WO2020213953A1 - 알데히드류 또는 케톤류 검출용 마이크로 디바이스 - Google Patents

알데히드류 또는 케톤류 검출용 마이크로 디바이스 Download PDF

Info

Publication number
WO2020213953A1
WO2020213953A1 PCT/KR2020/005091 KR2020005091W WO2020213953A1 WO 2020213953 A1 WO2020213953 A1 WO 2020213953A1 KR 2020005091 W KR2020005091 W KR 2020005091W WO 2020213953 A1 WO2020213953 A1 WO 2020213953A1
Authority
WO
WIPO (PCT)
Prior art keywords
eluent
sample
ketones
aldehydes
storage unit
Prior art date
Application number
PCT/KR2020/005091
Other languages
English (en)
French (fr)
Inventor
박병현
김병현
한수연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20792207.1A priority Critical patent/EP3809130B1/en
Priority to US17/264,267 priority patent/US11969729B2/en
Publication of WO2020213953A1 publication Critical patent/WO2020213953A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • G01N30/93Application of the sorbent layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N2030/903Plate chromatography, e.g. thin layer or paper chromatography centrifugal chromatography

Definitions

  • the present invention relates to a microdevice for detecting aldehydes or ketones, and more specifically, to a microdevice for detecting aldehydes or ketones using a rotary platform.
  • Carbonyl compounds such as aldehydes and ketones are widely used in various fields because of their bactericidal action and strong reducing action, but are known as harmful substances that are highly toxic and carcinogenic in humans and animals. Therefore, the regulation of carbonyl compounds is being strengthened, and for this reason, it is required to establish a detection and analysis method for harmful carbonyl compounds.
  • the carbonyl compound does not have a chromophore and cannot be detected with a UV detector. Therefore, carbonyl compounds such as low molecular weight aldehydes and ketones present in air and water react with 2,4-dinitrophenylhydrazine (DNPH) to obtain a hydrazone derivative, A method of detecting the obtained compound by high performance liquid chromatography (HPLC) is mainly used (see JP 2010-008311A).
  • HPLC high performance liquid chromatography
  • This HPLC method is a representative method for measuring carbonyl compounds, and has the advantage of excellent sensitivity and selective detection, but has a disadvantage that requires the use of an expensive commercial DNPH cartridge for derivatization and complicated manipulation.
  • the present invention is to solve the above problems, and an object of the present invention is to separate and detect aldehydes or ketones in a more economical and simple manner that can replace HPLC with complicated operation using expensive commercial DNPH cartridges. It is to provide a device that can be used.
  • the device for detecting aldehydes or ketones of the present invention includes a disk-shaped rotary platform; And a microfluidic structure disposed on the rotary platform, wherein the microfluidic structure is a sample storage unit in which a fluid sample including aldehydes or ketones is injected and the aldehydes or ketones are derivatized; An eluent storage unit into which the eluent is injected; A separating unit provided with a TLC plate for receiving the sample and the eluent from the sample storage unit and the eluent storage unit, and in which aldehydes or ketones of the sample are separated and developed with the eluent; A first siphon channel connecting the sample storage unit and the separation unit as a passage through which the sample moves to the separation unit; A second microfluidic passage connecting the eluent storage unit and the separation unit as a passage through which the eluent moves to the separating unit; And an absorption pad that receives the elu
  • FIG. 1 shows a device for detection according to an embodiment of the present invention.
  • FIG. 2 shows a microfluidic structure of the device for detection of FIG. 1.
  • 3A-3D illustrate each layer of a rotating platform comprising a microfluidic structure.
  • FIG. 4 is a photograph showing the detection result detected by the device for detecting aldehydes or ketones of the present invention.
  • 5 is a graph showing the change in rotational speed of the rotating platform over time.
  • FIG. 6 shows an analysis system comprising a device for detection according to the invention and capable of rotating it.
  • the device for detecting aldehydes or ketones of the present invention includes a disk-shaped rotary platform; And a microfluidic structure disposed on the rotary platform, wherein the microfluidic structure is a sample storage unit in which a fluid sample including aldehydes or ketones is injected and the aldehydes or ketones are derivatized; An eluent storage unit into which the eluent is injected; A separating unit provided with a TLC plate for receiving the sample and the eluent from the sample storage unit and the eluent storage unit, and in which aldehydes or ketones of the sample are separated and developed with the eluent; A first siphon channel connecting the sample storage unit and the separation unit as a passage through which the sample moves to the separation unit; A second microfluidic passage connecting the eluent storage unit and the separation unit as a passage through which the eluent moves to the separating unit; And an absorption pad that receives the elu
  • the separation unit includes a sample introduction unit receiving the sample from the sample storage unit, an eluent introduction unit receiving the eluent from the eluent storage unit, and the sample as the eluent.
  • the aldehydes or ketones are separated and developed in a deployment part, and the absorption pad may be provided in the eluent introduction part.
  • the rotational center at which the rotational axis of the rotational platform is provided is the center of the rotational platform, the lengthwise direction of the separation unit is the radial direction of the rotational platform, and the development part is in the rotational center. It may be formed at a position farther than the sample introduction part and the eluent introduction part.
  • the rotary platform rotates in a direction perpendicular to the surface of the rotary platform as a rotation axis direction
  • the TLC plate on which the eluent is developed by capillary force in the separation unit is the TLC It is disposed across the deployment part and the eluent introduction part so that the longitudinal direction of the plate is the direction of the centrifugal force generated by the rotation, the eluent is discharged from the eluent introduction part to the deployment part, and the eluent in the deployment part
  • the capillary force and the centrifugal force may be propelled by a combined force.
  • one end of the first microfluidic flow path is connected to the sample storage, the other end of the first microfluidic flow path is connected to the sample introduction part, and the second microfluidic flow path
  • One end of the flow path may be connected to the eluent storage unit, and the other end of the second microfluidic flow path may be connected to the eluent introduction unit.
  • the absorption pad may be made of a porous adsorption material, and may be made of, for example, cellulose fibers, gelatin fibers, starch fibers, or a mixture of two or more of them.
  • Aldehydes or ketones that can be included in the sample in the device for detecting aldehydes or ketones of the present invention include acetaldehyde, acetone, acrolein, benzaldehyde, butyraldehyde, It may contain at least one selected from the group consisting of formaldehyde and propionaldehyde.
  • the inside of the sample storage unit is 2,4-DNPH-coated silica (2,4-dinitrophenylhydrazine) coated silica) can be filled in the form of beads.
  • a plurality of microfluidic structures may be provided, and the plurality of microfluidic structures may each accommodate different fluid samples, and may be radially symmetrically disposed on the rotary platform.
  • the microfluidic structure includes a first vent hole and a second vent hole through which an external gas is injected into the separation unit or gas inside the separation unit is discharged to the outside, and the second 1 further comprising a first air circulation channel that is a path through which gas moves between the vent hole and the separating part, and a second air circulation channel that is a path through which gas moves between the second vent hole and the separation part,
  • the first air circulation channel may be connected to one end of the separation unit, and the second air circulation channel may be connected to the other end of the separation unit.
  • the first microfluidic flow path and the second microfluidic flow path each include a bent part, and the number of bent parts of the second microfluidic flow path is a bent part of the first microfluidic flow path Can be more than the number of
  • the microfluidic structure further includes a waste sample channel for isolating a part of the sample moving from the sample storage unit to the separation unit, and the waste sample channel is the first microfluidic It may be a euro branching from the euro.
  • FIG. 1 shows a device 1 for detecting aldehydes or ketones according to an embodiment of the present invention
  • FIG. 2 shows a microfluidic structure 20 of the rotary disk system of FIG. 1.
  • the device 1 for detecting aldehydes or ketones includes a rotary platform 10 and a microfluidic structure 20 provided in the rotary platform 10.
  • the rotary platform 10 may be, for example, a circular disk, and the size may be, for example, 14 cm to 17 cm in diameter.
  • the rotary platform 10 includes a microfluidic structure 20.
  • the rotary platform 10 may include one microfluidic structure 20, or may include a plurality of microfluidic structures 20.
  • the plurality of microfluidic structures 20 are positioned radially symmetrically with respect to the center of rotation on the rotary platform 10.
  • the rotation center may be located at the center of the rotary platform 10, and may be a position of the rotary shaft 11 at which the rotary platform 10 rotates.
  • FIG. 1 shows a case in which three microfluidic structures 20 are disposed on the rotary platform 10. According to various environments in which the present invention is implemented, such as the size of the rotary platform 10 and the plurality of microfluidic structures 20, 3, 4, 5, 6, or more may be arranged.
  • the plurality of microfluidic structures 20 of the microdevice 1 for detecting aldehydes or ketones of the present invention includes a sample storage unit 100 and a separation unit 120 capable of derivatizing aldehydes or ketones samples, respectively, , Derivatives of aldehydes or ketones separated by the separation unit 120 may be subjected to qualitative or quantitative analysis through image analysis.
  • the microfluidic structure 20 includes a sample storage unit 100 in which a fluid sample including aldehydes or ketones is injected and aldehydes or ketones are derivatized, and an eluent storage unit 130 in which an eluent is injected.
  • the sample storage unit 100 and the eluent storage unit 130 receive a sample and an eluent
  • the TLC plate is provided to separate and develop the aldehydes or ketones of the sample as an eluent, and the sample is separated
  • a passage to the part 120 a first siphon channel 110 connecting the sample storage part 100 and the separating part 120, and a passage through which the eluent moves to the separating part 120 ,
  • a second microfluidic flow path 140 connecting the eluent storage unit 130 and the separating unit 120, and an absorption pad receiving the eluent from the eluent storage unit 130 and discharging it to the TLC plate.
  • the microfluidic structure 20 may separate and detect fluid samples containing a plurality of types of aldehydes or ketones.
  • Aldehydes or ketones that may be included in the fluid sample include, for example, acetaldehyde, acetone, acrolein, benzaldehyde, butyraldehyde, formaldehyde, and It may contain at least one selected from the group consisting of propionaldehyde, and the like.
  • the sample storage unit 100 has a space for accommodating a fluid sample including aldehydes or ketones, and includes an injection port 100a through which a fluid sample can be injected.
  • the inside of the sample storage unit 100 may be filled with 2,4-DNPH coated silica in the form of beads. Since aldehydes or ketones do not have a chromophore, before the fluid sample containing aldehydes or ketones moves to the separating unit 120, the aldehydes or ketones are first DNPH derivatized in the sample storage unit 100.
  • the sample storage unit 100 and the separation unit 120 may be connected to the first microfluidic flow path 110.
  • the sample storage unit 100 may include a blocking unit (not shown), and the blocking unit (not shown) is a first microfluidic flow path when a sample is injected when a sample is injected through the injection hole 100a. In order to prevent flow to 110, it serves to confine it in the inner space of the sample storage unit 100 by using the step difference of the channel. An opening through which a sample can move from the injection port 100a to the rear end of the sample storage unit 100 is provided in the blocking portion (not shown). The sample is moved from the injection port 100a to the rear end of the sample storage unit 100 by rotation of the rotary platform 10.
  • the rear end of the sample storage unit 100 that is, the vicinity of the location where the sample storage unit 100 and the first microfluidic flow path 110 are connected, has a streamlined shape, for example. So that the fluid sample injected into the sample storage unit 100 minimizes structural interference when the fluid sample injected into the sample storage unit 100 moves to the first microfluidic flow path 110, the fluid sample injected into the sample storage unit 100 is It was made to be moved to the microfluidic flow path 110.
  • the eluent storage unit 130 has a space for accommodating an eluent, and includes an injection hole 130a through which an eluent can be injected.
  • the eluent storage unit 130 and the separating unit 120 may be connected to the second microfluidic flow path 140.
  • the eluent storage unit 130 may include a blocking unit (not shown), and the blocking unit (not shown) is a second microfluid that is directly injected when the sample is injected through the injection port 130a.
  • the step of the channel is used to confine it in the inner space of the eluent storage unit 130.
  • the blocking portion (not shown) is provided with an opening through which the eluent can move from the injection port 130a to the rear end of the eluent storage unit 130.
  • the eluent moves from the injection port 130a to the rear end of the eluent storage unit 130 by rotation of the rotary platform 10.
  • the rear end of the eluent storage unit 130 that is, the vicinity of the location where the eluent storage unit 130 and the second microfluidic flow path 140 are connected, is, for example, a streamlined type.
  • the aldehydes or ketones of the sample are separated and developed in the separation unit 120, and an absorption pad and a TLC plate may be provided in the separation unit 120.
  • the separation unit 120 includes a sample introduction unit 123 receiving a sample from the sample storage unit 100, an eluent introduction unit 121 receiving an eluent from the eluent storage unit 130, and aldehydes of the sample as an eluent.
  • a sample introduction unit 123 receiving a sample from the sample storage unit 100
  • an eluent introduction unit 121 receiving an eluent from the eluent storage unit 130
  • aldehydes of the sample as an eluent.
  • it may include a deployment unit 125 in which ketones are separated and developed.
  • the separating unit 120 may be formed on the rotary platform 10 so that the longitudinal direction of the separating unit 120 is a radial direction of the rotary platform 10.
  • the center of rotation of the rotary platform 10 may be the center of the rotary platform 10. Therefore, when the rotary platform 10 rotates, the eluent in the separating unit 120 may exert a centrifugal force in the moving direction of the eluent.
  • the deployment part 125 may be formed at a position farther from the rotation center than the sample introduction part 123 and the eluent introduction part 121.
  • the eluent introduction part 121, the sample introduction part 123, and the deployment part 125 are arranged in this order, the eluent introduction part 121 is arranged closest to the rotation center, and the deployment part 125 is the most Can be placed remotely.
  • the rotary platform may rotate in a direction perpendicular to the surface of the rotary platform as the rotary shaft 11.
  • a TLC plate on which the eluent is developed by capillary force may be disposed across the deployment unit 125 and the eluent introduction unit 121 so that the longitudinal direction of the TLC plate is a direction of a centrifugal force generated by rotation.
  • the eluent when the eluent is discharged from the eluent introduction portion 121 to the deployment portion 125, the eluent may be propelled by the combined force of capillary force and centrifugal force in the deployment portion 125.
  • the centrifugal force can be controlled by adjusting the rotational speed, and thus, by adjusting the rotational speed, the propulsion force of the eluent can also be controlled.
  • the device for detecting aldehydes or ketones of the present invention when the eluent is deployed on the TLC plate, not only the capillary force but also the centrifugal force act as the driving force of the eluent, so that the solvent is uniformly developed even on the TLC plate, and the eluent is volatilized. Thus, it is possible to prevent a change in the development speed from occurring. Specifically, when the fluid is developed only by capillary force on the TLC plate, the fluid may be volatilized, and it may be difficult to uniformly control the fluid on the TLC plate. However, in the microdevice for detecting aldehydes or ketones of the present invention, a capillary force and a centrifugal force act together to prevent an error in deployment on the TLC plate due to volatilization of fluid.
  • the TLC plate may be disposed over the deployment part 125, the sample introduction part 123, and the eluent introduction part 121.
  • the absorbent pad is provided in the eluent introduction part 121 and may be disposed in a state overlapped with the TLC plate.
  • the absorbent pad accommodated in the eluent introduction unit 121 may absorb the eluent received from the eluent storage unit 130 and uniformly discharge it on the TLC plate.
  • the eluent delivered to the eluent introduction unit 121 is absorbed by the absorbent pad accommodated in the eluent introduction unit 121, and the eluent absorbed by the absorption pad may be uniformly moved to the separating unit 120. That is, the eluent moved from the eluent storage unit 130 to the eluent introduction unit 121 may be absorbed by the absorption pad and then discharged to the deployment unit 125 through the sample introduction unit 123 at a uniform amount and a constant speed. have.
  • the device 1 for detecting aldehydes or ketones of the present invention first absorbs the eluent into the absorption pad and then transfers the eluent to the separation unit 120, the eluent is discharged to the separation unit 120 at a constant rate.
  • the absorption pad prevents diffusion due to wettability of the eluent generated when the eluent is injected into the separating unit 120 by rotational force, and the eluent can be uniformly deployed on the separating unit 120.
  • the absorbent pad may be made of a porous adsorption material, and for example, the material of the absorbent pad may include fibers with -OH groups similar to the chemical structure of cellulose. Specifically, the absorbent pad may be made of cellulose fibers, gelatin fibers, starch fibers, or a mixture of two or more thereof.
  • the absorbent pad is provided at one end of the TLC plate, and the area of the absorbent pad may be appropriately selected according to the area of the TLC plate. For example, it may occupy a range of 5 to 10% of the area of the separating part 120.
  • the length ⁇ width ⁇ height of the absorption pad provided at one end of the separating part 120 may be 0.5cm ⁇ 1.cm ⁇ 0.14 cm. That is, when the TLC plate has a width of 1 cm and a length of 5 cm, the absorbent pad may be formed to have a length of 0.5 cm with a width of 1 cm, which is 10% of the area of the TLC plate.
  • the width of the absorbent pad may be greater than or equal to the TLC plate. By forming the width of the absorbent pad to be greater than or equal to the width of the TLC plate, the eluent is first adsorbed to the absorbent pad, and the eluent may be absorbed by the absorbent pad and then uniformly discharged to the deployment portion.
  • the shape of the absorbent pad may be a rectangular parallelepiped or disk, but is not limited thereto.
  • the device for detecting aldehydes or ketones of the present invention controls the amount and speed of the eluent discharged through the centrifugal force and the absorption pad, thereby controlling the distribution between the sample, the stationary phase, and the eluent and improving the degree of separation.
  • the TLC plate provided in the separation unit 120 may be coated with a material capable of causing a reaction with aldehydes or ketones of the fluid sample, so that the fluid sample may be developed.
  • a material capable of causing a reaction with aldehydes or ketones of the fluid sample so that the fluid sample may be developed.
  • an RP-18 F254s TLC plate is provided, and a material obtained by bonding C18 group to silica may be coated on an aluminum support to a thickness of 0.2 mm.
  • the TLC plate is coated with F254s capable of fluorescence detection, and water may be used up to 40%.
  • the size of the TLC plate may be 4.5cm to 5cm in length and 0.5cm to 2cm in width.
