PUCCH is the resources on other secondary serving cells except the target secondary serving cell among the n secondary serving cells.
  • the PUCCH resource may be the resource on the primary serving cell that the terminal accesses; when the target secondary serving cell belongs to SCG (Secondary Cell group, In the case of a secondary serving cell group), the PUCCH resource may be resources on the PSCell in n secondary serving cells.
  • MCG Master Cell group, primary serving cell group
  • SCG Secondary Cell group, In the case of a secondary serving cell group
  • the PUCCH resource may be resources on the PSCell in n secondary serving cells.
  • the random access request is sent on PRACH (Physical Random Access Channel, physical random access channel) resources.
  • PRACH Physical Random Access Channel, physical random access channel
  • the PRACH resource is the resource on the target secondary serving cell; or, the PRACH resource is the resource on the primary serving cell that the terminal accesses; or, the PRACH resource is the resource on the PSCell of the n secondary serving cells; or, PRACH is the resources on other secondary serving cells except the target secondary serving cell among the n secondary serving cells.
  • the PRACH resource when the target secondary serving cell belongs to the MCG, the PRACH resource may be the resource on the primary serving cell that the terminal accesses; when the target secondary serving cell belongs to the SCG, the PRACH resource may be the PSCell of n secondary serving cells Resources.
  • step 303 the terminal receives resource configuration information sent by the base station.
  • the base station After the base station receives the aforementioned SR or random access request sent by the terminal, it learns that a beam failure has occurred. Further, the base station can send resource configuration information to the terminal.
  • the resource configuration information is used to indicate that the terminal sends the first MAC CE signaling. PUSCH resource; correspondingly, the terminal receives the above resource configuration information sent by the base station, and obtains the PUSCH resource.
  • step 304 the terminal sends the first MAC CE signaling to the base station, and the first MAC CE signaling includes beam failure indication information.
  • the foregoing beam failure indication information is used to indicate that a beam failure occurs in the target secondary serving cell.
  • the terminal sends the first MAC CE signaling on the PUSCH resource acquired through the SR or random access request.
  • the terminal may also send the second MAC CE signaling on the PUSCH resource.
  • the terminal after determining that the target secondary serving cell has a beam failure, notifies the base station of the beam failure of the terminal, so that the base station allocates the PUSCH for reporting specific information about the beam failure to the terminal after receiving the above notification. Resource, and then the terminal uses the PUSCH resource allocated by the base station to send MAC CE signaling to the base station.
  • the first MAC CE signaling and/or the second MAC CE signaling may be directly sent on the periodic PUSCH resources. That is, in this case, the terminal does not need to request the base station to allocate PUSCH resources for sending MAC CE signaling through SR or random access request.
  • the PUSCH resource is the resource on the target secondary serving cell; or, the PUSCH resource is the resource on the primary serving cell that the terminal accesses; or, the PUSCH resource is the resource on the PSCell of the n secondary serving cells; or, PUSCH resources are resources on other secondary serving cells except for the target secondary serving cell among the n secondary serving cells.
  • MAC CE signaling for beam failure reporting and recovery is also sent on PUSCH resources to avoid occupying excessive PUCCH resources.
  • Fig. 4 is a block diagram showing a device for reporting beam failure according to an exemplary embodiment.
  • the device has the function of realizing the above method example, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the terminal described above, or it can be set in the terminal.
  • the apparatus 400 may include: a target cell determining module 410 and a first signaling sending module 420.
  • the target cell determining module 410 is configured to determine that the target secondary serving cell of the n accessed secondary serving cells has a beam failure, where n is a positive integer.
  • the first signaling sending module 420 is configured to send first MAC CE signaling to the base station, where the first MAC CE signaling includes beam failure indication information, and the beam failure indication information is used to indicate the target secondary service A beam failure occurred in the cell.
  • the terminal when it determines that the target secondary serving cell of the multiple secondary serving cells that it accesses has a beam failure, it sends a MAC CE containing beam failure indication information to the base station. Signaling informs the base station of the target secondary serving cell where the beam failure occurs, thereby providing a report scheme for the terminal when the beam failure occurs in the secondary serving cell, and realizes the reporting of the beam failure condition of the secondary serving cell.
  • the beam failure indication information is represented by m-bit codewords, and the n-bit codewords in the m-bit codewords correspond to the n secondary serving cells in a one-to-one correspondence.
  • the m is an integer greater than or equal to the n; wherein the i-th bit codeword among the n-bit codewords is used to indicate the i-th secondary serving cell among the n secondary serving cells Whether beam failure occurs, the i is a positive integer less than or equal to the n.
  • the beam failure indication information is represented by k-bit codewords, and the Represents rounding up; where the k-bit codeword is the identification information of the target secondary serving cell.
  • the p candidate beams are beams configured by the base station through RRC signaling; or, the p candidate beams are beams configured by the base station through RRC signaling, which are MAC Signaling activated beam.
  • the apparatus 400 further includes: a second signaling sending module 430.
  • the second signaling sending module 430 is configured to send second MAC CE signaling to the base station, where the second MAC CE signaling includes target beam indication information, and the target beam indication information is used to indicate from p A target beam selected from the candidate beams for beam failure recovery, where p is an integer greater than 1.
  • the target beam indication information is represented by q bit codewords, and p bit codewords in the q bit codewords correspond to the p candidate beams in a one-to-one correspondence, so
  • the q is an integer greater than or equal to the p; wherein, the j-bit codeword in the p-bit codewords is used to indicate that the j-th candidate beam among the p candidate beams is selected as For the target beam, the j is a positive integer less than or equal to the p.
  • the target beam indication information is represented by r-bit codewords, and the Indicates rounding up; where the r-bit codeword is the identification information of the target beam.
  • the p candidate beams are beams configured by the base station through RRC signaling; or, the p candidate beams are beams configured by the base station through RRC signaling, which are MAC Signaling activated beam.
  • the apparatus 400 further includes: a request sending module 440 and a configuration information receiving module 450.
  • the request sending module 440 is configured to send an uplink scheduling request or a random access request to the base station, where the uplink scheduling request or the random access request is used to notify the base station that the terminal has a beam failure.
  • the configuration information receiving module 450 is configured to receive resource configuration information sent by the base station, where the resource configuration information is used to indicate PUSCH resources for the terminal to send the first MAC CE signaling.
  • the first MAC CE signaling is sent on a periodic PUSCH resource configured by the base station for the terminal.
  • the PUSCH resource is a resource on the target secondary serving cell; or, the PUSCH resource is a resource on a primary serving cell that the terminal accesses; or, the PUSCH resource is a resource on the target secondary serving cell;
