WO2020213466A1 - Physical quantity measurement device - Google Patents

Physical quantity measurement device Download PDF

Info

Publication number
WO2020213466A1
WO2020213466A1 PCT/JP2020/015601 JP2020015601W WO2020213466A1 WO 2020213466 A1 WO2020213466 A1 WO 2020213466A1 JP 2020015601 W JP2020015601 W JP 2020015601W WO 2020213466 A1 WO2020213466 A1 WO 2020213466A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
output
physical quantity
wavelength
Prior art date
Application number
PCT/JP2020/015601
Other languages
French (fr)
Japanese (ja)
Inventor
顕 小川
圭一 藤田
山手 勉
Original Assignee
長野計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長野計器株式会社 filed Critical 長野計器株式会社
Publication of WO2020213466A1 publication Critical patent/WO2020213466A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/14Generating the spectrum; Monochromators using refracting elements, e.g. prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to a physical quantity measuring device.
  • Patent Document 1 A physical quantity measuring device using an optical sensor is known (for example, Patent Document 1).
  • the transmission loss rate depends on the wavelength region in the transmission of light using an optical fiber (for example, Patent Document 2).
  • the physical quantity is measured by using light in a wavelength region having a small transmission loss rate, specifically, a wavelength region of about 1460 nm to 1620 nm.
  • a Fabry-Perot type interference type optical sensor when used as in Patent Document 1, light in a wavelength region of about 15 nm to 20 nm is required to measure a physical quantity, so that the number of measurement points is further increased. There is a problem that it is difficult. Further, in order to increase the number of measurement points, it is conceivable to widen the wavelength range used for measurement.
  • the transmission loss rate of the optical fiber depends on the wavelength region. Therefore, when the wavelength range used for the measurement is expanded, the light in the wavelength region having a large transmission loss rate is used. Become. Therefore, there is a problem that it is difficult to secure the measurement accuracy at the measurement point away from the light source.
  • An object of the present invention is to provide a physical quantity measuring device capable of increasing the number of measurement points while ensuring measurement accuracy.
  • the physical quantity measuring device of the present invention is provided in a plurality of light paths that emit light having a wide band wavelength, light paths in which light emitted from the light source is incident, and light paths emitted from the light source, and the light has different wavelengths.
  • An optical filter that divides the wavelength of the separated light in the region from the optical path and a plurality of optical filters are provided according to the plurality of the optical filters, and the separated light is incident and output light corresponding to the physical quantity of the object to be measured is output to the optical path.
  • An optical sensor, a beam splitter provided in the optical path, and a plurality of the output lights output from the plurality of optical sensors are incident and dispersed from the optical path, and a plurality of the output lights output from the beam splitter are combined.
  • the optical filter includes a spectroscopic element that is incident and disperses according to the wavelength region, and a light detection unit that detects a plurality of the output lights dispersed by the spectroscopic element, and the optical filter divides the wavelength into the wavelength region. It is characterized in that they are arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the separated light.
  • a plurality of optical filters are provided in the optical path where the light emitted from the light source is incident, and the light is divided into separated light having different wavelength regions. Then, the optical filters are arranged in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division from near to far from the light source. That is, the optical filter for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate is arranged near the light source, and the optical filter for wavelength-dividing the separated light in the wavelength region having a small transmission loss rate is arranged far from the light source. ..
  • the optical filter for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate is arranged near the light source.
  • the transmission loss from the beam splitter to the optical sensor can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter to the optical sensor, and it is possible to use light in a wider wavelength range, so that the number of measurement points can be increased while ensuring measurement accuracy. Can be done.
  • n (n is a natural number) of the optical filters may be provided, and n + 1 of the optical sensors may be provided.
  • n + 1 of the optical sensors may be provided.
  • the number of optical filters is increased as compared with the case where n + 1 optical filters are provided, for example. Can be reduced.
  • the physical quantity measuring device of the present invention includes a light source that emits light having a wide band wavelength, an optical path in which light emitted from the light source is incident, and a plurality of light paths provided in the optical path that emit light emitted from the light source.
  • An optical filter that divides the wavelength of the separated light in the wavelength region from the optical path and a plurality of optical filters that are wavelength-divided by the optical filter according to the separated light in a plurality of wavelength regions are provided, and the separated light is incident on the object to be measured.
  • An optical sensor that outputs output light according to a physical quantity to the optical path, a beam splitter provided in the optical path that incidents a plurality of output lights output from the plurality of optical sensors and disperses the output light from the optical path, and the above.
  • the present invention includes a spectroscopic element that incidents a plurality of the output lights output from the beam splitter and disperses them according to the wavelength region, and a light detection unit that detects the plurality of the output lights dispersed by the spectroscopic elements.
  • the optical sensor is characterized in that it is arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region.
