WO2020215139A1 - Equipamento e processo para deposição de materiais pulverizados em materiais particulados - Google Patents

Equipamento e processo para deposição de materiais pulverizados em materiais particulados Download PDF

Info

Publication number
WO2020215139A1
WO2020215139A1 PCT/BR2020/050135 BR2020050135W WO2020215139A1 WO 2020215139 A1 WO2020215139 A1 WO 2020215139A1 BR 2020050135 W BR2020050135 W BR 2020050135W WO 2020215139 A1 WO2020215139 A1 WO 2020215139A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate material
particulate
chamber
depositing materials
depositing
Prior art date
Application number
PCT/BR2020/050135
Other languages
English (en)
French (fr)
Inventor
Adriano Friedrich FEIL
Dario EBERHARDT
Pedro Migowski DA SILVA
Claudio SOAVE
Original Assignee
União Brasileira De Educação E Assistência
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by União Brasileira De Educação E Assistência filed Critical União Brasileira De Educação E Assistência
Priority to EP20794976.9A priority Critical patent/EP3995602A4/en
Publication of WO2020215139A1 publication Critical patent/WO2020215139A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations

Definitions

  • the present invention describes an equipment and a process, capable of carrying out the deposition of particulate materials, by means of sputtering, in a sterile way and of semi-continuous production. More specifically, such an invention describes an equipment and process for depositing (coating) particulate materials, especially polymethylmethacrylate (PMMA).
  • PMMA polymethylmethacrylate
  • the equipment and process object of this invention has direct application in the medical field, but is not limited to this, and can also be used in the chemical industry, aerospace industry, metal mechanics, food, among others.
  • the present invention is located in the fields of engineering, physics, chemistry and medicine, especially in aesthetic medicine and plastic surgery.
  • the electrolytic bath also known as electroplating, refers to a process of coating conductive or non-conductive materials by metals from a solution containing ions of these metals.
  • Laser ablation also known as laser ablation, is characterized by a physical process in which a controlled laser pulse is directed at a target by removing clusters of that target by breaking the link via moment transfer. Clusters ejected from the target are deposited on a substrate.
  • Thermal evaporation consists of heating via electrical resistances of a target material to its point of sublimation. At this point, the material begins to evaporate. The evaporated material is deposited on a substrate.
  • the electron beam very similar to the thermal evaporation process, consists of heating via an electron beam directed at a target material to its point of sublimation.
  • the evaporated material is deposited on a substrate.
  • the substrate material to be deposited
  • the target deposition material
  • Cathodic spraying is a process that has advantages compared to others, such as: less environmental and occupational impact, less operating space and mainly a more lasting connection between materials, resulting in a product with incomparable quality.
  • Document number CN108219537-A entitled “Polyhedral Pigment And Preparation Method Thereof”, reports a technology in the field of pigments. Such pigment was covered (deposited) with aluminum, through the cathodic deposition process. The process describes temperature control as a function of time and also uses inert gases, such as nitrogen and argon. However, such a process does not report aseptic manufacturing in its description.
  • the present invention provides an equipment for sputtering of metals in particulate materials
  • An additional object of the present invention is a deposition chamber comprising at least one spray gun
  • a deposition chamber comprising an agitator
  • the object of the present invention is an automated process for the passage of particulate material from the deposition chamber to the exit chamber and airtight closure of the container;
  • An object of the present invention is a process comprising: a) fractioning particulate materials;
  • the particulate materials comprise, the polymethylmethacrylate (PMMA), of preferential micrometric size;
  • the pulverized materials comprise the metals Ti, Ag, Au and their combinations not limited to them, and may also be AI, Si, Ga, Ge, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, TI, Pb, Bi and their combinations, and may also be their respective oxides, nitrides, carbides and their combinations are used.
  • control of deposition parameters such as opening and closing of valves, gas injection, positioning of the airtight cup, control and measurement of vacuum, control and measurement of pressure via automation.
  • Figure 1 represents the process flow and sputtering equipment.
  • the frequency of oscillation and the mass of the powder are parameters that have an inverse relationship, that is, the greater the mass of the powder, the lower the frequency of oscillation must be for the layer to be homogeneous. Another relationship is the opening area of the cup and the deposition time; it was observed that the larger the cup area, the shorter the deposition time to obtain a compact and homogeneous layer.