  • the length of the separating part 120 is shorter than two-thirds of the length of the radius of the rotary platform 10.
  • Such a TLC plate may be applicable to a sample of 0.5 ⁇ L to 10 ⁇ L.
  • the TLC plate is disposed on the separating unit 120, and may be disposed so that the longitudinal direction of the TLC plate is also a radial direction of the rotary platform 10.
  • first microfluidic channel 110 is connected to the sample storage unit 100, the other end of the first microfluidic channel 110 is connected to the sample introduction unit 123, and the second microfluidic channel 140
  • One end of the eluent may be connected to the eluent storage unit 130, and the other end of the second microfluidic flow path 140 may be connected to the eluent introduction unit 121.
  • the other end of the first microfluidic flow path 110 may be connected to the sample introduction part 123 of the separating part 120.
  • the first microfluidic flow path is provided so that the sample is provided from the first microfluidic flow path 110 to the sample introduction part 123 and the sample can be developed on the deployment part 125 by the eluent provided in the eluent introduction part 121.
  • the other end of 110) may be located in the sample introduction part 123 near the eluent introduction part 121.
  • the other end of the second microfluidic flow path 140 is connected to the eluent introduction part 121 of the separating part 120.
  • the eluent is provided from the second microfluidic flow path 140 to the eluent introduction unit 121, and the eluent provided in the eluent introduction unit 121 may move to the deployment unit 125 through the sample introduction unit 123. Therefore, aldehydes or ketones of the sample in the sample introduction part 123 may be developed on the TLC plate by the eluent.
  • Each of the first microfluidic flow path 110 and the second microfluidic flow path 140 may include a bent portion 170.
  • the bent portion 170 may include, for example, a portion of a “U”-shaped tube.
  • the bent portion 170 may delay the movement of fluid in the microfluidic flow path.
  • the number of bent portions 170 of the second microfluidic flow path 140 may be greater than the number of bent portions 170 of the first microfluidic flow path 110. This is for introducing a sample into the separating unit 120 first through the first microfluidic channel 110 and then introducing the eluent into the separating unit 120 through the second microfluidic channel 140 later.
  • the microfluidic structure 20 includes a first vent hole 151 and a second vent hole 153 through which external gas is injected into the separating unit 120 or gas inside the separating unit 120 is discharged to the outside.
  • the first air circulation channel 161 which is a path through which gas moves between the vent hole 151 and the separating part 120, and a path through which gas moves between the second vent hole 153 and the separating part 120
  • a phosphorus second air circulation channel 163 may be included.
  • the first air circulation channel 161 may be connected to one end of the separation unit 120, and the second air circulation channel 163 may be connected to the other end of the separation unit 120.
  • connection point between the first air circulation channel 161 and the separation unit 120 is referred to as a first connection point
  • connection point between the second air circulation channel 163 and the separation unit 120 is referred to as a second connection point.
  • the first connection point may be closer to the center of rotation than the deployment part 125
  • the second connection point may be farther from the center of rotation than the deployment part 125. That is, the deployment part 125 may be formed between the first connection point and the second connection point on a virtual line formed by the radial direction of the rotary platform.
  • the role of the first air circulation channel 161 is to escape air trapped in the first microfluidic flow path 110 or the second microfluidic flow path 140 when the sample is injected into the separation unit 120 by rotational force,
  • the first microfluidic flow path 110 or the second microfluidic flow path 140 may prevent bubbles from being formed due to pressure and allow the sample to move smoothly.
  • the air inside the separation unit 120 is discharged through the second vent hole 153 to increase the pressure inside the separation unit 120 and condensation of moisture. Can be prevented.
  • the first air circulation channel 161 and the second air circulation channel 163 are formed with a hole having a thickness of about 1 mm and a diameter of about 0.8 mm to form a capillary valve by pneumatic pressure. It is possible to prevent the sample and the eluent from flowing back into the air circulation channel 161 and the second air circulation channel 163.
  • FIG. 3A-3D show each layer of a rotating platform 10 comprising the microfluidic structure 20 of FIG. 1.
  • the rotary platform 10 including the microfluidic structure 20 may consist of three large layers, an upper layer (FIG. 3b ), a middle layer (FIG. 3c ), and a lower layer (FIG. 3d ). have.
  • Each of the components except for the separating portion 120 of the microfluidic structure 20 may be generated through a patterning process using micro milling.
  • a first portion 110a of the first microfluidic flow path 110 is disposed in the middle layer, and the first portion 110a is a portion connected to the sample storage unit 100 And a bent portion 170.
  • the second part 110b of the first microfluidic flow path 110 is disposed on the upper layer, and the second part 110b includes a part connected to the separating part 120. This is, after the sample is accommodated in the first portion 110a of the first microfluidic flow path 110 from the sample storage unit 100 disposed in the intermediate layer, the sample is separated from the first microfluidic flow path 110.
  • the sample When provided as ), the sample is provided in a manner that falls from the top to the bottom of the separation unit 120, that is, onto the separation unit 120. Accordingly, the sample may be more evenly deployed on the separation unit 120.
  • the sample When the first microfluidic flow path 110 is connected from the side of the separation unit 120 to inject a sample, the sample may not be formed as a spot in the injected region. From this, errors may occur in interpreting the analysis results.
  • the second portion 110b connected to the separation unit 120 of the first microfluidic flow path 110 is at a different height from the separation unit 120 on the rotary platform 10. By forming in the layer of, it is possible to inject the sample into the center of the separation unit 120 in the width direction of the separation unit 120, not the side of the separation unit 120.
  • the microfluidic structure 20 may include a waste sample channel 111 that isolates a part of a sample moving from the sample storage unit 100 to the separation unit 120.
  • the waste sample channel 111 may be a flow path branching from the first microfluidic flow path.
  • some of the samples transferred from the sample storage unit 100 through the first microfluidic flow path 110 are introduced into the waste sample channel 111 and the waste sample channel 111 Samples equal to the volume of the internal accommodation space of may be isolated before arriving to the separation unit 120. Accordingly, a sample amount excluding the inner volume of the waste sample channel 111 may be loaded into the sample introduction part 123 on the TLC plate.
  • the volume of the waste sample channel 111 is designed to be 4.5 ⁇ l so that only 0.5 ⁇ l of the derivatized sample can be loaded on the TLC. Can be adjusted. This can prevent a phenomenon in which the sample is excessively loaded on the TLC, so that the separation is not performed properly and incorrect results may be derived.
  • Separation unit 120 inserted into the middle and lower layers of the rotary platform 10 from the first microfluidic flow passage 110 located in the upper layer of the rotary platform 10 in which a sample containing DNPH derivatized multiple aldehydes or ketones In other words, the fluid sample is injected downward. Accordingly, the fluid sample may be more uniformly deployed in the separation unit 120.
  • a first portion 140a of the second microfluidic flow path 140 is disposed in the middle layer, and the first portion 140a is connected to the eluent storage unit 130. It includes a portion and a bent portion 170.
  • the second portion 140b of the second microfluidic flow path 140 is disposed across the upper and middle layers, and the second portion 140b includes a portion connected to the separating portion 120. This is to allow the eluent to be introduced into the center of the lower end of the separation unit 120.
  • the second microfluidic flow path 140 When the second microfluidic flow path 140 is connected from the side of the separating unit 120 to inject the eluent, the eluent does not develop by forming a uniform line on the separating unit, but forms a wave circle and expands the sample. Uniform separation can be difficult.
  • the second portion 140b connected to the separating portion 120 of the second microfluidic passage 140 has a different height from the separating portion 120 in the rotary platform 10. By forming on the layer of, the eluent can be injected into the center of the separation unit 120 in the width direction of the separation unit 120 rather than the side of the separation unit 120.
  • the upper layer includes an injection hole 100a of the sample storage unit 100 and an injection hole 130a of the eluent storage unit 130, as shown in FIG. 3B.
  • the injection hole 100a of the sample storage unit 100 and the injection hole 130a of the eluent storage unit 130 are formed across the upper and middle layers. Therefore, when the sample and the eluent are injected into the injection port 100a of the sample storage unit 100 provided on the rotary platform 10 (ie, the upper layer) and the injection port 130a of the eluent storage unit 130, respectively, , The sample and the eluent are accommodated into the sample storage unit 100 and the eluent storage unit 130 provided in the intermediate layer, respectively.
  • a space in which the shape of the TLC plate can be matched across the middle and lower layers, and a space in which the TLC plate can be accommodated and a space in which an absorption pad provided at one end of the TLC plate can be accommodated are provided.
  • the middle layer is opened so that the TLC plate can be inserted, and the lower layer is provided with a recess that matches the shape of the TLC plate and into which the TLC plate can be inserted.
  • the TLC plate may be located over the middle and lower layers.
  • an eluent introduction portion 121 may be formed so that one end of the TLC plate may be inserted across the middle layer portion and the lower layer portion, and an absorption pad may be provided in the eluent introduction portion 121.
  • the present invention is not limited to the above, and a portion of the upper layer where the TLC plate is located is variously modified such that the lower surface of the upper layer may be provided as a recess in accordance with the shape of the TLC plate so that the TLC plate can be inserted. , Can be changed.
  • the height of the concave portion can be variously modified and changed according to the environment in which the present invention is actually implemented.
  • Materials of the upper, middle, and lower layers are preferably made of COC (Cyclic Olefin Copolymer) that does not react with aldehyde, and depending on the sample, polycarbonate (PC) or polymethylmethacrylate (PMMA) ), etc. may be provided with materials of the upper, middle, and lower layers.
  • COC Cyclic Olefin Copolymer
  • PC polycarbonate
  • PMMA polymethylmethacrylate
  • an adhesive layer (not shown) is provided between the upper layer, the middle layer, and the lower layer, respectively, so that the upper layer and the middle layer may be bonded, and the middle layer and the lower layer may be bonded.
  • the adhesive layer may be made of, for example, an acrylic double-sided adhesive tape. From a tape or plate made of a material having an adhesive component corresponding to the size of the rotary platform 10, regions corresponding to the above-described components of each layer may be removed by cutting or the like.
  • regions corresponding to components of the middle layer and the lower layer may be cut in the adhesive layer bonding the middle layer and the lower layer.
  • the process of detecting aldehydes or ketones using the device according to the present invention is a derivatization step in which aldehydes or ketones of the fluid sample stored in the sample storage unit 100 are derivatized in the sample storage unit 100, and the fluid
  • the sample introduction step in which the sample moves from the sample storage unit 100 to the sample introduction unit 123 of the separation unit 120, and the eluent introduction unit 121 of the separation unit 120 from the eluent storage unit 130
  • a deployment step in which aldehydes or ketones of the fluid sample are separated and developed in the deployment part 125 by an eluent.
  • a drying step of drying the eluent in the deployment unit 125 and a re-deployment step in which aldehydes or ketones of the fluid sample are separated and developed by re-injecting the eluent into the dried deployment unit 125 It may further include.
  • the rotary platform 10 may rotate at 2500 to 5000 RPM for 2 to 20 seconds.
  • the sample is in close contact with 2, 4-DNPH coated silica in the form of beads, so that aldehydes or ketones can accelerate the DNPH derivatization reaction. That is, during the rotation, the sample reacts with 2, 4-DNPH coated silica in the form of beads, so that aldehydes or ketones may be DNPH derivatized.
  • the aldehydes or ketones of the sample are derivatized by the bent portions 170 formed in the first microfluidic circuit and the second microfluidic circuit, it is possible to prevent the sample and the eluent from moving to the separating unit 120.
  • the rotary platform 10 may be rotated at 2000 to 4000 RPM for 0.5 to 2 seconds.
  • the rotary platform 10 may rotate for 1 second at a speed of 3000 RPM.
  • the sample may be introduced into the sample introduction part 123 of the separating part 120 by the rotation.
  • the rotation since more bent portions 170 are formed in the second microfluidic circuit than in the first microfluidic circuit, the sample is moved from the sample storage unit 100 to the separating unit 120, but the eluent is It may be prevented from being moved from the storage unit 130 to the separation unit 120.
  • the rotary platform 10 may be rotated for 200 to 400 seconds at 400 to 800 RPM. For example, it can be rotated for 300 seconds at 600 RPM in the deployment stage.
  • the eluent may move to the eluent introduction part 121 of the separating part 120.
  • the eluent is first absorbed by the absorption pad accommodated in the eluent introduction part 121 and then uniformly discharged to the deployment part 125 through the sample introduction part 123 at a constant speed.
  • the speed of rotation in the deployment step can be controlled to control the speed of deployment of the eluent on the TLC plate.
  • the rotary platform 10 may be rotated at 3000 to 5000 RPM for 5 to 6 minutes.
  • external gas is introduced into the separation unit 120 through the first air circulation channel or the second air circulation channel 163, and the gas introduced into the separation unit 120 is again transferred to the first air circulation channel ( 161) or through the second air circulation channel 163, the eluent of the TLC plate may be evaporated.
  • the rotary platform 10 may be rotated at 400 to 800 RPM for 200 to 400 seconds.
  • the rotary platform 10 may be rotated at 600 RPM for 300 seconds.
  • the absorbent pad may release the eluent back to the deployment unit 125.
  • the speed of rotation can be controlled to control the rate of development of the eluent on the TLC plate.
  • the drying step and the redeployment step may be repeatedly performed, and by repeating the drying step and the redeployment step, it is possible to increase the separating power of aldehydes or ketones separated and developed on the TLC plate.
  • TLC plate 4 is a TLC plate in which aldehydes or ketones are separated and developed after a derivatization step, a sample introduction step, and a development step are performed, and aldehydes or ketones are separated and developed after a drying step and a redeployment step are performed after the development step. It is a picture showing the TLC plate.
  • the TLC plate performed up to the derivatization step, the sample introduction step and the development step is an intermediate TLC plate in the photograph of FIG. 4.
  • the TLC plate in which the drying step and the redeployment step were further performed after the deployment step is the TLC plate on the right side in the photograph of FIG. 4. Comparing the two TLC plates, it can be seen that the TLC plate in which the drying step and the redeployment step were further performed after the development step had better resolution.
  • FIG. 5 is a graph showing the rotation speed and rotation time of the rotary platform 10 during the derivatization step, sample introduction step, deployment step, drying step, and redeployment.
  • Fig. 6 shows a system 2 for detecting aldehydes or ketones comprising the device 1 for detecting aldehydes or ketones according to the present invention.
  • the system 2 for detecting aldehydes or ketones further includes a UV lamp (not shown).
  • the UV lamp may be installed, for example, on the lower surface of the ceiling of the system 2 for detecting aldehydes or ketones.
  • the present invention is not limited thereto, and as long as a sample of aldehydes or ketones developed on the separating unit 120 can be confirmed by illuminating the separating unit 120 with a UV lamp, the UV lamp can be mounted in various positions. Can be transformed or changed.
  • aldehydes or ketones do not have a chromophore, so they are derivatized with DNPH in the sample storage unit 100 and then developed in the separation unit 120, and aldehydes or ketones derivatized with DNPH are developed.
  • the separation unit 120 is illuminated with a UV lamp, aldehydes or ketones can be separated and detected.
  • acetaldehyde, acetone, acrolein, benzaldehyde, butyraldehyde, formaldehyde Alternatively, a qualitative analysis of a plurality of aldehydes or ketones, such as propionaldehyde, can be performed within minutes. Since the 7 types of aldehydes or ketones contained in the fluid sample have different degrees of development on the separation unit 120, the 7 types separated and developed on the separation unit 120 by shining a UV lamp on the separation unit 120 Aldehydes or ketones can be detected respectively.
  • the DNPH derivatization of aldehydes or ketones and the development process on the separation unit 120 control centrifugal force and capillary force by rotation control of the rotary platform 10 on which the microfluidic structure 20 is disposed.
  • the detection device 1 it is possible to economically and quickly separate and detect multiple aldehydes or ketones, and is economical compared to the conventional expensive HPLC analysis equipment and required for analysis. Time can be shortened, and it can be applied quickly and conveniently in the field where the separation and detection of multiple aldehydes or ketones is required.
  • the plurality of samples can be simultaneously analyzed by one device 1.
  • the device for detecting aldehydes or ketones of the present invention when the eluent is developed on TLC, not only the capillary force but also the centrifugal force act as the driving force of the eluent, so that the solvent can be uniformly developed even on the TLC.
  • the device for detecting aldehydes or ketones of the present invention integrates a derivatization reaction process for converting aldehydes or ketones into a form that can be analyzed on TLC, and a separation process for separating the derivatized product on TLC in one device. Can be done. That is, the device for detecting aldehydes or ketones of the present invention may be a rotary microdevice capable of integrating derivatization and TLC separation of aldehydes or ketones.
  • the plurality of microfluidic structures of the microdevice for detecting aldehydes or ketones of the present invention includes a sample storage unit and a separation unit capable of derivatizing aldehydes or ketones samples, respectively, so that the derivatization and separation of aldehydes or ketones
  • the aldehydes or ketone derivatives separated in the separation unit may be subjected to qualitative or quantitative analysis through image analysis.
  • the eluent in the device for detecting aldehydes or ketones of the present invention, as the eluent is first absorbed by an absorption pad provided in the separating unit and then released, the eluent can be moved at a constant speed. That is, the absorption pad provided in the separation unit prevents diffusion of the eluent due to wettability that occurs when the eluent, which is a mobile phase, is injected into the separation unit by rotational force, and moves the eluent at a constant speed, thereby stably moving the sample from the separation unit. Can be separated.
  • the device for detecting aldehydes or ketones of the present invention can control the speed at which the solvent moves onto the TCL by controlling the strength of the rotational force. After separating the sample once, the solvent remaining on the TLC by rotation After drying and again applying a rotational force to repeat the introduction of the eluent and TLC separation, it is possible to improve the resolution of the TLC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