  • a plurality of optical sensors are provided according to the separated light in a plurality of wavelength regions wavelength-divided by an optical filter, and the separated light is incident to output the output light according to the physical quantity of the object to be measured to the optical path. .. Then, the optical sensors are arranged in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region from near to far from the light source. That is, the optical sensor that injects the separated light in the wavelength region having a large transmission loss rate is arranged near the light source, and the optical filter that injects the separated light in the wavelength region having a small transmission loss rate is arranged far from the light source.
  • the optical sensor that incidents the separated light in the wavelength region having a large transmission loss rate is arranged near the light source, so that the beam The transmission loss from the splitter to the optical sensor can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter to the optical sensor, and it is possible to use light in a wider wavelength range, so that the number of measurement points can be increased while ensuring measurement accuracy. Can be done.
  • a plurality of photodetectors formed of different materials may be arranged in an array.
  • a plurality of photodetectors formed of different materials are arranged in an array in the photodetector, so that the photodetector can detect a plurality of output lights in different wavelength regions. it can. Therefore, the wavelength range of the output light detected by the photodetector can be easily expanded.
  • the spectroscopic element may have a diffraction grating.
  • the output lights can be separated into different wavelength regions with a simple configuration.
  • the optical sensor incidents the separated light and outputs a first polarized light corresponding to the physical quantity of the object to be measured and a second polarized light having a phase different from that of the first polarized light. It may have a polarization holding optical fiber sensor unit. In this configuration, since the optical sensor has a polarization-holding optical fiber sensor unit that outputs first polarized light and second polarized light according to the physical quantity of the object to be measured, the first polarized light and the second polarized light. Physical quantities can be measured by analyzing the interference light of polarized light. Therefore, physical quantities such as pressure and strain can be measured with high accuracy.
  • the physical quantity measuring device of the present invention is provided with a light source that emits light having a wide band wavelength, an optical path into which the light emitted from the light source is incident, and a plurality of light paths provided in the optical path to incident the light emitted from the light source.
  • An optical sensor that outputs output light of different wavelengths according to the physical quantity of the object to be measured, and a plurality of output lights provided in the optical path and output from the plurality of optical sensors are incident from the optical path.
  • a beam splitter that disperses, a spectroscopic element that incidents a plurality of the output lights output from the beam splitter and disperses the light according to the wavelength, and a light that detects a plurality of the output lights dispersed by the spectroscopic element.
  • the optical sensor includes a detection unit, and is characterized in that the optical sensor is arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the output light of the output wavelength.
  • a plurality of optical sensors are arranged in an optical path where light emitted from a light source is incident, and the light is incident and outputs light having different wavelengths according to the physical quantity of the object to be measured. Then, the optical sensors are arranged from near the light source toward far away in the order of the magnitude of the transmission loss rate of the output light of the output wavelength. That is, the optical sensor that outputs the output light having a wavelength having a large transmission loss rate is arranged near the light source, and the optical sensor that reflects the output light having a wavelength having a small transmission loss rate is arranged far from the light source.
  • the optical sensor that outputs the output light having a wavelength having a large transmission loss rate is arranged near the light source. Transmission loss can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss of output light, and it is possible to use light in a wider wavelength region, so that it is possible to increase the number of measurement points while ensuring measurement accuracy.
  • the figure which shows the schematic structure of the physical quantity measuring apparatus which concerns on 1st Embodiment of this invention The figure which shows the transmission loss rate of the optical path of the said embodiment, and the wavelength region of the separated light which is wavelength-divided by an optical filter.
  • the figure which shows the schematic structure of the optical sensor of the said embodiment The figure which shows the interference light of the said embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of the physical quantity measuring device 1 of the first embodiment.
  • the physical quantity measuring device 1 includes a light source 10, an optical path 20, a beam splitter 30, an optical filter 40, an optical sensor 50, and a receiver 60.
  • the light source 10 is a light source that emits light having a wide band wavelength.
  • the light source 10 is, for example, an SC (Super Continuum) light source, and is configured to be capable of emitting light in a wavelength region of 1250 nm to 1650 nm.
  • the light source 10 is not limited to the above configuration, and may be a combination of an ASE (Amplified Spontaneous Emission) light source, an SLD (Super luminescent diode) light source, or the like, and has a wide band like a tunable laser. It may be a narrow band light source that sweeps. Further, the light source 10 may be configured to be capable of emitting light in a wavelength region wider than the illustrated wavelength region, or may be configured to be capable of emitting light in a wavelength region narrower than the illustrated wavelength region. Good.
  • the optical path 20 is composed of a so-called optical fiber, and the light emitted from the light source 10 is incident on the optical path 20.
  • the optical path 20 has a first optical path 21, a second optical path 22, and a third optical path 23.