  • the chemical interaction between the powder and the material that will be deposited may also influence the homogeneity of the layer. In this case, the greater the chemical interaction between the powder and the deposited material, the more compact and homogeneous the deposited layer will be.
  • the equipment was designed to manufacture sterile covered (deposited) particles, preferably through sputtering, especially used in the medical field, such as, for example, intradermal fillers.
  • Another device that comprises the equipment is the deposition cannon, which has the purpose of spraying the material on the target.
  • the equipment also operates in a semi-continuous manner, that is, a batch of production can be started before the previous one is finished. That is, when the covered material passes into the exit chamber, another batch can be inserted into the entrance chamber.
  • Cathodic deposition equipment comprises:
  • the deposition chamber comprises at least one spray gun
  • the deposition chamber also comprises an agitator
  • the first stage of the process begins with the fractionation of the material in the desired portions.
  • the particulate material is sterilized. This operation can be carried out in both wet and dry heat.
  • the next step is to check if the particulate material is completely dry (moisture content less than 0.1%), if it is still humid, it must be dried in a vacuum oven.
  • the particulate material is closed in an airtight container.
  • the next step involves the loading of particulate material, inside the airtight container, in the entrance chamber. [0044] After loading and closing the entrance chamber, at least one vacuum pump is connected to it, which will reduce the pressure by up to 10-8 mbar.
  • the airtight flask is opened, using an automated mechanism and the pressure is maintained at up to 10-8 mbar.
  • a gate valve is opened, to release the access between the entrance chamber and the deposition chamber.
  • the particulate material is poured from the airtight container, into the stirring cup, through a retractable tube, inside the deposition chamber.
  • the particulate material is sprayed in the next chamber, the deposition chamber.
  • the base pressure must be maintained between 10-4 mbar and 10-9 mbar and the working pressure between 10-1 and 10-3 mbar.
  • the spray guns go through a cleaning process (pre-sputtering), where the surfaces of the targets are cleaned, to remove the oxide layer and leave the material to be sprayed with a high degree of purity. Such cleaning process occurs with the spray guns protected by shields, so that there is no contamination in the particulate material.
  • the power parameters must be controlled between 5 and 1000 W and the process time between 1 and 8 h, according to the desired demand;
  • the desired final thickness conditions are controlled according to the relationship between time and power: This relationship established as the deposition rate can vary from 0.015 nm.s-1 to 1.4 nm.s-1.
  • the coated particulate material is transferred from the stirring cup (deposition chamber) to an airtight container (exit chamber).
  • the exit chamber must have a pressure maintained between 10-2 and 10-8 mbar.
  • a gate valve opens to allow access between the outlet chamber and the deposition chamber.
  • the gate valve is closed, as well as the access between the chambers.
  • the outlet chamber is filled with inert gas (which can be nitrogen or argon), the gas prevents contamination of the coated particulate material, then the container is closed hermetically.
  • inert gas which can be nitrogen or argon
  • An accomplishment of the process of sputtering of titanium in microparticles of polymethylmethacrylate (PMMA), comprises the steps of:
  • sterilization by wet heat occurs with the insertion of the container with the PMMA microparticles in an autoclave, maintaining the parameters of temperature, pressure and time at 121 ° C, 1, 5 atm and 15min;
  • the container containing the PMMA microspheres is hermetically sealed;
  • 4.2.2 connect the agitator at a frequency between 10 and 60 Hz;
  • the exit antechamber is filled with inert gas, which may preferably be argon or nitrogen;
  • the container, containing the PMMA microspheres, covered (deposited) with a nanometric metal layer, is hermetically closed.
  • step 3 preferably 3.1;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Equipamento e processo para deposição de materiais pulverizados em micropartículas A presente invenção descreve um equipamento e um processo capazes de realizar recobrimento de material metálico em materiais particulados, através da pulverização catódica (sputtering). Tal invenção apresenta como principais vantagens, a produção estéril e semicontínua, precisão na espessura da camada recoberta e também a redução do ocupacional, visto que se trata de um processo semi-automatizado. A presente invenção é especialmente aplicada na fabricação de matérias primas a serem utilizadas na área médica.

