WO2021087824A1 - 数据传输方法、装置及存储介质 - Google Patents

数据传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2021087824A1
WO2021087824A1 PCT/CN2019/116064 CN2019116064W WO2021087824A1 WO 2021087824 A1 WO2021087824 A1 WO 2021087824A1 CN 2019116064 W CN2019116064 W CN 2019116064W WO 2021087824 A1 WO2021087824 A1 WO 2021087824A1
Authority
WO
WIPO (PCT)
Prior art keywords
codeword
information
indication information
target
beam indication
Prior art date
Application number
PCT/CN2019/116064
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP19952003.2A priority Critical patent/EP4057519A4/en
Priority to PCT/CN2019/116064 priority patent/WO2021087824A1/zh
Priority to CN201980002937.3A priority patent/CN110945944B/zh
Priority to US17/774,112 priority patent/US20220417767A1/en
Publication of WO2021087824A1 publication Critical patent/WO2021087824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the embodiments of the present disclosure relate to the field of communication technology, and in particular to a data transmission method, device, and storage medium.
  • base stations and terminals can use beams to send and receive information.
  • the control signaling and service data exchanged between the base station and the terminal can all be sent and received using beams.
  • the base station and the terminal can transmit data through beams on different antenna panels. Take the following line data transmission as an example.
  • the base station can send downlink data to the terminal through different antenna panels.
  • Each antenna panel can only use one beam direction to transmit at the same time, that is, through different antenna panels.
  • the transmission beams in the direction respectively send downlink data to the terminal.
  • the terminal can use receiving beams on different antenna panels to respectively receive the downlink data sent by the base station through the sending beams on different antenna panels.
  • the transmitting beam and the receiving beam used between the base station and the terminal do not match, it will cause errors in the received data and affect the success rate of data transmission.
  • the embodiments of the present disclosure provide a data transmission method, device, and storage medium.
  • the technical solution is as follows:
  • a data transmission method including:
  • the terminal receives MAC (Medium Access Control) signaling sent by the base station, where the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panels is used for When instructing the corresponding beam when the antenna panel is used to transmit data, the MAC signaling includes mapping information, and the mapping information is used to indicate that the beam indicator codeword in DCI (Downlink Control Information, downlink control information) is activated The corresponding relationship between the beam indication information of, where m is a positive integer;
  • the terminal determines the corresponding target beam when the target antenna panel is used to transmit data according to the target beam indication information
  • the terminal uses the target beam corresponding to the target antenna panel to transmit data with the base station.
  • the number of beam indication information activated by the MAC signaling is k, where k is a positive integer; the mapping information includes k redefinition numbers from 0 to k-1, and the k The redefinition number corresponds to the k beam indication information activated by the MAC signaling in a one-to-one correspondence.
  • the number indicator codeword corresponding to each beam indicator codeword is k bits, and each bit in the k bits corresponds to one of k activated beam indicator information;
  • the number indicating codeword is a codeword used to indicate the redefinition number.
  • the number indicator codeword corresponding to each beam indicator codeword is r bits, and each number indicator codeword indicates one or one of the k activated beam indicators. Multiple; wherein the number indicating codeword is a codeword used to indicate the redefinition number, and the r is a positive integer.
  • the i-th beam indicator codeword in the mapping information when the number of beam indicator information corresponding to the i-th beam indicator codeword is a, and a is greater than 1, the a beams
  • the indication information corresponds to a different antenna panels; wherein, the i is a positive integer.
  • the terminal determining the target beam indication information corresponding to the target antenna panel among the m antenna panels according to the first beam indication codeword and the mapping information includes: the terminal determines from the mapping information Obtain a first number indicating codeword from the information, where the first number indicating codeword is a number indicating codeword corresponding to the first beam indicating codeword, wherein the mapping relationship includes multiple sets of beam indicating codewords and The number indicates the mapping relationship between codewords, the number indicating codeword is a codeword used to indicate the redefinition number; the terminal determines the first redefinition number indicated by the first number indicating codeword; The terminal determines the beam indication information corresponding to the first redefinition number to obtain the target antenna panel and the target beam indication information corresponding to the target antenna panel.
  • the original numbers of the beam indication information of the m antenna panels are jointly numbered; after the k beam indication information activated by the MAC signaling is sorted according to a first rule, the original numbers are the same as the k redefinition numbers.
  • the first rule is to sort according to the original number from small to large or from large to small.
  • the original numbers of the beam indication information of the m antenna panels are independently numbered; after the k beam indication information activated by the MAC signaling is sorted according to a second rule, they are the same as the k redefinition numbers.
  • the second rule is to sort the beam indication information of the m antenna panels according to the identification information of the antenna panels, and the identification information of the antenna panels is in descending order or descending order Sort, and the beam indication information of the same antenna panel is sorted according to the original number from smallest to largest or from largest to smallest.
  • the quantity of beam indication information corresponding to each antenna panel activated by the MAC signaling is the same; or, the quantity of beam indication information corresponding to at least two antenna panels activated by the MAC signaling is different.
  • the MAC signaling is also used to update one or both of the activated beam indication information and the mapping information.
  • a data transmission method including:
  • the base station sends MAC signaling to the terminal, where the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panel is used to indicate that the antenna panel is used to transmit data.
  • the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, and the m is a positive integer;
  • the base station sends DCI to the terminal, and the DCI includes a first beam indicator codeword, and the first beam indicator codeword is used to indicate target beam indicator information corresponding to a target antenna panel among the m antenna panels .
  • a data transmission device which is applied to a terminal, and the device includes:
  • the first receiving module is configured to receive MAC signaling sent by the base station, where the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panel is used to indicate the use of The corresponding beam when the antenna panel transmits data, the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, the m is a positive integer;
  • a second receiving module configured to receive the DCI sent by the base station, where the DCI includes a first beam indicator codeword
  • An information determining module configured to determine target beam indication information corresponding to a target antenna panel of the m antenna panels according to the first beam indication codeword and the mapping information;
  • the beam determination module is configured to determine the corresponding target beam when the target antenna panel is used to transmit data according to the target beam indication information;
  • the data transmission module is configured to use the target beam corresponding to the target antenna panel to transmit data to the base station.
  • the number of beam indication information activated by the MAC signaling is k, where k is a positive integer; the mapping information includes k redefinition numbers from 0 to k-1, and the k The redefinition number corresponds to the k beam indication information activated by the MAC signaling in a one-to-one correspondence.
  • the number indicator codeword corresponding to each beam indicator codeword is k bits, and each bit in the k bits corresponds to one of k activated beam indicator information;
  • the number indicating codeword is a codeword used to indicate the redefinition number.
  • the number indicator codeword corresponding to each beam indicator codeword is r bits, and each number indicator codeword indicates one or one of the k activated beam indicators. Multiple; wherein the number indicating codeword is a codeword used to indicate the redefinition number, and the r is a positive integer.
  • the i-th beam indicator codeword in the mapping information when the number of beam indicator information corresponding to the i-th beam indicator codeword is a, and a is greater than 1, the a beams
  • the indication information corresponds to a different antenna panels; wherein, the i is a positive integer.
  • the information determining module is configured to: obtain a first number indicating codeword from the mapping information, where the first number indicating codeword is a number indicating code corresponding to the first beam indicating codeword Word, wherein the mapping relationship includes a mapping relationship between multiple sets of beam indicator codewords and number indicator codewords, and the number indicator codeword is a codeword used to indicate the redefinition number; A number indicates the first redefinition number indicated by the codeword; the beam indication information corresponding to the first redefinition number is determined to obtain the target antenna panel and the target beam indication information corresponding to the target antenna panel.
  • the original numbers of the beam indication information of the m antenna panels are jointly numbered; after the k beam indication information activated by the MAC signaling is sorted according to a first rule, the original numbers are the same as the k redefinition numbers.
  • the first rule is to sort according to the original number from small to large or from large to small.
  • the original numbers of the beam indication information of the m antenna panels are independently numbered; after the k beam indication information activated by the MAC signaling is sorted according to a second rule, they are the same as the k redefinition numbers.
  • the second rule is to sort the beam indication information of the m antenna panels according to the identification information of the antenna panels, and the identification information of the antenna panels is in descending order or descending order Sort, and the beam indication information of the same antenna panel is sorted according to the original number from smallest to largest or from largest to smallest.
  • the quantity of beam indication information corresponding to each antenna panel activated by the MAC signaling is the same; or, the quantity of beam indication information corresponding to at least two antenna panels activated by the MAC signaling is different.
  • the MAC signaling is also used to update one or both of the activated beam indication information and the mapping information.
  • a data transmission device which is applied to a base station, and the device includes:
  • the first sending module is configured to send MAC signaling to the terminal, where the MAC signaling is used to activate beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panels is used to instruct to use all the antenna panels.
  • the corresponding beam when the antenna panel transmits data the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, and the m Is a positive integer;
  • the second sending module is configured to send DCI to the terminal, where the DCI includes a first beam indicator codeword, and the first beam indicator codeword is used to indicate that the target antenna panel of the m antenna panels corresponds to The target beam indication information.
  • a data transmission device which is applied to a terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • Receive MAC signaling sent by the base station where the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panel is used to indicate that the antenna panel is used to transmit data.
  • the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, and the m is a positive integer;
  • the target beam corresponding to the target antenna panel is used to transmit data to the base station.
  • a data transmission device which is applied to a base station, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panel is used to indicate the corresponding information when the antenna panel is used to transmit data.
  • Beam the MAC signaling includes mapping information, the mapping information is used to indicate the correspondence between the beam indicator codeword in the downlink control information DCI and the activated beam indicator information, and the m is a positive integer;
  • the DCI includes a first beam indicator codeword
  • the first beam indicator codeword is used to indicate target beam indicator information corresponding to a target antenna panel among the m antenna panels.
  • a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented, Or implement the steps of the method described in the second aspect.
  • the base station sends MAC signaling and DCI to the terminal to indicate to the terminal the target beam when the target antenna panel is used to transmit data, so that the terminal can select the correct beam to transmit data for different antenna panels. Improve the success rate of data transmission in the multi-antenna panel scenario.
  • the technical solutions provided by the embodiments of the present disclosure can realize that multiple beams are used for data transmission between the terminal and the base station at the same time, and the robustness of communication is improved.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a data transmission method according to an exemplary embodiment
  • Fig. 3 is a diagram showing a structure of mapping information according to an exemplary embodiment
  • Fig. 4 is a diagram showing a structure of mapping information according to another exemplary embodiment
  • Fig. 5 is a block diagram showing a data transmission device according to an exemplary embodiment
  • Fig. 6 is a block diagram showing a data transmission device according to another exemplary embodiment
  • Fig. 7 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment.
  • the network architecture may include: a base station 110 and a terminal 120.
  • the base station 110 is deployed in the access network.
  • the access network in the 5G NR system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 110 and the terminal 120 communicate with each other through a certain air interface technology, for example, may communicate with each other through cellular technology.
  • the base station 110 is a device deployed in an access network to provide the terminal 120 with a wireless communication function.
  • the base station 110 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communication technology evolves, the name "base station" may change.
  • base stations the above-mentioned devices that provide wireless communication functions for the terminal 120 are collectively referred to as base stations.
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in a cell managed by each base station 110.
  • the terminal 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (UE), mobile stations ( Mobile Station, MS), terminal device (terminal device) and so on.
  • UE user equipment
  • MS Mobile Station
  • terminal device terminal device
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • the base station can instruct the terminal to receive beams in the following way: the base station uses RRC (Radio Resource Control, radio resource control) signaling to combine multiple (for example, Up to 64 or 128) TCI status is notified to the terminal; after that, the base station uses MAC signaling to activate several (for example, up to 8) TCI status of the above multiple TCI states, and then informs the terminal to receive PDSCH use through DCI Which of the several TCI states mentioned above is activated.
  • RRC Radio Resource Control, radio resource control
  • the TCI state notified by the DCI is the transmission state configuration of the PDSCH of the base station to the terminal, that is, it informs the terminal that the receiving beam used when receiving the downlink data on the PDSCH should be the RS (Reference Signal) corresponding to the TCI state.
  • the receiving beams used are the same. After that, the terminal can use the above determined receiving beam to receive downlink data on the PDSCH.
  • Each TCI state corresponds to an RS identifier, also called RS index, which is used to uniquely indicate the RS.
  • RS index also called RS index
  • Different RSs have different RS identities.
  • the RS may be NZP CSI-RS (Non-Zero Power State Information Reference Signal, non-zero power channel state information reference signal), or SSB (Synchronization Signal Block, synchronization signal block), or It is another reference signal, which is not limited in the embodiment of the present disclosure.
  • NZP CSI-RS Non-Zero Power State Information Reference Signal, non-zero power channel state information reference signal
  • SSB Synchroms Beamble
  • It is another reference signal, which is not limited in the embodiment of the present disclosure.
  • Table-1 The corresponding relationship between the TCI status and the RS identifier is shown in Table-1 for example:
  • the base station informs the terminal to use TCI#0 through DCI, it means that the terminal is told to use the receiving beam when receiving the SSB index#1 to receive the PDSCH.
  • the base station may have multiple antenna panels.
  • the base station can send downlink data to the terminal through the transmitting beams on multiple antenna panels, and can also receive the uplink data sent by the terminal through the receiving beams on multiple antenna panels.
  • the above-mentioned multiple antenna panels may belong to the same TRP (Transmission Reception Point), or may belong to multiple different TRPs. That is, a base station can have one or more TRPs, and each TRP can have one or more antenna panels. Different antenna panels correspond to different beam directions, and the same antenna panel can only point to one beam direction at a time. When each TRP has only one antenna panel, one antenna panel is one TRP.