  • the resources on the primary and secondary serving cells in the n secondary serving cells; or, the PUSCH resources are the resources on other secondary serving cells in the n secondary serving cells except for the target secondary serving cell.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used for illustration. In actual applications, the above functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure also provides a beam failure reporting device, which can be applied to the terminal introduced above, and can implement the beam failure reporting method provided in the disclosure.
  • the device may include a processor, and a memory for storing executable instructions of the processor.
  • the processor is configured as:
  • the first MAC CE signaling includes beam failure indication information, and the beam failure indication information is used to indicate that the target secondary serving cell has a beam failure.
  • the beam failure indication information is represented by m-bit codewords, and the n-bit codewords in the m-bit codewords correspond to the n secondary serving cells in a one-to-one correspondence.
  • the m is an integer greater than or equal to the n;
  • the i-th bit codeword in the n-bit codewords is used to indicate whether beam failure occurs in the i-th secondary serving cell in the n secondary serving cells, and the i is less than or equal to all The positive integer of n.
  • the beam failure indication information is represented by k-bit codewords, and the Represents rounding up; where the k-bit codeword is the identification information of the target secondary serving cell.
  • the first MAC CE signaling further includes target beam indication information, and the target beam indication information is used to indicate a target beam selected from the p candidate beams for beam failure recovery, so Said p is an integer greater than 1.
  • the processor is further configured to:
  • the second MAC CE signaling includes target beam indication information
  • the target beam indication information is used to indicate the selected beam failure recovery from p candidate beams
  • the p is an integer greater than 1.
  • the target beam indication information is represented by q bit codewords, and p bit codewords in the q bit codewords correspond to the p candidate beams in a one-to-one correspondence, so The q is an integer greater than or equal to the p;
  • the j-th bit codeword in the p-bit codewords is used to indicate that the j-th candidate beam among the p candidate beams is selected as the target beam, and the j is less than or equal to The positive integer of p.
  • the target beam indication information is represented by r-bit codewords, and the Indicates rounding up;
  • the r-bit codewords are identification information of the target beam.
  • the p candidate beams are beams configured by the base station through RRC signaling; or, the p candidate beams are beams configured by the base station through RRC signaling, which are MAC Signaling activated beam.
  • the processor is further configured to:
  • the first MAC CE signaling is sent on a periodic PUSCH resource configured by the base station for the terminal.
  • the PUSCH resource is a resource on the target secondary serving cell; or, the PUSCH resource is a resource on a primary serving cell that the terminal accesses; or, the PUSCH resource is a resource on the target secondary serving cell;
  • the resources on the primary and secondary serving cells in the n secondary serving cells; or, the PUSCH resources are the resources on other secondary serving cells in the n secondary serving cells except for the target secondary serving cell.
  • the terminal and the base station include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 6 is a schematic structural diagram showing a terminal according to an exemplary embodiment.
  • the terminal 600 includes a transmitter 601, a receiver 602, and a processor 603.
  • the processor 603 may also be a controller, which is represented as "controller/processor 603" in FIG. 6.
  • the terminal 600 may further include a modem processor 605, where the modem processor 605 may include an encoder 606, a modulator 607, a decoder 608, and a demodulator 609.
  • the transmitter 601 adjusts (eg, analog conversion, filtering, amplification, and upconversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station via an antenna.
  • the antenna receives the downlink signal transmitted by the base station.
  • the receiver 602 conditions (eg, filters, amplifies, down-converts, and digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 606 receives service data and signaling messages to be transmitted on the uplink, and processes the service data and signaling messages (for example, formatting, encoding, and interleaving).
  • the modulator 607 further processes (for example, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 609 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 608 processes (e.g., deinterleaves and decodes) the symbol estimation and provides the decoded data and signaling messages sent to the terminal 600.
  • the encoder 606, the modulator 607, the demodulator 609, and the decoder 608 may be implemented by a synthesized modem processor 605. These units are processed according to the radio access technology adopted by the radio access network (for example, 5G NR and access technologies of other evolved systems). It should be noted that when the terminal 600 does not include the modem processor 605, the foregoing functions of the modem processor 605 may also be performed by the processor 603.
  • the processor 603 controls and manages the actions of the terminal 600, and is used to execute the processing procedure performed by the terminal 600 in the foregoing embodiment of the present disclosure.
  • the processor 603 is further configured to execute each step on the terminal side in the foregoing method embodiment, and/or other steps of the technical solution described in the embodiment of the present disclosure.
  • the terminal 600 may further include a memory 604, and the memory 604 is configured to store program codes and data for the terminal 600.
  • FIG. 6 only shows a simplified design of the terminal 600.
  • the terminal 600 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • the base station 700 includes a transmitter/receiver 701 and a processor 702.
  • the processor 702 may also be a controller, which is represented as "controller/processor 702" in FIG. 7.
  • the transmitter/receiver 701 is used to support the sending and receiving of information between the base station and the terminal in the foregoing embodiment, and to support communication between the base station and other network entities.
  • the processor 702 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via an antenna, demodulated by the receiver 701 (for example, demodulating a high-frequency signal into a baseband signal), and further processed by the processor 702 to restore the terminal Send to business data and signaling information.
  • service data and signaling messages are processed by the processor 702, and modulated by the transmitter 701 (for example, the baseband signal is modulated into a high-frequency signal) to generate a downlink signal, which is transmitted to the terminal via an antenna .
  • the processor 702 is further configured to execute various steps on the base station side in the foregoing method embodiments, and/or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the base station 700 may further include a memory 703, where the memory 703 is used to store program codes and data of the base station 700.
  • the base station may further include a communication unit 704.
  • the communication unit 704 is used to support the base station to communicate with other network entities (for example, network devices in the core network, etc.).
  • the communication unit 704 may be an NG-U interface to support communication between the base station and a UPF (User Plane Function) entity; or, the communication unit 704 may also be an NG-C
  • the interface is used to support access to AMF (Access and Mobility Management Function) entities for communication.
  • AMF Access and Mobility Management Function
  • FIG. 7 only shows a simplified design of the base station 700.
  • the base station 700 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor of a terminal, the above-mentioned beam failure reporting method is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种波束失败的上报方法、装置及存储介质,属于通信技术领域。所述方法包括:终端确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,n为正整数;终端向基站发送第一MAC CE信令,第一MAC CE信令中包括波束失败指示信息。本公开实施例提供了一种终端在辅服务小区发生波束失败时的上报方案,实现了辅服务小区的波束失败情况的上报。