Description

Relatório Descritivo de Patente de Invenção
Equipamento e processo para deposição de materiais pulverizados em
materiais particulados
Campo da Invenção
[0001] A presente invenção descreve um equipamento e um processo, capazes de realizar a deposição de materiais particulados, através de pulverização catódica ( sputtering ), de forma estéril e de produção semicontínua. Mais especificamente, tal invenção descreve um equipamento e processo de deposição (recobrimento) de materiais particulados, especialmente o polimetilmetacrilato (PMMA).
[0002] O equipamento e o processo objeto desta invenção tem aplicação direta na área médica, mas não se limita a essa, podendo também ser utilizados na indústria química, indústria aeroespacial, metal mecânica, alimentos, entre outras.
[0003] A presente invenção se situa nos campos da engenharia, física, química e medicina, especialmente na medicina estética e cirurgia plástica.
Antecedentes da Invenção
[0004] Alguns processos são utilizados pela indústria quando se deseja realizar a deposição de materiais, dentre os quais, destacamos banho eletrolítico, laser ablation, evaporação térmica, elétron beam, pulverização catódica sem se limitar.
[0005] O banho eletrolítico, também conhecido como galvanoplastia, refere-se a um processo de revestimento de materiais condutores, ou não condutores, por metais a partir de uma solução contendo íons destes metais.
[0006] O laser ablation, também conhecido como ablação por laser, caracteriza-se por um processo físico no qual um pulso de laser controlado é direcionado a um alvo removendo clusters desse alvo através da quebra de ligação via transferência de momento. Os clusters ejetados do alvo são depositados em um substrato.
[0007] A evaporação térmica, consiste no aquecimento via resistências elétricas de um material alvo até o seu ponto de sublimação. Neste ponto, o material começa a evaporar. O material evaporado se deposita em um substrato.
[0008] O elétron beam, muito similar ao processo de evaporação térmica, consiste no aquecimento via feixe de elétrons direcionados a um material alvo até o seu ponto de sublimação. O material evaporado se deposita em um substrato.
[0009] Na pulverização catódica, o substrato (material que se deseja depositar), é bombardeado com o alvo (material de deposição), através de canhões, dentro de uma câmara de vácuo.
[0010] A pulverização catódica é um processo que apresenta vantagens frente aos outros, como: menor impacto ambiental e ocupacional, menor espaço de operação e principalmente uma ligação mais duradoura entre os materiais, resultando em um produto com qualidade incomparável.
[0011] Em uma busca no estado da técnica, em bancos de dados nacionais e internacionais, foram localizados alguns documentos que versam sobre processos de deposição de materiais particulados, através de pulverização catódica.
[0012] O documento de número RU2477763-C1 , intitulado“ Method For Obtaining Polymer Nanocomposite Material“, aplicado na área de metalurgia, tal tecnologia descreve um processo de deposição de materiais poliméricos em pó, em uma câmara de vácuo. Entretanto, o referido processo possui parâmetros e etapas diferentes da matéria pleiteada, bem como não ensina um processo de fabricação inerte/asséptico.
[0013] O documento de número CN108219537-A, intitulada“Polyhedral Pigment And Preparation Method Thereof”, relata uma tecnologia no campo de pigmentos. Tal pigmento foi recoberto (depositado) com alumínio, através do processo de deposição catódica. O processo descreve controle da temperatura em função do tempo e também utiliza gases inertes, como nitrogénio e argônio. Entretanto, tal processo não relata fabricação asséptica em sua descrição.
[0014] O documento de número número US8968699, intitulado, “Switchable Nano-Vehicle Delivery Systems And Methods For Making And Using Them” tal documento relata materiais poliméricos em pó, entre os materiais, o polimetilmetacrilato, recoberto (depositado) com materiais metálicos. Entretanto, não é descrito o processo de deposição de tais metais no material polimérico em pó, através do sputtering.
[0015] Portanto, nenhum documento localizado no estado da técnica, antecipou os ensinamentos descritos no presente documento.
Sumário da Invenção