  • the first optical path 21 transmits the light emitted from the light source 10 to the beam splitter 30 and the optical filter 40.
  • the second optical path 22 transmits the separated light separated from the optical filter 40 to the optical sensor 50.
  • the third optical path 23 transmits the output light dispersed by the beam splitter 30 to the receiver 60.
  • the beam splitter 30 sends the light emitted from the light source 10 to the optical filter 40 and the optical sensor 50, incidents the output light output from the optical sensor 50, and splits it from the first optical path 21 to the third optical path 23. ..
  • the beam splitter 30 is not limited to the above configuration, and may be composed of, for example, a circulator.
  • the optical filter 40 is a WDM (Wavelength Division Multiplexing) filter that incidents the light emitted from the light source 10 and divides the separated light in a predetermined wavelength region into wavelength divisions from the first optical path 21 to the second optical path 22. Consists of. N optical filters 40 (n is a natural number) are provided in the first optical path 21. In this embodiment, 19 optical filters 40 are provided, that is, a plurality of optical filters 40 are provided. Then, the optical filter 40 divides the light emitted from the light source 10 into separated light having different wavelength regions ⁇ 1 to ⁇ 19 at intervals of 20 nm.
  • WDM Widelength Division Multiplexing
  • the optical filter 40 is not limited to the above configuration, and may be composed of, for example, a dichroic mirror that reflects only light in a specific wavelength region. Further, the optical filter 40 may be configured so as to be able to divide the wavelength into separated light having different wavelength regions at intervals of 15 nm, for example, and can be configured to be capable of dividing the wavelength into wavelength regions having a predetermined interval.
  • FIG. 2 is a diagram showing a transmission loss rate of the optical path 20 and a wavelength region of separated light whose wavelength is divided by the optical filter 40.
  • the transmission loss rate of the optical path 20 of the present embodiment depends on the wavelength of the light to be transmitted. For example, the transmission loss rate at a wavelength of 1250 nm is about 0.45 dB / km, while the transmission loss rate of light at a wavelength of 1550 nm is about 0.02 dB / km. Further, in the vicinity of the wavelength of 1375 nm, the light transmission loss rate becomes specifically large. That is, the optical path 20 has a large transmission loss rate depending on the wavelength of the light to be transmitted.
  • the optical filters 40 are arranged from near to far from the light source 10 in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division. That is, the optical filter 40 for wavelength-dividing the separated light of 1250 nm to 1270 nm, which is the wavelength region of ⁇ 1 having the largest transmission loss rate shown in FIG. 2, is arranged closest to the light source 10. Then, ⁇ 2 and ⁇ 3 and an optical filter 40 for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate are arranged in order, and the optical filter 40 for wavelength-dividing the separated light in the wavelength region of ⁇ 19 is the farthest from the light source 10. Be placed. Further, the light in the wavelength region of ⁇ 20, that is, the wavelength region of 1550 nm to 1570 nm passes through all the optical filters 40 and is incident on the optical sensor 50 arranged farthest from the light source 10.
  • the optical sensor 50 is arranged on an object to be measured (not shown). N + 1 optical sensors 50 are provided according to the optical filter 40. In this embodiment, 20 optical sensors 50 are provided. Then, the optical sensor 50 incidents the separated light wavelength-divided by the optical filter 40, and transmits the output light according to the physical quantity of the object to be measured, for example, pressure and distortion, through the second optical path 22 and the optical filter 40. Then, it is output to the first optical path 21. That is, the optical sensor 50 is configured to be able to detect the physical quantity of the object to be measured.
  • An example of the object to be measured is a pipeline laid over several tens of kilometers.
  • the optical sensor 50 is not limited to outputting the output light according to the pressure and strain of the object to be measured, and for example, the optical sensor 50 can output the output light according to the acceleration and temperature of the object to be measured. It may have been. That is, the optical sensor 50 may be configured to be able to detect acceleration and temperature as physical quantities of the object to be measured.
  • FIG. 3 is a diagram showing a schematic configuration of the optical sensor 50.
  • the optical sensor 50 is configured as a so-called polarization-holding optical fiber sensor having a polarization-holding optical fiber sensor unit 51 and a reflector 52.
  • the polarization-holding optical fiber sensor unit 51 incidents the separated light wavelength-divided by the optical filter 40, and the first-polarized light according to the physical quantity of the object to be measured and the second-polarized light having a phase different from that of the first polarized light. It is composed of a polarization-retaining optical fiber that outputs.
  • the separated light wavelength-divided by the optical filter 40 is transmitted through the polarization-holding optical fiber sensor unit 51, and the transmitted light is reflected by the reflecting plate 52. Then, the reflected light passes through the polarization-holding optical fiber sensor unit 51 again, and the interference light between the first polarization light and the second polarization light is output from the optical sensor 50 as output light.