Description

波束失败的上报方法、装置及存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及一种波束失败的上报方法、装置及存储介质。
背景技术
在5G NR(New Radio,新空口)系统中,基站和终端可以使用波束(beam)收发信息。例如,基站可以通过波束向终端发送PDCCH(Physical Downlink Control Channel,物理下行控制信道)的下行控制信息。
当终端发生移动或基站的天线方向发生改变时,基站配置给终端的用于接收下行控制信息的波束可能会发生波束失败(beam failure)的问题。目前,标准定义了一个用于检测波束失败的RS集合,当终端检测到该RS集合中所有RS对应的信道测量参数都低于第一门限值时,终端确定发生波束失败。
此时,终端可以根据基站配置的用于确定候选波束(candidate beam)的RS集合,检测该用于确定候选波束的RS集合中是否存在L1-RSRP(Layer1-Reference Signal Received Power,层一的参考信号接收功率)大于第二门限值的RS,若存在这样的RS,则终端在该RS对应的随机接入时频资源上发送该RS对应的随机接入前导码,通过这种方式隐性地告知基站该终端发生了波束失败,并找到了候选波束。随后终端检测基站发送的针对波束失败请求的回复,等待波束失败恢复(beam failure recovery)。
目前只定义了终端在PCell(Primary cell,主服务小区)上发生波束失败时的上报和恢复过程。
发明内容
本公开实施例提供了一种波束失败的上报方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种波束失败的上报方法,所述方法包括:
终端确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
所述终端向基站发送第一MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
可选地,所述波束失败指示信息采用m个比特码字表示,所述m个比特码字中的n个比特码字和所述n个辅服务小区一一对应,所述m为大于等于所述n的整数;
其中,所述n个比特码字中的第i个比特码字,用于指示所述n个辅服务小区中的第i个辅服务小区是否发生波束失败,所述i为小于等于所述n的正整数。
可选地,所述波束失败指示信息采用k个比特码字表示,所述
Figure PCTCN2019084363-appb-000001
表示向上取整;
其中,所述k个比特码字为所述目标辅服务小区的标识信息。
可选地,所述第一MAC CE信令中还包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
可选地,所述方法还包括:
所述终端向所述基站发送第二MAC CE信令,所述第二MAC CE信令中包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
可选地,所述目标波束指示信息采用q个比特码字表示,所述q个比特码字中的p个比特码字和所述p个候选波束一一对应,所述q为大于等于所述p的整数;
其中,所述p个比特码字中的第j个比特码字,用于指示所述p个候选波束中的第j个候选波束被选为所述目标波束,所述j为小于等于所述p的正整数。
可选地,所述目标波束指示信息采用r个比特码字表示,所述
Figure PCTCN2019084363-appb-000002
表示向上取整;
其中,所述r个比特码字为所述目标波束的标识信息。
可选地,所述p个候选波束为所述基站通过RRC(Radio Resource Control,无线资源控制)信令配置的波束;
或者,
所述p个候选波束为所述基站通过RRC信令配置的多个波束中,被MAC信令激活的波束。
可选地,所述方法还包括:
所述终端向所述基站发送上行调度请求或随机接入请求,所述上行调度请求或所述随机接入请求用于向所述基站通知所述终端发生波束失败;
所述终端接收所述基站发送的资源配置信息,所述资源配置信息用于指示供所述终端发送所述第一MAC CE信令的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源。
可选地,所述第一MAC CE信令在所述基站为所述终端配置的周期性的PUSCH资源上发送。
可选地,所述PUSCH资源为所述目标辅服务小区上的资源;或者,
所述PUSCH资源为所述终端接入的主服务小区上的资源;或者,
所述PUSCH资源为所述n个辅服务小区中的主辅服务小区上的资源;或者,
所述PUSCH资源为所述n个辅服务小区中除所述目标辅服务小区之外的其它辅服务小区上的资源。
根据本公开实施例的第二方面,提供了一种波束失败的上报装置,应用于终端中,所述装置包括:
目标小区确定模块,被配置为确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
第一信令发送模块,被配置为向基站发送第一MAC CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
可选地,所述波束失败指示信息采用m个比特码字表示,所述m个比特码字中的n个比特码字和所述n个辅服务小区一一对应,所述m为大于等于所述n的整数;
其中,所述n个比特码字中的第i个比特码字,用于指示所述n个辅服务小区中的第i个辅服务小区是否发生波束失败,所述i为小于等于所述n的正整数。
可选地,所述波束失败指示信息采用k个比特码字表示,所述
Figure PCTCN2019084363-appb-000003
表示向上取整;
其中,所述k个比特码字为所述目标辅服务小区的标识信息。
可选地,所述第一MAC CE信令中还包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
可选地,所述装置还包括:
第二信令发送模块,被配置为向所述基站发送第二MAC CE信令,所述第二MAC CE信令中包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
可选地,所述目标波束指示信息采用q个比特码字表示,所述q个比特码字中的p个比特码字和所述p个候选波束一一对应,所述q为大于等于所述p的整数;
其中,所述p个比特码字中的第j个比特码字,用于指示所述p个候选波束中的第j个候选波束被选为所述目标波束,所述j为小于等于所述p的正整数。
可选地,所述目标波束指示信息采用r个比特码字表示,所述
Figure PCTCN2019084363-appb-000004
表示向上取整;
其中,所述r个比特码字为所述目标波束的标识信息。
可选地,所述p个候选波束为所述基站通过RRC信令配置的波束;
或者,
所述p个候选波束为所述基站通过RRC信令配置的多个波束中,被MAC信令激活的波束。
可选地,所述装置还包括:
请求发送模块,被配置为向所述基站发送上行调度请求或随机接入请求,所述上行调度请求或所述随机接入请求用于向所述基站通知所述终端发生波束失败;
配置信息接收模块,被配置为接收所述基站发送的资源配置信息,所述资源配置信息用于指示供所述终端发送所述第一MAC CE信令的PUSCH资源。
可选地,所述第一MAC CE信令在所述基站为所述终端配置的周期性的PUSCH资源上发送。
可选地,所述PUSCH资源为所述目标辅服务小区上的资源;或者,
所述PUSCH资源为所述终端接入的主服务小区上的资源;或者,
所述PUSCH资源为所述n个辅服务小区中的主辅服务小区上的资源;或者,
所述PUSCH资源为所述n个辅服务小区中除所述目标辅服务小区之外的其 它辅服务小区上的资源。
根据本公开实施例的第三方面,提供了一种波束失败的上报装置,应用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
向基站发送第一MAC CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
根据本公开实施例的第四方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
本公开实施例提供的技术方案可以包括以下有益效果:
在终端确定接入的多个辅服务小区中的目辅标服务小区发生波束失败时,通过向基站发送包含波束失败指示信息的MAC CE信令,将上述发生波束失败的目标辅服务小区通知给基站,从而提供了一种终端在辅服务小区发生波束失败时的上报方案,实现了辅服务小区的波束失败情况的上报。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种波束失败的上报方法的流程图;
图3是根据另一示例性实施例示出的一种波束失败的上报方法的流程图;
图4根据一示例性实施例示出的一种波束失败的上报装置的框图;
图5根据另一示例性实施例示出的一种波束失败的上报装置的框图;
图6是根据一示例性实施例示出的一种终端的结构示意图;
图7是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1是根据一示例性实施例示出的一种网络架构的示意图。该网络架构可以包括:基站110和终端120。