[0016] Em um primeiro aspecto, a presente invenção proporciona um equipamento para pulverização catódica de metais em materiais particulados;
[0017] É outro objeto da presente invenção proporcionar um equipamento de pulverização catódica que compreende uma antecâmara de entrada, uma câmara de deposição e uma antecâmara de saída;
[0018] É objeto adicional da presente invenção, uma câmara de deposição compreendendo pelo menos um canhão de pulverização;
[0019] É também objeto adicional, uma câmara de deposição, compreendendo um agitador;
[0020] É ainda objeto da invenção, processo automatizado de abertura do recipiente hermético e passagem da antecâmara de entrada para a câmara de deposição, por meio do emprego de diferença de pressão entre as câmaras;
[0021] É objeto da presente invenção, processo automatizado de passagem do material particulado da câmara de deposição para a antecâmara de saída e fechamento hermético do recipiente;
[0022] É também objeto da presente invenção o processo de deposição de materiais particulados, de forma estéril e de produção semicontínua;
[0023] É um objeto da presente invenção, a deposição de materiais particulados, através de pulverização catódica; [0024] É um objeto da presente invenção um processo compreendendo: a) fracionar os materiais particulados;
b) esterilizar os materiais particulados;
c) secar os materiais particulados;
d) carregar os materiais particulados na antecâmara de deposição; e) recobrir os materiais particulados na câmara de deposição;
f) armazenar, realizar o controle e esterilizar os materiais particulados.
[0025] É objeto especial da presente invenção, os materiais particulados compreenderem, o polimetilmetacrilato (PMMA), de tamanho preferencial micrométrico;
[0026] É ainda objeto dessa invenção, os materiais pulverizados compreenderem os metais Ti, Ag, Au e suas combinações não limitado a esses podendo também ser AI, Si, Ga, Ge, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, TI, Pb, Bi e suas combinações, podendo também serem usados os seus respectivos óxidos, nitretos, carbetos e suas combinações.
[0027] É um objeto adicional da presente invenção, um processo de produção semicontínuo.
[0028] É também objeto da presente invenção, controle dos parâmetros de deposição como, abertura e fechamento de válvulas, injeção do gás, posicionamento do copo hermético, controle e medição do vácuo, controle e medição da pressão via automação.
Breve Descrição das Figuras
[0029] A Figura 1 representa o fluxo do processo e o equipamento de pulverização catódica.
Descrição Detalhada da Invenção
[0030] As principais vantagens do equipamento e processo de pulverização catódica em materiais particulados, da presente invenção são:
• Fabricação de um produto estéril;
• Eficiência no processo, uma vez que um lote pode iniciar o processo antes do término do outro (produção semicontínua);
• Precisão na camada recoberta (depositada), através do controle da frequência de agitação, relação entre massa do pó, área de abertura do copo, frequência de oscilação e interação química entre o pó e o material que será depositado. A frequência de oscilação e a massa do pó são parâmetros que apresentam uma relação inversa, ou seja, quanto maior a massa de pó, menor deverá ser a frequência de oscilação para que a camada fique homogénea. Outra relação é a área de abertura do copo e o tempo de deposição; foi observado que quanto maior a área do copo, menor foi o tempo de deposição para a obtenção de uma camada compacta e homogénea. A interação química entre o pó e o material que será depositado também poderá influenciar na homogeneidade da camada. Neste caso, quanto maior for a interação química entre o pó e o material depositado, mais compacta e homogenia será a camada depositada.
• Redução de recurso humano, uma vez que se trata de um processo semi-automatizado;
[0031] O equipamento foi projetado para fabricar partículas recobertas (depositadas) estéreis, preferencialmente através de pulverização catódica, especialmente utilizadas na área médica, como, por exemplo, preenchedores intradérmicos.
[0032] Para isso, foram desenvolvidos dispositivos, como as antecâmaras, que eliminam o contato do material particulado com o meio externo. Tais antecâmaras trabalham em sistema semi-automatizado.
[0033] Outro dispositivo que compreende o equipamento é o canhão de deposição, que tem a finalidade de pulverizar o material no alvo.