  • FIG. 4 is a diagram showing spectra of interference light of the first polarized light and the second polarized light output from the optical sensor 50.
  • FIG. 4 illustrates the interference light output from the optical sensor 50 when the separated light in the wavelength region of 1530 nm to 1550 nm, that is, the wavelength region of ⁇ 18 shown in FIG. 2 is incident.
  • the mountain region X and the valley region Y are observed in the interference light output from the optical sensor 50. That is, interference fringes are observed.
  • the interference light output from the optical sensor 50 is not limited to that illustrated in FIG. 4, and for example, the interference fringes may be observed more closely, or a part of the interference fringes may be observed. May be done.
  • the receiver 60 incidents interference light as output light output from the optical sensor 50, and calculates a physical quantity corresponding to the interference light.
  • the receiver 60 includes a spectroscope 61, a photodetector 62, and an MPU 63.
  • the spectroscope 61 incidents a plurality of output lights output from the beam splitter 30, that is, interference light output from the optical sensor 50, and disperses the interference light according to a wavelength region from ⁇ 1 to ⁇ 20.
  • the spectroscope 61 is an example of the spectroscopic element of the present invention.
  • the spectroscope 61 includes a diffraction grating 611 that disperses the interference light in the wavelength region of ⁇ 1 to ⁇ 20.
  • the spectroscope 61 is not limited to the above configuration, and may be configured to include, for example, WDM or a plurality of diffraction gratings.
  • the photodetector 62 includes a photodetector 621, a photoelectric converter (not shown), an amplifier, an AD converter, and the like, detects a plurality of interference lights dispersed by the spectroscope 61, and converts the interference light into each interference light. Outputs the corresponding interference signal. Further, in the present embodiment, a plurality of photodetector elements 621 formed of different materials are arranged in an array. For example, in the photodetection unit 62, a plurality of photodetector elements 621 formed of Si and detecting interference light in a wavelength region having a short wavelength are arranged in an array.
  • a plurality of photodetector elements 621 formed of InGaAs and detecting interference light in a wavelength region having a long wavelength are arranged in an array.
  • the photodetector 62 is not limited to the above configuration, as long as it can detect a plurality of interference lights dispersed by the spectroscope 61 and output an interference signal corresponding to each interference light. Good.
  • the MPU 63 is a so-called Micro Processing Unit, which inputs a plurality of interference signals output from the photodetector 62 and calculates a physical quantity corresponding to each interference signal.
  • the MPU 63 measures a physical quantity from an interference signal by a known calculation method. That is, the MPU 63 obtains the interference fringes shown in FIG. 4 from the interference signal. Then, the MPU 63 calculates the phase change from the periodic intensity change of the interference fringes shown by the solid line L1 and the alternate long and short dash line L2 in FIG. The MPU 63 calculates the physical quantity according to the phase change by obtaining the correlation between the phase change and the physical quantity in advance.
  • a plurality of optical filters 40 are arranged in the optical path 20 in which the light radiated from the light source 10 is incident, and the light is wavelength-divided into separated light having different wavelength regions. Then, the optical filter 40 is arranged from near to far from the light source 10 in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division. That is, the optical filter 40 for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate, for example, the wavelength region of ⁇ 1, is arranged near the light source 10.
  • the optical filter 40 for wavelength-dividing the separated light in the wavelength region having a small transmission loss rate for example, the wavelength region of ⁇ 19
  • the optical filter 40 that divides the separated light in the wavelength region having a large transmission loss rate into wavelengths is arranged near the light source 10 even when the physical quantity is measured by using the separated light in the wavelength region having a large transmission loss rate. Therefore, the transmission loss from the beam splitter 30 to the optical sensor 50 can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter 30 to the optical sensor 50, and light in a wider wavelength region can be used, so that the measurement point can be set while ensuring measurement accuracy. Can be increased.
  • the light transmitted through the 20th optical sensor 50 without being wavelength-divided by the 19th optical filter 40 is incident. Therefore, in the case where the light emitted from the light source 10 is divided into wavelengths of separated light in 20 wavelength regions and incident on each of the optical sensors 50, the optical filter is compared with the case where 20 optical filters 40 are provided, for example. The number of 40 can be reduced.
  • the spectroscope 61 that divides the wavelengths of the plurality of output lights has a diffraction grating 611, the interference light as the output light is divided into different wavelength regions ⁇ 1 to ⁇ 20 with a simple configuration. Can be spectroscopic.
  • the optical sensor 50 has a polarization-holding optical fiber sensor unit 51 that outputs first-polarized light and second-polarized light according to the physical quantity of the object to be measured.
  • the physical quantity can be measured by analyzing the interference light of the first polarized light and the second polarized light. Therefore, physical quantities such as pressure and strain can be measured with high accuracy.
