WO2020214057A1 - Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр - Google Patents
Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр Download PDFInfo
- Publication number
- WO2020214057A1 WO2020214057A1 PCT/RU2019/001051 RU2019001051W WO2020214057A1 WO 2020214057 A1 WO2020214057 A1 WO 2020214057A1 RU 2019001051 W RU2019001051 W RU 2019001051W WO 2020214057 A1 WO2020214057 A1 WO 2020214057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- nickel
- steel
- chromium
- titanium
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 93
- 239000010959 steel Substances 0.000 title claims abstract description 93
- 230000005855 radiation Effects 0.000 title claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 46
- 239000010936 titanium Substances 0.000 claims abstract description 25
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011651 chromium Substances 0.000 claims abstract description 23
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000011575 calcium Substances 0.000 claims abstract description 19
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011572 manganese Substances 0.000 claims abstract description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 239000011733 molybdenum Substances 0.000 claims abstract description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 239000011574 phosphorus Substances 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 239000011593 sulfur Substances 0.000 claims abstract description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000010941 cobalt Substances 0.000 claims abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 230000008961 swelling Effects 0.000 abstract description 45
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 18
- 150000002910 rare earth metals Chemical class 0.000 abstract description 18
- 239000000203 mixture Substances 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 229910045601 alloy Inorganic materials 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 5
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005272 metallurgy Methods 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 abstract 2
- 238000005242 forging Methods 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 238000005275 alloying Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008092 positive effect Effects 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- -1 titanium carbides Chemical class 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical group [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000009497 press forging Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to the metallurgy of alloy steels and alloys, which are intended for use in nuclear power engineering in the production of the main equipment of nuclear power plants that meet the requirements of the safe operation of nuclear power, namely for the manufacture of in-vessel baffle water-cooled power reactors (VVER) with a resource of at least 60- years old.
- VVER in-vessel baffle water-cooled power reactors
- the baffle of the VVER reactor vessel is exposed to high-dose neutron irradiation and is operated in the water medium of the primary coolant, which is a corrosive medium [5].
- High-dose irradiation causes additional heating of the inner layers of the baffle and, as a consequence, their radiation swelling. Temperature gradients and swelling along the thickness of the baffle lead to the appearance of high tensile stresses in the surface layers of the baffle in contact with the aqueous medium. Contact of highly irradiated metal with the medium can lead to stress corrosion cracking of the baffle.
- the main negative factor of radiation swelling is the deformation of the baffle caused by it, which can lead to contact of the inner surface of the baffle with the peripheral fuel assemblies (FA) and, as a consequence, to the difficulty of removing fuel assemblies from the core.
- FA peripheral fuel assemblies
- This grade is characterized by insufficient resistance to radiation swelling according to the criterion of shape change and embrittlement at damaging doses, typical for the III + generation VVER inner baffle.
- the problem to be solved by the present invention is the creation of steel, which allows increasing the service life of VVER TOI internal parts (baffles) up to 60 years.
- the technical result of the present invention is the creation of an austenitic chromium-nickel steel with increased resistance to swelling when exposed to neutron fluxes at doses up to 150 dpa (displacements per atom), which provides a reduction in the shape change of the inner baffle during operation, as well as higher characteristics of plasticity and crack resistance in irradiated neutrons condition while maintaining resistance to stress corrosion cracking (compared to steel 08X18H10T).
- Such a set of properties of the new steel ensures the operability of the VVER TOI inner baffle during the design service life of at least 60 years.
- Chromium equivalent calculated by the formula:
- ⁇ DD ⁇ is the chromium content, wt. %; Cm about - the content of molybdenum, mass. %; Csi — silicon content, wt%; Cn - titanium content, wt. %.
- Cm is the nickel content, wt. %; ⁇ tone - carbon content, wt. %; CMP - manganese content, wt%; CN - nitrogen content, wt. %.
- the width of the selected ranges of the content of alloying elements is due to the metallurgical features of casting large ingots.
- the claimed invention is illustrated by the following graphic materials.
- Figure 1 shows the dependence of radiation swelling on the damaging dose for the prototype (forged metal JVfel) and the claimed steel with 20% nickel (forged metal No. 2).