[0034] O equipamento também opera de forma semicontínua, ou seja, uma batelada de produção pode ser iniciada antes da finalização da anterior. Ou seja, quando a matéria recoberta passa para a antecâmara de saída, outra batelada pode ser inserida na antecâmara de entrada.
[0035] O equipamento de deposição catódica compreende:
a) Antecâmara de entrada;
b) Câmara de deposição;
c) Antecâmara de saída.
[0036] Na antecâmara de entrada ocorre o processo automatizado de abertura do frasco hermético e passagem da antecâmara de entrada para a câmara de deposição, por meio do emprego de diferença de pressão entre as câmaras, através de um tubo retrátil de material inerte, como por exemplo, o aço inoxidável 316L;
[0037] Em especial, a câmara de deposição compreende pelo menos um canhão de pulverização;
[0038] A câmara de deposição também compreende um agitador;
[0039] Na antecâmara de saída ocorre o processo automatizado de passagem da câmara de deposição para a antecâmara de saída e fechamento hermético do frasco, por meio do emprego de diferença de pressão entre as câmaras, através de um tubo retrátil de material inerte, como por exemplo, o aço inoxidável 316L.
[0040] A primeira etapa do processo inicia com o fracionamento do material nas porções desejadas.
[0041] Após essa etapa, o material particulado é esterilizado. Essa operação pode ser realizada tanto com calor úmido quanto por calor seco.
[0042] O próximo passo, é verificar se o material particulado está completamente seco (teor de umidade inferior à 0, 1 %), caso ainda esteja úmido, deve ser seco em forno à vácuo. O material particulado é fechado em recipiente hermético.
[0043] A etapa seguinte, compreende o carregamento do material particulado, dentro do recipiente hermético, na antecâmara de entrada. [0044] Após carregar e fechar a antecâmara de entrada, é conectada a ela pelo menos uma bomba de vácuo que irá reduzir a pressão em até 10-8 mbar.
[0045] Depois, o frasco hermético é aberto, através de um mecanismo automatizado e a pressão se mantém em até 10-8 mbar. Imediatamente, na câmara de deposição, abre-se uma válvula gaveta, para liberar o acesso entre a antecâmara de entrada e a câmara de deposição. Através de um sistema automatizado, o material particulado é vertido do recipiente hermético, para o copo de agitação, através de um tubo retrátil, dentro da câmara de deposição.
[0046] Após a transferência, a válvula gaveta é fechada, bem como o acesso entre as câmaras.
[0047] Na sequência, há a possibilidade de se iniciar uma nova batelada, através da introdução de novo recipiente hermético, compreendendo material particulado estéril e seco, na antecâmara de entrada.
[0048] A pulverização do material particulado ocorre na câmara seguinte, a câmara de deposição. A pressão de base deve ser mantida entre 10-4 mbar e 10-9 mbar e a pressão de trabalho entre 10-1 e 10-3 mbar. Antes do processo de pulverização, os canhões de pulverização passam por um processo de limpeza (pre-sputtering), onde as superfícies dos alvos são limpas, para remover a camada de óxido e deixar o material a ser pulverizado com alto grau de pureza. Tal processo de limpeza ocorre com os canhões de pulverização protegidos por anteparos, para que não haja contaminação no material particulado.
[0049] Após o processo de limpeza, deve-se controlar os parâmetros de potência entre 5 e 1000 W e o tempo de processo entre 1 e 8 h, de acordo com a demanda desejada;
[0050] As condições finais desejadas de espessura, são controladas de acordo com a relação entre tempo e potência: Esta relação estabelecida como taxa de deposição pode variar de 0,015 nm.s-1 até 1 ,4 nm.s-1.
[0051] Assim que finalizar o tempo de deposição entre 1 e 8h, deve-se desligar a tensão, a agitação e a injeção de gás. Nesse momento, o material particulado já está recoberto. [0052] Após a pulverização, o material particulado recoberto é transferido do copo de agitação (câmara de deposição) para um recipiente hermético (antecâmara de saída). Para tal, a antecâmara de saída deve estar com a pressão mantida entre 10-2 e 10-8 mbar. Na câmara de deposição, abre-se uma válvula gaveta, para liberar o acesso entre a câmara de saída e a câmara de deposição. Através de um sistema automatizado, o material particulado recoberto é vertido do copo de agitação, para o recipiente, através de um tubo retrátil, dentro da câmara de deposição.