  • the terminal may have multiple antenna panels.
  • the terminal can receive downlink data sent by the base station through the receiving beams on the multiple antenna panels, and can also send uplink data to the base station through the sending beams on the multiple antenna panels.
  • Different antenna panels correspond to different beam directions, and the same antenna panel can only point to one beam direction at a time.
  • the base station can dynamically switch to the antenna panel for the same terminal to transmit PDSCH.
  • the base station has the following two antenna panels: panel#1 and panel#2.
  • the base station uses panel#1 to transmit PDSCH to a terminal within a period of time, and then the base station dynamically switches to the antenna panel for the terminal to transmit PDSCH, such as switching To use panel#2 to send PDSCH to the terminal, or switch to use panel#1 and panel#2 to send PDSCH to the terminal at the same time.
  • the terminal After the antenna panel used by the base station to transmit the PDSCH to the terminal is switched, if the terminal does not adjust the receiving beam used to receive the PDSCH, the transmission beam and the receiving beam used between the base station and the terminal will not match, resulting in receiving Data errors affect the success rate of data transmission. Similarly, uplink data transmission has the same problem.
  • the base station sends MAC signaling and DCI to the terminal to indicate to the terminal the target beam when the target antenna panel is used to transmit data, so that the terminal can target different
  • the antenna panel selects the correct beam to transmit data, which improves the success rate of data transmission in the multi-antenna panel scenario.
  • Fig. 2 is a flow chart showing a data transmission method according to an exemplary embodiment. This method can be applied to the network architecture shown in Figure 1. The method can include the following steps (201-205).
  • step 201 the base station sends MAC signaling to the terminal.
  • the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and m is a positive integer.
  • the terminal includes multiple antenna panels, and the MAC signaling is used to activate beam indication information corresponding to all or part of the antenna panels of the terminal, respectively.
  • the terminal includes two antenna panels, namely panel#1 and panel#2, and the MAC signaling sent by the base station to the terminal is used to activate the beam indication information corresponding to panel#1 and panel#2, respectively.
  • the aforementioned m antenna panels may belong to the same TRP, or may belong to multiple different TRPs.
  • the MAC signaling activates the beam indication information corresponding to panel#1 and panel#2, respectively, and the panel#1 and panel#2 may belong to the same TRP or two different TRPs.
  • each TRP has only one antenna panel, each antenna panel actually corresponds to one TRP.
  • the number of beam indication information corresponding to each antenna panel activated by MAC signaling is the same. Take the following line data transmission as an example. Assuming that the MAC signaling activates the corresponding beam indication information of the two antenna panels, and the two antenna panels are panel#1 and panel#2, then the MAC signaling may activate the panel#1 correspondence The 4 beam indication information of, also activates the 4 beam indication information corresponding to panel#2. In another example, the number of beam indication information corresponding to at least two antenna panels activated by MAC signaling is different. Take the following line of data transmission as an example. Assuming that MAC signaling activates the beam indication information corresponding to two antenna panels, and the two antenna panels are panel#1 and panel#2, then MAC signaling may activate panel#1. The 5 beam indication information of, also activates the 3 beam indication information corresponding to panel#2.
  • the beam indication information corresponding to the antenna panel is used to indicate the corresponding beam when the antenna panel is used to transmit data.
  • the beam indication information is the TCI state
  • the TCI state corresponding to a certain antenna panel is used to indicate the receiving beam used when the terminal uses the antenna panel to receive downlink data.
  • the TCI state can be divided into a downlink TCI state and an uplink TCI state.
  • the downlink TCI state corresponding to a certain antenna panel is used to instruct the terminal to use the antenna panel to receive downlink data.
  • the uplink TCI status corresponding to the panel is used to indicate the transmission beam used when the terminal uses the antenna panel to transmit uplink data.
  • the beam indication information may also be other information, such as indication information used to indicate the uplink transmission beam, which is not limited in the embodiment of the present disclosure.
  • the base station before sending MAC signaling to the terminal, the base station sends RRC signaling to the terminal, and informs the terminal of multiple beam indication information corresponding to multiple antenna panels through the RRC signaling.
  • the beam indication information corresponding to a certain antenna panel activated by the MAC signaling is several of the multiple beam indication information corresponding to the antenna panel notified in the RRC signaling.
  • RRC signaling notifies the terminal of the 64 TCI states corresponding to panel#1 and the 64 TCI states corresponding to panel#2, and the MAC signaling activates the 4 TCI states corresponding to panel#1 and the 4 corresponding to panel#2. TCI status.
  • the 4 TCI states corresponding to panel#1 activated by MAC signaling are 4 of the 64 TCI states corresponding to panel#1 notified by RRC signaling, and the 4 TCI states corresponding to panel#2 activated by MAC signaling The state is 4 of the 64 TCI states corresponding to panel#2 notified by RRC signaling.
  • the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information.
  • the beam indicator codeword may be a binary character string, which is used to indicate the beam indicator information corresponding to the antenna panel.
  • the beam indication information of each antenna panel is numbered jointly, that is, the numbers of the beam indication information of each antenna panel are not repeated. Take the following line of data transmission as an example.
  • the terminal includes two antenna panels, panel#1 and panel#2.
  • the TCI status corresponding to panel#1 is numbered from 0 to 63, and the TCI status corresponding to panel#2 is numbered 64. ⁇ 127.
  • the TCI states corresponding to panel#1 include: TCI#3, TCI#10, TCI#13, and TCI#15
  • the TCI states corresponding to panel#2 include: TCI#(N+ 1), TCI#(N+5), TCI#(N+7) and TCI#(N+9)
  • the value of N is 64.
  • the beam indication information of each antenna panel is independently numbered, that is, the number of the beam indication information of each antenna panel is duplicated.
  • the terminal includes two antenna panels, panel#1 and panel#2.
  • the number of the TCI state corresponding to panel#1 ranges from 0 to 63, and the number of the TCI state corresponding to panel#2 also changes from 0 to 63. 0 ⁇ 63.
  • MAC signaling activates 8 TCI states.
  • the TCI states corresponding to panel#1 include: TCI#3, TCI#10, TCI#13, and TCI#15
  • the TCI states corresponding to panel#2 include: TCI#1, TCI #5, TCI#7 and TCI#9.
  • the RRC signaling needs to indicate the antenna panel corresponding to the notified TCI state, and it is also required in the MAC signaling.
  • Indicate the antenna panel corresponding to the activated TCI state that is, indicate which antenna panel the activated TCI state belongs to.
  • the MAC signaling includes the correspondence between the identification information of the antenna panel and the activation information of the antenna panel; where the activation information is used to activate the beam indication information corresponding to the antenna panel.
  • step 202 the base station sends DCI to the terminal.
  • the DCI includes the first beam indicator codeword.
  • the first beam indication codeword is used to indicate target beam indication information corresponding to the target antenna panel among the m antenna panels activated by MAC signaling.
  • the target antenna panel may be one antenna panel among m antenna panels, or may be multiple antenna panels among m antenna panels.
  • MAC signaling activates the TCI statuses corresponding to panel#1 and panel#2, respectively.
  • the DCI signaling can only indicate the target TCI status corresponding to panel#1, or only the target TCI status corresponding to panel#2, and can also indicate Panel#1 and panel#2 respectively correspond to the target TCI state.
  • the antenna panel used for data transmission since the antenna panel used for data transmission is dynamically switched, that is, the antenna panel used for data transmission may be switched at any time. Therefore, DCI is used to indicate the target antenna panel after switching and the target antenna panel corresponding The target beam of DCI is more suitable, because the transmission interval of DCI is short and can be transmitted at intervals of several time slots. Even if the antenna panel is switched frequently, the target antenna panel and target beam after switching can be correctly indicated through DCI.
  • MAC signaling always activates multiple antenna panels, so that during the process of dynamic switching of antenna panels, there is no need to repeatedly send MAC signaling, which helps to save signaling overhead.
  • the base station only needs to send DCI to the terminal, and the DCI indicates the target antenna panel after the switch and the target beam corresponding to the target antenna panel.
  • step 203 the terminal determines the target beam indication information corresponding to the target antenna panel among the m antenna panels according to the first beam indication codeword and the mapping information.
  • the mapping information is included in the MAC signaling and is used to indicate the correspondence between the beam indicator codeword and the beam indicator information.
  • the terminal After obtaining the first beam indicator codeword in the DCI signaling, the terminal searches for the beam indicator information corresponding to the first beam indicator codeword in the mapping information according to the first beam indicator codeword, and determines the beam indicator information Is the target beam indication information corresponding to the target antenna panel in the m antenna panels.
  • the MAC signaling is used to activate the beam indication information corresponding to the two antenna panels respectively.
  • the two antenna panels include the first antenna panel and the second antenna panel, which are denoted as panel#1 and panel#2.
  • the first part of beam indicator codewords in the mapping information is used to indicate beam indicator information corresponding to the first antenna panel, and the number of the first part of beam indicator codewords is an integer greater than or equal to 0;
  • the second part of the beam indicator codeword in the mapping information is used to indicate the beam indicator information corresponding to the second antenna panel, and the number of the second part of the beam indicator codeword is an integer greater than or equal to 0;
  • the third part in the mapping information The beam indicator codeword is used to indicate the beam indicator information corresponding to the first antenna panel and the beam indicator information corresponding to the second antenna panel.
  • the number of beam indicator codewords in the third part is an integer greater than or equal to 0.
  • the corresponding relationship indicated by the mapping information can be exemplified as shown in Table-2.
  • the joint number of the TCI states on the two antenna panels is taken as an example :
  • TCI#15&TCI#73 Beam indicator codeword TCI status number 000 TCI#3 001 TCI#65 010 TCI#10 011 TCI#69 100 TCI#3&TCI#65 101 TCI#10&TCI#69 110 TCI#13&TCI#71 111 TCI#15&TCI#73
  • the first part of beam indicator codewords include 000 and 010, which are used to indicate a TCI state corresponding to panel#1; the second part of beam indicator codewords include 001 and 011, these two beam indicators The codewords are respectively used for a TCI state corresponding to panel#2; the third part of the beam indicator codewords includes 100, 101, 110, and 111. These four beam indicator codewords are used to indicate a TCI state combination, and each TCI state The combination includes a TCI state corresponding to panel#1 and a TCI state corresponding to panel#2.
  • the terminal After the terminal receives the DCI sent by the base station and reads the first beam indicator codeword from it, it searches for the mapping information shown in Table-2, and then combines the TCI status corresponding to the m antenna panels activated by the MAC signaling to determine The target antenna panel indicated by the base station and the target TCI state corresponding to the target antenna panel are displayed.
  • the length of the beam indicator codeword is 3 bits for illustration, and the length of the beam indicator codeword may be greater than or equal to 3 bits, or may be less than 3 bits. Assuming there are 2 antenna panels, denoted as panel#1 and panel#2, each antenna panel is activated by MAC signaling in 4 TCI states, then the beam indicator code indicates the target TCI state corresponding to panel#1.
  • the length of the beam indicator codeword is 5 bits, all 24 situations can be included in the mapping information. If the length of the beam indicator codeword is less than 5bit, the number of states that can be indicated by the beam indicator codeword can be selected from the above 24 cases (that is, the number of beam indicator codeword bits is N, then the beam indicator codeword can indicate the state The number is 2 to the power of N) and the corresponding number is stored in the mapping information.
  • the length of the beam indicator codeword is 4bit
  • 16 types are selected from the above 24 cases and stored in the mapping information
  • the length of the beam indicator codeword is 3bit, then selected from the above 24 cases 8 types are stored in the mapping information
  • the length of the beam indicator code word is 2 bits, 4 types are selected from the above 24 cases and stored in the mapping information.
  • step 204 the terminal determines the corresponding target beam when the target antenna panel is used to transmit data according to the target beam indication information.
  • the terminal determines that the TCI state number corresponding to the beam indicator code word 000 is TCI#3, because TCI#3 is the TCI state corresponding to panel#1, and Assuming that the RS identifier corresponding to TCI#3 is CSI-RS index#6, the terminal determines the receiving beam used when panel#1 is used to receive CSI-RS index#6 as the target receiving beam for panel#1 to receive downlink data.
  • the terminal determines that the TCI state number corresponding to the beam indicator code word 100 is TCI#3&TCI#65. Since TCI#3 is the TCI state corresponding to panel#1, TCI# 65 is the TCI status corresponding to panel#2, and assuming that the RS identifier corresponding to TCI#3 is CSI-RS index#6, and the RS identifier corresponding to TCI#65 is SSB index#2, the terminal determines to use panel#1 to receive CSI-RS.
  • step 205 the terminal uses the target beam corresponding to the target antenna panel to transmit data with the base station.
  • the terminal determines the target receiving beam when the target antenna panel is used to receive downlink data according to the target TCI state corresponding to the target antenna panel, and then uses the target corresponding to the target antenna panel The receiving beam receives downlink data.
  • the terminal determines the target transmission beam when the target antenna panel is used to transmit uplink data according to the target TCI status or target uplink beam corresponding to the target antenna panel , And then use the target transmit beam corresponding to the target antenna panel to send uplink data.
  • the base station sends MAC signaling and DCI to the terminal to indicate to the terminal the target beam when the target antenna panel is used to transmit data. , Enabling the terminal to select the correct beam to transmit data for different antenna panels, improving the success rate of data transmission in the scenario of multiple antenna panels.
  • the technical solutions provided by the embodiments of the present disclosure can realize that multiple beams are used for data transmission between the terminal and the base station at the same time, and the robustness of communication is improved.
  • the number of beam indication information activated by the MAC signaling is k, and k is a positive integer;
  • the mapping information includes k redefinition numbers from 0 to k-1, and k redefinition numbers The number corresponds to the k beam indication information activated by MAC signaling in a one-to-one correspondence.