- FIG. 2 shows the dependence of the radiation swelling on the damaging dose for the prototype (forged metal JNbl) and metal forgings N ° 3 H N ° 4.
- FIG. 3 shows a comparison of the deformation diagrams of the metal for forging N «3 (without REM and calcium) and forging N ° 4 (with REM and calcium) at forging temperatures.
- Table 1 contains data on the chemical composition of materials for forging No. 2 of the claimed steel grade and forging No. 1 of the prototype.
- Table 2 contains data on the chemical composition of materials for forgings .Nb 3 and No. 4 of the claimed steel grade.
- Table 3 reflects data on the mechanical properties of the claimed steel grade and prototype after austenitization at a temperature of 1050 ° C with cooling in water.
- the proposed steel like the prototype, is alloyed with carbon and titanium.
- the lower limit of the carbon content (0.06%) is regulated and the upper limit of the carbon content is increased to 0.1%.
- Alloying with titanium is performed in order to ensure such a guaranteed content of titanium carbides in the matrix, which affects the radiation swelling towards its decrease. Elastically distorted regions are formed on the carbide-matrix interface due to their coherence and significant positive volume mismatch of the crystal lattice parameters (+0.7 [9]), which serve as sinks for vacancies.
- TiC carbides trap helium bubbles and make them difficult to transform into pores.
- the titanium and carbon remaining in the solid solution make a significant contribution to the suppression of swelling both due to the positive effect of radiation-induced TiC carbides and due to the effect of individual titanium atoms in the solid solution.
- phase transformation y -> a in the process of irradiation of austenitic steels occurs due to a significant depletion of the matrix in austenite-forming elements, primarily nickel.
- the depletion of the austenite matrix with nickel is accompanied by increased swelling.
- the positive effect of increased nickel concentrations on the suppression of swelling was noted both for simple ternary alloys of the Fe-Cr-Ni system, and for complex alloyed industrial compositions, and the minimum swelling is noted at a nickel content in the range of 35-45%.
- a quantitative assessment of the degree of depletion of the austenitic matrix with nickel showed that at a swelling value of 8%, the depletion of nickel in the matrix is about 6% [12].
- the main element giving high corrosion resistance to steels is chromium.
- the role of chromium is to provide the passivation ability of steel.
- a protective passivating film is formed only when the chromium content in steel is more than 12.5%.
- the chromium content in the claimed grade is set in the range (15 - 16)%.
- Molybdenum is an element that reduces the diffusion mobility of various elements and increases creep resistance.
- alloying with molybdenum contributes to a decrease in the degree of segregation processes of alloying and impurity elements in the matrix during operation, as well as to an increase in the recrystallization temperature, which is important for the formation of the required grain score in the workpiece during forging.
- a decrease in the diffusion mobility of elements contributes, among other things, to a decrease in swelling, and an increase in creep resistance provides a higher resistance to stress corrosion cracking.
- silicon is used as one of the deoxidizers. Silicon has a diffusion mobility several orders of magnitude higher than nickel and other basic alloying elements of austenitic steel. The acceleration of diffusion in steels doped with silicon reduces the saturation with vacancies and, thus, decreases the rate of pore nucleation. Another mechanism of the influence of silicon as a sub-sized element is similar to nickel - silicon forms stable complexes with interstitial atoms and thereby increases the degree of their recombination with vacancies. However, during the formation of the g'-phase of N Si, silicon is removed from the solid solution, together with nickel, which most effectively suppresses swelling and stabilizes the g-phase. In the prototype 08X18H10T, the silicon content is limited to the top by 0.8%. Considering both the positive and negative effects of silicon, in the claimed brand, the silicon content is limited to (0.4 - 0.6)%.
- Manganese is used to remove oxygen and sulfur from steel. It has less segregation tendency than any other alloying element. Manganese favorably influences the quality of forgings over the entire carbon content range, with the exception of steels with very low carbon content, and also reduces the risk of red brittleness. Manganese has a beneficial effect on the ductility and weldability of steels. Manganese promotes the formation of austenite and therefore expands the austenitic region of the phase diagram. A high content of manganese (more than 2%) leads to an increased tendency to cracking and warping during quenching. In the claimed steel grade, the manganese content is limited by the level (1.5 - 2.0)%.