基站110部署在接入网中。5G NR(New Radio,新空口)系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。基站110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
基站110是一种部署在接入网中用以为终端120提供无线通信功能的装置。基站110可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端120提供无线通信功能的装置统称为基站。基站110也可以是一个车载设备,适用于车联网中车车之间通信的场景。当车车通信时,本公开中的信道或信令都为适用于侧链路(sidelink)的信道或信令。
终端120的数量通常为多个,每一个基站110所管理的小区内可以分布一个或多个终端120。终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本公开实施例中,上面提到的 设备统称为终端。终端120也可以是一个车载设备,适用于车联网中车车之间通信的场景。当车车通信时,本公开中的信道或信令都为适用于侧链路的信道或信令。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统以及5G NR车联网系统。
本申请针对终端在SCell(Secondary Cell,辅服务小区)上发生波束失败时的上报和恢复过程,进行了相关定义。
图2是根据一示例性实施例示出的一种波束失败的上报方法的流程图。该方法可应用于图1所示的终端中。该方法可以包括如下几个步骤(201~202)。
在步骤201中,终端确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,n为正整数。
在CA(Carrier Aggregation,载波聚合)场景中,终端可以有多个服务小区(serving cell),多个服务小区可以分为主服务小区和至少一个辅服务小区。其中,主服务小区是指工作在主频带上的服务小区,终端可以与主服务小区进行初始连接建立过程,或者进行连接重建立过程。辅服务小区是指工作在辅频带上的小区,辅服务小区可以提供额外的无线资源,以提高终端的吞吐量。
需要说明的一点是,终端可以同时接入多个辅服务小区。
当终端发生移动或基站的天线方向发生改变时,基站配置给终端的用于接收辅服务小区发送的下行控制信息的波束可能会发生波束失败的问题。进一步,终端可以检测接入的多个辅服务小区中是否有辅服务小区发生波束失败,并确定发生波束失败的目标辅服务小区。
可选地,基站给终端配置了用于检测各个配置了PDCCH的辅服务小区的波束失败的RS集合,当终端检测到该RS集合中所有RS对应的信道测量参数都低于门限值时,终端确定该辅服务小区发生波束失败。
在步骤202中,终端向基站发送第一MAC CE信令,第一MAC CE信令中包括波束失败指示信息。
当终端确定接入的多个辅服务小区中的目标辅服务小区发生波束失败时,可以通过第一MAC CE信令向基站指示该目标辅服务小区发生波束失败。其中, 第一MAC CE信令中包括上述波束失败指示信息,该波束失败指示信息用于指示目标辅服务小区发生波束失败。
可选地,上述目标辅服务小区可以是终端接入的n个辅服务小区中的一个或者多个辅服务小区。
在一种可能的实施方式中,波束失败指示信息采用m个比特码字表示,m个比特码字中的n个比特码字和n个辅服务小区一一对应,m为大于等于n的整数;其中,n个比特码字中的第i个比特码字,用于指示n个辅服务小区中的第i个辅服务小区是否发生波束失败,i为小于等于n的正整数。
上述波束失败指示信息的比特码字长度(也即m)可以由协议预先规定,表示一次最多可以指示m个辅服务小区的波束失败情况。例如,m为8、16、32或其它数值。上述n个比特码字可以是m个比特码字中的前n个比特码字,且n个比特码字与n个辅服务小区一一对应。
当波束失败指示信息采用上述m个比特码字表示时,终端同时可以上报一个或者多个发生波束失败的目标辅服务小区。
示例性地,假设m为5,终端接入了3个辅服务小区(分别为SCell#1、SCell#2和SCell#3),则波束失败指示信息采用5个比特码字表示,该5个比特码字中的前3个比特码字依次对应于SCell#1、SCell#2和SCell#3。假设1表示发生了波束失败,0表示未发生波束失败。当波束失败指示信息为01000时,则表示SCell#2发生了波束失败,SCell#1和SCell#3未发生波束失败;当波束失败指示信息为10100时,则表示SCell#1和SCell#3发生了波束失败,SCell#2未发生波束失败;当波束失败指示信息为11100时,则表示SCell#1、SCell#2和SCell#3均发生了波束失败。
在另一种可能的实施方式中,波束失败指示信息采用k个比特码字表示,
Figure PCTCN2019084363-appb-000005
表示向上取整;其中,k个比特码字为目标辅服务小区的标识信息。
上述
Figure PCTCN2019084363-appb-000006
表示向上取整。例如,当n为3和4时,k均取2;当n为5至8时,k均取3;当n为9至16时,k均取4,等等。上述目标辅服务小区的标识信息用于唯一标识该目标辅服务小区。
由于k个比特码字为目标辅服务小区的标识信息,因此,当波束失败指示信息采用上述k个比特码字表示时,终端同时只可以上报一个发生波束的目标辅服务小区。
示例性地,假设n为4,表示终端接入SCell#1、SCell#2、SCell#3和SCell#4四个辅服务小区,则k取2,即波束失败指示信息采用2个比特码字表示。当2个比特码字为00时,则表示SCell#1发生波束失败;当2个比特码字为01时,则表示SCell#2发生波束失败;当2个比特码字为10时,则表示SCell#3发生波束失败;当2个比特码字为11时,则表示SCell#4发生波束失败。
综上所述,本公开实施例提供的技术方案中,在终端确定接入的多个辅服务小区中的目辅标服务小区发生波束失败时,通过向基站发送包含波束失败指示信息的MAC CE信令,将上述发生波束失败的目标辅服务小区通知给基站,从而提供了一种终端在辅服务小区发生波束失败时的上报方案,实现了辅服务小区的波束失败情况的上报。
上文实施例对辅服务小区的波束失败上报进行了介绍说明,下面对辅服务小区在发生波束失败之后的波束失败恢复进行介绍说明。
终端还可以从p个候选波束中选择用于波束失败恢复的目标波束,然后向基站发送目标波束指示信息,该目标波束指示信息用于指示上述选择的目标波束,p为大于1的整数。
可选地,针对各个配置了PDCCH和波束失败检测以及波束失败恢复的辅服务小区,p个候选波束为基站通过RRC信令配置的波束;或者,p个候选波束为基站通过RRC信令配置的多个波束中,被MAC信令激活的波束。
当终端确定目标辅服务小区发生了波束失败时,可以从该目标辅服务小区对应的上述多个候选波束中选择信号质量大于预设阈值的候选波束,作为目标波束。其中,上述信号质量可以是L1-RSRP(Layer 1-Reference Signal Receiving Power,层一参考信号接收功率),也可以是L1-SINR(Layer 1-Signal to Interference plus Noise Ratio,层一信号干扰噪声比),还可以是L1-RSRQ(Layer1-Reference Signal Receiving Quality,层一参考信号接收质量)等等,本公开实施例对此不作限定。
上述目标波束可以是一个也可以是多个。
在一种可能的实施方式中,第一MAC CE信令中还包括目标波束指示信息。也即,终端在通过第一MAC CE信令向基站上报辅服务小区的波束失败情况时,通过该第一MAC CE信令同时上报终端找到的用于波束失败恢复的目标波束。
在另一种可能的实施方式中,终端向基站发送第二MAC CE信令,该第二 MAC CE信令中包括目标波束指示信息。第二MAC CE信令是不同于第一MAC CE信令的另一个信令。也即,终端通过两个不同的MAC CE信令,分别上报辅服务小区的波束失败情况,以及终端找到的用于波束失败恢复的目标波束。另外,第一MAC CE信令和第二MAC CE信令可以同时发送,也可以不同时发送,如先发送第一MAC CE信令,后发送第二MAC CE信令。
另外,目标波束指示信息可以有如下两种表示方式:
在一种可能的实施方式中,目标波束指示信息采用q个比特码字表示,q个比特码字中的p个比特码字和p个候选波束一一对应,q为大于等于p的整数;其中,p个比特码字中的第j个比特码字,用于指示p个候选波束中的第j个候选波束被选为目标波束,j为小于等于p的正整数。
上述目标波束指示信息的比特码字长度(也即q)可以由协议预先规定。例如,q为4、8、16或其它数值。上述p个比特码字可以是q个比特码字中的前p个比特码字。