[0053] Após a transferência, a válvula gaveta é fechada, bem como o acesso entre as câmaras.
[0054] A câmara de saída é preenchida com gás inerte (que pode ser nitrogénio ou argônio), o gás evita a contaminação do material particulado recoberto, na sequência, o recipiente é fechado hermeticamente.
Exemplo 1. Realização Preferencial
[0055] Uma realização do processo de pulverização catódica de titânio em micropartículas de polimetilmetacrilato (PMMA), compreende as etapas de:
1. fracionamento das micropartículas de PMMA, em uma cabine de segurança classe II dentro de recipientes de 0,1 kg a 2kg, de acordo com a demanda da batelada;
2. esterilização das micropartículas de PMMA (pode ser por calor úmido ou calor seco):
2.1. a esterilização por calor úmido ocorre com a inserção do recipiente com as micropartículas de PMMA em autoclave, mantendo-se os parâmetros de temperatura, pressão e tempo à 121 °C, 1 ,5 atm e 15min;
2.2. a esterilização por calor seco ocorre com a inserção do recipiente com as micropartículas de PMMA em forno, sendo mantidos os parâmetros de temperatura de 160°, pressão atmosférica e tempo de 2hs,; 2.3. verificar o percentual de umidade das micropartículas de PMMA, caso esteja igual ou maior que 0,1 %, o recipiente contendo as micropartículas de PMMA deverá ser seco em forno à vácuo, por um período de 4h à 12h, na temperatura entre 100°C e 150°C e uma pressão de 10-1 mbar, podendo ser, preferencialmente em 4h e 100°C, com pressão de 10-1 mbar;
2.4. em atmosfera de gás inerte (atmosfera de gás argônio ou nitrogénio), o recipiente contendo as microesferas de PMMA é fechado hermeticamente ;
3. carregar a antecâmara de entrada com o recipiente, contendo material particulado, fechado hermeticamente;
3.1. manter a pressão em 10-2 mbar;
3.2. através de automação, o frasco fechado hermeticamente é aberto;
3.3. a câmara de deposição é aberta e as micropartículas de PMMA, contidas no recipiente são transferidas para o copo de agitação, por automação;
3.4. a câmara de deposição é fechada;
4. recobrir (depositar) as micropartículas de PMMA;
4.1. manter a câmara de deposição a pressão de base preferencial de 10-4 mbar à 10-6 mbar;
4.2. limpar os canhões de deposição:
4.2.1 proteger os canhões com anteparos;
4.2.2 ligar o agitador a uma frequência entre preferencial de 10 à 60Hz;
4.2.3. introduzir o gás que será ionizado para realizar a pulverização do material do alvo, até atingir a pressão preferencial de 10-3 mbar à 10-1 mbar;
4.2.4. ligar as fontes de tensão em potência preferencial de 5-300W pelo tempo preferencial de até 15min;
4.2.5. após o processo de limpeza, os anteparos são deslocados dos canhões;
4.2.6. manter a tensão entre 5 e 1000W, preferencialmente entre 40 e 120W, durante um período de 0,5 à 6 horas, preferencialmente de 5 à 6 horas; 4.2.7. desligar a tensão, a agitação, e a injeção de gás. Nesse momento, as microesferas de PMMA estão recobertas (depositadas).
5. Armazenamento das microesferas de PMMA, recobertas (depositadas) com camadas nanométricas de metais:
5.1. Transferir as microesferas de PMMA recobertas (depositadas), do copo de agitação que está dentro da câmara de deposição, para a antecâmara de saída. Processo feito por automação, que compreende as etapas de:
5.1.1. Inserir o recipiente com fechamento hermético na antecâmara de saída;
5.1.2. Baixar e manter a pressão da antecâmara de saída em 10-2 mbar.
5.1.3. a câmara de deposição é aberta e as micropartículas de PMMA, contidas no copo de agitação são transferidas para o recipiente com fechamento hermético, por automação;
5.1.4. a câmara de deposição é fechada;
5.1.5. a antecâmara de saída é preenchida com gás inerte, podendo, preferencialmente ser argônio ou nitrogénio;
5.1.6. o recipiente, contendo as microesferas de PMMA, recobertas (depositadas) com camada nanométrica de metal, é fechado hermeticamente.
6. controle de amostra:
6.1. em capela de fluxo laminar, retirar uma amostra de microesferas, do recipiente hermético, para realizar o controle físico-químico e microbiológico;
6.2. caso a amostra esteja contaminada, deve-se repetir a operação de esterilização, de acordo com a etapa 3, preferencialmente, 3.1 ;
6.3. após essa etapa, o recipiente é fechado hermeticamente.