- the nitrogen content in the claimed steel is normalized as an impurity, since nitrogen leads to the formation of titanium nitrides and carbonitrides, on which deformation pores are formed [15].
- nitrogen reduces the energy of packing faults (EDF), which negatively affects the resistance of steel to stress corrosion cracking.
- EDF packing faults
- the inventive steel is alloyed with calcium in an amount of 0.001-0.003%, which is adsorbed on the surface of growing crystals during solidification, reducing the growth rate of metal crystal faces and thereby contributes to the formation of a more dispersed structure.
- Calcium binds sulfur into refractory compounds, sharply reducing the possibility of the formation of low-melting sulfides TiS and NiS at a super-equilibrium sulfur content.
- rare-earth metal REM
- Cerium and lanthanum REM additives cerium and lanthanum into the metal in a total amount of 0.001-0.005%, leads to grain refinement; cleans steel from oxygen, sulfur and neutralizes the harmful effects of non-ferrous metal impurities; improves the weldability of steel in terms of increasing resistance to the formation of "hot cracks" as a result of the binding of sulfur and oxygen to refractory compounds [16].
- Rare earth metals reduce the resistance to deformation during forging, increasing the manufacturability of steel in the manufacture of large-sized forgings. In addition, these metals reduce radiation swelling [9].
- Phosphorus has a high diffusion mobility and enhances the diffusion rate of the main steel elements.
- Secretions of RegP phosphides enhance the recombination of point radiation-induced defects at the precipitate-matrix interface due to high mismatch [9, 17]. Therefore, in the declared steel grade, phosphorus should not be considered as an impurity.
- the optimal phosphorus content in terms of reducing swelling is from 0.020% to 0.035% [12, 17].
- the phosphorus content can be limited to 0.035% as in the prototype.
- the sulfur content in the claimed brand is limited to 0.008%, which, in combination with microalloying with calcium, ensures almost complete absence of the formation of low-melting eutectics during the solidification of the ingot and, as a consequence, ensures its technological strength.
- the low sulfur content provides a low volume fraction of sulfides and, as a result, a high level of fracture toughness and impact toughness [19].
- the content of copper as an impurity, as in the prototype steel, is limited to 0.3% according to GOST 5632-72 [1] for steels not alloyed with copper.
- the elements tin, antimony, arsenic, bismuth and lead are impurities and their content in the proposed steel should not exceed 0.001%.
- the content of impurities in excess of the specified level negatively affects the service characteristics of the steel - impurities, when exposed to the operating temperature and radiation, which enhance diffusion, segregate at the grain boundaries and weaken their cohesive strength.
- the metal was smelted in vacuum induction furnaces. Casting into ingots was carried out in vacuum. The resulting metal was subjected to hot working with pressure on industrial press-forging equipment.
- the microstructure and radiation swelling of the irradiated layer of the samples were investigated by scanning and transmission electron microscopy.
- the metal of the forging of the claimed steel with 20% nickel has a swelling 1.3 times lower than that of the prototype.
- the claimed steel with a nickel content of 20% does not provide the required reduction of radiation swelling in comparison with the prototype by 2.4 times, and, therefore, the specified material does not ensure the guaranteed performance of the VVER TOP baffle during the design service life of 60 years.
- Irradiation in a metal ion accelerator for forgings N ° 3 and N ° 4 was carried out according to the regime simulating the irradiation of the VKU material in VVER-type reactors.
- the metal of the prototype (N2I forging) was irradiated in the same mode.
- FIG. 2 it can be seen that the swelling of the metal of forging No. 3 is 2.4 times lower than that of the prototype, and the swelling of the metal of forging No. 4 is 2.7 times lower than that of the prototype.
- FIG. 3 shows a comparison of the deformation diagrams of the metal for forging N «3 (without REM and calcium) and forging N ° 4 (with REM and calcium) at forging temperatures, and it can be seen that the resistance of steel with REM and calcium is lower.
- alloying steel with REM improves its manufacturability (Fig. 3).
- GOST 5632-2014 "Alloyed stainless steels and corrosion-resistant, heat-resistant and heat-resistant alloys", M., 2015, 54 p.