示例性地,假设q为4,基站给终端配置了3个候选波束(分别为beam#1、beam#2和beam#3),则目标波束指示信息采用4个比特码字表示,该4个比特码字的前3个比特码字依次对应于beam#1、beam#2和beam#3。假设1表示被选为目标波束,0表示未被选为目标波束。当目标波束指示信息为0100时,则表示beam#2被选为目标波束,beam#1和beam#3未被选为目标波束;当目标波束指示信息为1010时,则表示beam#1和beam#3被选为目标波束,beam#2未被选为目标波束;当目标波束指示信息为1110时,则表示beam#1、beam#2和beam#3均被选为目标波束。
当目标波束指示信息采用上述q个比特码字表示时,终端同时可以上报一个或者多个用于波束失败恢复的目标波束。
在另一种可能的实施方式中,目标波束指示信息采用r个比特码字表示,
Figure PCTCN2019084363-appb-000007
表示向上取整;其中,r个比特码字为目标波束的标识信息。
上述
Figure PCTCN2019084363-appb-000008
表示向上取整。例如,当p为3和4时,r均取2;当p为5-8时,r均取3;当p为9-16时,r均取4,等等。上述目标波束的标识信息用于唯一标识该目标波束。
由于r个比特码字为目标波束的标识信息,因此,当目标波束指示信息采用上述r个比特码字表示时,终端同时只可以上报一个用于波束失败恢复的目标波束。
示例性地,假设p为4,表示候选波束包括beam#1、beam#2、beam#3和beam#4,则r取2,即目标波束指示信息采用2个比特码字表示。当2个比特码字为00时,则表示4个候选波束中的beam#1被选为目标波束;当2个比特码字为01时,则表示4个候选波束中的beam#2被选为目标波束;当2个比特码字为10时,则表示4个候选波束中的beam#3被选为目标波束;当2个比特码字为11时,则表示4个候选波束中的beam#4被选为目标波束。
可选地,上述目标波束的标识信息还可以是该目标波束在候选波束中的编号顺序。该编号顺序可以是候选波束对应的TCI(transmission configuration indication,传输配置指示)状态编号顺序。例如,beam#1对应于TCI#2、beam#2对应于TCI#7、beam#3对应于TCI#14,beam#4对应于TCI#18。
综上所述,本公开实施例提供的技术方案中,还通过向基站发送目标波束指示信息,将终端选择的用于波束失败恢复的目标波束告知给基站,从而提供了一种终端在辅服务小区发生波束失败时的恢复方案,实现了辅服务小区的波束失败恢复。
图3是根据另一示例性实施例示出的一种波束失败的上报方法的流程图。该方法可应用于图1所示的终端中。该方法可以包括如下几个步骤(301~304)。
在步骤301中,终端确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,n为正整数。
有关于本步骤的介绍,与图2实施例中步骤201的介绍相同或类似,此处不再赘述。
可选地,终端确定接入目标辅服务小区发生波束失败之后,可以向基站指示发生了波束失败,包括下述步骤302和303。
在步骤302中,终端向基站发送上行调度请求或随机接入请求。
上述SR(Scheduling Request,上行调度请求)或随机接入(Random Access)请求用于向基站通知终端发生波束失败。
可选地,上述SR可以是通用的SR,即该SR与终端用于请求基站配置发送上行数据资源的SR相同;上述SR还可以是专用于上报波束失败的SR,即该SR与终端用于请求基站配置发送上行数据资源的SR不相同。
上述随机接入请求资源可以是专门用于指示波束失败的随机接入时频码资源,即基站给终端配置了专门的随机接入时频码资源,当基站在该时频资源上 接收到该特定的随机接入前导码时,基站就获知终端发生了波束失败,但如果基站需要进一步知道终端是在哪个或哪些个服务小区上发生波束失败,则需要进一步配置PUSCH资源给终端来发送发生波束失败的目标辅服务小区的标识信息。
可选地,上述SR在PUCCH(Physical Uplink Control Channel,物理上行控制信道)资源上发送。
可选地,PUCCH资源为目标辅服务小区上的资源;或者,PUCCH资源为终端接入的主服务小区上的资源;或者,PUCCH资源为n个辅服务小区中的PSCell(Primary Secondary Cell,主辅服务小区)上的资源;或者,PUCCH为n个辅服务小区中除目标辅服务小区之外的其它辅服务小区上的资源。
示例性地,当目标辅服务小区属于MCG(Master Cell group,主服务小区组)时,PUCCH资源可以为终端接入的主服务小区上的资源;当目标辅服务小区属于SCG(Secondary Cell group,辅服务小区组)时,该PUCCH资源可以为n个辅服务小区中的PSCell上的资源。
可选地,随机接入请求是在PRACH(Physical Random Access Channel,物理随机接入信道)资源上发送。
可选地,PRACH资源为目标辅服务小区上的资源;或者,PRACH资源为终端接入的主服务小区上的资源;或者,PRACH资源为n个辅服务小区中的PSCell上的资源;或者,PRACH为n个辅服务小区中除目标辅服务小区之外的其它辅服务小区上的资源。
示例性地,当目标辅服务小区属于MCG时,PRACH资源可以为终端接入的主服务小区上的资源;当目标辅服务小区属于SCG时,该PRACH资源可以为n个辅服务小区中的PSCell上的资源。
在步骤303中,终端接收基站发送的资源配置信息。
基站在接收到终端发送的上述SR或随机接入请求之后,获知有波束失败发生,进一步,基站可以向终端发送资源配置信息,该资源配置信息用于指示供终端发送第一MAC CE信令的PUSCH资源;对应地,终端接收基站发送的上述资源配置信息,获取PUSCH资源。
在步骤304中,终端向基站发送第一MAC CE信令,第一MAC CE信令中包括波束失败指示信息。
上述波束失败指示信息用于指示目标辅服务小区发生波束失败。例如,终 端在上述通过SR或随机接入请求获取的PUSCH资源上发送第一MAC CE信令。可选地,如果终端还向基站发送上文介绍的第二MAC CE信令,则终端也可以在该PUSCH资源上发送第二MAC CE信令。
在本实施例中,终端在确定目标辅服务小区发生波束失败之后,向基站通知终端发生波束失败,以使得基站在接收到上述通知之后,为终端分配用于上报有关波束失败的具体信息的PUSCH资源,然后终端采用该基站分配的PUSCH资源向基站发送MAC CE信令。
在一些其它示例中,当基站配置了周期性的PUSCH资源时,第一MAC CE信令和/或第二MAC CE信令可以直接在该周期性的PUSCH资源上发送。也即,这种情况下终端无需再通过SR或随机接入请求,请求基站分配用于发送MAC CE信令的PUSCH资源。
可选地,PUSCH资源为目标辅服务小区上的资源;或者,PUSCH资源为终端接入的主服务小区上的资源;或者,PUSCH资源为n个辅服务小区中的PSCell上的资源;或者,PUSCH资源为n个辅服务小区中除目标辅服务小区之外的其它辅服务小区上的资源。
综上所述,本公开实施例提供的技术方案中,还通过在PUSCH资源上发送用于波束失败上报和恢复的MAC CE信令,避免占用过多的PUCCH资源。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图4是根据一示例性实施例示出的一种波束失败的上报装置的框图。该装置具有实现上述方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端,也可以设置在终端中。如图4所示,该装置400可以包括:目标小区确定模块410和第一信令发送模块420。
目标小区确定模块410,被配置为确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数。
第一信令发送模块420,被配置为向基站发送第一MAC CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
综上所述,本公开实施例提供的技术方案中,在终端确定接入的多个辅服 务小区中的目辅标服务小区发生波束失败时,通过向基站发送包含波束失败指示信息的MAC CE信令,将上述发生波束失败的目标辅服务小区通知给基站,从而提供了一种终端在辅服务小区发生波束失败时的上报方案,实现了辅服务小区的波束失败情况的上报。
在示例性实施例中,所述波束失败指示信息采用m个比特码字表示,所述m个比特码字中的n个比特码字和所述n个辅服务小区一一对应,所述m为大于等于所述n的整数;其中,所述n个比特码字中的第i个比特码字,用于指示所述n个辅服务小区中的第i个辅服务小区是否发生波束失败,所述i为小于等于所述n的正整数。
在示例性实施例中,所述波束失败指示信息采用k个比特码字表示,所述
Figure PCTCN2019084363-appb-000009
表示向上取整;其中,所述k个比特码字为所述目标辅服务小区的标识信息。
在示例性实施例中,所述p个候选波束为所述基站通过RRC信令配置的波束;或者,所述p个候选波束为所述基站通过RRC信令配置的多个波束中,被MAC信令激活的波束。
在示例性实施例中,如图5所示,所述装置400还包括:第二信令发送模块430。
第二信令发送模块430,被配置为向所述基站发送第二MAC CE信令,所述第二MAC CE信令中包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