  • the redefinition number refers to the number that is redefined for the k beam indication information according to the original number of the k beam indication information. For example, when k is 8, that is, when the number of beam indication information activated by MAC signaling is 8, the mapping information contains a total of 8 redefinition numbers from 0 to 7, and the 8 redefinition numbers are the same as the above 8 redefinition numbers. There is a one-to-one correspondence between each beam indication information.
  • Beam indicator codeword Redefine number 000 TCI#0 001 TCI#4 010 TCI#1 011 TCI#5 100 TCI#0&TCI#4 101 TCI#1&TCI#5 110 TCI#2&TCI#6 111 TCI#3&TCI#7
  • the original number of the beam indication information of the m antenna panels activated by MAC signaling may be jointly numbered or independently numbered.
  • the original numbers of the beam indication information of the m antenna panels are jointly numbered.
  • the k beam indication information activated by the MAC signaling is sorted according to the first rule, and corresponds to the k redefinition numbers one-to-one; where the first rule is to follow the original number in ascending or descending order put in order.
  • MAC signaling activates the TCI states corresponding to panel#1 and panel#2, and the original numbers of the TCI states corresponding to panel#1 and panel#2 are jointly numbered.
  • TCI#3 corresponds to TCI#0
  • TCI#10 corresponds to TCI#1
  • TCI#13 corresponds to TCI#2
  • TCI#15 corresponds to TCI#65
  • TCI#69 corresponds to TCI#71
  • TCI#73 corresponds to TCI#7.
  • the original numbers of the beam indication information of the m antenna panels are independently numbered.
  • the k beam indication information activated by MAC signaling are sorted according to the second rule, and correspond to the k redefinition numbers one-to-one; where the second rule is the beam indication for m antenna panels according to the identification information of the antenna panel
  • the information is sorted.
  • the identification information of the antenna panels is sorted in ascending order or descending order, and the beam indication information of the same antenna panel is sorted in descending order of the original number or descending order.
  • MAC signaling activates the TCI states corresponding to panel#1 and panel#2, respectively, and the original numbers of the TCI states corresponding to panel#1 and panel#2 are independently numbered, assuming the original numbers of the TCI states corresponding to panel#1 It is TCI#0 ⁇ TCI#63, the original number of the TCI state corresponding to panel#2 is also TCI#0 ⁇ TCI#63, MAC signaling activates 8 TCI states, including TCI#3 and TCI#10 corresponding to panel#1 , TCI#13 and TCI#15, as well as TCI#1, TCI#5, TCI#7 and TCI#9 corresponding to panel#2.
  • Sort that is, panel#1, then panel#2, and then the TCI status of the same antenna panel is sorted according to the original number from smallest to largest, that is, panel#1's TCI#3, TCI#10, TCI#13, and TCI# 15, and TCI#1, TCI#5, TCI#7, and TCI#9 of panel#2, and then determine the redefinition number corresponding to each of the 8 TCI states, that is, TCI#3, TCI#10, and TCI#10 of panel#1.
  • TCI#13 and TCI#15 correspond to TCI#0, TCI#1, TCI#2 and TCI#3, respectively.
  • Panel#2’s TCI#1, TCI#5, TCI#7 and TCI#9 correspond to TCI#4, TCI#5, TCI#6 and TCI#7.
  • the identification information of the antenna panel is used to uniquely identify the antenna panel, and different antenna panels have different identification information.
  • the identification information of the antenna panel is the identification information of the TRP, and the identification information of the TRP can be identified according to the higher layer signaling index sent by the base station.
  • each beam indicator codeword can correspond to one or more TCI states.
  • each beam indicator codeword in the mapping information can correspond to one or two TCI states.
  • each TCI state corresponds to a different antenna panel. That is, for the i-th beam indicator codeword in the mapping information, when the number of beam indicator information corresponding to the i-th beam indicator codeword is a, and a is greater than 1, a beam indicator information corresponds to a Different antenna panels; where i is a positive integer.
  • Each beam indication codeword in the mapping information may correspond to one or more beam indication information.
  • the multiple beam indication information corresponds to different antenna panels.
  • the first beam indicator codeword in the mapping information when the number of beam indicator information corresponding to the first beam indicator codeword is 2, then these two beam indicator information correspond to two different antenna panels, namely One beam indication information corresponds to panel#1, and the other beam indication information corresponds to panel#2.
  • the number indicator codeword corresponding to each beam indicator codeword is k bits, and each bit in the k bits corresponds to one of the k beam indicator information that is activated;
  • the number indicating codeword is a codeword used to indicate the number of redefinition.
  • the redefinition number corresponding to the highest bit of the k bits is the smallest, and the redefinition number corresponding to the lowest bit is the largest; or, among the k bits, the redefinition number corresponding to the highest bit is the largest, and the redefinition number corresponding to the lowest bit is the largest.
  • the definition number is the smallest.
  • the mapping information includes k beam indicator codewords, and the number indicator codeword corresponding to each beam indicator codeword is k bits, the MAC signaling needs to use k k bits to represent the mapping information.
  • the mapping information carried in the MAC signaling includes 8 8 bits, and the first 8 bits C0 ⁇ C7 Indicate the beam indicator information when the beam indicator codeword is 000, the second 8-bit C8 ⁇ C15 indicate the beam indicator information when the beam indicator codeword is 001, and the third 8-bit C16 ⁇ C23 indicate when the beam indicator codeword is 010
  • the fourth 8-bit C24-C31 indicates the beam instruction information when the beam instruction codeword is 011
  • the fifth 8-bit C32-C39 indicates the beam instruction information when the beam instruction codeword is 100
  • the sixth The 8-bit C40 ⁇ C47 indicate the beam indication information when the beam indication codeword is 101
  • the seventh 8-bit C48 ⁇ C55 indicate the beam indication information when the beam indication codeword is 110
  • the eighth 8-bit C56 ⁇ C63 indicate the beam indication information.
  • the redefinition number corresponding to the highest bit is TCI#0
  • the redefinition number corresponding to the lowest bit is TCI#7.
  • the redefinition number corresponding to one 8-bit is TCI#0.
  • the fifth 8-bit is "10001000”
  • the redefinition number corresponding to the fifth 8-bit is TCI#0 and TCI#4.
  • the number indicator codeword corresponding to each beam indicator codeword is r bits, and each number indicator codeword indicates one of the k beam indicator information that is activated or Multiple; where the number indicating codeword is a codeword used to indicate the redefinition number, and r is a positive integer.
  • the mapping information includes k beam indicator codewords
  • the number indicator codeword corresponding to each beam indicator codeword is r bits
  • MAC signaling needs to use k r bits to represent the mapping information.
  • the value of r The value is:
  • the mapping information carried in the MAC signaling includes 8 6 bits, the first 6 bits C0 ⁇ C5 Indicate beam indicator information when the beam indicator codeword is 000, the second 6 bits C6 ⁇ C11 indicate beam indicator information when the beam indicator codeword is 001, and the third 6 bits C12 ⁇ C17 indicate beam indicator codeword is 010
  • the fourth 6 bits C18 ⁇ C23 indicate the beam indication information when the beam indication codeword is 011
  • the fifth 6 bits C24 ⁇ C29 indicate the beam indication information when the beam indication codeword is 100
  • the sixth 6 bits C30 ⁇ C35 indicate beam indication information when the beam indication codeword is 101
  • the seventh 6 bits C36 ⁇ C41 indicate beam indication information when the beam indication codeword is 110
  • the eighth 6 bits C42 ⁇ C47 indicate beam indication information Beam indication information when the codeword is 111.
  • Number indicator code word Redefine number 000000 TCI#0 000001 TCI#1 000010 TCI#2 000011 TCI#3 000100 TCI#4
  • Each number shown in Table-4 indicates the corresponding relationship between the codeword and the redefinition number, which is defined in advance and stored in the terminal and the base station.
  • the terminal determines the target beam indication information corresponding to the target antenna panel in the m antenna panels according to the first beam indication codeword and the mapping information, including:
  • the terminal obtains the first number indicating codeword from the mapping information
  • the first number indicator codeword is the number indicator codeword corresponding to the first beam indicator codeword, wherein the mapping relationship includes the mapping relationship between multiple sets of beam indicator codewords and number indicator codewords, and the number indicator codeword is used To indicate the code word that redefines the number;
  • the terminal determines the first redefinition number indicated by the first number indicating codeword
  • the terminal determines the beam indication information corresponding to the first redefinition number, and obtains the target antenna panel and the corresponding target beam indication information.
  • the first beam indicator codeword included in the DCI received by the terminal is 000
  • the terminal obtains from the mapping information the first number indicator codeword corresponding to the first beam indicator code word 000 is 10000000, if the first number The redefinition number corresponding to the indicator codeword 10000000 is TCI#0, and the original number corresponding to TCI#0 is TCI#3.
  • the terminal determines to use panel#1 The receiving beam used when receiving CSI-RS index#6 is used as the target receiving beam for panel#1 to receive downlink data.
  • the aforementioned MAC signaling is also used to update one or both of the activated beam indication information and the mapping information, that is, the activated beam indication information and the mapping information may be updated at the same time, or only one may be updated. If the new MAC signaling only sends the mapping information, then the activated beam indication information sent by the most recent MAC signaling will continue to be used; if the new MAC signaling only sends the activated beam indication information, then continue to use the previous Mapping information sent by the most recent MAC signaling.
  • the base station has successively sent two MAC signalings to the terminal, which are recorded as the first MAC signaling and the second MAC signaling.
  • the activated beam indication information in the first MAC signaling includes TCI#3, TCI#10, TCI#13, TCI#15, TCI#65, TCI#69, TCI#71, and TCI#73, and MAC signaling
  • Table-3 The corresponding relationship indicated by the mapping information contained in it is shown in Table-3 above; the second MAC signaling does not update the activated beam indication information, only the mapping information. It is assumed that the corresponding relationship indicated by the updated mapping information is as follows Table-5 shows:
  • Beam indicator codeword Redefine number 000 TCI#2 001 TCI#6 010 TCI#3 011 TCI#7 100 TCI#0&TCI#4 101 TCI#1&TCI#5 110 TCI#2&TCI#6 111 TCI#3&TCI#7
  • the corresponding relationship between the beam indicator codeword and the beam indicator information is also updated.
  • the eight TCI states activated by MAC signaling are TCI#3, TCI#10, TCI#13, TCI#15, TCI#65, TCI#69, TCI#71, and TCI#73
  • the corresponding redefinition numbers are sequentially TCI#0, TCI#1, TCI#2, TCI#3, TCI#4, TCI#5, TCI#6 and TCI#7, according to the mapping information shown in Table-3
  • the beam indicator code word 000 originally corresponds to The redefinition number is TCI#0.
  • the TCI status corresponding to this TCI#0 is TCI#3.
  • the redefinition number corresponding to the beam indicator codeword 000 becomes TCI#2.
  • the TCI status corresponding to TCI#2 is TCI#13.
  • the beam indication information activated by the MAC signaling is redefined and numbered, so that the mapping information contained in the MAC signaling only needs to indicate the redefined number. It helps to save the signaling overhead required for mapping information.
  • the embodiments of the present disclosure provide two design methods for the mapping information contained in MAC signaling.
  • a suitable design method can be selected according to the actual situation, for example, a design method with a smaller signaling overhead is selected. flexibility.
  • the technical solution of the present disclosure is introduced and explained only from the perspective of the interaction between the terminal and the base station.
  • the above-mentioned steps performed by the terminal can be separately realized as a data transmission method on the terminal side.
  • the above-mentioned steps performed by the base station are separately implemented. It can be implemented separately as a data transmission method on the base station side.
  • Fig. 5 is a block diagram showing a data transmission device according to an exemplary embodiment.
  • the device has the function of realizing the above-mentioned method example on the terminal side, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the terminal described above, or it can be set in the terminal.
  • the apparatus 500 may include: a first receiving module 510, a second receiving module 520, an information acquisition module 530, a beam determination module 540, and a data transmission module 550.
  • the first receiving module 510 is configured to receive MAC signaling sent by the base station, where the MAC signaling is used to activate beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panels is used to indicate The corresponding beam when the antenna panel is used to transmit data, the MAC signaling contains mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, so Said m is a positive integer.
  • the second receiving module 520 is configured to receive the DCI sent by the base station, where the DCI includes a first beam indicator codeword.
  • the information determining module 530 is configured to determine the target beam indication information corresponding to the target antenna panel of the m antenna panels according to the first beam indication codeword and the mapping information.
  • the beam determination module 540 is configured to determine the corresponding target beam when the target antenna panel is used to transmit data according to the target beam indication information.
  • the data transmission module 550 is configured to use the target beam corresponding to the target antenna panel to transmit data to the base station.
  • the number of beam indication information activated by the MAC signaling is k, where k is a positive integer; the mapping information includes k redefinition numbers from 0 to k-1, and the k The redefinition number corresponds to the k beam indication information activated by the MAC signaling in a one-to-one correspondence.
  • the number indicator codeword corresponding to each beam indicator codeword is k bits, and each bit in the k bits corresponds to one of k activated beam indicator information;
  • the number indicating codeword is a codeword used to indicate the redefinition number.
  • the number indicator codeword corresponding to each beam indicator codeword is r bits, and each number indicator codeword indicates one or one of the k activated beam indicators. Multiple; wherein the number indicating codeword is a codeword used to indicate the redefinition number, and the r is a positive integer.
  • the i-th beam indicator codeword in the mapping information when the number of beam indicator information corresponding to the i-th beam indicator codeword is a, and a is greater than 1, the a beams
  • the indication information corresponds to a different antenna panels; wherein, the i is a positive integer.