본 발명은 알데히드류 또는 케톤류 검출용 마이크로 디바이스에 관한 것으로서, 보다 구체적으로는, 회전식 플랫폼을 활용한 알데히드류 또는 케톤류 검출용 마이크로 디바이스를 제공하기 위한 것이다. 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 디스크 형상의 회전식 플랫폼; 및 상기 회전식 플랫폼 상에 배치되는 미세 유체 구조물을 포함하고, 상기 미세 유체 구조물은 알데히드류 또는 케톤류를 포함하는 유체 시료가 주입되고, 상기 알데히드류 또는 케톤류가 유도체화되는 시료 저장부; 상기 용리제가 주입되는 용리제 저장부; 상기 시료 저장부 및 상기 용리제 저장부로부터 상기 시료 및 상기 용리제를 전달받아 상기 용리제로 상기 시료의 알데히드류 또는 케톤류가 분리 전개되는 TLC 플레이트가 구비되는 분리부; 상기 시료가 상기 분리부로 이동하는 통로로서, 상기 시료 저장부와 상기 분리부를 연결하는 제1 미세 유체 유로(siphon channel); 상기 용리제가 상기 분리부로 이동하는 통로로서, 상기 용리제 저장부와 상기 분리부를 연결하는 제2 미세 유체 유로; 및 상기 용리제 저장부로부터 상기 용리제를 전달받아 상기 TLC 플레이트로 방출하는 흡수 패드를 포함할 수 있다.