在示例性实施例中,所述目标波束指示信息采用q个比特码字表示,所述q个比特码字中的p个比特码字和所述p个候选波束一一对应,所述q为大于等于所述p的整数;其中,所述p个比特码字中的第j个比特码字,用于指示所述p个候选波束中的第j个候选波束被选为所述目标波束,所述j为小于等于所述p的正整数。
在示例性实施例中,所述目标波束指示信息采用r个比特码字表示,所述
Figure PCTCN2019084363-appb-000010
表示向上取整;其中,所述r个比特码字为所述目标波束的标识信息。
在示例性实施例中,所述p个候选波束为所述基站通过RRC信令配置的波束;或者,所述p个候选波束为所述基站通过RRC信令配置的多个波束中,被 MAC信令激活的波束。
在示例性实施例中,如图5所示,所述装置400还包括:请求发送模块440和配置信息接收模块450。
请求发送模块440,被配置为向所述基站发送上行调度请求或随机接入请求,所述上行调度请求或所述随机接入请求用于向所述基站通知所述终端发生波束失败。
配置信息接收模块450,被配置为接收所述基站发送的资源配置信息,所述资源配置信息用于指示供所述终端发送所述第一MAC CE信令的PUSCH资源。
在示例性实施例中,所述第一MAC CE信令在所述基站为所述终端配置的周期性的PUSCH资源上发送。
在示例性实施例中,所述PUSCH资源为所述目标辅服务小区上的资源;或者,所述PUSCH资源为所述终端接入的主服务小区上的资源;或者,所述PUSCH资源为所述n个辅服务小区中的主辅服务小区上的资源;或者,所述PUSCH资源为所述n个辅服务小区中除所述目标辅服务小区之外的其它辅服务小区上的资源。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种波束失败的上报装置,该装置可应用于上文介绍的终端中,能够实现本公开提供的波束失败的上报方法。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
向基站发送第一MAC CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
在示例性实施例中,所述波束失败指示信息采用m个比特码字表示,所述m个比特码字中的n个比特码字和所述n个辅服务小区一一对应,所述m为大于等于所述n的整数;
其中,所述n个比特码字中的第i个比特码字,用于指示所述n个辅服务小区中的第i个辅服务小区是否发生波束失败,所述i为小于等于所述n的正整数。
在示例性实施例中,所述波束失败指示信息采用k个比特码字表示,所述
Figure PCTCN2019084363-appb-000011
表示向上取整;其中,所述k个比特码字为所述目标辅服务小区的标识信息。
在示例性实施例中,所述第一MAC CE信令中还包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
在示例性实施例中,所述处理器还被配置为:
向所述基站发送第二MAC CE信令,所述第二MAC CE信令中包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
在示例性实施例中,所述目标波束指示信息采用q个比特码字表示,所述q个比特码字中的p个比特码字和所述p个候选波束一一对应,所述q为大于等于所述p的整数;
其中,所述p个比特码字中的第j个比特码字,用于指示所述p个候选波束中的第j个候选波束被选为所述目标波束,所述j为小于等于所述p的正整数。
在示例性实施例中,所述目标波束指示信息采用r个比特码字表示,所述
Figure PCTCN2019084363-appb-000012
表示向上取整;
其中,所述r个比特码字为所述目标波束的标识信息。
在示例性实施例中,所述p个候选波束为所述基站通过RRC信令配置的波束;或者,所述p个候选波束为所述基站通过RRC信令配置的多个波束中,被MAC信令激活的波束。
在示例性实施例中,所述处理器还被配置为:
向所述基站发送上行调度请求或随机接入请求,所述上行调度请求或所述随机接入请求用于向所述基站通知所述终端发生波束失败;
接收所述基站发送的资源配置信息,所述资源配置信息用于指示供所述终端发送所述第一MAC CE信令的PUSCH资源。
在示例性实施例中,所述第一MAC CE信令在所述基站为所述终端配置的周期性的PUSCH资源上发送。
在示例性实施例中,所述PUSCH资源为所述目标辅服务小区上的资源;或者,所述PUSCH资源为所述终端接入的主服务小区上的资源;或者,所述PUSCH资源为所述n个辅服务小区中的主辅服务小区上的资源;或者,所述PUSCH资源为所述n个辅服务小区中除所述目标辅服务小区之外的其它辅服务小区上的资源。
上述主要从终端和基站的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,终端和基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图6是根据一示例性实施例示出的一种终端的结构示意图。
所述终端600包括发射器601,接收器602和处理器603。其中,处理器603也可以为控制器,图6中表示为“控制器/处理器603”。可选的,所述终端600还可以包括调制解调处理器605,其中,调制解调处理器605可以包括编码器606、调制器607、解码器608和解调器609。
在一个示例中,发射器601调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给基站。在下行链路上,天线接收基站发射的下行链路信号。接收器602调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器605中,编码器606接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器607进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器609处理(例如,解调)该输入采样并提供符号估计。解码器608处理(例如,解交织和解码)该符号估计并提供发送给终端600的 已解码的数据和信令消息。编码器606、调制器607、解调器609和解码器608可以由合成的调制解调处理器605来实现。这些单元根据无线接入网采用的无线接入技术(例如,5G NR及其他演进系统的接入技术)来进行处理。需要说明的是,当终端600不包括调制解调处理器605时,调制解调处理器605的上述功能也可以由处理器603完成。
处理器603对终端600的动作进行控制管理,用于执行上述本公开实施例中由终端600进行的处理过程。例如,处理器603还用于执行上述方法实施例中的终端侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,终端600还可以包括存储器604,存储器604用于存储用于终端600的程序代码和数据。
可以理解的是,图6仅仅示出了终端600的简化设计。在实际应用中,终端600可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图7是根据一示例性实施例示出的一种基站的结构示意图。
基站700包括发射器/接收器701和处理器702。其中,处理器702也可以为控制器,图7中表示为“控制器/处理器702”。所述发射器/接收器701用于支持基站与上述实施例中的所述终端之间收发信息,以及支持所述基站与其它网络实体之间进行通信。所述处理器702执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器701进行解调(例如将高频信号解调为基带信号),并进一步由处理器702进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器702进行处理,并由发射器701进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器702完成。例如,处理器702还用于执行上述方法实施例中基站侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,基站700还可以包括存储器703,存储器703用于存储基站700的程序代码和数据。此外,基站还可以包括通信单元704。通信单元704用于支持基站与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在5G NR系统中,该通信单元704可以是NG-U接口,用于支持基站与UPF(User Plane Function,用户平面功能)实体进行通信;或者,该通信单元704也可以是NG-C 接口,用于支持接入AMF(Access and Mobility Management Function接入和移动性管理功能)实体进行通信。