  • the information determining module 530 is configured to obtain a first number indicating codeword from the mapping information, where the first number indicating codeword is a number indicating codeword corresponding to the first beam indicating codeword Codewords, wherein the mapping relationship includes a mapping relationship between multiple groups of beam indicator codewords and number indicator codewords, and the number indicator codeword is a codeword used to indicate the redefinition number; determining the The first number indicates the first redefinition number indicated by the codeword; the beam indication information corresponding to the first redefinition number is determined to obtain the target antenna panel and the corresponding target beam indication information.
  • the original numbers of the beam indication information of the m antenna panels are jointly numbered; after the k beam indication information activated by the MAC signaling is sorted according to a first rule, the original numbers are the same as the k redefinition numbers.
  • the first rule is to sort according to the original number from small to large or from large to small.
  • the original numbers of the beam indication information of the m antenna panels are independently numbered; after the k beam indication information activated by the MAC signaling is sorted according to a second rule, they are the same as the k redefinition numbers.
  • the second rule is to sort the beam indication information of the m antenna panels according to the identification information of the antenna panels, and the identification information of the antenna panels is in descending order or descending order Sort, and the beam indication information of the same antenna panel is sorted according to the original number from smallest to largest or from largest to smallest.
  • the quantity of beam indication information corresponding to each antenna panel activated by the MAC signaling is the same; or, the quantity of beam indication information corresponding to at least two antenna panels activated by the MAC signaling is different.
  • the MAC signaling is also used to update one or both of the activated beam indication information and the mapping information.
  • the base station sends MAC signaling and DCI to the terminal to indicate to the terminal the target beam when the target antenna panel is used to transmit data. , Enabling the terminal to select the correct beam to transmit data for different antenna panels, improving the success rate of data transmission in the scenario of multiple antenna panels.
  • the technical solutions provided by the embodiments of the present disclosure can realize that multiple beams are used for data transmission between the terminal and the base station at the same time, and the robustness of communication is improved.
  • Fig. 6 is a block diagram showing a data transmission device according to another exemplary embodiment.
  • the device has the function of realizing the above-mentioned method example on the base station side, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the base station described above, or it can be set in the base station.
  • the apparatus 600 may include: a first sending module 610 and a second sending module 620.
  • the first sending module 610 is configured to send MAC signaling to the terminal, where the MAC signaling is used to activate beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panels is used to indicate the use of The corresponding beam when the antenna panel transmits data, the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, the m is a positive integer.
  • the second sending module 620 is configured to send DCI to the terminal, where the DCI includes a first beam indicator codeword, and the first beam indicator codeword is used to indicate a target antenna panel among the m antenna panels Corresponding target beam indication information.
  • the base station sends MAC signaling and DCI to the terminal to indicate to the terminal the target beam when the target antenna panel is used to transmit data. , Enabling the terminal to select the correct beam to transmit data for different antenna panels, improving the success rate of data transmission in the scenario of multiple antenna panels.
  • the technical solutions provided by the embodiments of the present disclosure can realize that multiple beams are used for data transmission between the terminal and the base station at the same time, and the robustness of communication is improved.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example for illustration. In actual applications, the above-mentioned functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure also provides a data transmission device, which can implement the terminal-side data transmission method provided in the present disclosure.
  • the device can be the terminal described above, or it can be set in the terminal.
  • the device includes a processor and a memory for storing executable instructions of the processor.
  • the processor is configured as:
  • Receive MAC signaling sent by the base station where the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panel is used to indicate that the antenna panel is used to transmit data.
  • the MAC signaling includes mapping information, and the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, and the m is a positive integer;
  • the target beam corresponding to the target antenna panel is used to transmit data to the base station.
  • the number of beam indication information activated by the MAC signaling is k, where k is a positive integer; the mapping information includes k redefinition numbers from 0 to k-1, and the k The redefinition number corresponds to the k beam indication information activated by the MAC signaling in a one-to-one correspondence.
  • the number indicator codeword corresponding to each beam indicator codeword is k bits, and each bit in the k bits corresponds to one of k activated beam indicator information;
  • the number indicating codeword is a codeword used to indicate the redefinition number.
  • the number indicator codeword corresponding to each beam indicator codeword is r bits, and each number indicator codeword indicates one or one of the k activated beam indicators. Multiple; wherein the number indicating codeword is a codeword used to indicate the redefinition number, and the r is a positive integer.
  • the i-th beam indicator codeword in the mapping information when the number of beam indicator information corresponding to the i-th beam indicator codeword is a, and a is greater than 1, the a beams
  • the indication information corresponds to a different antenna panels; wherein, the i is a positive integer.
  • the processor is further configured to: obtain a first number indicating codeword from the mapping information, where the first number indicating codeword is a number indicating code corresponding to the first beam indicating codeword Word, wherein the mapping relationship includes a mapping relationship between multiple sets of beam indicator codewords and number indicator codewords, and the number indicator codeword is a codeword used to indicate the redefinition number; A number indicates the first redefinition number indicated by the codeword; the beam indication information corresponding to the first redefinition number is determined, and the target antenna panel and the corresponding target beam indication information are obtained.
  • the original numbers of the beam indication information of the m antenna panels are jointly numbered; after the k beam indication information activated by the MAC signaling is sorted according to a first rule, the original numbers are the same as the k redefinition numbers.
  • the first rule is to sort according to the original number from small to large or from large to small.
  • the original numbers of the beam indication information of the m antenna panels are independently numbered; after the k beam indication information activated by the MAC signaling is sorted according to a second rule, they are the same as the k redefinition numbers.
  • the second rule is to sort the beam indication information of the m antenna panels according to the identification information of the antenna panels, and the identification information of the antenna panels is in descending order or descending order Sort, and the beam indication information of the same antenna panel is sorted according to the original number from smallest to largest or from largest to smallest.
  • the quantity of beam indication information corresponding to each antenna panel activated by the MAC signaling is the same; or, the quantity of beam indication information corresponding to at least two antenna panels activated by the MAC signaling is different.
  • the MAC signaling is also used to update one or both of the activated beam indication information and the mapping information.
  • An exemplary embodiment of the present disclosure also provides a data transmission device, which can implement the data transmission method on the base station side provided in the present disclosure.
  • the device can be the base station described above, or it can be set in the base station.
  • the device includes a processor and a memory for storing executable instructions of the processor. Among them, the processor is configured as:
  • the MAC signaling is used to activate the beam indication information corresponding to each of the m antenna panels, and the beam indication information corresponding to the antenna panel is used to indicate the corresponding information when the antenna panel is used to transmit data.
  • Beam the MAC signaling includes mapping information, the mapping information is used to indicate the correspondence between the beam indicator codeword in the DCI and the activated beam indicator information, and the m is a positive integer;
  • the terminal and the base station include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal 700 includes a transmitter 701, a receiver 702, and a processor 703.
  • the processor 703 may also be a controller, which is represented as "controller/processor 703" in FIG. 7.
  • the terminal 700 may further include a modem processor 705, where the modem processor 705 may include an encoder 706, a modulator 707, a decoder 708, and a demodulator 709.
  • the transmitter 701 adjusts (for example, analog conversion, filtering, amplification and up-conversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station described in the above-mentioned embodiment via an antenna.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • the receiver 702 conditions (e.g., filters, amplifies, down-converts, and digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 706 receives service data and signaling messages to be transmitted on the uplink, and processes the service data and signaling messages (for example, formatting, encoding, and interleaving).
  • the modulator 707 further processes (e.g., symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 709 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 708 processes (e.g., deinterleaves and decodes) the symbol estimates and provides decoded data and signaling messages sent to the terminal 700.
  • the encoder 706, the modulator 707, the demodulator 709, and the decoder 708 can be implemented by a synthesized modem processor 705. These units are processed according to the radio access technology adopted by the radio access network (for example, the access technology of LTE and other evolved systems). It should be noted that when the terminal 700 does not include the modem processor 705, the foregoing functions of the modem processor 705 may also be performed by the processor 703.
  • the processor 703 controls and manages the actions of the terminal 700, and is used to execute the processing procedure performed by the terminal 700 in the foregoing embodiment of the present disclosure.
  • the processor 703 is further configured to execute various steps on the terminal side in the foregoing method embodiments, and/or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the terminal 700 may further include a memory 704, and the memory 704 is configured to store program codes and data for the terminal 700.
  • FIG. 7 only shows a simplified design of the terminal 700.
  • the terminal 700 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 8 shows a schematic structural diagram of a base station according to an exemplary embodiment.
  • the base station 800 includes a transmitter/receiver 801 and a processor 802.
  • the processor 802 may also be a controller, which is represented as "controller/processor 802" in FIG. 8.
  • the transmitter/receiver 801 is used to support the sending and receiving of information between the base station and the terminal in the foregoing embodiment, and to support communication between the base station and other network entities.
  • the processor 802 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via the antenna, demodulated by the receiver 801 (for example, demodulating the high-frequency signal into a baseband signal), and further processed by the processor 802 to restore the terminal Send to business data and signaling messages.
  • service data and signaling messages are processed by the processor 802, and modulated by the transmitter 801 (for example, the baseband signal is modulated into a high-frequency signal) to generate a downlink signal, which is transmitted to the terminal via an antenna .
  • the processor 802 is further configured to execute various steps on the base station side in the foregoing method embodiments, and/or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the base station 800 may further include a memory 803, and the memory 803 is used to store program codes and data of the base station 800.
  • the base station 800 may further include a communication unit 804.
  • the communication unit 804 is used to support the base station 800 to communicate with other network entities (for example, network devices in the core network, etc.).
  • the communication unit 804 may be an NG-U interface for supporting the base station 800 to communicate with UPF (User Plane Function) entities; or, the communication unit 804 may also be an NG-U interface.
  • the C interface is used to support communication between the base station 800 and AMF (Access and Mobility Management Function) entities.
  • FIG. 8 only shows a simplified design of the base station 800.