  • the second embodiment is different from the first embodiment in that the optical sensor 50A is arranged from near to far from the light source 10A in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region.
  • FIG. 5 is a diagram showing a schematic configuration of the physical quantity measuring device 1A of the second embodiment.
  • the physical quantity measuring device 1A includes a light source 10A, an optical path 20A, a beam splitter 30A, an optical filter 40A, an optical sensor 50A, and a receiver 60A.
  • the receiver 60A includes a spectroscope 61A, a photodetector 62A, and an MPU 63A.
  • the spectroscope 61A has a diffraction grating 611A
  • the photodetector 62A has a photodetector 621A.
  • the light source 10A, the optical path 20A, the beam splitter 30A, the photodetector 60A, the spectroscope 61A, the photodetector 62A, the MPU 63A, the diffraction grating 611A, and the photodetector 621A are the same as those in the first embodiment described above. Explanation is omitted.
  • the optical filter 40A is composed of a WDM filter as in the first embodiment described above, and incidents light emitted from the light source 10A from the first optical path 21A. Then, the light is divided into wavelengths of separated light having a plurality of different wavelength regions, and the light is output to the second optical path 22A.
  • the optical filter 40A divides the light emitted from the light source 10A into separated light having different wavelength regions ⁇ 1 to ⁇ 20 at intervals of 20 nm. That is, the optical filter 40A divides the light emitted from the light source 10A into separated light having 20 wavelength regions.
  • the optical sensor 50A is configured as a polarization-retaining optical fiber sensor and is arranged on an object to be measured (not shown).
  • 20 optical sensors 50A are provided according to the separated light in a plurality of wavelength regions whose wavelengths are divided by the optical filter 40A. Then, each optical sensor 50A outputs output light corresponding to the physical quantity of the object to be measured to the first optical path 21A via the second optical path 22A and the optical filter 40A.
  • the output light incident on the first optical path 21A is incident on the receiver 60A via the beam splitter 30A and the third optical path 23A.
  • the optical sensors 50A are arranged from near to far from the light source 10A in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region. That is, the wavelength region of ⁇ 1 having the largest transmission loss rate shown in FIG. 2, that is, the optical sensor 50A that incidents the separated light of 1250 nm to 1270 nm is arranged closest to the light source 10A. Then, ⁇ 2 and ⁇ 3 and the optical sensor 50A that injects the separated light in the wavelength region having a large transmission loss rate are arranged in order, and the optical sensor 50A that injects the separated light in the wavelength region of ⁇ 20 is arranged farthest from the light source 10A. Ru.
  • a plurality of optical sensors 50A are provided according to the separated light in a plurality of wavelength regions wavelength-divided by the optical filter 40A, and the separated light is incident and output according to the physical quantity of the object to be measured. Light is output to the optical path 20A. Then, the optical sensor 50A is arranged from near to far from the light source 10A in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region.
  • the optical sensor 50A that incidents the separated light in the wavelength region having a large transmission loss rate is arranged near the light source 10A.
  • the transmission loss from the beam splitter 30A to the optical sensor 50A can be suppressed. Therefore, as in the first embodiment described above, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter 30A to the optical sensor 50A, and it is possible to use light in a wider wavelength region. , The number of measurement points can be increased while ensuring the measurement accuracy.
  • the optical sensor 50B differs from the first and second embodiments in that it is composed of a so-called FBG (fiber Bragg grating) sensor.
  • FBG fiber Bragg grating
  • FIG. 6 is a diagram showing a schematic configuration of the physical quantity measuring device 1B of the third embodiment.
  • the physical quantity measuring device 1B includes a light source 10B, an optical path 20B, a beam splitter 30B, an optical sensor 50B, and a receiver 60B.
  • the receiver 60B includes a spectroscope 61B, a photodetector 62B, and an MPU 63B.
  • the spectroscope 61B has a diffraction grating 611B
  • the photodetector 62B has a photodetector 621B.
  • the light source 10B, the optical path 20B, the third optical path 23B, the beam splitter 30B, the photodetector 60B, the spectroscope 61B, the photodetector 62B, the MPU 63B, the diffraction grating 611B, and the photodetector 621B are the first and second implementations described above. Since it is the same as the form, detailed description thereof will be omitted.
  • Optical sensor 50B It is a so-called FBG sensor having an optical sensor 50B and a fiber Bragg grating, and a plurality of them are arranged on an object to be measured (not shown) in the first optical path 21B. In this embodiment, 20 optical sensors 50B are arranged in the first optical path 21B. Further, the optical sensor 50B measures the pressure and strain of the object to be measured, as in the first and second embodiments described above. Examples of the object to be measured include a pipeline laid over several tens of kilometers, as in the first and second embodiments described above. Further, the optical sensor 50B is not limited to measuring the pressure or strain of the object to be measured, and may be, for example, measuring the acceleration or temperature of the object to be measured.