可以理解的是,图7仅仅示出了基站700的简化设计。在实际应用中,基站700可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现上述波束失败的上报方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种波束失败的上报方法,其特征在于,所述方法包括:
    终端确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
    所述终端向基站发送第一媒体接入控制MAC控制单元CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
  2. 根据权利要求1所述的方法,其特征在于,所述波束失败指示信息采用m个比特码字表示,所述m个比特码字中的n个比特码字和所述n个辅服务小区一一对应,所述m为大于等于所述n的整数;
    其中,所述n个比特码字中的第i个比特码字,用于指示所述n个辅服务小区中的第i个辅服务小区是否发生波束失败,所述i为小于等于所述n的正整数。
  3. 根据权利要求1所述的方法,其特征在于,所述波束失败指示信息采用k个比特码字表示,所述
    Figure PCTCN2019084363-appb-100001
    表示向上取整;
    其中,所述k个比特码字为所述目标辅服务小区的标识信息。
  4. 根据权利要求1所述的方法,其特征在于,所述第一MAC CE信令中还包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端向所述基站发送第二MAC CE信令,所述第二MAC CE信令中包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
  6. 根据权利要求4或5所述的方法,其特征在于,所述目标波束指示信息采用q个比特码字表示,所述q个比特码字中的p个比特码字和所述p个候选 波束一一对应,所述q为大于等于所述p的整数;
    其中,所述p个比特码字中的第j个比特码字,用于指示所述p个候选波束中的第j个候选波束被选为所述目标波束,所述j为小于等于所述p的正整数。
  7. 根据权利要求4或5所述的方法,其特征在于,所述目标波束指示信息采用r个比特码字表示,所述
    Figure PCTCN2019084363-appb-100002
    表示向上取整;
    其中,所述r个比特码字为所述目标波束的标识信息。
  8. 根据权利要求4或5所述的方法,其特征在于,
    所述p个候选波束为所述基站通过无线资源控制RRC信令配置的波束;
    或者,
    所述p个候选波束为所述基站通过RRC信令配置的多个波束中,被MAC信令激活的波束。
  9. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述基站发送上行调度请求或随机接入请求,所述上行调度请求或所述随机接入请求用于向所述基站通知所述终端发生波束失败;
    所述终端接收所述基站发送的资源配置信息,所述资源配置信息用于指示供所述终端发送所述第一MAC CE信令的物理上行共享信道PUSCH资源。
  10. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一MAC CE信令在所述基站为所述终端配置的周期性的PUSCH资源上发送。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述PUSCH资源为所述目标辅服务小区上的资源;或者,
    所述PUSCH资源为所述终端接入的主服务小区上的资源;或者,
    所述PUSCH资源为所述n个辅服务小区中的主辅服务小区上的资源;或者,
    所述PUSCH资源为所述n个辅服务小区中除所述目标辅服务小区之外的其它辅服务小区上的资源。
  12. 一种波束失败的上报装置,其特征在于,应用于终端中,所述装置包括:
    目标小区确定模块,被配置为确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
    第一信令发送模块,被配置为向基站发送第一媒体接入控制MAC控制单元CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
  13. 根据权利要求12所述的装置,其特征在于,所述第一MAC CE信令中还包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
  14. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    第二信令发送模块,被配置为向所述基站发送第二MAC CE信令,所述第二MAC CE信令中包括目标波束指示信息,所述目标波束指示信息用于指示从p个候选波束中选择的用于波束失败恢复的目标波束,所述p为大于1的整数。
  15. 根据权利要求12至14任一项所述的装置,其特征在于,所述装置还包括:
    请求发送模块,被配置为向所述基站发送上行调度请求或随机接入请求,所述上行调度请求或所述随机接入请求用于向所述基站通知所述终端发生波束失败;
    配置信息接收模块,被配置为接收所述基站发送的资源配置信息,所述资源配置信息用于指示供所述终端发送所述第一MAC CE信令的物理上行共享信道PUSCH资源。
  16. 一种波束失败的上报装置,其特征在于,应用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    确定接入的n个辅服务小区中的目标辅服务小区发生波束失败,所述n为正整数;
    向基站发送第一媒体接入控制MAC控制单元CE信令,所述第一MAC CE信令中包括波束失败指示信息,所述波束失败指示信息用于指示所述目标辅服务小区发生波束失败。
  17. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至11任一项所述方法的步骤。
PCT/CN2019/084363 2019-04-25 2019-04-25 波束失败的上报方法、装置及存储介质 WO2020215286A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201980000753.3A CN110226340B (zh) 2019-04-25 2019-04-25 波束失败的上报方法、装置及存储介质
BR112021021136A BR112021021136A2 (pt) 2019-04-25 2019-04-25 Método, aparelho e dispositivo para relatar uma falha de feixe, e, meio de armazenamento legível por computador não transitório
PCT/CN2019/084363 WO2020215286A1 (zh) 2019-04-25 2019-04-25 波束失败的上报方法、装置及存储介质
KR1020217036039A KR20210147041A (ko) 2019-04-25 2019-04-25 빔 실패의 보고 방법, 장치 및 저장 매체
US17/605,508 US20220210683A1 (en) 2019-04-25 2019-04-25 Method and device for reporting beam failure, and storage medium
EP19926066.2A EP3962152B1 (en) 2019-04-25 2019-04-25 Beam failure reporting method and apparatus, and storage medium
JP2021561850A JP7426403B2 (ja) 2019-04-25 2019-04-25 ビーム失敗の報告方法、装置及び記憶媒体
PL19926066.2T PL3962152T3 (pl) 2019-04-25 2019-04-25 Sposób i urządzenie do zgłaszania awarii wiązki oraz nośnik danych
SG11202111692VA SG11202111692VA (en) 2019-04-25 2019-04-25 Beam failure reporting method and apparatus, and storage medium
JP2023190658A JP2024010195A (ja) 2019-04-25 2023-11-08 ビーム失敗の報告方法、装置及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/084363 WO2020215286A1 (zh) 2019-04-25 2019-04-25 波束失败的上报方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020215286A1 true WO2020215286A1 (zh) 2020-10-29