  • the base station 800 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the base station 800 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor of the terminal, the terminal-side data transmission method as described above is implemented.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor of the base station, the data transmission method on the base station side as described above is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种数据传输方法、装置及存储介质,属于通信技术领域。所述方法包括:基站向终端发送MAC信令;基站向终端发送DCI;终端根据第一波束指示码字和映射信息,确定m个天线面板中的目标天线面板对应的目标波束指示信息;终端根据目标波束指示信息,确定采用目标天线面板传输数据时对应的目标波束。本公开实施例提供的技术方案中,对于多天线面板的场景,终端能够针对不同天线面板选择正确的波束传输数据,提升多天线面板场景下数据传输的成功率。另外,本公开实施例提供的技术方案,能够实现终端和基站之间同时采用多个波束进行数据传输,提高通信鲁棒性。

Description

数据传输方法、装置及存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及一种数据传输方法、装置及存储介质。
背景技术
在5G NR(New Radio,新空口)系统中,基站和终端可以使用波束(beam)收发信息。例如,基站和终端之间交互的控制信令和业务数据,都可以使用波束进行收发。
当基站和/或终端有多个天线面板时,基站和终端之间能够通过不同天线面板上的波束来传输数据。以下行数据传输为例,在基站有多个天线面板的情况下,基站可以通过不同的天线面板分别向终端发送下行数据,每个天线面板上同时只能使用一个波束方向发送,也即通过不同方向的发送波束分别向终端发送下行数据。相应地,终端可以采用不同天线面板上的接收波束,分别接收基站通过不同天线面板上的发送波束发送的下行数据。
对于多天线面板的场景,如果基站和终端之间采用的发送波束和接收波束不匹配,则会导致接收数据出错,影响数据传输的成功率。
发明内容
本公开实施例提供了一种数据传输方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种数据传输方法,所述方法包括:
终端接收基站发送的MAC(Medium Access Control,媒体接入控制)信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI(Downlink Control Information,下行控制信息)中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
所述终端接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
所述终端根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
所述终端根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
所述终端采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
可选地,所述MAC信令激活的波束指示信息的数量为k,所述k为正整数;所述映射信息中包含从0至k-1的k个重定义编号,且所述k个重定义编号与所述MAC信令激活的k个波束指示信息一一对应。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为k比特,所述k比特中每个比特对应被激活的k个波束指示信息中的一个;其中,所述编号指示码字是用于指示所述重定义编号的码字。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为r比特,每个所述编号指示码字指示被激活的k个波束指示信息中的一个或多个;其中,所述编号指示码字是用于指示所述重定义编号的码字,所述r为正整数。
可选地,对于所述映射信息中的第i个波束指示码字,当所述第i个波束指示码字对应的波束指示信息的数量为a,且a大于1时,所述a个波束指示信息对应于a个不同的天线面板;其中,所述i为正整数。
可选地,所述终端根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息,包括:所述终端从所述映射信息中获取第一编号指示码字,所述第一编号指示码字是与所述第一波束指示码字对应的编号指示码字,其中,所述映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,所述编号指示码字是用于指示所述重定义编号的码字;所述终端确定所述第一编号指示码字所指示的第一重定义编号;所述终端确定所述第一重定义编号对应的波束指示信息,得到所述目标天线面板,以及所述目标天线面板对应的所述目标波束指示信息。
可选地,所述m个天线面板的波束指示信息的原始编号是联合编号的;所述MAC信令激活的k个波束指示信息按照第一规则排序后,与所述k个重定义 编号一一对应;其中,所述第一规则为按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述m个天线面板的波束指示信息的原始编号是独立编号的;所述MAC信令激活的k个波束指示信息按照第二规则排序后,与所述k个重定义编号一一对应;其中,所述第二规则为按照天线面板的标识信息对所述m个天线面板的波束指示信息进行排序,所述天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述MAC信令激活的每个所述天线面板对应的波束指示信息的数量相同;或者,所述MAC信令激活的至少两个天线面板对应的波束指示信息的数量不同。
可选地,所述MAC信令还用于更新所述被激活的波束指示信息和所述映射信息中的一种或两种。
根据本公开实施例的第二方面,提供了一种数据传输方法,所述方法包括:
基站向终端发送MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
所述基站向所述终端发送DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
根据本公开实施例的第三方面,提供了一种数据传输装置,应用于终端中,所述装置包括:
第一接收模块,被配置为接收基站发送的MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
第二接收模块,被配置为接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
信息确定模块,被配置为根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
波束确定模块,被配置为根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
数据传输模块,被配置为采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
可选地,所述MAC信令激活的波束指示信息的数量为k,所述k为正整数;所述映射信息中包含从0至k-1的k个重定义编号,且所述k个重定义编号与所述MAC信令激活的k个波束指示信息一一对应。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为k比特,所述k比特中每个比特对应被激活的k个波束指示信息中的一个;其中,所述编号指示码字是用于指示所述重定义编号的码字。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为r比特,每个所述编号指示码字指示被激活的k个波束指示信息中的一个或多个;其中,所述编号指示码字是用于指示所述重定义编号的码字,所述r为正整数。
可选地,对于所述映射信息中的第i个波束指示码字,当所述第i个波束指示码字对应的波束指示信息的数量为a,且a大于1时,所述a个波束指示信息对应于a个不同的天线面板;其中,所述i为正整数。
可选地,所述信息确定模块被配置为:从所述映射信息中获取第一编号指示码字,所述第一编号指示码字是与所述第一波束指示码字对应的编号指示码字,其中,所述映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,所述编号指示码字是用于指示所述重定义编号的码字;确定所述第一编号指示码字所指示的第一重定义编号;确定所述第一重定义编号对应的波束指示信息,得到所述目标天线面板,以及所述目标天线面板对应的所述目标波束指示信息。
可选地,所述m个天线面板的波束指示信息的原始编号是联合编号的;所述MAC信令激活的k个波束指示信息按照第一规则排序后,与所述k个重定义编号一一对应;其中,所述第一规则为按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述m个天线面板的波束指示信息的原始编号是独立编号的;所 述MAC信令激活的k个波束指示信息按照第二规则排序后,与所述k个重定义编号一一对应;其中,所述第二规则为按照天线面板的标识信息对所述m个天线面板的波束指示信息进行排序,所述天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述MAC信令激活的每个所述天线面板对应的波束指示信息的数量相同;或者,所述MAC信令激活的至少两个天线面板对应的波束指示信息的数量不同。
可选地,所述MAC信令还用于更新所述被激活的波束指示信息和所述映射信息中的一种或两种。
根据本公开实施例的第四方面,提供了一种数据传输装置,应用于基站中,所述装置包括:
第一发送模块,被配置为向终端发送MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
第二发送模块,被配置为向所述终端发送DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
根据本公开实施例的第五方面,提供了一种数据传输装置,应用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收基站发送的MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
根据本公开实施例的第六方面,提供了一种数据传输装置,应用于基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
向终端发送MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
向所述终端发送DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
根据本公开实施例的第七方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤,或者实现如第二方面所述方法的步骤。
本公开实施例提供的技术方案可以包括以下有益效果:
对于多天线面板的场景,通过基站向终端发送MAC信令和DCI,以此向终端指示采用目标天线面板传输数据时对应采用的目标波束,使得终端能够针对不同天线面板选择正确的波束传输数据,提升多天线面板场景下数据传输的成功率。
另外,本公开实施例提供的技术方案,能够实现终端和基站之间同时采用多个波束进行数据传输,提高通信鲁棒性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种数据传输方法的流程图;
图3是根据一示例性实施例示出的一种映射信息的结构图;
图4是根据另一示例性实施例示出的一种映射信息的结构图;
图5是根据一示例性实施例示出的一种数据传输装置的框图;
图6是根据另一示例性实施例示出的一种数据传输装置的框图;
图7是根据一示例性实施例示出的一种终端的结构示意图;
图8是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1是根据一示例性实施例示出的一种网络架构的示意图。该网络架构可以包括:基站110和终端120。
基站110部署在接入网中。5G NR系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。基站110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
基站110是一种部署在接入网中用以为终端120提供无线通信功能的装置。基站110可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同, 例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端120提供无线通信功能的装置统称为基站。
终端120的数量通常为多个,每一个基站110所管理的小区内可以分布一个或多个终端120。终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本公开实施例中,上面提到的设备统称为终端。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
对于单个天线面板发送PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的情形,基站可以通过如下方式向终端指示接收波束:基站通过RRC(Radio Resource Control,无线资源控制)信令将多个(比如最多64或128个)TCI状态通知给终端;之后,基站再使用MAC信令激活上述多个TCI状态中的若干个(比如最多8个)TCI状态,然后再通过DCI告知终端用于接收PDSCH使用的是上述被激活的若干个TCI状态中的哪一个TCI状态。该通过DCI告知的TCI状态即为基站给该终端的PDSCH的传输状态配置,即告知终端接收PDSCH上的下行数据时使用的接收波束应当与接收该TCI状态对应的RS(Reference Signal,参考信号)所使用的接收波束相同。之后,终端便可以使用上述确定的接收波束,接收PDSCH上的下行数据。
每一个TCI状态对应一个RS标识,也称为RS index,用于唯一指示该RS。不同的RS具有不同的RS标识。在本公开实施例中,RS可以是NZP CSI-RS(Non-Zero Power Ch5el State Information Reference Signal,非零功率信道状态信息参考信号),也可以是SSB(Synchronization Signal Block,同步信号块),或者是其它参考信号,本公开实施例对此不作限定。TCI状态与RS标识之间的对应关系示例性如表-1所示:
表-1
TCI状态 RS index
TCI#0 SSB index#1
TCI#1 SSB index#2
TCI#2 CSI-RS index#5
TCI#3 CSI-RS index#6
TCI#4 SSB index#3
…… ……
假设基站通过DCI告知终端使用TCI#0,则意思是告诉终端使用接收该SSB index#1时的接收波束来接收PDSCH。
对于多天线面板的场景,基站可以具有多个天线面板。基站可以通过多个天线面板上的发送波束向终端发送下行数据,也可以通过多个天线面板上的接收波束接收终端发送的上行数据。上述多个天线面板可以属于同一个TRP(Transmission Reception Point,发送接收点),也可以属于多个不同的TRP。也即,一个基站可以有一个或多个TRP,每个TRP可以有一个或多个天线面板,不同的天线面板对应于不同的波束方向,同一天线面板同一时刻只能指向一个波束方向。当每个TRP只有一个天线面板时,一个天线面板即为一个TRP。
类似地,终端可以具有多个天线面板。终端可以通过多个天线面板上的接收波束接收基站发送的下行数据,也可以通过多个天线面板上的发送波束向基站发送上行数据。不同的天线面板对应于不同的波束方向,同一天线面板同一时刻只能指向一个波束方向。
以下行数据传输为例,基站可以动态地切换为同一个终端发送PDSCH的天线面板。例如,基站具有如下两个天线面板:panel#1和panel#2,基站在一段时间内使用panel#1向某一终端发送PDSCH,之后基站动态地切换为该终端发送PDSCH的天线面板,例如切换为使用panel#2向该终端发送PDSCH,或者切换为使用panel#1和panel#2同时向该终端发送PDSCH。在基站向终端发送PDSCH所使用的天线面板发生切换之后,如果终端不对用于接收PDSCH的接收波束进行调整,则会出现基站和终端之间采用的发送波束和接收波束不匹配的问题,导致接收数据出错,影响数据传输的成功率。类似地,上行数据传输存在同样的问题。
在本公开提供的技术方案中,对于多天线面板的场景,通过基站向终端发送MAC信令和DCI,以此向终端指示采用目标天线面板传输数据时对应采用的目标波束,使得终端能够针对不同天线面板选择正确的波束传输数据,提升多 天线面板场景下数据传输的成功率。下面,将通过几个实施例,对本公开提供的技术方案进行介绍说明。
图2是根据一示例性实施例示出的一种数据传输方法的流程图。该方法可应用于图1所示的网络架构中。该方法可以包括如下几个步骤(201~205)。
在步骤201中,基站向终端发送MAC信令。
在本公开实施例中,MAC信令用于激活m个天线面板分别对应的波束指示信息,m为正整数。可选地,终端包括多个天线面板,MAC信令用于激活该终端的全部或部分天线面板分别对应的波束指示信息。例如,终端包括2个天线面板,分别为panel#1和panel#2,基站向终端发送的MAC信令用于激活panel#1和panel#2分别对应的波束指示信息。上述m个天线面板可以属于同一个TRP,也可以属于多个不同的TRP。例如,MAC信令激活了panel#1和panel#2分别对应的波束指示信息,该panel#1和panel#2可以属于同一个TRP,也可以属于两个不同的TRP。另外,当每个TRP只有一个天线面板时,每个天线面板实际上就是对应一个TRP。
在一个示例中,MAC信令激活的每个天线面板对应的波束指示信息的数量相同。以下行数据传输为例,假设MAC信令激活了2个天线面板分别对应的波束指示信息,这两个天线面板分别为panel#1和panel#2,则MAC信令可能激活了panel#1对应的4个波束指示信息,也激活了panel#2对应的4个波束指示信息。在另一个示例中,MAC信令激活的至少两个天线面板对应的波束指示信息的数量不同。以下行数据传输为例,假设MAC信令激活了2个天线面板分别对应的波束指示信息,这2个天线面板分别为panel#1和panel#2,则MAC信令可能激活了panel#1对应的5个波束指示信息,也激活了panel#2对应的3个波束指示信息。