Description

알데히드류 또는 케톤류 검출용 마이크로 디바이스
본 출원은 2019.04.19. 출원된 한국특허출원 10-2019-0045791호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 알데히드류 또는 케톤류 검출용 마이크로 디바이스에 관한 것으로서, 보다 구체적으로는, 회전식 플랫폼을 활용한 알데히드류 또는 케톤류 검출용 마이크로 디바이스에 관한 것이다.
알데히드 및 케톤과 같은 카보닐(carbonyl) 화합물은 살균 작용 및 강력한 환원 작용을 가지기 때문에 다양한 분야에서 널리 이용되고 있지만, 독성이 강하고 인간과 동물에서 발암성이 있는 유해물질로 알려져 있다. 따라서, 카보닐 화합물의 규제가 강화되고 있으며, 이로 인해 유해성 카보닐 화합물에 대한 검출 및 분석 방법의 정립이 요구되고 있다.
한편, 카보닐 화합물은 발색단(chromophore)을 갖고 있지 않아 UV 검출기로는 검출할 수 없다. 따라서, 공기 및 물속에 존재하는 저분자량의 알데히드 및 케톤과 같은 카보닐 화합물은 2,4-디니트로페닐하이드라진(2,4-dinitrophenylhydrazine, DNPH)과 반응시켜 하이드라존 유도체를 수득한 후, 유도체화된 화합물을 고성능 액체 크로마토그래피(high performance liquid chromatography, HPLC)로 검출하는 방법이 주로 이용되고 있다(JP 2010-008311A 참조).
이러한 HPLC 방법은 대표적인 카보닐 화합물의 측정방법으로서 감도가 뛰어나며 선택적인 검출이 가능하다는 장점이 있지만, 유도체화를 위해 고가의 상용 DNPH 카트리지를 사용해야 하고 조작이 복잡한 단점이 있다.
HPLC 이외에 TLC를 사용할 경우 모세관력으로만 용리제가 TLC 상에서 전개되기 때문에 용리제가 TLC 상에서 균일하게 전개되지 않는 문제가 있었다. 또한, 용리제의 휘발에 의해 전개속도의 변화가 생겨 분리가 잘 되지 않는 문제가 있었다.
또한, 종래의 HPLC 또는 TLC 법은 혼합시료의 분리만 가능하기 때문에, 시료를 분리 분석에 적합한 형태로 변환하는 시료의 전처리 과정을 위한 별도 장치가 필요했다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 고가의 상용 DNPH 카트리지를 사용하고 조작이 복잡한 HPLC를 대체할 수 있는, 보다 경제적이면서도 간단한 방식으로 알데히드 또는 케톤을 분리하여 검출할 수 있는 장치를 제공하는 것이다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 디스크 형상의 회전식 플랫폼; 및 상기 회전식 플랫폼 상에 배치되는 미세 유체 구조물을 포함하고, 상기 미세 유체 구조물은 알데히드류 또는 케톤류를 포함하는 유체 시료가 주입되고, 상기 알데히드류 또는 케톤류가 유도체화되는 시료 저장부; 상기 용리제가 주입되는 용리제 저장부; 상기 시료 저장부 및 상기 용리제 저장부로부터 상기 시료 및 상기 용리제를 전달받아 상기 용리제로 상기 시료의 알데히드류 또는 케톤류가 분리 전개되는 TLC 플레이트가 구비되는 분리부; 상기 시료가 상기 분리부로 이동하는 통로로서, 상기 시료 저장부와 상기 분리부를 연결하는 제1 미세 유체 유로(siphon channel); 상기 용리제가 상기 분리부로 이동하는 통로로서, 상기 용리제 저장부와 상기 분리부를 연결하는 제2 미세 유체 유로; 및 상기 용리제 저장부로부터 상기 용리제를 전달받아 상기 TLC 플레이트로 방출하는 흡수 패드를 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 검출용 디바이스를 도시한다.
도 2는 도 1의 검출용 디바이스의 미세 유체 구조물을 도시한다.
도 3a 내지 도 3d는 미세 유체 구조물을 포함하는 회전식 플랫폼의 각 층에 관하여 도시한다.
도 4는 본 발명의 알데히드류 또는 케톤류 검출용 디바이스로 검출된 검출 결과를 나타내는 사진이다.
도 5는 회전식 플랫폼의 시간에 따른 회전속도 변화를 나타내는 그래프이다.
도 6은본 발명에 따른 검출용 디바이스를 포함하고 이를 회전시킬 수 있는 분석 시스템을 도시한다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 디스크 형상의 회전식 플랫폼; 및 상기 회전식 플랫폼 상에 배치되는 미세 유체 구조물을 포함하고, 상기 미세 유체 구조물은 알데히드류 또는 케톤류를 포함하는 유체 시료가 주입되고, 상기 알데히드류 또는 케톤류가 유도체화되는 시료 저장부; 상기 용리제가 주입되는 용리제 저장부; 상기 시료 저장부 및 상기 용리제 저장부로부터 상기 시료 및 상기 용리제를 전달받아 상기 용리제로 상기 시료의 알데히드류 또는 케톤류가 분리 전개되는 TLC 플레이트가 구비되는 분리부; 상기 시료가 상기 분리부로 이동하는 통로로서, 상기 시료 저장부와 상기 분리부를 연결하는 제1 미세 유체 유로(siphon channel); 상기 용리제가 상기 분리부로 이동하는 통로로서, 상기 용리제 저장부와 상기 분리부를 연결하는 제2 미세 유체 유로; 및 상기 용리제 저장부로부터 상기 용리제를 전달받아 상기 TLC 플레이트로 방출하는 흡수 패드를 포함할 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 분리부는 상기 시료 저장부로부터 상기 시료를 전달받는 시료 도입부와, 상기 용리제 저장부로부터 상기 용리제를 전달받는 용리제 도입부와, 상기 용리제로 상기 시료의 알데히드류 또는 케톤류가 분리 전개되는 전개부를 포함하고, 상기 흡수 패드는 상기 용리제 도입부에 마련될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 회전식 플랫폼의 회전축이 마련되는 회전 중심은 상기 회전식 플랫폼의 중심이고, 상기 분리부의 길이 방향은 상기 회전식 플랫폼의 반경 방향이며, 상기 전개부는 상기 회전 중심에서 상기 시료 도입부 및 상기 용리제 도입부보다 더 먼 위치에 형성될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 회전식 플랫폼은 상기 회전식 플랫폼의 면에서 수직한 방향을 회전축 방향으로 하여 회전하고, 상기 분리부에는 모세관력으로 상기 용리제가 전개되는 상기 TLC 플레이트가 상기 TLC 플레이트의 길이 방향이 상기 회전에 의해 발생하는 원심력의 방향이 되도록 상기 전개부 및 상기 용리제 도입부에 걸쳐 배치되며, 상기 용리제는 상기 용리제 도입부에서 상기 전개부로 방출되고, 상기 전개부에서 상기 용리제는 상기 모세관력 및 상기 원심력이 결합된 힘으로 추진될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 제1 미세 유체 유로의 일단부는 상기 시료 저장부에 연결되고, 상기 제1 미세 유체 유로의 타단부는 상기 시료 도입부에 연결되며, 상기 제2 미세 유체 유로의 일단부는 상기 용리제 저장부에 연결되고, 상기 제2 미세 유체 유로의 타단부는 상기 용리제 도입부에 연결될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 흡수 패드는 다공성 흡착 재질의 소재로 마련될 수 있으며, 예를 들어, 셀룰로오스 섬유, 젤라틴 섬유, 전분 섬유 또는 이들 중 2 이상의 혼합물로 제조될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 시료에 포함될 수 있는 알데히드류 또는 케톤류는 아세트알데히드(acetaldehyde), 아세톤(acetone), 아크롤레인(acrolein), 벤즈알데히드(benzaldehyde), 부티르알데히드(butyraldehyde), 포름알데히드(formaldehyde), 및 프로피온알데히드(propionaldehyde)로 이루어진 그룹에서 선택되는 적어도 어느 하나를 포함할 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 시료 저장부의 내부는 2, 4-DNPH가 코팅된 실리카(2,4-dinitrophenylhydrazine coated silica)가 비드의 형태로 채워질 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 미세 유체 구조물은 복수 개로 구비되고, 복수 개의 상기 미세 유체 구조물은 각각 상이한 유체 시료들을 수용할 수 있고, 상기 회전식 플랫폼에 방사 대칭으로 배치될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 미세 유체 구조물은, 상기 분리부에 외부의 기체가 주입되거나 분리부 내부의 기체가 외부로 배출되는 제1 벤트 홀 및 제2 벤트 홀과, 상기 제1 벤트 홀과 상기 분리부 사이에 기체가 이동하는 통로인 제1 공기 순환 채널과, 상기 제2 벤트 홀과 상기 분리부 사이에 기체가 이동하는 통로인 제2 공기 순환 채널을 추가로 포함하고, 상기 제1 공기 순환 채널은 상기 분리부의 일단부에 연결되며, 상기 제2 공기 순환 채널은 상기 분리부의 타단부에 연결될 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 제1 미세 유체 유로 및 상기 제2 미세 유체 유로는 각각 굴곡부를 포함하고, 상기 제2 미세 유체 유로의 굴곡부의 개수는 상기 제1 미세 유체 유로의 굴곡부의 개수보다 더 많을 수 있다.
본 발명의 알데히드류 또는 케톤류 검출용 디바이스에서 상기 미세 유체 구조물은 상기 시료 저장부에서 상기 분리부로 이동하는 시료의 일부를 격리하는 폐시료 채널을 더 포함하고, 상기 폐시료 채널은 상기 제1 미세 유체 유로에서 분기되는 유로일 수 있다.
이하, 본 발명에 따른 회전식 디스크 시스템을 활용한 알데히드류 또는 케톤류 검출용 디바이스를 상세히 설명한다. 첨부된 도면은 본 발명의 예시적인 형태를 도시한 것으로, 이는 본 발명을 보다 상세히 설명하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적인 범위가 한정되는 것은 아니다.
이하, 본 발명의 바람직한 구체예를 첨부된 도면을 참조하여 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미한다.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.
도 1은 본 발명의 일 실시예에 따른 알데히드류 또는 케톤류 검출용 디바이스(1)를 도시하고, 도 2는 도 1의 회전식 디스크 시스템의 미세 유체 구조물(20)을 도시한다.
먼저, 도 1을 참조하면, 알데히드류 또는 케톤류 검출용 디바이스(1)는 회전식 플랫폼(10) 및 회전식 플랫폼(10)에 구비되는 미세 유체 구조물(20)을 포함한다. 회전식 플랫폼(10)은 예를 들면, 원형 디스크일 수 있고, 크기는 예를 들면 직경이 14 cm 내지 17 cm 일 수 있다.
회전식 플랫폼(10)은 미세 유체 구조물(20)을 포함한다. 회전식 플랫폼(10)은 하나의 미세 유체 구조물(20)을 포함할 수도 있고, 복수 개의 미세 유체 구조물(20)들을 포함할 수도 있다. 복수 개의 미세 유체 구조물(20)들은 회전식 플랫폼(10)에 회전 중심을 기준으로 방사 대칭으로 위치한다. 회전 중심은 회전식 플랫폼(10)의 중심에 위치할 수 있으며, 회전식 플랫폼(10)이 회전하는 회전축(11)의 위치일 수 있다. 예를 들어, 도 1에서는 3개의 미세 유체 구조물(20)들이 회전식 플랫폼(10)에 배치된 경우를 도시한다. 회전식 플랫폼(10)과 복수 개의 미세 유체 구조물(20)들의 크기 등의 본 발명이 구현되는 다양한 환경에 따라, 3개, 4개, 5개, 6개, 또는 그 이상의 개수로 배치될 수도 있다.
본 발명의 알데히드류 또는 케톤류 검출용 마이크로 디바이스(1)의 복수 개의 미세 유체 구조물(20)에는 각각 알데히드류 또는 케톤류 시료를 유도체화할 수 있는 시료 저장부(100) 및 분리부(120)가 포함되며, 분리부(120)에서 분리된 알데히드류 또는 케톤류의 유도체물질은 이미지 분석을 통해 정성 또는 정량 분석이 가능할 수 있다.
도 2를 참조하면, 미세 유체 구조물(20)은 알데히드류 또는 케톤류를 포함하는 유체 시료가 주입되고 알데히드류 또는 케톤류가 유도체화되는 시료 저장부(100), 용리제가 주입되는 용리제 저장부(130), 시료 저장부(100) 및 용리제 저장부(130)로부터 시료 및 용리제를 전달받아 용리제로 시료의 알데히드류 또는 케톤류가 분리 전개되는 TLC 플레이트가 구비되는 분리부(120), 시료가 분리부(120)로 이동하는 통로로서, 시료 저장부(100)와 분리부(120)를 연결하는 제1 미세 유체 유로(siphon channel)(110), 용리제가 분리부(120)로 이동하는 통로로서, 용리제 저장부(130)와 분리부(120)를 연결하는 제2 미세 유체 유로(140), 및 용리제 저장부(130)로부터 용리제를 전달받아 TLC 플레이트로 방출하는 흡수 패드를 포함할 수 있다.
미세 유체 구조물(20)은 복수 개의 종류의 알데히드류 또는 케톤류를 포함하는 유체 시료들을 수용하여 이를 분리 검출할 수 있다. 유체 시료에 포함될 수 있는 알데히드류 또는 케톤류로는, 예를 들면 아세트알데히드(acetaldehyde), 아세톤(acetone), 아크롤레인(acrolein), 벤즈알데히드(benzaldehyde), 부티르알데히드(butyraldehyde), 포름알데히드(formaldehyde) 및 프로피온알데히드(propionaldehyde) 등으로 이루어진 그룹에서 선택되는 적어도 어느 하나를 포함할 수 있다.
시료 저장부(100)는 알데히드류 또는 케톤류를 포함하는 유체 시료를 수용할 수 있는 공간이 있고 상기 공간으로 유체 시료가 주입될 수 있는 주입구(100a)를 포함한다. 시료 저장부(100)의 내부에는 2,4-DNPH가 코팅된 실리카(2,4-DNPH coated silica)가 비드(bead)의 형태로 채워져 있을 수 있다. 알데히드류 또는 케톤류는 발색단이 존재하지 않아서, 알데히드류 또는 케톤류를 포함하는 유체 시료가 분리부(120)로 이동하기 이전에, 우선 시료 저장부(100)에서 알데히드류 또는 케톤류가 DNPH 유도체화된다.
시료 저장부(100)와 분리부(120)는 제1 미세 유체 유로(110)로 연결될 수 있다. 또한, 시료 저장부(100)는 막음부(미도시)를 포함할 수 있고, 상기 막음부(미도시)는 주입구(100a)를 통해 시료를 주입할 때 주입되는 시료가 곧바로 제1 미세 유체 유로(110)로 흘러가는 것을 방지하도록, 채널의 단차를 이용해 시료 저장부(100)의 내부 공간에 가두는 역할을 한다. 막음부(미도시)에는 주입구(100a)로부터 시료 저장부(100)의 후단부로 시료가 이동할 수 있는 개구부가 구비되어 있다. 회전식 플랫폼(10)의 회전에 의하여 주입구(100a)로부터 시료 저장부(100)의 후단부로 시료가 이동한다. 시료 저장부(100)중에서, 시료 저장부(100)의 후단부 즉, 시료 저장부(100)와 제1 미세 유체 유로(110)가 연결되는 곳의 부근은, 예를 들어 유선형의 형상의 형상을 하고 있어, 시료 저장부(100)에 주입된 유체 시료가 제1 미세 유체 유로(110)로 이동할 때 구조적인 방해를 최소화하여, 시료 저장부(100)에 주입된 유체 시료가 남김없이 제1 미세 유체 유로(110)로 이동될 수 있도록 하였다.