Family

ID=67813746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084363 WO2020215286A1 (zh) 2019-04-25 2019-04-25 波束失败的上报方法、装置及存储介质

Country Status (9)

Country Link
US (1) US20220210683A1 (zh)
EP (1) EP3962152B1 (zh)
JP (2) JP7426403B2 (zh)
KR (1) KR20210147041A (zh)
CN (1) CN110226340B (zh)
BR (1) BR112021021136A2 (zh)
PL (1) PL3962152T3 (zh)
SG (1) SG11202111692VA (zh)
WO (1) WO2020215286A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300825A (zh) * 2021-05-25 2021-08-24 江苏中虹瑞华信息科技有限公司 一种基于大数据的智慧泊车信息管理方法及系统
JP2022548466A (ja) * 2019-08-15 2022-11-21 オッポ広東移動通信有限公司 無線通信方法、端末デバイス及びネットワークデバイス
WO2023278588A3 (en) * 2021-06-30 2023-02-09 Ofinno, Llc Determination of connection failure
US11916640B2 (en) 2020-04-06 2024-02-27 Nokia Technologies Oy Reporting beam failure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035452A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Scheduling request for cell-specific resources
CN112399430A (zh) * 2019-08-15 2021-02-23 索尼公司 无线通信系统中的用户设备、电子设备、方法及存储介质
WO2021056285A1 (en) * 2019-09-25 2021-04-01 Lenovo (Beijing) Limited Method and apparatus for transmitting scell beam failure recovery requests
WO2021056550A1 (zh) * 2019-09-29 2021-04-01 北京小米移动软件有限公司 波束失败请求发送方法、装置和电子设备
CN112584513B (zh) * 2019-09-30 2024-01-16 大唐移动通信设备有限公司 波束失败恢复请求的发送、接收方法、终端及基站
CN112929921B (zh) * 2019-12-05 2023-01-13 维沃移动通信有限公司 波束失败恢复方法、终端及网络侧设备
CN113271604B (zh) * 2020-02-14 2023-03-24 展讯通信(上海)有限公司 波束失败恢复方法、终端设备、网络设备及存储介质
US20230021967A1 (en) * 2020-02-28 2023-01-26 Qualcomm Incorporated Techniques for configuring a mac-ce bitmap for beam failure recovery
BR112022020226A2 (pt) * 2020-04-09 2022-11-22 Beijing Xiaomi Mobile Software Co Ltd Método para detecção de falha de feixe, e, dispositivos terminal e de rede
EP4238344A1 (en) * 2020-10-30 2023-09-06 Qualcomm Incorporated Beam failure recovery medium access control signaling for multi transmit-receive point system
CA3232502A1 (en) * 2021-09-24 2023-03-30 Timo Koskela Transceiver point beam failure recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888256A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
WO2019027294A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND USER EQUIPMENT (UE) FOR BEAM MANAGEMENT FRAMEWORK FOR AGGREGATION OF CARRIERS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896389A (zh) * 2016-09-29 2018-04-10 华为技术有限公司 一种用于数据传输的方法和装置
CN107888236B (zh) * 2016-09-30 2021-06-29 华为技术有限公司 一种用于数据传输的方法和装置
CN108282878B (zh) * 2017-01-06 2024-03-05 华为技术有限公司 一种指示波束标识位宽的方法、设备及系统
US10498507B2 (en) 2017-03-21 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus for channel state information reference signal (CSI-RS)
US10931514B2 (en) * 2017-03-31 2021-02-23 Futurewei Technologies, Inc. System and method for communications beam recovery
EP3628135B1 (en) * 2017-06-26 2023-02-22 Samsung Electronics Co., Ltd. Method for generating preamble, method for configuring preamble and equipment thereof, random access method, device, user equipment and base station
WO2019032882A1 (en) 2017-08-09 2019-02-14 Idac Holdings, Inc. METHODS AND SYSTEMS FOR RECOVERING AND BEAM MANAGEMENT
BR112021004373A2 (pt) * 2018-09-10 2021-07-20 Beijing Xiaomi Mobile Software Co., Ltd. método e dispositivo para relatar falha no raio de célula de servidor secundário e meio de armazenamento
EP3857731A4 (en) * 2018-09-27 2022-05-25 Nokia Technologies Oy BEAM FAILURE RESTORE FOR SERVICE CELL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888256A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
WO2019027294A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND USER EQUIPMENT (UE) FOR BEAM MANAGEMENT FRAMEWORK FOR AGGREGATION OF CARRIERS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NEC: "Discussion on Beam Failure Recovery", 3GPP TSG RAN WG1 MEETING #95, R1-1812646, 16 November 2018 (2018-11-16), XP051554602, DOI: 20191211183307A *
NOKIA ET AL.: "SCell Beam Failure Recovery", 3GPP TSG-RAN WG2 MEETING #101BIS, R2-1805342, 20 April 2018 (2018-04-20), XP051429013, DOI: 20191211181524A *
See also references of EP3962152A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022548466A (ja) * 2019-08-15 2022-11-21 オッポ広東移動通信有限公司 無線通信方法、端末デバイス及びネットワークデバイス
JP7414949B2 (ja) 2019-08-15 2024-01-16 オッポ広東移動通信有限公司 無線通信方法、端末デバイス及びネットワークデバイス
US11916640B2 (en) 2020-04-06 2024-02-27 Nokia Technologies Oy Reporting beam failure
CN113300825A (zh) * 2021-05-25 2021-08-24 江苏中虹瑞华信息科技有限公司 一种基于大数据的智慧泊车信息管理方法及系统
CN113300825B (zh) * 2021-05-25 2022-11-01 重庆仲酉衡物业管理服务有限公司 一种基于大数据的智慧泊车信息管理方法及系统
WO2023278588A3 (en) * 2021-06-30 2023-02-09 Ofinno, Llc Determination of connection failure

Also Published As

Publication number Publication date
JP7426403B2 (ja) 2024-02-01
SG11202111692VA (en) 2021-11-29
PL3962152T3 (pl) 2024-04-08
EP3962152A4 (en) 2022-04-20
BR112021021136A2 (pt) 2021-12-14
CN110226340B (zh) 2023-05-30
EP3962152B1 (en) 2024-01-17
JP2024010195A (ja) 2024-01-23
US20220210683A1 (en) 2022-06-30
EP3962152A1 (en) 2022-03-02
KR20210147041A (ko) 2021-12-06
JP2022529051A (ja) 2022-06-16
CN110226340A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2020215286A1 (zh) 波束失败的上报方法、装置及存储介质
US11805436B2 (en) Method, and device for reporting beam measurement report
CN110419186B (zh) 用于上行链路超高可靠和低延迟通信的下行链路控制通道
WO2020168551A1 (zh) 数据传输方法、装置及存储介质
WO2020168556A1 (zh) 数据传输方法、装置及存储介质
WO2020145223A1 (en) User equipments, base stations and methods for a physical sidelink (sl) control channel monitoring
CN111713069A (zh) 用户设备、基站和方法
WO2020232566A1 (zh) Bwp切换方法、装置及存储介质
CN112470517A (zh) 用于csi报告的用户设备、基站和方法
US20220095277A1 (en) User equipments, base stations and methods for sidelink channel state information (sl csi) reporting
EP2274861B1 (en) A method for communicating in a mobile network
WO2021087824A1 (zh) 数据传输方法、装置及存储介质
CN111989963A (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
US20230038936A1 (en) Control information transmission method
WO2020051845A1 (zh) Rs集合的配置方法、装置、设备及存储介质
EP3553989A1 (en) Data transmission method and apparatus
WO2020142899A1 (zh) 下行数据接收方法、发送方法、装置和储存介质
CN114026939A (zh) 用于下行链路控制信息(dci)格式的dci的用户设备、基站和方法
WO2020258278A1 (en) Methods for wireless radio link recovery
CN114600537A (zh) 用于pdsch的传输配置指示的用户装备、基站和方法
CN116235442A (zh) 控制信息接收的确认报告
CN116076099A (zh) 用于多面板/trp pusch发射的用户装备、基站和方法
CN115552858A (zh) 用于信道状态信息报告的优先级规则的用户装备、基站和方法
RU2788392C1 (ru) Способ и устройство для сообщения о сбое луча и носитель данных
US11533739B2 (en) Method and apparatus for transmitting control and data signals based on a short TTI in a wireless cellular communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036039

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021136

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019926066

Country of ref document: EP

Effective date: 20211125

ENP Entry into the national phase

Ref document number: 112021021136

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211021