天线面板对应的波束指示信息,用于指示采用该天线面板传输数据时对应的波束。在一个示例中,波束指示信息为TCI状态,某一天线面板对应的TCI状态用于指示终端采用该天线面板接收下行数据时采用的接收波束。在一些其它可能的示例中,TCI状态可以分为下行TCI状态和上行TCI状态,某一天线面板对应的下行TCI状态用于指示终端采用该天线面板接收下行数据时采用的接收波束,某一天线面板对应的上行TCI状态用于指示终端采用该天线面板发送上行数据时采用的发送波束。当然,在一些其它示例中,波束指示信息除了 TCI状态之外,还可以是其它信息,比如用于指示上行发送波束的指示信息,本公开实施例对此不作限定。
另外,基站在向终端发送MAC信令之前,向终端发送RRC信令,通过RRC信令将多个天线面板分别对应的多个波束指示信息通知给终端。MAC信令激活的某一天线面板对应的波束指示信息,是RRC信令中通知的该天线面板对应的多个波束指示信息中的若干个。例如,RRC信令将panel#1对应的64个TCI状态以及panel#2对应的64个TCI状态通知给终端,MAC信令激活panel#1对应的4个TCI状态以及panel#2对应的4个TCI状态。其中,MAC信令激活的panel#1对应的4个TCI状态,是RRC信令通知的panel#1对应的64个TCI状态中的4个,MAC信令激活的panel#2对应的4个TCI状态,是RRC信令通知的panel#2对应的64个TCI状态中的4个。
在本公开实施例中,MAC信令中包含映射信息,该映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系。波束指示码字可以是一个二进制字符串,用于指示天线面板对应的波束指示信息。有关映射信息的其它介绍说明,可参见下文实施例。
在一个示例中,各个天线面板的波束指示信息是联合编号的,也即各个天线面板的波束指示信息的编号不重复。以下行数据传输为例,终端包括2个天线面板,分别为panel#1和panel#2,其中panel#1对应的TCI状态的编号为0~63,panel#2对应的TCI状态的编号为64~127。假设MAC信令激活8个TCI状态,其中panel#1对应的TCI状态包括:TCI#3、TCI#10、TCI#13和TCI#15,panel#2对应的TCI状态包括:TCI#(N+1)、TCI#(N+5)、TCI#(N+7)和TCI#(N+9),N的取值为64。当panel#1对应的TCI状态的编号为0~127时,panel#2对应的TCI状态的编号为128~255,则这时候N为128。
在另一个示例中,各个天线面板的波束指示信息是独立编号的,也即各个天线面板的波束指示信息的编号存在重复。以下行数据传输为例,终端包括2个天线面板,分别为panel#1和panel#2,其中panel#1对应的TCI状态的编号从0~63,panel#2对应的TCI状态的编号也从0~63。假设MAC信令激活8个TCI状态,其中panel#1对应的TCI状态包括:TCI#3、TCI#10、TCI#13和TCI#15,panel#2对应的TCI状态包括:TCI#1、TCI#5、TCI#7和TCI#9。
需要说明的一点是,当各个天线面板的波束指示信息独立编号时,对于各个天线面板对应的TCI状态配置时,RRC信令中需要指示通知的TCI状态对应 的天线面板,MAC信令中也需要指示激活的TCI状态对应的天线面板,也即指示激活的TCI状态是属于哪个天线面板。例如,MAC信令中包含天线面板的标识信息与天线面板的激活信息之间的对应关系;其中,激活信息用于激活天线面板对应的波束指示信息。
在步骤202中,基站向终端发送DCI。
在本公开实施例中,DCI中包括第一波束指示码字。该第一波束指示码字用于指示MAC信令激活的m个天线面板中的目标天线面板对应的目标波束指示信息。该目标天线面板可以是m个天线面板中的一个天线面板,也可以是m个天线面板中的多个天线面板。例如,MAC信令激活panel#1和panel#2分别对应的TCI状态,DCI信令可以仅指示panel#1对应的目标TCI状态,也可以仅指示panel#2对应的目标TCI状态,还可以指示panel#1和panel#2分别对应的目标TCI状态。
在本公开实施例中,由于传输数据所使用的天线面板动态切换,也即传输数据所使用的天线面板可能会随时发生切换,因此通过DCI来指示切换后的目标天线面板以及该目标天线面板对应的目标波束更为合适,因为DCI的发送间隔较短,可以间隔若干时隙进行发送,即便天线面板切换频繁,也能够通过DCI将切换后的目标天线面板和目标波束进行正确指示。而MAC信令始终激活多个天线面板,使得在天线面板动态切换的过程中,无需重复发送MAC信令,有助于节省信令开销。当传输数据所使用的天线面板发生切换时,基站仅需向终端发送DCI,通过该DCI向终端指示切换后的目标天线面板以及该目标天线面板对应的目标波束即可。
在步骤203中,终端根据第一波束指示码字和映射信息,确定m个天线面板中的目标天线面板对应的目标波束指示信息。
在上文已经介绍,映射信息是MAC信令中包含的,用于指示波束指示码字与波束指示信息之间的对应关系的信息。终端获取DCI信令中的第一波束指示码字后,即根据该第一波束指示码字,在映射信息中查找该第一波束指示码字对应的波束指示信息,并将该波束指示信息确定为m个天线面板中的目标天线面板对应的目标波束指示信息。
可选地,MAC信令用于激活2个天线面板分别对应的波束指示信息,这2个天线面板包括第一天线面板和第二天线面板,记为panel#1和panel#2。在一种可能的实现方式中,映射信息中的第一部分波束指示码字,用于指示第一天 线面板对应的波束指示信息,第一部分波束指示码字的个数为大于或等于0的整数;映射信息中的第二部分波束指示码字,用于指示第二天线面板对应的波束指示信息,第二部分波束指示码字的个数为大于或等于0的整数;映射信息中的第三部分波束指示码字,用于指示第一天线面板对应的波束指示信息,以及第二天线面板对应的波束指示信息,第三部分波束指示码字的个数为大于或等于0的整数。
以波束指示码字的长度为3bit、波束指示信息为TCI状态为例,映射信息所指示的对应关系可以示例性如下表-2所示,这里以两个天线面板上的TCI状态联合编号为例:
表-2
波束指示码字 TCI状态编号
000 TCI#3
001 TCI#65
010 TCI#10
011 TCI#69
100 TCI#3&TCI#65
101 TCI#10&TCI#69
110 TCI#13&TCI#71
111 TCI#15&TCI#73
其中,第一部分波束指示码字包括000和010,这两个波束指示码字分别用于指示panel#1对应的一个TCI状态;第二部分波束指示码字包括001和011,这两个波束指示码字分别用于panel#2对应的一个TCI状态;第三部分波束指示码字包括100、101、110和111,这四个波束指示码字分别用于指示一个TCI状态组合,每个TCI状态组合中包括panel#1对应的一个TCI状态,以及panel#2对应的一个TCI状态。
终端在接收到基站发送的DCI并从中读取到第一波束指示码字之后,查找如表-2所示的映射信息,再结合MAC信令激活的m个天线面板对应的TCI状态即可确定出基站所指示的目标天线面板,以及该目标天线面板对应的目标TCI状态。另外,在上述示例中,仅以波束指示码字的长度为3bit进行举例说明,波束指示码字的长度可以大于或等于3bit,也可以小于3bit。假设有2个天线面板,记为panel#1和panel#2,每个天线面板都被MAC信令激活4个TCI状态, 则波束指示码字指示panel#1对应的目标TCI状态存在4种情况,波束指示码字指示panel#2对应的目标TCI状态存在4种情况,波束指示码字指示panel#1和panel#2分别对应的目标TCI状态存在4×4=16种情况,因此总共存在4+4+16=24种情况。如果波束指示码字的长度为5bit,则可以在映射信息中包含全部的24种情况。如果波束指示码字的长度小于5bit,则可以从上述24种情况中选择出与波束指示码字能指示的状态数(即波束指示码字比特数为N,则波束指示码字能指示的状态数为2的N次幂)相对应个数的情况,保存在映射信息中。例如,当波束指示码字的长度为4bit时,则从上述24种情况中选择出16种保存在映射信息中;当波束指示码字的长度为3bit时,则从上述24种情况中选择出8种保存在映射信息中;当波束指示码字的长度为2bit时,则从上述24种情况中选择出4种保存在映射信息中。
在步骤204中,终端根据目标波束指示信息,确定采用目标天线面板传输数据时对应的目标波束。
仍然以上述示例说明,假设DCI中包含的波束指示码字为000,终端确定该波束指示码字000对应的TCI状态编号为TCI#3,由于TCI#3是panel#1对应的TCI状态,且假设TCI#3对应的RS标识为CSI-RS index#6,则终端确定采用panel#1接收CSI-RS index#6时采用的接收波束,作为panel#1接收下行数据的目标接收波束。
又例如,假设DCI中包含的波束指示码字为100,终端确定该波束指示码字100对应的TCI状态编号为TCI#3&TCI#65,由于TCI#3是panel#1对应的TCI状态,TCI#65是panel#2对应的TCI状态,且假设TCI#3对应的RS标识为CSI-RS index#6,TCI#65对应的RS标识为SSB index#2,则终端确定采用panel#1接收CSI-RS index#6时采用的接收波束,作为panel#1接收下行数据的目标接收波束;以及,终端确定采用panel#2接收SSB index#2时采用的接收波束,作为panel#2接收下行数据的目标接收波束。
在步骤205中,终端采用目标天线面板对应的目标波束与基站传输数据。
在下行传输场景中,当波束指示信息为TCI状态时,终端根据目标天线面板对应的目标TCI状态,确定采用该目标天线面板接收下行数据时的目标接收波束,然后采用该目标天线面板对应的目标接收波束接收下行数据。
在上行传输场景中,当波束指示信息为TCI状态或其它上行波束指示信息时,终端根据目标天线面板对应的目标TCI状态或目标上行波束,确定采用该 目标天线面板发送上行数据时的目标发送波束,然后采用该目标天线面板对应的目标发送波束发送上行数据。
综上所述,本公开实施例提供的技术方案中,对于多天线面板的场景,通过基站向终端发送MAC信令和DCI,以此向终端指示采用目标天线面板传输数据时对应采用的目标波束,使得终端能够针对不同天线面板选择正确的波束传输数据,提升多天线面板场景下数据传输的成功率。
另外,本公开实施例提供的技术方案,能够实现终端和基站之间同时采用多个波束进行数据传输,提高通信鲁棒性。
在一种可能的实施方式中,上述MAC信令激活的波束指示信息的数量为k,k为正整数;映射信息中包含从0至k-1的k个重定义编号,且k个重定义编号与MAC信令激活的k个波束指示信息一一对应。
重定义编号是指根据k个波束指示信息的原始编号,对这k个波束指示信息重新定义的编号。例如,当k为8时,也即当MAC信令激活的波束指示信息的数量为8时,映射信息中包含从0至7共8个重定义编号,且该8个重定义编号与上述8个波束指示信息一一对应。
示例性地,仍然以波束指示码字为3bit为例,波束指示码字与重定义编号之间的对应关系可以示例性如下表-3所示:
表-3
波束指示码字 重定义编号
000 TCI#0
001 TCI#4
010 TCI#1
011 TCI#5
100 TCI#0&TCI#4
101 TCI#1&TCI#5
110 TCI#2&TCI#6
111 TCI#3&TCI#7
在本公开实施例中,MAC信令激活的m个天线面板的波束指示信息的原始编号可以是联合编号的,也可以是独立编号的。
示例性地,m个天线面板的波束指示信息的原始编号是联合编号的。此时, MAC信令激活的k个波束指示信息按照第一规则排序后,与k个重定义编号一一对应;其中,第一规则为按照原始编号由小到大或由大到小的顺序进行排序。例如,MAC信令激活panel#1和panel#2分别对应的TCI状态,且panel#1和panel#2对应的TCI状态的原始编号是联合编号的,假设panel#1对应的TCI状态的原始编号是TCI#0~TCI#63,panel#2对应的TCI状态的原始编号是TCI#64~TCI#127,MAC信令激活8个TCI状态,分别为TCI#3、TCI#10、TCI#13、TCI#15、TCI#65、TCI#69、TCI#71和TCI#73,首先将这8个TCI状态按照原始编号由小到大的顺序进行排序,然后确定该8个TCI状态各自对应的重定义编号,即TCI#3对应TCI#0、TCI#10对应TCI#1、TCI#13对应TCI#2、TCI#15对应TCI#3、TCI#65对应TCI#4、TCI#69对应TCI#5、TCI#71对应TCI#6、TCI#73对应TCI#7。
示例性地,m个天线面板的波束指示信息的原始编号是独立编号的。此时,MAC信令激活的k个波束指示信息按照第二规则排序后,与k个重定义编号一一对应;其中,第二规则为按照天线面板的标识信息对m个天线面板的波束指示信息进行排序,天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。例如,MAC信令激活panel#1和panel#2分别对应的TCI状态,且panel#1和panel#2对应的TCI状态的原始编号是独立编号的,假设panel#1对应的TCI状态的原始编号是TCI#0~TCI#63,panel#2对应的TCI状态的原始编号也是TCI#0~TCI#63,MAC信令激活8个TCI状态,包括panel#1对应的TCI#3、TCI#10、TCI#13和TCI#15,以及panel#2对应的TCI#1、TCI#5、TCI#7和TCI#9,首先按照天线面板的标识信息由小到大的顺序对2个天线面板进行排序,即先panel#1后panel#2,然后同一天线面板的TCI状态按照原始编号由小到大的顺序进行排序,即panel#1的TCI#3、TCI#10、TCI#13和TCI#15,以及panel#2的TCI#1、TCI#5、TCI#7和TCI#9,然后确定该8个TCI状态各自对应的重定义编号,即panel#1的TCI#3、TCI#10、TCI#13和TCI#15分别对应TCI#0、TCI#1、TCI#2和TCI#3,panel#2的TCI#1、TCI#5、TCI#7和TCI#9分别对应TCI#4、TCI#5、TCI#6和TCI#7。
需要说明的一点是,天线面板的标识信息用于对天线面板起到唯一标识作用,不同的天线面板具有不同的标识信息。另外,当每个TRP对应一个天线面板时,天线面板的标识信息就是TRP的标识信息,TRP的标识信息可以根据基 站发送的高层信令指标(higher layer signaling index)来标识。
还需要说明的一点是,在MAC信令包含的映射信息中,每个波束指示码字可以对应一个或多个TCI状态。例如,当MAC信令激活2个天线面板分别对应的TCI状态时,映射信息中每个波束指示码字可以对应一个或两个TCI状态。当波束指示码字对应多个TCI状态时,每个TCI状态对应于不同的天线面板。也就是说,对于映射信息中的第i个波束指示码字,当第i个波束指示码字对应的波束指示信息的数量为a,且a大于1时,a个波束指示信息对应于a个不同的天线面板;其中,i为正整数。映射信息中的每个波束指示码字,可以对应一个或多个波束指示信息,当对应多个波束指示信息时,该多个波束指示信息对应不同的天线面板。例如,对于映射信息中的第1个波束指示码字,当第1个波束指示码字对应的波束指示信息的数量为2,则这2个波束指示信息对应于2个不同的天线面板,即一个波束指示信息对应于panel#1,另一个波束指示信息对应于panel#2。
下面,对MAC信令包含的映射信息的设计方式进行介绍说明。
在一种可能的设计方式中,在映射信息中,每个波束指示码字对应的编号指示码字为k比特,该k比特中每个比特对应被激活的k个波束指示信息中的一个;其中,编号指示码字是用于指示重定义编号的码字。
可选地,k个比特中最高比特位对应的重定义编号最小,最低比特位对应的重定义编号最大;或者,k个比特中最高比特位对应的重定义编号最大,最低比特位对应的重定义编号最小。另外,因为映射信息中包括k个波束指示码字,每个波束指示码字对应的编号指示码字为k比特,因此MAC信令需要使用k个k比特来表示映射信息。
例如,如图3所示,因为波束指示码字的长度为3比特,可以指示8种波束指示信息,因此MAC信令中携带的映射信息包括8个8比特,第1个8比特C0~C7指示波束指示码字为000时的波束指示信息,第2个8比特C8~C15指示波束指示码字为001时的波束指示信息,第3个8比特C16~C23指示波束指示码字为010时的波束指示信息,第4个8比特C24~C31指示波束指示码字为011时的波束指示信息,第5个8比特C32~C39指示波束指示码字为100时的波束指示信息,第6个8比特C40~C47指示波束指示码字为101时的波束指示信息,第7个8比特C48~C55指示波束指示码字为110时的波束指示信息,第8个8比特C56~C63指示波束指示码字为111时的波束指示信息。可选地,每 个8比特中,最高比特位对应的重定义编号为TCI#0,最低比特位对应的重定义编号为TCI#7,例如假设第1个8比特为“10000000”,则第1个8比特对应的重定义编号为TCI#0,再例如假设第5个8比特为“10001000”,则第5个8比特对应的重定义编号为TCI#0和TCI#4。
在另一种可能的设计方式中,在映射信息中,每个波束指示码字对应的编号指示码字为r比特,每个编号指示码字指示被激活的k个波束指示信息中的一个或多个;其中,编号指示码字是用于指示重定义编号的码字,r为正整数。
因为映射信息中包括k个波束指示码字,每个波束指示码字对应的编号指示码字为r比特,因此MAC信令需要使用k个r比特来表示映射信息,可选地,r的取值为:
Figure PCTCN2019116064-appb-000001
式中m为MAC信令激活的波束指示信息所对应的天线面板的数量,也即上文实施例中介绍的参数m。例如,当k=8且m=2时,每个编号指示码字指示被激活的8个波束指示信息中的一个或两个,那么这些组合最多为
Figure PCTCN2019116064-appb-000002
种,r的取值为6。
例如,如图4所示,因为波束指示码字的长度为3比特,可以指示8种波束指示信息,因此MAC信令中携带的映射信息包括8个6比特,第1个6比特C0~C5指示波束指示码字为000时的波束指示信息,第2个6比特C6~C11指示波束指示码字为001时的波束指示信息,第3个6比特C12~C17指示波束指示码字为010时的波束指示信息,第4个6比特C18~C23指示波束指示码字为011时的波束指示信息,第5个6比特C24~C29指示波束指示码字为100时的波束指示信息,第6个6比特C30~C35指示波束指示码字为101时的波束指示信息,第7个6比特C36~C41指示波束指示码字为110时的波束指示信息,第8个6比特C42~C47指示波束指示码字为111时的波束指示信息。另外,每个6比特,即每个编号指示码字与重定义编号之间的对应关系,需要预定义,例如预定义如下表-4所示对应关系:
表-4
编号指示码字 重定义编号
000000 TCI#0
000001 TCI#1
000010 TCI#2
000011 TCI#3
000100 TCI#4
000101 TCI#5
000110 TCI#6
000111 TCI#7
001000 TCI#0和TCI#7
001001 TCI#1和TCI#7
001010 TCI#2和TCI#7
001011 TCI#3和TCI#7
001100 TCI#4和TCI#7
…… ……
100100 TCI#3和TCI#4
100101 保留(reserved)
…… 保留(reserved)