용리제 저장부(130)는 용리제를 수용할 수 있는 공간이 있고 상기 공간에 용리제가 주입될 수 있는 주입구(130a)를 포함한다. 용리제 저장부(130)와 분리부(120)는 제2 미세 유체 유로(140)로 연결될 수 있다. 또한, 용리제 저장부(130)는 막음부(미도시)를 포함할 수 있고, 상기 막음부(미도시)는 주입구(130a)를 통해 시료를 주입할 때 주입되는 시료가 곧바로 제2 미세 유체 유로(140)로 흘러가는 것을 방지하도록, 채널의 단차를 이용해 용리제 저장부(130)의 내부 공간에 가두는 역할을 한다. 막음부(미도시)에는 주입구(130a)로부터 용리제 저장부(130)의 후단부로 용리제가 이동할 수 있는 개구부가 구비되어 있다. 회전식 플랫폼(10)의 회전에 의하여 주입구(130a)로부터 용리제 저장부(130)의 후단부로 용리제가 이동한다. 용리제 저장부(130)중에서, 용리제 저장부(130)의 후단부 즉, 용리제 저장부(130)와 제2 미세 유체 유로(140)가 연결되는 곳의 부근은, 예를 들어 유선형의 형상을 하고 있어, 용리제 저장부(130)에 주입된 유체 시료가 제2 미세 유체 유로(140)로 이동할 때 구조적인 방해를 최소화하여, 용리제 저장부(130)에 주입된 유체 시료가 남김없이 제2 미세 유체 유로(140)로 이동될 수 있도록 하였다.
분리부(120)에서 시료의 알데히드류 또는 케톤류가 분리 전개되며, 분리부(120)에는 흡수 패드와 TLC 플레이트가 마련될 수 있다.
분리부(120)는 시료 저장부(100)로부터 시료를 전달받는 시료 도입부(123), 용리제 저장부(130)로부터 용리제를 전달받는 용리제 도입부(121) 및, 용리제로 시료의 알데히드류 또는 케톤류가 분리 전개되는 전개부(125)를 포함할 수 있다.
분리부(120)는 분리부(120)의 길이 방향이 상기 회전식 플랫폼(10)의 반경 방향이 되도록 회전식 플랫폼(10)에 형성될 수 있다. 회전식 플랫폼(10)의 회전 중심은 상기 회전식 플랫폼(10)의 중심일 수 있다. 따라서, 회전식 플랫폼(10)이 회전하면, 분리부(120)에서 용리제는 용리제의 이동 방향으로 원심력이 작용할 수 있다. 구체적으로, 전개부(125)는 회전 중심에서 시료 도입부(123) 및 용리제 도입부(121)보다 더 먼 위치에 형성될 수 있다. 더 구체적으로는 용리제 도입부(121), 시료 도입부(123), 전개부(125) 순으로 배치되며, 용리제 도입부(121)가 회전 중심에서 가장 가깝게 배치되며, 전개부(125)가 회전 중심에서 가장 멀게 배치될 수 있다.
회전식 플랫폼은 회전식 플랫폼의 면에서 수직한 방향을 회전축(11) 방향으로 하여 회전할 수 있다. 분리부(120)에는 모세관력으로 용리제가 전개되는 TLC 플레이트가 TLC 플레이트의 길이 방향이 회전에 의해 발생하는 원심력의 방향이 되도록 전개부(125) 및 용리제 도입부(121)에 걸쳐 배치될 수 있다.
따라서, 용리제가 용리제 도입부(121)에서 전개부(125)로 방출될 때, 전개부(125)에서 상기 용리제는 모세관력 및 원심력이 결합된 힘으로 추진될 수 있다. 또한, 원심력은 회전속도를 조절하여 그 세기가 제어 가능하며, 따라서, 회전속도를 조절함으로써, 용리제의 추진력 또한 제어 가능할 수 있다. 따라서, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 용리제를 TLC 플레이트 상에서 전개 시, 모세관력뿐만 아니라 원심력이 용리제의 추진력으로 작용하기 때문에 TLC 플레이트 상에서도 용매가 균일하게 전개하고, 용리제의 휘발에 의해 전개속도의 변화가 생기는 것을 방지할 수 있다. 구체적으로, TLC 플레이트 상에서 모세관력만으로 유체를 전개시킬 시에 유체가 휘발되는 경우가 발생할 수 있어, TLC 플레이트 상에서 유체의 균일한 제어가 어려울 수 있다. 하지만, 본 발명의 알데히드류 또는 케톤류 검출용 마이크로 디바이스는 모세관력과 함께 원심력이 같이 작용하여 유체의 휘발에 의한 TLC 플레이트 상에서의 전개 오류를 방지할 수 있다.
TLC 플레이트는 전개부(125), 시료 도입부(123), 용리제 도입부(121)에 걸쳐서 배치될 수 있다. 흡수 패드는 용리제 도입부(121)에 마련되며, TLC 플레이트와 겹쳐진 상태로 배치될 수 있다. 용리제 도입부(121)에 수용된 흡수 패드는 용리제 저장부(130)로부터 전달받은 용리제를 흡수하여 TLC 플레이트 상에 균일하게 방출할 수 있다.
용리제 도입부(121)로 전달된 용리제는 용리제 도입부(121) 내부의 수용된 흡수 패드에 흡수되고, 흡수 패드에 흡수된 용리제는 분리부(120)에 균일하게 이동될 수 있다. 즉, 용리제 저장부(130)에서 용리제 도입부(121)로 이동된 용리제는 흡수 패드에 흡수된 다음 균일한 양 및 일정 속도로 시료 도입부(123)를 지나 전개부(125)로 방출될 수 있다.
이와 같이, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스(1)는 용리제를 흡수 패드에 먼저 흡수시킨 이후에 분리부(120)로 전달하기 때문에 용리제가 일정 속도로 분리부(120)에 방출될 수 있다. 즉, 흡수 패드는 회전력에 의해 용리제가 분리부(120)로 주입될 때 발생하는 용리제의 젖음성에 의한 확산을 방지하고, 용리제를 분리부(120)상에 균일하게 전개할 수 있다.
흡수 패드는 다공성 흡착 소재로 마련될 수 있으며, 예를 들어, 흡수 패드의 소재는 셀룰로오스의 화학 구조와 유사한 -OH기가 달린 섬유를 포함할 수 있다. 구체적으로, 흡수 패드는 셀룰로오스 섬유, 젤라틴 섬유, 전분 섬유 또는 이들 중 2 이상의 혼합물로 제조된 것일 수 있다.
또한, 흡수 패드는 TLC 플레이트의 일단부에 구비되며, 흡수 패드의 면적은 TLC 플레이트의 면적에 따라 적절히 선택가능 할 수 있다. 예를 들어 분리부(120)의 면적에서 5 내지 10 % 의 범위를 차지할 수 있다. 일예로서, 분리부(120)가 5cm × 1cm인 경우, 분리부(120)의 일단부에 구비되는 흡수패드의 길이 × 폭 × 높이는 0.5cm × 1.cm × 0.14 cm일 수 있다. 즉, TLC 플레이트가 1cm의 폭으로 5cm의 길이를 가질 경우, 흡수 패드는 TLC 플레이트의 면적의 10%인 1cm의 폭으로 0.5cm의 길이로 형성될 수 있다. 흡수 패드의 폭은 TLC 플레이트 보다 크거나 같을 수 있다. 흡수 패드의 폭을 TLC 플레이트의 폭보다 크거나 같게 형성함으로써, 용리제가 흡수 패드에 먼저 흡착하게 되고, 용리제는 흡수 패드에 흡수된 다음에 균일하게 전개부로 방출될 수 있다. 흡수 패드의 형상은 직육면체, 디스크 등의 형상일 수 있으나, 이에 한정되지 않는다.
즉, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 원심력과 흡수패드를 통해서 용리제의 방출량 및 속도를 제어함으로써, 시료, 고정상 및 용리제 간의 분배작용을 조절하고 분리도를 향상시킬 수 있다.
분리부(120)에 마련되는 TLC 플레이트는 유체 시료의 알데히드류 또는 케톤류와 반응을 일으킬 수 있는 물질로 코팅되어 유체 시료가 전개될 수 있다. 분리부(120)에는 예를 들어 RP-18 F254s TLC 플레이트가 마련되며, TLC 플레이트는 C18 그룹을 실리카에 본딩한 물질이 알루미늄 지지체 상에 0.2mm의 두께로 코팅된 것일 수 있다. TLC 플레이트는 형광 검출 가능한 F254s가 코팅되어 있으며, 물은 40%까지 사용 가능한 것일 수 있다. TLC 플레이트의 크기는 길이가 4.5cm 내지 5cm이고 폭이 0.5cm 내지 2cm인 것일 수 있다. 분리부(120) 길이는 회전식 플랫폼(10)의 반지름의 길이의 3분의 2보다 짧은 것이 바람직할 수 있다. 이러한 TLC 플레이트는 0.5μL 내지 10μL의 시료에 적용 가능한 것일 수 있다. TLC 플레이트는 분리부(120)에 배치되며, TLC 플레이트의 길이 방향 또한 회전식 플랫폼(10)의 반경 방향이 되도록 배치될 수 있다.
제1 미세 유체 유로(110)의 일단부는 시료 저장부(100)에 연결되고, 제1 미세 유체 유로(110)의 타단부는 시료 도입부(123)에 연결되며, 제2 미세 유체 유로(140)의 일단부는 용리제 저장부(130)에 연결되고, 제2 미세 유체 유로(140)의 타단부는 용리제 도입부(121)에 연결될 수 있다.
제1 미세 유체 유로(110)의 타단부는 분리부(120)의 시료 도입부(123)에 연결될 수 있다. 제1 미세 유체 유로(110)에서 시료 도입부(123)로 시료가 제공되고, 용리제 도입부(121)에 제공된 용리제에 의하여 전개부(125) 상에서 시료가 전개될 수 있도록, 제1 미세 유체 유로(110)의 타단부는 용리제 도입부(121) 부근의 시료 도입부(123)에 위치할 수 있다.
제2 미세 유체 유로(140)의 타단부는 분리부(120)의 용리제 도입부(121)에 연결되어 있다. 제2 미세 유체 유로(140)에서 용리제 도입부(121)로 용리제가 제공되고, 용리제 도입부(121)에 제공된 용리제는 시료 도입부(123)를 거쳐 전개부(125)로 이동할 수 있다. 따라서, 시료 도입부(123)의 시료의 알데히드류 또는 케톤류는 용리제에 의해 TLC 플레이트 상에 전개될 수 있다.
제1 미세 유체 유로(110) 및 제2 미세 유체 유로(140)는 각각 굴곡부(170)를 포함할 수 있다. 굴곡부(170)는 예를 들어 “U”자 형의 관으로 된 부분을 포할 수 있다. 굴곡부(170)는 미체 유체 유로에서 유체의 이동을 지연시키는 것일 수 있다. 제2 미세 유체 유로(140)의 굴곡부(170)의 개수는 제1 미세 유체 유로(110)의 굴곡부(170)의 개수보다 더 많을 수 있다. 이는, 제1 미세 유체 유로(110)를 통해 시료가 분리부(120)에 먼저 도입되고 나서, 제2 미세 유체 유로(140)를 통해 용리제가 이후에 분리부(120)에 도입되기 위한 것이다.
미세 유체 구조물(20)은 분리부(120)에 외부의 기체가 주입되거나 분리부(120) 내부의 기체가 외부로 배출되는 제1 벤트 홀(151) 및 제2 벤트 홀(153)과, 제1 벤트 홀(151)과 분리부(120) 사이에 기체가 이동하는 통로인 제1 공기 순환 채널(161)과, 제2 벤트 홀(153)과 분리부(120) 사이에 기체가 이동하는 통로인 제2 공기 순환 채널(163)을 포함할 수 있다. 제1 공기 순환 채널(161)은 분리부(120)의 일단부에 연결되며, 제2 공기 순환 채널(163)은 분리부(120)의 타단부에 연결될 수 있다. 구체적으로, 제1 공기 순환 채널(161)과 분리부(120)와의 연결 지점을 제1 연결점이라하고, 제2 공기 순환 채널(163)과 분리부(120)와의 연결 지점을 제2 연결점이라고 할 때, 제1 연결점은 전개부(125)보다 회전 중심에서 가깝고, 제2 연결점은 전개부(125)보다 회전 중심에서 더 멀 수 있다. 즉, 회전식 플렛폼의 반경 방향이 형성하는 가상의 선상에서 제1 연결점과 제2 연결점 사이에 전개부(125)가 형성될 수 있다.
제1 공기 순환 채널(161)의 역할은 회전력으로 시료가 분리부(120)로 주입될 때, 제1 미세 유체 유로(110) 또는 제2 미세 유체 유로(140) 내에 갇힌 공기를 빠져나가게 하여, 제1 미세 유체 유로(110) 또는 제2 미세 유체 유로(140) 내에 압력에 의한 버블 형성을 막고 원활히 시료가 이동할 수 있게 하는 것일 수 있다.
제2 공기 순환 채널(163) 또한 회전력에 의해 분리과정이 진행될 때, 분리부(120) 내부 공기가 제2 벤트 홀(153)을 통해 배출되도록 하여 분리부(120) 내부 압력 상승 및 습기 맺힘 효과를 방지할 수 있다.
제1 공기 순환 채널(161) 및 제2 공기 순환 채널(163)을 도입함으로써, 분리부(120)의 유체 시료 및 용리제의 증발 속도를 증가시키는 한편 분리부(120)의 습기 맺힘 현상을 방지할 수 있다. 제1 공기 순환 채널(161) 및 제2 공기 순환 채널(163)에 약 1mm의 두께 및 지름이 약 0.8mm 정도인 구멍을 뚫어 공기압에 의한 캐필러리 밸브(capillary valve)를 형성함으로써, 제1 공기 순환 채널(161) 및 제2 공기 순환 채널(163)로의 시료 및 용리제의 역류를 방지할 수 있다.
도 3a 내지 도 3d는 도 1의 미세 유체 구조물(20)을 포함하는 회전식 플랫폼(10)의 각 층에 관하여 도시한다. 도 3a에 도시된 바와 같이, 미세 유체 구조물(20)을 포함하는 회전식 플랫폼(10)은 크게 3 개 층인, 상층부(도 3b), 중층부(도 3c), 하층부(도 3d)로 구성될 수 있다. 미세 유체 구조물(20)의 분리부(120)를 제외한 각각의 구성요소들은 마이크로 밀링(micro milling)을 이용한 패터닝 공정을 통해 생성될 수 있다.
우선, 도 3a 내지 도 3c를 참조하면, 제1 미세 유체 유로(110) 중 제 1 부분(110a)은 중층부에 배치되어 있고, 제 1 부분(110a)은 시료 저장부(100)와 연결된 부분과 굴곡부(170)를 포함한다. 제1 미세 유체 유로(110) 중 제 2 부분(110b)은 상층부에 배치되어 있고, 제 2 부분(110b)은 분리부(120)와 연결된 부분을 포함한다. 이는, 중층부에 배치된 시료 저장부(100)로부터 시료가 제1 미세 유체 유로(110)의 제 1 부분(110a)에 수용된 이후, 시료가 제1 미세 유체 유로(110)로부터 분리부(120)로 제공될 때에 시료가 분리부(120)의 위에서 아래 방향으로 즉, 분리부(120) 상으로 떨어지는 방식으로 제공되기 위함이다. 그에 따라, 분리부(120) 상에서 보다 균일하게 시료가 전개될 수 있다. 제 1 미세 유체 유로(110)가 분리부(120)의 측면에서 연결되어 시료를 주입할 경우 시료는 주입된 영역에서 점(spot)으로 형성되지 않을 수 있다. 이로부터, 분석 결과를 해석하는데 오류가 발생할 수 있다. 본 발명의 알데히드류 또는 케톤류 검출용 마이크로 디바이스 장치는 제 1 미세 유체 유로(110) 중 분리부(120)와 연결된 제 2 부분(110b)을 회전식 플랫폼(10)에서 분리부(120)와 다른 높이의 층에 형성함으로써, 분리부(120)의 측면이 아닌 분리부(120)의 폭방향에서 분리부(120)의 중심으로 시료를 주입할 수 있다.
미세 유체 구조물(20)은 시료 저장부(100)에서 분리부(120)로 이동하는 시료의 일부를 격리하는 폐시료 채널(111)을 포함할 수 있다. 폐시료 채널(111)은 제1 미세 유체 유로에서 분기되는 유로일 수 있다.
폐시료 채널(111)을 추가로 포함함으로써, 시료 저장부(100)으로부터 제1 미세 유체 유로(110)을 통해 이송되는 시료 중 일부는 폐시료 채널(111)로 유입되어 폐시료 채널(111)의 내부 수용 공간의 부피만큼의 시료가 분리부(120)로 도착하기 전에 격리될 수 있다. 따라서, 폐시료 채널(111)의 내부 부피를 제외한 양의 시료가 TLC 플레이트 상의 시료 도입부(123)에 로딩될 수 있다. 예컨대, 시료가 5㎕의 함량으로 시료 저장부(100)에 주입될 경우, 폐시료 채널(111)의 부피를 4.5㎕로 설계함으로써 0.5㎕의 유도체화된 시료만이 TLC 상에 로딩될 수 있도록 조절할 수 있다. 이는 시료가 TLC 상에 과량 로딩되어 분리가 제대로 되지 않고 잘못된 결과가 도출될 수 있는 현상을 방지할 수 있다.
DNPH 유도체화된 다중 알데히드류 또는 케톤류를 포함하는 시료가 회전식 플랫폼(10)의 상층부에 위치한 제1 미세 유체 유로(110)로부터 회전식 플랫폼(10)의 중층부 및 하층부에 삽입된 분리부(120)로 즉, 아래방향으로 유체 시료가 주입된다. 따라서, 유체 시료가 보다 균일하게 분리부(120)에서 전개될 수 있다.