Claims

Reivindicações Equipamento e processo para deposição de materiais pulverizados em material particulado
1 . Equipamento para deposição de materiais pulverizados em material particulado, caracterizado por compreender:
a) antecâmara de entrada;
b) câmara de deposição;
c) antecâmara de saída.
2. Equipamento, de acordo com a reivindicação 1 , caracterizado por compreender pelo menos um canhão de pulverização, na câmara de deposição.
3. Equipamento, de acordo com a reivindicação 1 , caracterizado por compreender um agitador na câmara de deposição.
4. Equipamento, de acordo com a reivindicação 1 , caracterizado por compreender um processo automatizado de abertura do recipiente hermético, na antecâmara de entrada.
5. Equipamento, de acordo com a reivindicação 1 , caracterizado por compreender um processo automatizado de passagem de material particulado da antecâmara de entrada para a câmara de deposição.
6. Equipamento, de acordo com a reivindicação 1 , caracterizado por compreender um processo automatizado de passagem de material particulado recoberto, da câmara de deposição, para a antecâmara de saída.
7. Equipamento, de acordo com a reivindicação 1 , caracterizado por compreender um processo automatizado de fechamento do recipiente hermético, na antecâmara de saída.
8. Equipamento, de acordo com as reivindicações 1 , 5 e 6, caracterizado por compreender pelo menos um tubo retrátil para a passagem do material particulado, da antecâmara de entrada para a câmara de deposição e da câmara de deposição para a antecâmara de saída, preferencialmente construído de aço inoxidável.
9. Processo para deposição de materiais pulverizados em material particulado, caracterizado por compreender:
a) receber os materiais particulados;
b) fracionar os materiais particulados;
c) esterilizar os materiais particulados;
d) secar os materiais particulados;
e) carregar os materiais particulados na antecâmara de deposição; f) recobrir (depositar) os materiais particulados na câmara de deposição;
g) armazenar, realizar o controle e esterilizar os materiais particulados.
10. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela esterilização ser por calor úmido ou seco.
1 1 . Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelo carregamento na antecâmara de entrada, ser realizado de forma manual, onde o material particulado se encontra preferencialmente dentro de um recipiente fechado hermeticamente.
12. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela abertura do recipiente hermético, na antecâmara de entrada, ser realizado preferencialmente por automação.
13. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelo transporte automatizado do material particulado, da antecâmara de entrada, para a câmara de deposição.
14. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelo transporte do material particulado, da antecâmara de entrada, para a câmara de deposição, ocorrer preferencialmente através de um tubo retrátil, do recipiente hermético, para o copo de agitação.
15. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela etapa de recobrimento (deposição) dos materiais particulados compreender a etapa de limpeza dos canhões.
16. Processo para deposição de materiais pulverizados em material particulado, de acordo com as reivindicações 9 e 10, onde os canhões devem ser recobertos por um anteparo, para a limpeza.
17. Processo para deposição de materiais pulverizados em material particulado, de acordo com as reivindicações 9 e 10, onde a limpeza deve ocorrer em uma frequência preferencial de 10 à 60Hz, pressão preferencial de 10-2 à 10 1mbar, tempo preferencial até 15min e tensão preferencial de 5-300W.
18. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicações 9, onde a etapa de recobrimento deve ocorrer em uma frequência preferencial de 5 à 35Hz, pressão preferencial de 10-3 à 10-1mbar, tempo de 0,5 à 6h e tensão de 5 à 1000W.
19. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicações 9, onde a etapa de recobrimento (deposição) deve ocorrer preferencialmente, dentro do período de 5 à 6h e tensão de 40 à 120W.
20. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela etapa de deposição finalizar com o transporte automatizado do material particulado recoberto (depositado), da câmara de deposição, para a antecâmara de saída.
21 . Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelo transporte do material particulado recoberto (depositado) ocorrer preferencialmente através de um tubo retrátil, do copo de agitação, para o recipiente com fechamento hermético.
22. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelo fechamento do recipiente hermético, na antecâmara de saída, ser realizado preferencialmente por automação.
23. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela abertura do recipiente hermético, na antecâmara de entrada, ser realizado preferencialmente por automação.
24. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela retirada de uma amostra do material particulado recoberto (depositado), para realização de controle de qualidade.
25. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela esterilização e secagem do material particulado recoberto (depositado).
26. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelo material particulado ser preferencialmente o polimetilmetacrilato (PMMA), de tamanho preferencial micrométrico.
27. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pelos materiais pulverizados serem preferencialmente Ti, Ag ou Au.
28. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado por ser um processo semicontínuo.
29. Processo para deposição de materiais pulverizados em material particulado, de acordo com a reivindicação 9, caracterizado pela automação ser controlada através dos parâmetros de deposição via automação das fontes de tensão, abertura e fechamento de válvulas, injeção do gás, posicionamento do copo hermético, controle e medição do vácuo, não limitados a esses.
PCT/BR2020/050135 2019-04-25 2020-04-22 Equipamento e processo para deposição de materiais pulverizados em materiais particulados WO2020215139A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20794976.9A EP3995602A4 (en) 2019-04-25 2020-04-22 APPARATUS AND METHOD FOR APPLYING SPRAYED MATERIALS TO PARTICLE MATERIALS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102019008353-0A BR102019008353A2 (pt) 2019-04-25 2019-04-25 Equipamento e processo para deposição de materiais pulverizados em materiais particulados
BRBR1020190083530 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020215139A1 true WO2020215139A1 (pt) 2020-10-29

Family

ID=72940578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050135 WO2020215139A1 (pt) 2019-04-25 2020-04-22 Equipamento e processo para deposição de materiais pulverizados em materiais particulados

Country Status (3)