  • optical sensor 50B is not limited to the above configuration, and for example, CFBG (chirp fiber Bragg grating), TFBG (tilted fiber Bragg grating), FP-FBG (Fabry-Perot type fiber). -Bragg grating), LPG (long-period optical type, fiber grating), etc. may be included.
  • Each optical sensor 50B incidents light in a predetermined wavelength region emitted from the light source 10B, and outputs output light having different wavelengths ⁇ according to the physical quantity of the object to be measured.
  • the optical sensor 50B outputs the interference light as the output light.
  • the output light output by the optical sensor 50B is not limited to the above configuration, and may be, for example, the reflected light reflected by the optical sensor 50B or the transmitted light transmitted through the optical sensor 50B. There may be.
  • the optical sensor 50B may be configured to include a loop mirror, a coupler, a circulator, and the like.
  • the optical sensors 50B are arranged from near to far from the light source 10B in the order of the magnitude of the transmission loss rate of the output wavelength.
  • the optical sensor 50B that outputs the output light of the wavelength ⁇ 1 of 1260 nm having a large transmission loss rate is arranged near the light source 10B, and outputs the output light of the wavelength ⁇ 20 of 1560 nm having a small transmission loss rate.
  • the output optical sensor 50B is arranged far from the light source 10B.
  • the wavelength of the output light to be output is in the order of the wavelength ⁇ 1 having the larger transmission loss rate to the wavelength ⁇ 20 having the smaller transmission loss rate from near to far from the light source 10B. 50B is arranged.
  • a plurality of optical sensors 50B are arranged in the optical path 20B in which the light radiated from the light source 10B is incident, and the light is incident on the optical sensor 50B, and the output light having a different wavelength ⁇ is emitted from the object to be measured. Output according to the physical quantity. Then, the optical sensor 50B is arranged from near to far from the light source 10B in the order of the magnitude of the transmission loss rate of the output light of the output wavelength.
  • the optical sensor 50B that outputs the output light of the wavelength ⁇ 1 having a large transmission loss rate is arranged near the light source 10B, and the optical sensor 50B that outputs the output light of the wavelength ⁇ 20 having a small transmission loss rate is arranged far from the light source 10B. Will be done.
  • the optical sensor 50B that outputs the output light having a wavelength having a large transmission loss rate is arranged near the light source 10B.
  • the transmission loss from the splitter 30B to the optical sensor 50B can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter 30B to the optical sensor 50B, and it is possible to use light in a wider wavelength range, so that the measurement point can be set while ensuring measurement accuracy. Can be increased.
  • the so-called FBG sensor is used as the optical sensor 50B, more optical sensors 50B can be arranged with respect to the light in a predetermined wavelength region emitted from the light source 10B. Therefore, the number of measurement points can be increased.
  • the optical sensors 50 and 50A are configured as a so-called polarization-holding optical fiber sensor having a polarization-holding optical fiber sensor unit 51 and a reflector 52.
  • the optical sensors 50 and 50A may be configured as interference type sensors such as Fabry-Perot type, Mach-Zehnder type, Michelson type, and FBG type. Further, the case where these are mixed as the optical sensors 50 and 50A is also included in the present invention.
  • optical filters 40 are provided in the optical path 20, but the present invention is not limited to this, and 19 or more optical filters 40 may be provided, or 19 It may be less than one. That is, a plurality of optical filters 40 may be provided.
  • 20 optical sensors 50 are provided, but the present invention is not limited to this.
  • the number of optical sensors 50 may be 20 or more, or may be less than 20. That is, a plurality of optical sensors 50 may be provided.
  • the optical filter 40A divides the light emitted from the light source 10A into separated light having 20 wavelength regions, but the present invention is not limited to this.
  • the optical filter 40A may divide the light emitted from the light source 10A into separated light having 20 or more wavelength regions, or may divide the light into separated light having less than 20 wavelength regions. It suffices that the light can be divided into wavelengths of separated light in a plurality of wavelength regions.
  • 20 optical sensors 50A are provided, but the present invention is not limited to this.
  • the number of optical sensors 50A may be 20 or more, or may be less than 20. That is, a plurality of optical sensors 50A may be provided.
  • 20 optical sensors 50B are provided in the optical path 20B, but the present invention is not limited to this, and 20 or more optical sensors 50B may be provided, or 20. It may be less than one. That is, a plurality of optical sensors 50B may be provided.