- Gamer F.A. Black C.A., Edwards D.J., Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys // J. Nucl. Mater., 1997, V. 245, 124-130 pp.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207037832A KR20210154708A (ko) | 2019-04-15 | 2019-12-31 | 가압수형 원자로(vver) 내부 구조물의 배플용 내방사선성 오스테나이트 스틸 |
US17/257,277 US20210269905A1 (en) | 2019-04-15 | 2019-12-31 | Radiation-Resistant Austenitic Steel for an Internal Baffle for Pressurized Water Reactors |
EP19925353.5A EP3957762A1 (en) | 2019-04-15 | 2019-12-31 | Radiation-resistant austenitic steel for an internal baffle for pressurized water reactors |
JP2020573544A JP7505988B2 (ja) | 2019-04-15 | 2019-12-31 | 原子炉容器内バッフル用の耐放射線性オーステナイト鋼 |
CA3105268A CA3105268A1 (en) | 2019-04-15 | 2019-12-31 | Radiation-resistant austenite steel for in-vessel baffle |
BR112020026858A BR112020026858A2 (pt) | 2019-04-15 | 2019-12-31 | Aço austenítico resistente à radiação para revestimento interno para reatores de água pressurizada |
CN201980043944.8A CN114207174A (zh) | 2019-04-15 | 2019-12-31 | 用于水-水动力反应堆内围壁的耐辐射奥氏体钢 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019111240A RU2703318C1 (ru) | 2019-04-15 | 2019-04-15 | Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр |
RU2019111240 | 2019-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020214057A1 true WO2020214057A1 (ru) | 2020-10-22 |
Family
ID=68280245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2019/001051 WO2020214057A1 (ru) | 2019-04-15 | 2019-12-31 | Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр |
Country Status (9)
Country | Link |
---|---|
US (1) | US20210269905A1 (ru) |
EP (1) | EP3957762A1 (ru) |
JP (1) | JP7505988B2 (ru) |
KR (1) | KR20210154708A (ru) |
CN (1) | CN114207174A (ru) |
BR (1) | BR112020026858A2 (ru) |
CA (1) | CA3105268A1 (ru) |
RU (1) | RU2703318C1 (ru) |
WO (1) | WO2020214057A1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2068022C1 (ru) * | 1994-06-17 | 1996-10-20 | Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара | Аустенитная сталь |
RU2233906C1 (ru) * | 2003-04-03 | 2004-08-10 | Открытое акционерное общество "Машиностроительный завод" | Аустенитная сталь |
RU2420600C1 (ru) * | 2009-09-24 | 2011-06-10 | Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" | Особотонкостенная труба из аустенитной боросодержащей стали для оболочки твэла и способ ее получения |
US9347121B2 (en) * | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE419102C (sv) * | 1974-08-26 | 1985-12-23 | Avesta Ab | Anvendning av ett kromnickelstal med austenitisk struktur till konstruktioner som erfordrar hog extrem krypbestendighet vid konstant temperatur upp till 1200?59c |
JPH08337853A (ja) * | 1995-06-09 | 1996-12-24 | Hitachi Ltd | 高耐食性高強度オーステナイト焼結鋼とその製造方法及びその用途 |
JP2897694B2 (ja) * | 1995-08-07 | 1999-05-31 | 株式会社日立製作所 | 耐応力腐食割れ性に優れたオーステナイト鋼及びその用途 |
JP2000034545A (ja) * | 1998-07-14 | 2000-02-02 | Daido Steel Co Ltd | 熱間加工性の改善されたオーステナイト系耐熱鋼およびその製造方法 |
AT410550B (de) * | 2002-01-23 | 2003-05-26 | Boehler Edelstahl | Reaktionsträger werkstoff mit erhöhter härte für thermisch beanspruchte bauteile |
RU2241266C1 (ru) * | 2003-04-03 | 2004-11-27 | Открытое акционерное общество "Машиностроительный завод" | Тепловыделяющий элемент ядерного реактора на быстрых нейтронах |