또한, 도 3a 내지 도 3c를 참조하면, 제2 미세 유체 유로(140) 중 제 1 부분(140a)은 중층부에 배치되어 있고, 제 1 부분(140a)은 용리제 저장부(130)와 연결된 부분과 굴곡부(170)를 포함한다. 제2 미세 유체 유로(140) 중 제 2 부분(140b)은 상층부 및 중층부에 걸쳐 배치되어 있고, 제 2 부분(140b)은 분리부(120)와 연결된 부분을 포함한다. 이는, 용리제가 분리부(120)의 하단 중앙으로 도입되게 하기 위함이다. 제 2 미세 유체 유로(140)가 분리부(120)의 측면에서 연결되어 용리제를 주입할 경우에, 분리부 상에서 용리제가 균일하게 라인을 형성하여 전개되지 않고, 파원을 형성하며 전개되어 시료의 균일한 분리가 어려울 수 있다. 본 발명의 알데히드류 또는 케톤류 검출용 마이크로 디바이스 장치는 제 2 미세 유체 유로(140) 중 분리부(120)와 연결된 제 2 부분(140b)을 회전식 플랫폼(10)에서 분리부(120)와 다른 높이의 층에 형성함으로써, 분리부(120)의 측면이 아닌 분리부(120)의 폭방향에서 분리부(120)의 중심으로 용리제를 주입할 수 있다.
또한, 상층부에는 도 3b에 도시된 바와 같이, 시료 저장부(100)의 주입구(100a) 및 용리제 저장부(130)의 주입구(130a)를 포함한다. 도 3b 및 도 3c에 도시된 바와 같이, 시료 저장부(100)의 주입구(100a) 및 용리제 저장부(130)의 주입구(130a)는 상층부 및 중층부에 걸쳐 형성되어 있다. 따라서, 회전식 플랫폼(10)의 위(즉, 상층부)에 구비된 시료 저장부(100)의 주입구(100a) 및 용리제 저장부(130)의 주입구(130a)로 각각 시료와 용리제를 주입하면, 중층부에 구비된 시료 저장부(100) 및 용리제 저장부(130) 내부로 각각 시료와 용리제가 수용되게 된다.
중층부에는 도 1 및 도 2과 관련하여 상술한 구성요소들이 대부분 배치되어 있어, 중층부에 관하여 도 1 및 도 2에 설명한 구성요소들과 중복되는 설명은 상술한 도 1 및 도 2에 관한 설명을 참조한다.
도 3c 및 도 3d를 참조하면, 중층부 및 하층부에 걸쳐 TLC 플레이트의 형상과 일치하고 TLC 플레이트가 수용될 수 있는 공간 및 TLC 플레이트의 일단부에 마련되는 흡수 패드가 수용될 수 있는 공간이 구비되어 있다. 중층부에는 TLC 플레이트가 삽입될 수 있도록 개구되어 있고, 하층부에는 TLC 플레이트의 형상과 일치하고 TLC 플레이트가 삽입될 수 있는 오목부가 구비되어 있다. TLC 플레이트는 중층부와 하층부에 걸쳐 위치할 수 있다. 또한, 중층부와 하층부에 걸쳐 TLC 플레이트의 일단부가 삽입될 수 있도록 용리제 도입부(121)가 형성되고 용리제 도입부(121) 내에는 흡수 패드가 마련될 수 있다. 본 발명은 상술한 것에 한정되지 않고, 상층부 중에서 TLC 플레이트가 위치하는 부분은 TLC 플레이트가 삽입될 수 있도록, TLC 플레이트의 형상과 일치하게 상층부의 아래면이 오목부로 구비되어 있을 수 있는 등 다양하게 변형, 변경이 가능하다. 또한, 이러한 오목부의 높이도 본 발명이 실제 구현되는 환경에 따라 다양하게 변형, 변경이 가능하다.
상층부, 중층부 및 하층부의 재질은 알데히드(Aldehyde)와 반응하지 않는 COC(Cyclic Olefin Copolymer)로 마련되는 것이 바람직하며, 시료에 따라 폴리카보네이트 (Polycarbonate; PC) 또는 폴리메틸메타크릴레이트(Polymethylmethacrylate; PMMA) 등이 상층부, 중층부 및 하층부의 재질로 마련될 수 있다.
한편, 상층부, 중층부, 하층부 사이에는 각각 점착층(미도시)이 구비되어, 상층부와 중층부를 접합하고, 중층부와 하층부를 접합할 수 있다. 점착층은, 예를 들면, 아크릴(acryl) 계열의 양면 점착 테이프로 제작될 수 있다. 회전식 플랫폼(10)의 크기에 대응하는 점착 성분을 갖는 재질의 테이프나 판 등에서, 각 층부의 상술한 구성요소들에 대응하는 영역들을 컷팅(cutting) 등으로 제거하여 제작할 수 있다.
예를 들면, 상층부와 중층부를 접합하는 점착층은, 상층부의 시료 저장부(100)의 주입구(100a) 및 용리제 저장부(130)의 주입구(130a)를 통해 각각 주입된 시료 및 용리제가 중층부로 이동할 수 있도록, 시료 저장부(100)의 주입구(100a) 및 용리제 저장부(130)의 주입구(130a)에 대응하는 영역이 컷팅되어 있을 수 있다. 또한, 중층부와 하층부를 접합하는 점착층은 도 3a에 도시된 바와 같이 중층부와 하층부의 구성요소들에 대응하는 영역들이 컷팅되어 있을 수 있다.
상기한 바와 같은 본 발명의 알데히드류 또는 케톤류 검출용 디바이스를 이용하는 경우 알데히드류 또는 케톤류의 유도체화 및 분리를 통합하여 수행할 수 있으며, 알데히드류 또는 케톤류의 분리를 보다 신속하게 간단하게 수행할 수 있다.
구체적으로, 본 발명에 따른 디바이스를 이용한 알데히드류 또는 케톤류 검출 과정은 시료 저장부(100)에 저장된 상기 유체 시료의 알데히드류 또는 케톤류가 시료 저장부(100) 내에서 유도체화되는 유도체화 단계, 유체 시료가 시료 저장부(100)에서 분리부(120)의 시료 도입부(123)로 이동하는 시료 도입 단계, 및 용리제가 용리제 저장부(130)에서 분리부(120)의 용리제 도입부(121)로 이동하고 용리제에 의해서 전개부(125)에서 유체 시료의 알데히드류 또는 케톤류가 분리 전개되는 전개 단계를 포함할 수 있다.
또한, 상기 전개 단계 이후에, 전개부(125)의 용리제를 건조하는 건조 단계, 및 건조된 전개부(125)에 용리제를 재주입하여 유체 시료의 알데히드류 또는 케톤류가 분리 전개가 되는 재전개 단계를 더 포함할 수 있다.
유도체화 단계에서 회전식 플랫폼(10)은 2500 내지 5000 RPM으로 2 내지 20초 동안 회전할 수 있다. 상기 회전에 의해서 시료를 비드(bead) 형태의 2, 4-DNPH가 코팅된 실리카(2, 4-DNPH coated silica)와 밀착시켜 알데히드류 또는 케톤류가 DNPH 유도체화 반응을 가속시킬 수 있다. 즉, 상기 회전을 하는 동안 시료는 비드(bead) 형태의 2, 4-DNPH가 코팅된 실리카(2, 4-DNPH coated silica)와 반응하여 알데히드류 또는 케톤류가 DNPH 유도체화될 수 있다. 이때, 제1 미세 유체 회로 및 제2 미세 유체 회로에 형성된 굴곡부(170)에 의해서 시료의 알데히드류 또는 케톤류가 유도체화 되는 동안 시료 및 용리제가 분리부(120)로 이동하는 것을 방지할 수 있다.
시료 도입 단계에서 회전식 플랫폼(10)은 2000 내지 4000 RPM으로 0.5 내지 2초 동안 회전될 수 있다. 예컨대 시료 도입 단계에서 회전식 플랫폼(10)은 3000 RPM의 속도로 1초 동안 회전할 수 있다. 상기 회전에 의해서 시료를 분리부(120)의 시료 도입부(123)로 도입시킬 수 있다. 상기 회전을 하는 동안 제2 미세 유체 회로에는 제1 미세 유체 회로보다 더 많은 굴곡부(170)가 형성되기 때문에 시료는 시료 저장부(100)에서 분리부(120)로 이동되지만, 용리제는 용리제 저장부(130)에서 분리부(120)로 이동되는 것이 방지될 수 있다.
전개 단계에서 회전식 플랫폼(10)은 400 내지 800 RPM으로 200 내지 400초 동안 회전될 수 있다. 예컨대 전개 단계에서 600 RPM으로 300초 동안 회전될 수 있다. 상기 회전에 의해서 용리제는 분리부(120)의 용리제 도입부(121)로 이동할 수 있다. 회전식 플랫폼(10)이 상기 회전을 하는 동안에, 용리제는 용리제 도입부(121)에 수용된 흡수 패드로 1차적으로 흡수된 후 시료 도입부(123)를 거쳐 전개부(125)로 일정한 속도로 균일하게 방출될 수 있다. 전개 단계에서 회전 속도는 TLC 플레이트 상에서 용리제의 전개 속도를 제어하기 위해서 제어될 수 있다.
건조 단계에서 회전식 플랫폼(10)은 3000 내지 5000 RPM으로 5 내지 6 분 동안 회전될 수 있다. 상기 회전에 의해서 제1 공기 순환 채널 또는 제2 공기 순환 채널(163)의 통해 외부의 기체가 분리부(120)로 유입되고, 분리부(120)로 유입된 기체가 다시 제1 공기 순환 채널(161) 또는 제2 공기 순환 채널(163)을 통해 다시 배출됨으로써, TLC 플래이트의 용리제가 증발될 수 있다.
재전개 단계에서 회전식 플랫폼(10)은 400 내지 800 RPM으로 200 내지 400초 동안 회전될 수 있다. 예컨대 재전개 단계에서 회전식 플랫폼(10)은 600 RPM으로 300초 동안 회전될 수 있다. 재전개 단계에서 흡수 패드는 용리제를 다시 전개부(125)로 방출할 수 있다. 재전개 단계에서 회전 속도는 TLC 플레이트 상에서 용리제의 전개 속도를 제어하기 위해서 제어될 수 있다.
상기 건조 단계 및 재전개 단계는 반복적으로 수행될 수 있으며, 건조 단계 및 재전개 단계를 반복함으로써, TLC 플레이트 상에 분리 전개되는 알데히드류 또는 케톤류의 분리능을 높일 수 있다.
도 4는 유도체화 단계, 시료 도입 단계 및 전개 단계가 수행된 후 알데히드류 또는 케톤류가 분리 전개된 TLC 플레이트와, 전개 단계 이후에 건조 단계 및 재전개 단계가 수행된 후 알데히드류 또는 케톤류가 분리 전개된 TLC 플레이트를 나타내는 사진이다. 유도체화 단계, 시료 도입 단계 및 전개 단계까지 수행된 TLC 플레이트는 도 4의 사진에서 중간의 TLC 플레이트이다. 전개 단계 이후에 건조 단계 및 재전개 단계가 더 수행된 TLC 플레이트는 도 4의 사진에서 우측의 TLC 플레이트이다. 두 TLC 플레이트를 비교하면, 전개 단계 이후에 건조 단계 및 재전개 단계가 더 수행된 TLC 플레이트가 분리능이 더 우수한 것을 알 수 있다.
도 5는 유도체화 단계, 시료 도입 단계, 전개 단계, 건조 단계 및 재전개가 수행되는 동안 회전식 플랫폼(10)의 회전 속도 및 회전 시간을 나타내는 그래프이다.
도 6은 본 발명에 따른 알데히드류 또는 케톤류 검출용 디바이스(1)를 포함하는 알데히드류 또는 케톤류 검출용 시스템(2)에 관하여 도시한다. 알데히드류 또는 케톤류 검출용 시스템(2)은 UV 램프(미도시)를 더 포함한다. UV 램프는 예를 들면, 알데히드류 또는 케톤류 검출용 시스템(2)의 천정부의 하면에 설치될 수 있다. 그러나 본 발명은 이에 한정되지 않고, UV 램프로 분리부(120)를 비추어 분리부(120) 상에서 전개된 알데히드류 또는 케톤류의 시료를 확인할 수 있는 한, UV 램프가 장착될 수 있는 위치는 다양하게 변형, 변경할 수 있다. 상술한 바와 같이, 알데히드류 또는 케톤류는 발색단이 존재하지 않아, 시료 저장부(100)에서 DNPH로 유도체화된 후에 분리부(120)에서 전개되며, DNPH로 유도체화된 알데히드류 또는 케톤류가 전개된 분리부(120)를 UV 램프로 비추면, 비로소 알데히드류 또는 케톤류를 분리 검출할 수 있게 된다.
이와 같은, 본 발명에 따른 검출용 디바이스(1)를 이용하여 아세트알데히드(Acetaldehyde), 아세톤(Acetone), 아크롤레인(Acrolein), 벤즈알데히드(Benzaldehyde), 부티르알데히드(Butyraldehyde), 포름알데히드(Formaldehyde), 또는 프로피온알데히드(Propionaldehyde) 등의 복수 개의 알데히드류 또는 케톤류에 대하여 정성 분석이 수 분 내에 가능하다. 유체 시료에 포함된 7 종의 알데히드류 또는 케톤류는 각각 분리부(120)상에 전개되는 정도가 상이하므로, UV 램프를 분리부(120)에 비추어 분리부(120)상에 분리 전개된 7 종의 알데히드류 또는 케톤류를 각각 검출할 수 있다.
본 발명에 따르면, 알데히드류 또는 케톤류의 DNPH 유도체화 및 분리부(120) 상에서의 전개 과정이 미세 유체 구조물(20)이 배치된 회전식 플랫폼(10)의 회전 제어에 의한 원심력과 모세관력의 조절을 통하여 이루어진다.
또한, 본 발명의 일 실시예에 따른 검출용 디바이스(1)에 의하면, 경제적이며 신속하게 다중 알데히드류 또는 케톤류의 분리 검출이 가능하고, 종래의 고가의 HPLC 분석 장비에 비해 경제적이며 분석에 소요되는 시간도 단축시킬 수 있으며, 다중 알데히드류 또는 케톤류의 분리 검출이 필요한 현장에서 신속하고 편리하게 응용 될 수 있다. 더구나, 복수 개의 시료가 존재하고 이러한 시료들이 각각 알데히드류 또는 케톤류를 상이한 조성으로 포함하는 경우, 이러한 복수 개의 시료들을 동시에 하나의 디바이스(1)에서 분석할 수 있다.
상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야에서의 통상의 기술자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구 범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 의하면, 종래의 알데히드류 또는 케톤류 분석 장비인 고가의 HPLC에 비하여 경제적이고 저렴한 발색 기반의 알데히드류 또는 케톤류를 분리하여 검출할 수 있으면서도 현장에서 편리하게 적용할 수 있는 소형화된 장치를 제공할 수 있다.
또한, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 용리제를 TLC 상에서 전개 시, 모세관력뿐만 아니라 원심력이 용리제의 추진력으로 작용하기 때문에 TLC 상에서도 용매가 균일하게 전개될 수 있다.
또한, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 알데히드류 또는 케톤류를 TLC 상에서 분석할 수 있는 형태로 변환시키기 위한 유도체화 반응 과정과, 유도체화물을 TLC 상에서 분리시키는 분리 과정이 하나의 디바이스에서 통합되어 수행될 수 있다. 즉, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 알데히드류 또는 케톤류의 유도체화 및 TLC 분리를 통합할 수 있는 회전식 마이크로 디바이스일 수 있다.
또한, 본 발명에 의하면, 알데히드류 또는 케톤류를 포함하는 복수 개의 시료들을 동시에 간단하고 신속하게 분리하여 검출할 수 있는 장점이 있다.
특히, 본 발명의 알데히드류 또는 케톤류 검출용 마이크로 디바이스의 복수 개의 미세 유체 구조물에는 각각 알데히드류 또는 케톤류 시료를 유도체화할 수 있는 시료 저장부 및 분리부가 포함되어 있어, 알데히드류 또는 케톤류의 유도체화 및 분리를 통합하여 수행할 수 있으며, 상기 분리부에서 분리된 알데히드류 또는 케톤류의 유도체 물질은 이미지 분석을 통해 정성 또는 정량 분석이 가능할 수 있다.
또한, 본 발명에 의하면, 알데히드류 또는 케톤류를 포함하는 복수 개의 시료들을 동시에 간단하고 신속하게 분리하여 검출할 수 있는 장점이 있다.
또한, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 용리제를 분리부에 구비된 흡수 패드에 먼저 흡수시킨 이후에 방출됨에 따라, 용리제가 일정 속도로 이동될 수 있다. 즉, 분리부에 구비되는 흡수 패드는 회전력에 의해 이동상인 용리제가 분리부로 주입될 때 발생하는 용리제의 젖음성에 의한 확산을 방지하고 용리제를 일정한 속도로 이동시킴으로써, 시료를 분리부에서 안정적으로 분리할 수 있다.
또한, 본 발명의 알데히드류 또는 케톤류 검출용 디바이스는 회전력의 세기를 제어함으로써 상기 용매가 TCL 상으로 이동되는 속도를 제어할 수 있으며, 시료를 한번 분리한 후, 회전에 의해 TLC 상에 잔류하는 용매를 건조시키고, 다시 회전력을 가하여 용리제의 유입 및 TLC 분리를 반복함으로써 TLC의 분리능(resolution)을 향상시킬 수 있다.