Country Link
EP (1) EP3995602A4 (pt)
BR (1) BR102019008353A2 (pt)
WO (1) WO2020215139A1 (pt)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080110011A1 (en) * 2005-01-19 2008-05-15 Wiley Zane Reed Automated Sputtering Target Production and Sub Systems Thereof
US20100131093A1 (en) * 1993-07-15 2010-05-27 Renesas Technology Corp. Fabrication system and fabrication method
RU2477763C1 (ru) 2012-01-11 2013-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ получения полимерного нанокомпозиционного материала
US8968699B2 (en) 2007-11-15 2015-03-03 The Regents Of The University Of California Switchable nano-vehicle delivery systems, and methods for making and using them
BR102012001392A2 (pt) * 2012-01-20 2018-03-27 Universidade Federal Do Rio Grande Do Sul Equipamento e processo para deposição de materiais pulverizados em suportes particulados
CN108219537A (zh) 2017-12-20 2018-06-29 上海朗亿功能材料有限公司 一种新型珠光颜料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151273A (ja) * 1984-01-19 1985-08-09 トヨタ自動車株式会社 セラミツク被膜付き金属化合物の微粉末の製造方法
JPS62250172A (ja) * 1986-04-24 1987-10-31 Nisshin Steel Co Ltd 超微粉末を被覆する方法と装置
FR2853670A1 (fr) * 2003-04-09 2004-10-15 Metatherm Installation et procede pour la realisation d'un revetement fonctionnel sur des pieces en vrac
WO2007095376A2 (en) * 2006-02-15 2007-08-23 Kennametal Inc. Method and apparatus for coating particulates utilizing physical vapor deposition
WO2011067820A1 (ja) * 2009-12-04 2011-06-09 キヤノンアネルバ株式会社 スパッタリング装置、及び電子デバイスの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131093A1 (en) * 1993-07-15 2010-05-27 Renesas Technology Corp. Fabrication system and fabrication method
US20080110011A1 (en) * 2005-01-19 2008-05-15 Wiley Zane Reed Automated Sputtering Target Production and Sub Systems Thereof
US8968699B2 (en) 2007-11-15 2015-03-03 The Regents Of The University Of California Switchable nano-vehicle delivery systems, and methods for making and using them
RU2477763C1 (ru) 2012-01-11 2013-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ получения полимерного нанокомпозиционного материала
BR102012001392A2 (pt) * 2012-01-20 2018-03-27 Universidade Federal Do Rio Grande Do Sul Equipamento e processo para deposição de materiais pulverizados em suportes particulados
CN108219537A (zh) 2017-12-20 2018-06-29 上海朗亿功能材料有限公司 一种新型珠光颜料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. EBERHARDT ET AL.: "New method to cover powder substrates with metallic nanoparticles by magnetron sputtering", 14TH IEEE INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, 2014, Toronto, ON, pages 398 - 401, XP032690870, DOI: 10.1109/NANO.2014.6968111 *

Also Published As

Publication number Publication date
BR102019008353A2 (pt) 2020-11-03
EP3995602A4 (en) 2023-11-01
EP3995602A1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
Surmenev A review of plasma-assisted methods for calcium phosphate-based coatings fabrication
Yadav et al. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects
US20050003019A1 (en) Ionic plasma deposition of anti-microbial surfaces and the anti-microbial surfaces resulting therefrom
Sargin et al. Investigation of in vitro behavior of plasma sprayed Ti, TiO2 and HA coatings on PEEK
Ren et al. Reactive magnetron co-sputtering of Ti-xCuO coatings: Multifunctional interfaces for blood-contacting devices
Qi et al. Nanocomposite coatings for implants protection from microbial colonization: formation features, structure, and properties
WO2020215139A1 (pt) Equipamento e processo para deposição de materiais pulverizados em materiais particulados
EP1411002B1 (en) Method for metallization of a plastic tank and method for metallization of a plastic pallet
JPH03153864A (ja) 粒子の表面被覆方法及びその装置
Khademjafari et al. In-vitro evaluation and antibacterial activity of ZnO nanoparticles deposited on hydroxyapatite tablets by RF magnetron sputtering
BR102012001392B1 (pt) Equipamento e processo para deposição de materiais vaporizados em suportes particulados
Panda et al. Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency
Kurapov et al. Synthesis of copper and silver nanoparticles by molecular beam method
Lin et al. Characterizations of the TiO2− x films synthesized by e-beam evaporation for endovascular applications
Pulker Film deposition methods
Shah et al. Influence of bias voltage on corrosion resistance of TiN coated on biomedical TiZrNb alloy
JPH09110412A (ja) 酸化珪素の製造方法
Kashi et al. Biological characterization of the zinc-modified hydroxyapatite coated by a pulsed laser deposition method
Dicu et al. Coating techniques for materials medical: a mini-review
Delmdahl et al. Pulsed laser deposition for coating applications
Krukovskii et al. Formation of the silicon coating on the NiTi substrate by magnetron sputtering
Pierson CVD/PVD coatings
Aleinik et al. Application of cold atmospheric pressure plasmas for biological tissue treatment
JP2588971B2 (ja) レーザ蒸着方法及び装置
Amin et al. Preparation and Characterization of DC Magnetron Sputtered Thin Films of Titanium, Silver, Gold and Their Compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794976

Country of ref document: EP

Effective date: 20211125