RU2293787C2 (ru) * | 2005-04-18 | 2007-02-20 | Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") | Коррозионно-стойкая сталь для внутрикорпусных устройств и теплообменного оборудования аэс |
BR112013018100B1 (pt) * | 2011-03-28 | 2022-04-05 | Nippon Steel Corporation | Aço inoxidável austenítico de alta resistência para gás hidrogênio de alta pressão, recipiente ou tubo para gás hidrogênio e método para produzir aço inoxidável austenítico para gás hidrogênio de alta pressão |
KR20170128549A (ko) * | 2015-06-15 | 2017-11-22 | 신닛테츠스미킨 카부시키카이샤 | 고Cr계 오스테나이트 스테인리스강 |
JP2019218621A (ja) | 2018-06-22 | 2019-12-26 | 東京エレクトロン株式会社 | 基板載置台及び成膜装置 |
CN109576599A (zh) * | 2018-12-31 | 2019-04-05 | 兴化市广福金属制品有限公司 | 抗晶间腐蚀高强度奥氏体不锈钢 |
-
2019
- 2019-04-15 RU RU2019111240A patent/RU2703318C1/ru active
- 2019-12-31 WO PCT/RU2019/001051 patent/WO2020214057A1/ru unknown
- 2019-12-31 JP JP2020573544A patent/JP7505988B2/ja active Active
- 2019-12-31 EP EP19925353.5A patent/EP3957762A1/en not_active Ceased
- 2019-12-31 CA CA3105268A patent/CA3105268A1/en active Pending
- 2019-12-31 US US17/257,277 patent/US20210269905A1/en not_active Abandoned
- 2019-12-31 CN CN201980043944.8A patent/CN114207174A/zh active Pending
- 2019-12-31 BR BR112020026858A patent/BR112020026858A2/pt unknown
- 2019-12-31 KR KR1020207037832A patent/KR20210154708A/ko not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2068022C1 (ru) * | 1994-06-17 | 1996-10-20 | Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара | Аустенитная сталь |
RU2233906C1 (ru) * | 2003-04-03 | 2004-08-10 | Открытое акционерное общество "Машиностроительный завод" | Аустенитная сталь |
RU2420600C1 (ru) * | 2009-09-24 | 2011-06-10 | Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" | Особотонкостенная труба из аустенитной боросодержащей стали для оболочки твэла и способ ее получения |
US9347121B2 (en) * | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
Non-Patent Citations (11)
Title |
---|
A.A. SOROKINB.Z. MARGOLINI.P. KURSEVICHA.I. MINKINV.S. NEUSTROEVS.V. BELOZEROV: "Impact of neutron irradiation on the mechanical properties of materials of VVER type reactor internals", MATERIALS SCIENCE ISSUES, vol. 66, no. 2, 2011, pages 131 - 152 |
B. ROUXELC. BISORY. DE CARLAN ET AL.: "Influence of austenitic stainless steel microstructure on the void swelling under ion irradiation", EPJ NUCLEAR SCI. TECHNOL., no. 2, 2016 |
G.P. KARZOVB.Z. MARGOLIN: "Essential radiation damage of internals materials and materials science issues of their long-duration operation", REA JOURNAL, 2015, pages 8 - 15 |
GARNER F.A.BLACK C.A.EDWARDS D.J.: "Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys", J. NUCL. MATER., vol. 245, 1997, pages 124 - 130 |
I.P. KURSEVICHG.P. KARZOVB.Z. MARGOLIN: "Alloying principles of new radiation-resistant austenitic steel for the internals of VVER-1200 ensuring their safe operation for minimum 60 years", JOURNAL ''MATERIAL SCIENCE ISSUES, vol. 71, no. 3, 2012, pages 140 - 154 |
JOHNSTON P.A.LAM N.Q.: "Solute segregation under irradiation", JOURNAL OF NUCLEAR MATERIALS, vol. 69-70, 1973, pages 424 |
MAZIASZ P. J.: "Overview of microstructural evolution in neutron-irradiated austenitic stainless steels", JOURNAL OF NUCLEAR MATERIALS, vol. 205, 1993, pages 118 - 145 |
N.K. VASINAB.Z. MARGOLINA.G. GULENKOI.P. KURSEVICH: "Void swelling of stainless steels: effects. Processing of experimental data and formulation of determining equations", JOURNAL ''MATERIAL SCIENCE ISSUES, vol. 4, no. 48, 2006, pages 69 - 89 |