Claims (12)

  1. 디스크 형상의 회전식 플랫폼; 및 상기 회전식 플랫폼 상에 배치되는 미세 유체 구조물을 포함하고,
    상기 미세 유체 구조물은 알데히드류 또는 케톤류를 포함하는 유체 시료가 주입되고, 상기 알데히드류 또는 케톤류가 유도체화되는 시료 저장부;
    상기 용리제가 주입되는 용리제 저장부;
    상기 시료 저장부 및 상기 용리제 저장부로부터 상기 시료 및 상기 용리제를 전달받아 상기 용리제로 상기 시료의 알데히드류 또는 케톤류가 분리 전개되는 TLC 플레이트가 구비되는 분리부;
    상기 시료가 상기 분리부로 이동하는 통로로서, 상기 시료 저장부와 상기 분리부를 연결하는 제1 미세 유체 유로(siphon channel);
    상기 용리제가 상기 분리부로 이동하는 통로로서, 상기 용리제 저장부와 상기 분리부를 연결하는 제2 미세 유체 유로; 및
    상기 용리제 저장부로부터 상기 용리제를 전달받아 상기 TLC 플레이트로 방출하는 흡수 패드를 포함하는, 알데히드류 또는 케톤류 검출용 디바이스.
  2. 제1항에 있어서,
    상기 분리부는,
    상기 시료 저장부로부터 상기 시료를 전달받는 시료 도입부와,
    상기 용리제 저장부로부터 상기 용리제를 전달받는 용리제 도입부와,
    상기 용리제로 상기 시료의 알데히드류 또는 케톤류가 분리 전개되는 전개부를 포함하고,
    상기 흡수 패드는 상기 용리제 도입부에 마련되는, 알데히드류 또는 케톤류 검출용 디바이스.
  3. 제 2 항에 있어서,
    상기 회전식 플랫폼의 회전축이 마련되는 회전 중심은 상기 회전식 플랫폼의 중심이고,
    상기 분리부의 길이 방향은 상기 회전식 플랫폼의 반경 방향이며,
    상기 전개부는 상기 회전 중심에서 상기 시료 도입부 및 상기 용리제 도입부보다 더 먼 위치에 형성되는, 알데히드류 또는 케톤류 검출용 디바이스.
  4. 제3항에 있어서,
    상기 회전식 플랫폼은 상기 회전식 플랫폼의 면에서 수직한 방향을 회전축 방향으로 하여 회전하고,
    상기 분리부에는 모세관력으로 상기 용리제가 전개되는 상기 TLC 플레이트가 상기 TLC 플레이트의 길이 방향이 상기 회전에 의해 발생하는 원심력의 방향이 되도록 상기 전개부 및 상기 용리제 도입부에 걸쳐 배치되며,
    상기 용리제는 상기 용리제 도입부에서 상기 전개부로 방출되고,
    상기 전개부에서 상기 용리제는 상기 모세관력 및 상기 원심력이 결합된 힘으로 추진되는, 알데히드류 또는 케톤류 검출용 디바이스.
  5. 제 3 항에 있어서
    상기 제1 미세 유체 유로의 일단부는 상기 시료 저장부에 연결되고, 상기 제1 미세 유체 유로의 타단부는 상기 시료 도입부에 연결되며,
    상기 제2 미세 유체 유로의 일단부는 상기 용리제 저장부에 연결되고, 상기 제2 미세 유체 유로의 타단부는 상기 용리제 도입부에 연결되는, 알데히드류 또는 케톤류 검출용 디바이스.
  6. 제1항에 있어서,
    상기 흡수 패드는 셀룰로오스 섬유, 젤라틴 섬유, 전분 섬유 또는 이들 중 2 이상의 혼합물로 제조된, 알데히드류 또는 케톤류 검출용 디바이스.
  7. 제1항에 있어서,
    상기 시료에 포함될 수 있는 알데히드류 또는 케톤류는 아세트알데히드(acetaldehyde), 아세톤(acetone), 아크롤레인(acrolein), 벤즈알데히드(benzaldehyde), 부티르알데히드(butyraldehyde), 포름알데히드(formaldehyde), 및 프로피온알데히드(propionaldehyde)로 이루어진 그룹에서 선택되는 적어도 어느 하나를 포함하는, 알데히드류 또는 케톤류 검출용 디바이스.
  8. 제1항에 있어서,
    상기 시료 저장부의 내부는 2, 4-DNPH가 코팅된 실리카(2,4-dinitrophenylhydrazine coated silica)가 비드의 형태로 채워진, 알데히드류 또는 케톤류 검출용 디바이스.
  9. 제1항에 있어서,
    상기 미세 유체 구조물은 복수 개로 구비되고,
    복수 개의 상기 미세 유체 구조물은 각각 상이한 유체 시료들을 수용할 수 있고, 상기 회전식 플랫폼에 방사 대칭으로 배치된, 알데히드류 또는 케톤류 검출용 디바이스.
  10. 제1항에 있어서,
    상기 미세 유체 구조물은,
    상기 분리부에 외부의 기체가 주입되거나 분리부 내부의 기체가 외부로 배출되는 제1 벤트 홀 및 제2 벤트 홀과, 상기 제1 벤트 홀과 상기 분리부 사이에 기체가 이동하는 통로인 제1 공기 순환 채널과, 상기 제2 벤트 홀과 상기 분리부 사이에 기체가 이동하는 통로인 제2 공기 순환 채널을 추가로 포함하고,
    상기 제1 공기 순환 채널은 상기 분리부의 일단부에 연결되며,
    상기 제2 공기 순환 채널은 상기 분리부의 타단부에 연결되는, 알데히드류 또는 케톤류 검출용 디바이스.
  11. 제1항에 있어서,
    상기 제1 미세 유체 유로 및 상기 제2 미세 유체 유로는 각각 굴곡부를 포함하고,
    상기 제2 미세 유체 유로의 굴곡부의 개수는 상기 제1 미세 유체 유로의 굴곡부의 개수보다 더 많은, 알데히드류 또는 케톤류 검출용 디바이스.
  12. 제1항에 있어서,
    상기 미세 유체 구조물은 상기 시료 저장부에서 상기 분리부로 이동하는 시료의 일부를 격리하는 폐시료 채널을 더 포함하고,
    상기 폐시료 채널은 상기 제1 미세 유체 유로에서 분기되는 유로인, 알데히드류 또는 케톤류 검출용 디바이스.
PCT/KR2020/005091 2019-04-19 2020-04-16 알데히드류 또는 케톤류 검출용 마이크로 디바이스 WO2020213953A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20792207.1A EP3809130B1 (en) 2019-04-19 2020-04-16 Microdevice for detecting aldehydes or ketones
US17/264,267 US11969729B2 (en) 2019-04-19 2020-04-16 Microdevice for detecting aldehydes or ketones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0045791 2019-04-19
KR1020190045791A KR102463382B1 (ko) 2019-04-19 2019-04-19 알데히드류 또는 케톤류 검출용 마이크로 디바이스