  • the optical sensor 50B when the optical sensor 50B outputs the reflected light as the output light, the optical sensor 50B orders the reflected light of the output wavelength in the order of the magnitude of the transmission loss rate and the order of the shortest wavelength. It may be arranged from near the light source 10B toward a distance. That is, in FIG. 2, the optical sensor 50B that outputs the reflected light having the wavelengths of ⁇ 4, ⁇ 11, ⁇ 14, ⁇ 17, and ⁇ 19, which are different in the order of the magnitude of the transmission loss rate and the order of the shortest wavelength, is not arranged. , The optical sensor 50B is arranged in the order of the magnitude of the transmission loss rate of the reflected light of the output wavelength and in the order of the shortest wavelength. As a result, the influence of the clad mode due to the reflected light can be suppressed.
  • 1,1A, 1B Physical quantity measuring device, 10,10A, 10B ... Light source, 20,20A, 20B ... Optical path, 30,30A, 30B ... Beam splitter, 40,40A ... Optical filter, 50,50A, 50B ... Optical sensor , 51 ... Polarization-holding optical fiber sensor unit, 60, 60A, 60B ... Receiver, 61, 61A, 61B ... Spectrometer (spectrometer), 62, 62A, 62B ... Optical detection unit, 63, 63A, 63B ... MPU , 611, 611A, 611B ... Diffraction grating, 621, 621A, 621B ... Optical detection element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Transform (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A physical quantity measurement device (1) that comprises a light source (10) that emits light of a broad band of wavelengths, a light path (20) that receives the light that is emitted from the light source (10), a plurality of optical filters (40) that are provided on the light path (20) and divide the light from the light path (20) into segregated light of respective wavelength ranges, and a plurality of optical sensors (50) that are provided to correspond to the plurality of optical filters (40), receive the segregated light, and output output light that corresponds to a physical quantity for a measured object to the light path (20). The optical filters (40) are arranged from near to far from the light source (10) in order of the magnitude of the transmission loss rate of the segregated light of the wavelength ranges divided thereby.

Description

物理量測定装置Physical quantity measuring device
 本発明は、物理量測定装置に関する。 The present invention relates to a physical quantity measuring device.
 光学センサを用いた物理量測定装置が知られている(例えば、特許文献1など)。 A physical quantity measuring device using an optical sensor is known (for example, Patent Document 1).
 特許文献1の物理量測定装置では、光源から放出された光が入射する光路上に、特定の波長領域の光を波長分割する光学フィルタを有するファブリペロー式の光学センサを複数配置している。これにより、光路上の複数の測定点における物理量を測定可能に構成されている。 In the physical quantity measuring device of Patent Document 1, a plurality of fabric perot type optical sensors having an optical filter for wavelength-dividing the light in a specific wavelength region are arranged on the optical path where the light emitted from the light source is incident. As a result, physical quantities at a plurality of measurement points on the optical path can be measured.
 また、光ファイバを用いた光の伝送において、伝送損失率が波長領域に依存することが知られている(例えば、特許文献2など)。 Further, it is known that the transmission loss rate depends on the wavelength region in the transmission of light using an optical fiber (for example, Patent Document 2).
米国特許第9689714号明細書U.S. Pat. No. 9,689,714 再公表特許2013/118389公報Republished Patent 2013/118389 Gazette
 特許文献1では、伝送損失率の小さい波長領域、具体的には、1460nm~1620nm程度の波長領域の光を利用して物理量を測定している。ここで、特許文献1のように、ファブリペロー式の干渉型光学センサを用いる場合、物理量を測定するために15nm~20nm程度の波長領域の光がそれぞれ必要になることから、測定点をさらに増やすことが難しいといった問題がある。
 また、測定点を増やすために、測定に利用する波長領域を広げることが考えられる。しかし、特許文献2に示されるように、光ファイバの伝送損失率は波長領域に依存するので、測定に利用する波長領域を広げた場合、伝送損失率の大きな波長領域の光を利用することになる。そのため、光源から離れた測定点における測定精度を確保することが困難であるといった問題がある。
In Patent Document 1, the physical quantity is measured by using light in a wavelength region having a small transmission loss rate, specifically, a wavelength region of about 1460 nm to 1620 nm. Here, when a Fabry-Perot type interference type optical sensor is used as in Patent Document 1, light in a wavelength region of about 15 nm to 20 nm is required to measure a physical quantity, so that the number of measurement points is further increased. There is a problem that it is difficult.
Further, in order to increase the number of measurement points, it is conceivable to widen the wavelength range used for measurement. However, as shown in Patent Document 2, the transmission loss rate of the optical fiber depends on the wavelength region. Therefore, when the wavelength range used for the measurement is expanded, the light in the wavelength region having a large transmission loss rate is used. Become. Therefore, there is a problem that it is difficult to secure the measurement accuracy at the measurement point away from the light source.
 本発明の目的は、測定精度を確保しつつ、測定点を増やすことのできる物理量測定装置を提供することにある。 An object of the present invention is to provide a physical quantity measuring device capable of increasing the number of measurement points while ensuring measurement accuracy.