V.A. PIMINOVV.V. EVDOKIMENKO: "Strength and life assessment of the internals of operating and constructed VVER type reactors: realistic and conservative forecasts", REA JOURNAL, 2015, pages 16 - 19 |
V.M. NALESNIKV.V. SAGARADZE: "Questions of atomic science and engineering", SERIES: PHYSICS OF IRRADIATION DAMAGES AND RADIATION MATERIAL SCIENCE, no. 56 |
V.P. POGODINV.L. BOGOYAVLENSKIYV.P. SENTYUREV: "Intracrystalline corrosion and stress-corrosion cracking of stainless steels in aquatic environment - Moscow", ATOMIZDAT, 1970, pages 422 |
Also Published As
Publication number | Publication date |
---|---|
KR20210154708A (ko) | 2021-12-21 |
EP3957762A1 (en) | 2022-02-23 |
CA3105268A1 (en) | 2020-10-22 |
BR112020026858A2 (pt) | 2022-02-15 |
RU2703318C1 (ru) | 2019-10-16 |
US20210269905A1 (en) | 2021-09-02 |
JP2022538196A (ja) | 2022-09-01 |
JP7505988B2 (ja) | 2024-06-25 |
CN114207174A (zh) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5756935B2 (ja) | 耐粒界腐食性および耐応力腐食割れ性に優れたオーステナイト系ステンレス鋼およびその製造方法 | |
JP4995111B2 (ja) | 溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材及び耐熱構造体 | |
EP2647732A1 (en) | Precipitation-strengthened ni-based heat-resistant alloy and method for producing the same | |
CN110565010B (zh) | 一种高放废物玻璃固化体产品容器用奥氏体耐热钢 | |
JP4995131B2 (ja) | 溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材及び耐熱構造体 | |
CN111394663A (zh) | 耐热铁基合金及其制备方法 | |
US4273838A (en) | Weld metal resistant to neutron-bombardment embrittlement | |
CN111621702B (zh) | 用于高放废料玻璃固化容器的核级不锈钢 | |
CN115478220A (zh) | 一种铅铋堆用铁素体/马氏体耐热钢及其制备方法 | |
RU2703318C1 (ru) | Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр | |
CN115491600A (zh) | 一种铅铋堆用铁素体/马氏体耐热钢及其制备方法 | |
JP6321062B2 (ja) | 耐粒界腐食性に優れたフェライト系ステンレス鋼 | |
KR102277730B1 (ko) | 열간가공성 및 인장 특성이 우수한 보론 함유 스테인리스강 및 그 제조 방법 | |
Kursevich et al. | Principles of alloying a novel radiation-resistant austenitic steel for the VVER-1200 reactor internals guaranteeing their safe operation for at least 60 years | |
RU2773227C1 (ru) | Теплостойкая и радиационностойкая сталь | |
RU2777681C1 (ru) | Высокопрочная теплостойкая и радиационностойкая сталь | |
JPH03138334A (ja) | 耐粒界腐食性Fe―Cr―Mn系合金及びその用途 | |
EP4029963A1 (en) | Reduced-activation austenitic stainless steel containing tantalum and manufacturing method therefor | |
JP4953371B2 (ja) | 耐硝酸腐食性に優れたNi基合金及びその製造方法 | |
RU2633408C1 (ru) | Теплостойкая и радиационно-стойкая сталь | |
RU2259419C1 (ru) | Хладостойкая сталь для силовых элементов металлобетонных контейнеров атомной энергетики | |
RU2634867C1 (ru) | Теплостойкая и радиационно-стойкая сталь | |
CN115612924A (zh) | 一种铅铋堆用铁素体/马氏体耐热钢及其制备方法 | |
EP4347908A1 (en) | Alumina forming austenite-ferrite stainless steel alloy | |
CN113913680A (zh) | 一种具有优良中子吸收性能的含Gd双相不锈钢及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19925353 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3105268 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2020573544 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020026858 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019925353 Country of ref document: EP Effective date: 20211115 |
|
ENP | Entry into the national phase |
Ref document number: 112020026858 Country of ref document: BR Kind code of ref document: A2 Effective date: 20201228 |