Publications (1)

Publication Number Publication Date
WO2020213953A1 true WO2020213953A1 (ko) 2020-10-22

Family

ID=72837511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005091 WO2020213953A1 (ko) 2019-04-19 2020-04-16 알데히드류 또는 케톤류 검출용 마이크로 디바이스

Country Status (4)

Country Link
US (1) US11969729B2 (ko)
EP (1) EP3809130B1 (ko)
KR (1) KR102463382B1 (ko)
WO (1) WO2020213953A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101791A (ja) * 1997-07-30 1999-04-13 Wako Pure Chem Ind Ltd アルデヒド類の分析方法
JP2007205867A (ja) * 2006-02-01 2007-08-16 Shinwa Kako Kk アルデヒド・ケトン類分析用繊維充填ニードル、分析装置及び分析方法
WO2007105764A1 (ja) * 2006-03-16 2007-09-20 Matsushita Electric Industrial Co., Ltd. 試料液分析用ディスク
JP2010008311A (ja) 2008-06-30 2010-01-14 Sigma-Aldrich Japan Kk アルデヒド又はケトン化合物量の測定方法及び大気中濃度測定用ガス吸収カートリッジ
US20110263030A1 (en) * 2010-01-29 2011-10-27 Samsung Electronics Co., Ltd. Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
KR20170017687A (ko) * 2015-08-07 2017-02-15 한국과학기술원 Ics를 구비하는 진단용 마이크로 디바이스 및 이를 이용한 회전식 진단 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8105758A (nl) * 1981-12-21 1983-07-18 Univ Leiden Werkwijze en inrichting voor het scheiden van mengsels.
DE19811150C2 (de) * 1998-03-14 2002-05-02 Bernd Spangenberg Dünnschichtchromatographiegerät
US6867346B1 (en) * 1999-09-21 2005-03-15 Weyerhaeuser Company Absorbent composite having fibrous bands
JP2007136294A (ja) * 2005-11-16 2007-06-07 Showa Denko Kk カルボニル化合物捕集用充填材の製造方法、及びカルボニル化合物捕集用固相抽出カートリッジの製造方法
KR101335726B1 (ko) * 2007-06-04 2013-12-04 삼성전자주식회사 면역혈청 검사 및 생화학 검사를 동시에 수행하는 디스크형미세유동장치
WO2011011350A2 (en) * 2009-07-20 2011-01-27 Siloam Biosciences, Inc. Microfluidic assay platforms
EP2688674B1 (en) 2011-03-24 2015-11-04 Biosurfit, S.A. Control of liquid flow sequence on microfluidic device
KR20140148194A (ko) 2013-06-21 2014-12-31 삼성전기주식회사 공정액 실시간 모니터링 장치 및 이를 이용한 공정액 실시간 모니터링 방법
WO2015031528A1 (en) * 2013-08-27 2015-03-05 Gnubio, Inc. Microfluidic devices and methods of their use
DK3000531T3 (da) 2014-09-25 2018-01-29 For Rec Srl Findelingsmaskine for affaldsmateriale
CN105964313B (zh) * 2016-01-22 2019-04-09 上海快灵生物科技有限公司 一种离心式多通道微流体芯片
KR101977963B1 (ko) 2017-09-13 2019-08-28 건국대학교 산학협력단 미세 유체 제어 장치 및 이를 이용하는 미세 유체의 제어 방법
CN207572483U (zh) 2017-11-20 2018-07-03 东莞市创明电池技术有限公司 一种电池气体收集装置
CN109954522A (zh) 2017-12-22 2019-07-02 郑州达诺生物技术有限公司 多液体通道侧向层析定量检测装置及制备方法
KR102301178B1 (ko) * 2018-06-25 2021-09-09 주식회사 엘지화학 알데히드류 또는 케톤류 검출용 마이크로 디바이스
KR102468586B1 (ko) * 2019-04-18 2022-11-17 주식회사 엘지화학 알데히드류 또는 케톤류의 검출 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101791A (ja) * 1997-07-30 1999-04-13 Wako Pure Chem Ind Ltd アルデヒド類の分析方法
JP2007205867A (ja) * 2006-02-01 2007-08-16 Shinwa Kako Kk アルデヒド・ケトン類分析用繊維充填ニードル、分析装置及び分析方法
WO2007105764A1 (ja) * 2006-03-16 2007-09-20 Matsushita Electric Industrial Co., Ltd. 試料液分析用ディスク
JP2010008311A (ja) 2008-06-30 2010-01-14 Sigma-Aldrich Japan Kk アルデヒド又はケトン化合物量の測定方法及び大気中濃度測定用ガス吸収カートリッジ
US20110263030A1 (en) * 2010-01-29 2011-10-27 Samsung Electronics Co., Ltd. Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
KR20170017687A (ko) * 2015-08-07 2017-02-15 한국과학기술원 Ics를 구비하는 진단용 마이크로 디바이스 및 이를 이용한 회전식 진단 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809130A4

Also Published As

Publication number Publication date
EP3809130A1 (en) 2021-04-21
EP3809130A4 (en) 2021-11-03
KR102463382B1 (ko) 2022-11-03
KR20200122736A (ko) 2020-10-28
US11969729B2 (en) 2024-04-30
EP3809130B1 (en) 2024-01-24
US20210291166A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2011136485A2 (en) Centrifugal micro-fluidic device and method for immunoassay
Souverain et al. Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis
EP2529220A2 (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
EP0753735B1 (en) Luminometer
US20060133958A1 (en) Fluid analytical devices
US11673138B2 (en) Measurement of an analyte with a cartridge
WO2020213875A1 (ko) 알데히드류 또는 케톤류의 검출 방법
WO2020213953A1 (ko) 알데히드류 또는 케톤류 검출용 마이크로 디바이스
CN110777049A (zh) 微流控芯片、核酸检测仪及核酸检测方法
WO2003083491A2 (en) Method and apparatus for controlling fluid movement in a microfluidic system
WO2020213954A1 (ko) 회전식 분석 시스템
WO2006093978A2 (en) Flow switching on a multi-structured microfluidic cd (compact disc) using coriolis force
KR102647283B1 (ko) 알데히드류 또는 케톤류 검출용 마이크로 디바이스
WO2020004719A1 (ko) 알데히드류 또는 케톤류 검출용 마이크로 디바이스
Poole et al. Observations on the Anton antigen and antibody
Moschou et al. Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules
GB2186081A (en) Liquid analysis and analytical element
CN117233412A (zh) 微流控生化试剂盘及生化检验分析方法
JPWO2023002898A5 (ko)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020792207

Country of ref document: EP

Effective date: 20210115

NENP Non-entry into the national phase

Ref country code: DE