…… 保留(reserved)
111111 保留(reserved)
上述表-4所示的每个编号指示码字与重定义编号之间的对应关系,预先定义好并存储在终端和基站中。
这样,终端根据第一波束指示码字和映射信息,确定m个天线面板中的目标天线面板对应的目标波束指示信息,包括:
1、终端从映射信息中获取第一编号指示码字;
第一编号指示码字是与第一波束指示码字对应的编号指示码字,其中,映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,编号指示码字是用于指示重定义编号的码字;
2、终端确定第一编号指示码字所指示的第一重定义编号;
3、终端确定第一重定义编号对应的波束指示信息,得到目标天线面板以及对应的目标波束指示信息。
例如,终端接收到的DCI中包括的第一波束指示码字为000,终端从映射信息中获取与该第一波束指示码字000对应的第一编号指示码字为10000000,如果该第一编号指示码字10000000对应的重定义编号为TCI#0,且TCI#0对应的原始编号为TCI#3,假设TCI#3对应的RS标识为CSI-RS index#6,则终端确 定采用panel#1接收CSI-RS index#6时采用的接收波束,作为panel#1接收下行数据的目标接收波束。
可选地,上述MAC信令还用于更新被激活的波束指示信息和映射信息中的一种或两种,即被激活的波束指示信息和映射信息可以同时更新,也可以只更新一个。如果新的MAC信令只发送了映射信息,则继续沿用之前最近的MAC信令发送的被激活的波束指示信息;如果新的MAC信令只发送了被激活的波束指示信息,则继续沿用之前最近的MAC信令发送的映射信息。
示例性地,基站向终端先后发送过两个MAC信令,记为第一MAC信令和第二MAC信令。假设第一MAC信令中被激活的波束指示信息包括TCI#3、TCI#10、TCI#13、TCI#15、TCI#65、TCI#69、TCI#71和TCI#73,且MAC信令中包含的映射信息所指示的对应关系如上表-3所示;第二MAC信令并未更新被激活的波束指示信息,仅更新了映射信息,假设更新后的映射信息所指示的对应关系如下表-5所示:
表-5
波束指示码字 重定义编号
000 TCI#2
001 TCI#6
010 TCI#3
011 TCI#7
100 TCI#0&TCI#4
101 TCI#1&TCI#5
110 TCI#2&TCI#6
111 TCI#3&TCI#7
那么,当被激活的波束指示信息没有发生更新,但映射信息发生更新时,波束指示码字与波束指示信息之间的对应关系也就发生了更新。假设MAC信令激活的8个TCI状态分别为TCI#3、TCI#10、TCI#13、TCI#15、TCI#65、TCI#69、TCI#71和TCI#73,对应的重定义编号依次为TCI#0、TCI#1、TCI#2、TCI#3、TCI#4、TCI#5、TCI#6和TCI#7,按照表-3所示映射信息,波束指示码字000原本对应的重定义编号为TCI#0,该TCI#0对应的TCI状态是TCI#3,按照表-5所示更新后的映射信息,波束指示码字000对应的重定义编号变为TCI#2,该TCI#2对应的TCI状态是TCI#13。
综上所述,本公开实施例提供的技术方案中,通过对MAC信令激活的波束指示信息进行重定义编号,使得MAC信令中包含的映射信息仅需指示该重定义编号即可,有助于节省映射信息所需的信令开销。
另外,本公开实施例提供了两种关于MAC信令包含的映射信息的设计方式,在实际应用中,可以根据实际情况选择合适的设计方式,例如选择信令开销更小的设计方式,更具灵活性。
在上方法实施例中,仅从终端和基站交互的角度,对本公开技术方案进行了介绍说明,上述有关终端执行的步骤,可以单独实现成为终端侧的数据传输方法,上述有关基站执行的步骤,可以单独实现成为基站侧的数据传输方法。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图5是根据一示例性实施例示出的一种数据传输装置的框图。该装置具有实现上述终端侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端,也可以设置在终端中。该装置500可以包括:第一接收模块510、第二接收模块520、信息获取模块530、波束确定模块540和数据传输模块550。
第一接收模块510,被配置为接收基站发送的MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数。
第二接收模块520,被配置为接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字。
信息确定模块530,被配置为根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息。
波束确定模块540,被配置为根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束。
数据传输模块550,被配置为采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
可选地,所述MAC信令激活的波束指示信息的数量为k,所述k为正整数;所述映射信息中包含从0至k-1的k个重定义编号,且所述k个重定义编号与所述MAC信令激活的k个波束指示信息一一对应。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为k比特,所述k比特中每个比特对应被激活的k个波束指示信息中的一个;其中,所述编号指示码字是用于指示所述重定义编号的码字。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为r比特,每个所述编号指示码字指示被激活的k个波束指示信息中的一个或多个;其中,所述编号指示码字是用于指示所述重定义编号的码字,所述r为正整数。
可选地,对于所述映射信息中的第i个波束指示码字,当所述第i个波束指示码字对应的波束指示信息的数量为a,且a大于1时,所述a个波束指示信息对应于a个不同的天线面板;其中,所述i为正整数。
可选地,所述信息确定模块530被配置为:从所述映射信息中获取第一编号指示码字,所述第一编号指示码字是与所述第一波束指示码字对应的编号指示码字,其中,所述映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,所述编号指示码字是用于指示所述重定义编号的码字;确定所述第一编号指示码字所指示的第一重定义编号;确定所述第一重定义编号对应的波束指示信息,得到所述目标天线面板以及对应的所述目标波束指示信息。
可选地,所述m个天线面板的波束指示信息的原始编号是联合编号的;所述MAC信令激活的k个波束指示信息按照第一规则排序后,与所述k个重定义编号一一对应;其中,所述第一规则为按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述m个天线面板的波束指示信息的原始编号是独立编号的;所述MAC信令激活的k个波束指示信息按照第二规则排序后,与所述k个重定义编号一一对应;其中,所述第二规则为按照天线面板的标识信息对所述m个天线面板的波束指示信息进行排序,所述天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述MAC信令激活的每个所述天线面板对应的波束指示信息的数量相同;或者,所述MAC信令激活的至少两个天线面板对应的波束指示信息的 数量不同。
可选地,所述MAC信令还用于更新所述被激活的波束指示信息和所述映射信息中的一种或两种。
综上所述,本公开实施例提供的技术方案中,对于多天线面板的场景,通过基站向终端发送MAC信令和DCI,以此向终端指示采用目标天线面板传输数据时对应采用的目标波束,使得终端能够针对不同天线面板选择正确的波束传输数据,提升多天线面板场景下数据传输的成功率。
另外,本公开实施例提供的技术方案,能够实现终端和基站之间同时采用多个波束进行数据传输,提高通信鲁棒性。
图6是根据另一示例性实施例示出的一种数据传输装置的框图。该装置具有实现上述基站侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的基站,也可以设置在基站中。该装置600可以包括:第一发送模块610和第二发送模块620。
第一发送模块610,被配置为向终端发送MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数。
第二发送模块620,被配置为向所述终端发送DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
综上所述,本公开实施例提供的技术方案中,对于多天线面板的场景,通过基站向终端发送MAC信令和DCI,以此向终端指示采用目标天线面板传输数据时对应采用的目标波束,使得终端能够针对不同天线面板选择正确的波束传输数据,提升多天线面板场景下数据传输的成功率。
另外,本公开实施例提供的技术方案,能够实现终端和基站之间同时采用多个波束进行数据传输,提高通信鲁棒性。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功 能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种数据传输装置,能够实现本公开提供的终端侧的数据传输方法。该装置可以是上文介绍的终端,也可以设置在终端中。该装置包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
接收基站发送的MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
可选地,所述MAC信令激活的波束指示信息的数量为k,所述k为正整数;所述映射信息中包含从0至k-1的k个重定义编号,且所述k个重定义编号与所述MAC信令激活的k个波束指示信息一一对应。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为k比特,所述k比特中每个比特对应被激活的k个波束指示信息中的一个;其中,所述编号指示码字是用于指示所述重定义编号的码字。
可选地,在所述映射信息中,每个所述波束指示码字对应的编号指示码字为r比特,每个所述编号指示码字指示被激活的k个波束指示信息中的一个或多个;其中,所述编号指示码字是用于指示所述重定义编号的码字,所述r为正整数。
可选地,对于所述映射信息中的第i个波束指示码字,当所述第i个波束指 示码字对应的波束指示信息的数量为a,且a大于1时,所述a个波束指示信息对应于a个不同的天线面板;其中,所述i为正整数。
可选地,所述处理器还被配置为:从所述映射信息中获取第一编号指示码字,所述第一编号指示码字是与所述第一波束指示码字对应的编号指示码字,其中,所述映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,所述编号指示码字是用于指示所述重定义编号的码字;确定所述第一编号指示码字所指示的第一重定义编号;确定所述第一重定义编号对应的波束指示信息,得到所述目标天线面板以及对应的所述目标波束指示信息。
可选地,所述m个天线面板的波束指示信息的原始编号是联合编号的;所述MAC信令激活的k个波束指示信息按照第一规则排序后,与所述k个重定义编号一一对应;其中,所述第一规则为按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述m个天线面板的波束指示信息的原始编号是独立编号的;所述MAC信令激活的k个波束指示信息按照第二规则排序后,与所述k个重定义编号一一对应;其中,所述第二规则为按照天线面板的标识信息对所述m个天线面板的波束指示信息进行排序,所述天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。
可选地,所述MAC信令激活的每个所述天线面板对应的波束指示信息的数量相同;或者,所述MAC信令激活的至少两个天线面板对应的波束指示信息的数量不同。
可选地,所述MAC信令还用于更新所述被激活的波束指示信息和所述映射信息中的一种或两种。
本公开一示例性实施例还提供了一种数据传输装置,能够实现本公开提供的基站侧的数据传输方法。该装置可以是上文介绍的基站,也可以设置在基站中。该装置包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
向终端发送MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息 用于指示DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
向所述终端发送下行控制信息DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
上述主要从终端和基站交互的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,终端、基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图7是根据一示例性实施例示出的一种终端的结构示意图。
所述终端700包括发射器701,接收器702和处理器703。其中,处理器703也可以为控制器,图7中表示为“控制器/处理器703”。可选的,所述终端700还可以包括调制解调处理器705,其中,调制解调处理器705可以包括编码器706、调制器707、解码器708和解调器709。
在一个示例中,发射器701调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器702调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器705中,编码器706接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器707进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器709处理(例如,解调)该输入采样并提供符号估计。解码器708处理(例如,解交织和解码)该符号估计并提供发送给终端700的已解码的数据和信令消息。编码器706、调制器707、解调器709和解码器708可以由合成的调制解调处理器705来实现。这些单元根据无线接入 网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当终端700不包括调制解调处理器705时,调制解调处理器705的上述功能也可以由处理器703完成。
处理器703对终端700的动作进行控制管理,用于执行上述本公开实施例中由终端700进行的处理过程。例如,处理器703还用于执行上述方法实施例中的终端侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,终端700还可以包括存储器704,存储器704用于存储用于终端700的程序代码和数据。
可以理解的是,图7仅仅示出了终端700的简化设计。在实际应用中,终端700可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图8根据一示例性实施例示出的一种基站的结构示意图。
基站800包括发射器/接收器801和处理器802。其中,处理器802也可以为控制器,图8中表示为“控制器/处理器802”。所述发射器/接收器801用于支持基站与上述实施例中的所述终端之间收发信息,以及支持所述基站与其它网络实体之间进行通信。所述处理器802执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器801进行解调(例如将高频信号解调为基带信号),并进一步由处理器802进行处理来恢复终端所发送到业务数据和信令消息。在下行链路上,业务数据和信令消息由处理器802进行处理,并由发射器801进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器802完成。例如,处理器802还用于执行上述方法实施例中基站侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,基站800还可以包括存储器803,存储器803用于存储基站800的程序代码和数据。此外,基站800还可以包括通信单元804。通信单元804用于支持基站800与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在5G NR系统中,该通信单元804可以是NG-U接口,用于支持基站800与UPF(User Plane Function,用户平面功能)实体进行通信;或者,该通信单元804也可以是NG-C接口,用于支持基站800与AMF(Access and Mobility Management Function,接入和移动性管理功能)实体进行通信。
可以理解的是,图8仅仅示出了基站800的简化设计。在实际应用中,基站800可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现如上文介绍的终端侧的数据传输方法。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被基站的处理器执行时实现如上文介绍的基站侧的数据传输方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (25)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端接收基站发送的媒体接入控制MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
    所述终端接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
    所述终端根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
    所述终端根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
    所述终端采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述MAC信令激活的波束指示信息的数量为k,所述k为正整数;
    所述映射信息中包含从0至k-1的k个重定义编号,且所述k个重定义编号与所述MAC信令激活的k个波束指示信息一一对应。
  3. 根据权利要求2所述的方法,其特征在于,
    在所述映射信息中,每个所述波束指示码字对应的编号指示码字为k比特,所述k比特中每个比特对应被激活的k个波束指示信息中的一个;
    其中,所述编号指示码字是用于指示所述重定义编号的码字。
  4. 根据权利要求2所述的方法,其特征在于,
    在所述映射信息中,每个所述波束指示码字对应的编号指示码字为r比特,每个所述编号指示码字指示被激活的k个波束指示信息中的一个或多个;
    其中,所述编号指示码字是用于指示所述重定义编号的码字,所述r为正整 数。
  5. 根据权利要求2所述的方法,其特征在于,
    对于所述映射信息中的第i个波束指示码字,当所述第i个波束指示码字对应的波束指示信息的数量为a,且a大于1时,所述a个波束指示信息对应于a个不同的天线面板;
    其中,所述i为正整数。
  6. 根据权利要求2所述的方法,其特征在于,所述终端根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息,包括:
    所述终端从所述映射信息中获取第一编号指示码字,所述第一编号指示码字是与所述第一波束指示码字对应的编号指示码字,其中,所述映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,所述编号指示码字是用于指示所述重定义编号的码字;
    所述终端确定所述第一编号指示码字所指示的第一重定义编号;
    所述终端确定所述第一重定义编号对应的波束指示信息,得到所述目标天线面板以及对应的所述目标波束指示信息。
  7. 根据权利要求2所述的方法,其特征在于,
    所述m个天线面板的波束指示信息的原始编号是联合编号的;
    所述MAC信令激活的k个波束指示信息按照第一规则排序后,与所述k个重定义编号一一对应;
    其中,所述第一规则为按照原始编号由小到大或由大到小的顺序进行排序。
  8. 根据权利要求2所述的方法,其特征在于,
    所述m个天线面板的波束指示信息的原始编号是独立编号的;
    所述MAC信令激活的k个波束指示信息按照第二规则排序后,与所述k个重定义编号一一对应;
    其中,所述第二规则为按照天线面板的标识信息对所述m个天线面板的波 束指示信息进行排序,所述天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,
    所述MAC信令激活的每个所述天线面板对应的波束指示信息的数量相同;
    或者,
    所述MAC信令激活的至少两个天线面板对应的波束指示信息的数量不同。
  10. 根据权利要求1至8任一项所述的方法,其特征在于,所述MAC信令还用于更新所述被激活的波束指示信息和所述映射信息中的一种或两种。
  11. 一种数据传输方法,其特征在于,所述方法包括:
    基站向终端发送媒体接入控制MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
    所述基站向所述终端发送下行控制信息DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
  12. 一种数据传输装置,其特征在于,应用于终端中,所述装置包括:
    第一接收模块,被配置为接收基站发送的媒体接入控制MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
    第二接收模块,被配置为接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
    信息确定模块,被配置为根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
    波束确定模块,被配置为根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
    数据传输模块,被配置为采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
  13. 根据权利要求12所述的装置,其特征在于,所述MAC信令激活的波束指示信息的数量为k,所述k为正整数;
    所述映射信息中包含从0至k-1的k个重定义编号,且所述k个重定义编号与所述MAC信令激活的k个波束指示信息一一对应。
  14. 根据权利要求13所述的装置,其特征在于,
    在所述映射信息中,每个所述波束指示码字对应的编号指示码字为k比特,所述k比特中每个比特对应被激活的k个波束指示信息中的一个;
    其中,所述编号指示码字是用于指示所述重定义编号的码字。
  15. 根据权利要求13所述的装置,其特征在于,
    在所述映射信息中,每个所述波束指示码字对应的编号指示码字为r比特,每个所述编号指示码字指示被激活的k个波束指示信息中的一个或多个;
    其中,所述编号指示码字是用于指示所述重定义编号的码字,所述r为正整数。
  16. 根据权利要求13所述的装置,其特征在于,
    对于所述映射信息中的第i个波束指示码字,当所述第i个波束指示码字对应的波束指示信息的数量为a,且a大于1时,所述a个波束指示信息对应于a个不同的天线面板;
    其中,所述i为正整数。
  17. 根据权利要求13所述的装置,其特征在于,所述信息确定模块被配置 为:
    从所述映射信息中获取第一编号指示码字,所述第一编号指示码字是与所述第一波束指示码字对应的编号指示码字,其中,所述映射关系中包括多组波束指示码字与编号指示码字之间的映射关系,所述编号指示码字是用于指示所述重定义编号的码字;
    确定所述第一编号指示码字所指示的第一重定义编号;
    确定所述第一重定义编号对应的波束指示信息,得到所述目标天线面板以及对应的所述目标波束指示信息。
  18. 根据权利要求13所述的装置,其特征在于,
    所述m个天线面板的波束指示信息的原始编号是联合编号的;
    所述MAC信令激活的k个波束指示信息按照第一规则排序后,与所述k个重定义编号一一对应;
    其中,所述第一规则为按照原始编号由小到大或由大到小的顺序进行排序。
  19. 根据权利要求13所述的装置,其特征在于,
    所述m个天线面板的波束指示信息的原始编号是独立编号的;
    所述MAC信令激活的k个波束指示信息按照第二规则排序后,与所述k个重定义编号一一对应;
    其中,所述第二规则为按照天线面板的标识信息对所述m个天线面板的波束指示信息进行排序,所述天线面板的标识信息按照由小到大或由大到小的顺序进行排序,且同一天线面板的波束指示信息按照原始编号由小到大或由大到小的顺序进行排序。
  20. 根据权利要求12至19任一项所述的装置,其特征在于,
    所述MAC信令激活的每个所述天线面板对应的波束指示信息的数量相同;
    或者,
    所述MAC信令激活的至少两个天线面板对应的波束指示信息的数量不同。
  21. 根据权利要求12至19任一项所述的装置,其特征在于,所述MAC信 令还用于更新所述被激活的波束指示信息和所述映射信息中的一种或两种。
  22. 一种数据传输装置,其特征在于,应用于基站中,所述装置包括:
    第一发送模块,被配置为向终端发送媒体接入控制MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
    第二发送模块,被配置为向所述终端发送下行控制信息DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
  23. 一种数据传输装置,其特征在于,应用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的媒体接入控制MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
    接收所述基站发送的所述DCI,所述DCI中包括第一波束指示码字;
    根据所述第一波束指示码字和所述映射信息,确定所述m个天线面板中的目标天线面板对应的目标波束指示信息;
    根据所述目标波束指示信息,确定采用所述目标天线面板传输数据时对应的目标波束;
    采用所述目标天线面板对应的所述目标波束与所述基站传输数据。
  24. 一种数据传输装置,其特征在于,应用于基站中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    向终端发送媒体接入控制MAC信令,其中,所述MAC信令用于激活m个天线面板分别对应的波束指示信息,所述天线面板对应的波束指示信息用于指示采用所述天线面板传输数据时对应的波束,所述MAC信令中包含映射信息,所述映射信息用于指示下行控制信息DCI中的波束指示码字与被激活的波束指示信息之间的对应关系,所述m为正整数;
    向所述终端发送下行控制信息DCI,所述DCI中包括第一波束指示码字,所述第一波束指示码字用于指示所述m个天线面板中的目标天线面板对应的目标波束指示信息。
  25. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至10任一项所述方法的步骤,或者实现如权利要求11所述方法的步骤。
PCT/CN2019/116064 2019-11-06 2019-11-06 数据传输方法、装置及存储介质 WO2021087824A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19952003.2A EP4057519A4 (en) 2019-11-06 2019-11-06 DATA TRANSMISSION METHOD AND DEVICE AND STORAGE MEDIUM
PCT/CN2019/116064 WO2021087824A1 (zh) 2019-11-06 2019-11-06 数据传输方法、装置及存储介质
CN201980002937.3A CN110945944B (zh) 2019-11-06 2019-11-06 数据传输方法、装置及存储介质
US17/774,112 US20220417767A1 (en) 2019-11-06 2019-11-06 Data transmission method and appartatus and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116064 WO2021087824A1 (zh) 2019-11-06 2019-11-06 数据传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021087824A1 true WO2021087824A1 (zh) 2021-05-14

Family

ID=69914040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116064 WO2021087824A1 (zh) 2019-11-06 2019-11-06 数据传输方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20220417767A1 (zh)
EP (1) EP4057519A4 (zh)
CN (1) CN110945944B (zh)
WO (1) WO2021087824A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283876A1 (en) * 2021-07-15 2023-01-19 Lenovo (Beijing) Limited Method and apparatus for uplink transmission

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020168556A1 (zh) * 2019-02-22 2020-08-27 北京小米移动软件有限公司 数据传输方法、装置及存储介质
US20230164585A1 (en) * 2020-05-08 2023-05-25 Beijing Xiaomi Mobile Software Co., Ltd. Uplink sending method, apparatus, and device, and storage medium
CN111727586B (zh) * 2020-05-15 2023-10-10 北京小米移动软件有限公司 数据传输处理方法、装置、通信设备及存储介质
CN114727392A (zh) * 2021-01-05 2022-07-08 北京紫光展锐通信技术有限公司 公共波束的识别方法及装置、存储介质、终端、网络端
CN115085773A (zh) * 2021-03-10 2022-09-20 中兴通讯股份有限公司 一种天线数目变更方法、装置、设备和存储介质
US11646859B2 (en) * 2021-06-16 2023-05-09 Qualcomm Incorporated Unified transmission configuration indicator windows
CN117858192A (zh) * 2022-09-29 2024-04-09 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190045494A1 (en) * 2017-08-04 2019-02-07 Industrial Technology Research Institute Beam indication method for multibeam wireless communication system and electronic device using the same
WO2019027226A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CSI REPORT BEAM SELECTION IN ADVANCED WIRELESS COMMUNICATION SYSTEMS
CN109983823A (zh) * 2019-02-22 2019-07-05 北京小米移动软件有限公司 数据传输方法、装置及存储介质
CN109983797A (zh) * 2019-02-22 2019-07-05 北京小米移动软件有限公司 数据传输方法、装置及存储介质
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687019B (zh) * 2012-09-25 2017-07-14 电信科学技术研究院 时分双工上下行配置的更新方法和设备
US20160105817A1 (en) * 2014-10-10 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method for csi feedback
CN107528678B (zh) * 2016-06-22 2021-10-29 大唐移动通信设备有限公司 一种系统消息更新的方法和设备
CN109788546B (zh) * 2017-11-15 2021-07-06 维沃移动通信有限公司 一种定时提前信息的传输方法、网络设备及终端
US10863582B2 (en) * 2018-02-16 2020-12-08 Apple Inc. Methods to signal antenna panel capability of user equipment (UE) for carrier aggregation (CA) in millimeter-wave (MMWAVE) frequency bands
US11026233B2 (en) * 2018-06-20 2021-06-01 Apple Inc. Emission and panel aware beam selection
US20220070903A1 (en) * 2019-01-08 2022-03-03 Beijing Xiaomi Mobile Software Co., Ltd. Downlink data receiving method and device, downlink data sending method and device, and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190045494A1 (en) * 2017-08-04 2019-02-07 Industrial Technology Research Institute Beam indication method for multibeam wireless communication system and electronic device using the same
WO2019027226A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CSI REPORT BEAM SELECTION IN ADVANCED WIRELESS COMMUNICATION SYSTEMS
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission
CN109983823A (zh) * 2019-02-22 2019-07-05 北京小米移动软件有限公司 数据传输方法、装置及存储介质
CN109983797A (zh) * 2019-02-22 2019-07-05 北京小米移动软件有限公司 数据传输方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on Multi-beam Operation Enhancements", 3GPP DRAFT; R1-1904038, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699442 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283876A1 (en) * 2021-07-15 2023-01-19 Lenovo (Beijing) Limited Method and apparatus for uplink transmission

Also Published As

Publication number Publication date
CN110945944A (zh) 2020-03-31
CN110945944B (zh) 2023-09-01
EP4057519A1 (en) 2022-09-14
US20220417767A1 (en) 2022-12-29
EP4057519A4 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
WO2020168556A1 (zh) 数据传输方法、装置及存储介质
WO2021087824A1 (zh) 数据传输方法、装置及存储介质
CN113840387B (zh) 下行数据接收方法、发送方法、装置和存储介质
WO2020168551A1 (zh) 数据传输方法、装置及存储介质
US11805436B2 (en) Method, and device for reporting beam measurement report
JP7426403B2 (ja) ビーム失敗の報告方法、装置及び記憶媒体
WO2020232566A1 (zh) Bwp切换方法、装置及存储介质
CN113873669B (zh) 下行数据接收方法、发送方法、装置和储存介质
CN109314628B (zh) Rs集合的配置方法、装置、设备及存储介质
WO2020142911A1 (zh) 下行数据发送方法、接收方法、装置和存储介质
US20220030609A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019952003

Country of ref document: EP

Effective date: 20220607