 本発明の物理量測定装置は、広帯域な波長の光を放出する光源と、前記光源から放出される光が入射する光路と、前記光源から放出される光路に複数設けられ、前記光をそれぞれ異なる波長領域の分離光に前記光路から波長分割する光学フィルタと、複数の前記光学フィルタに応じて複数設けられ、前記分離光を入射して被測定物の物理量に応じた出力光を前記光路に出力する光学センサと、前記光路に設けられ、複数の前記光学センサから出力された複数の前記出力光を入射して前記光路から分光するビームスプリッタと、前記ビームスプリッタから出力された複数の前記出力光を入射して、前記波長領域に応じて分光する分光素子と、前記分光素子によって分光された複数の前記出力光を検出する光検出部と、を備え、前記光学フィルタは、波長分割する前記波長領域の前記分離光の伝送損失率の大きさの順に、前記光源の近くから遠くに向かって配置されることを特徴とする。 The physical quantity measuring device of the present invention is provided in a plurality of light paths that emit light having a wide band wavelength, light paths in which light emitted from the light source is incident, and light paths emitted from the light source, and the light has different wavelengths. An optical filter that divides the wavelength of the separated light in the region from the optical path and a plurality of optical filters are provided according to the plurality of the optical filters, and the separated light is incident and output light corresponding to the physical quantity of the object to be measured is output to the optical path. An optical sensor, a beam splitter provided in the optical path, and a plurality of the output lights output from the plurality of optical sensors are incident and dispersed from the optical path, and a plurality of the output lights output from the beam splitter are combined. The optical filter includes a spectroscopic element that is incident and disperses according to the wavelength region, and a light detection unit that detects a plurality of the output lights dispersed by the spectroscopic element, and the optical filter divides the wavelength into the wavelength region. It is characterized in that they are arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the separated light.
 本発明では、光学フィルタは、光源から放射された光が入射する光路に複数設けられ、当該光をそれぞれ異なる波長領域の分離光に波長分割する。そして、光学フィルタは、波長分割する波長領域の分離光の伝送損失率の大きさの順に、光源の近くから遠くに向かって配置される。つまり、伝送損失率の大きい波長領域の分離光を波長分割する光学フィルタは光源の近くに配置され、伝送損失率の小さい波長領域の分離光を波長分割する光学フィルタは光源の遠くに配置される。これにより、伝送損失率の大きな波長領域の分離光を利用して物理量を測定した場合でも、伝送損失率の大きな波長領域の分離光を波長分割する光学フィルタが光源の近くに配置されるので、ビームスプリッタから光学センサまでの伝送損失を抑制することができる。そのため、ビームスプリッタから光学センサまでの伝送損失によって測定精度が低下することを抑制することができ、より広い波長領域の光を利用することができるので、測定精度を確保しつつ測定点を増やすことができる。 In the present invention, a plurality of optical filters are provided in the optical path where the light emitted from the light source is incident, and the light is divided into separated light having different wavelength regions. Then, the optical filters are arranged in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division from near to far from the light source. That is, the optical filter for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate is arranged near the light source, and the optical filter for wavelength-dividing the separated light in the wavelength region having a small transmission loss rate is arranged far from the light source. .. As a result, even when the physical quantity is measured using the separated light in the wavelength region having a large transmission loss rate, the optical filter for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate is arranged near the light source. The transmission loss from the beam splitter to the optical sensor can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter to the optical sensor, and it is possible to use light in a wider wavelength range, so that the number of measurement points can be increased while ensuring measurement accuracy. Can be done.
 本発明の物理量測定装置において、前記光学フィルタは、n(nは自然数)個設けられ、前記光学センサは、n+1個設けられていてもよい。
 この構成では、n+1個目の光学センサには、n個目の光学フィルタによって波長分割されず透過した光が入射される。そのため、光源から放出された光をn+1個の波長領域の分離光に波長分割して、それぞれ光学センサに入射させる場合において、例えば、光学フィルタをn+1個設ける場合に比べて、光学フィルタの数を少なくすることができる。
In the physical quantity measuring device of the present invention, n (n is a natural number) of the optical filters may be provided, and n + 1 of the optical sensors may be provided.
In this configuration, light transmitted through the n + 1th optical sensor without being wavelength-divided by the nth optical filter is incident. Therefore, in the case where the light emitted from the light source is divided into n + 1 separated wavelengths and incident on the optical sensor, the number of optical filters is increased as compared with the case where n + 1 optical filters are provided, for example. Can be reduced.
 本発明の物理量測定装置は、広帯域な波長の光を放出する光源と、前記光源から放出される光が入射する光路と、前記光路に設けられ、前記光源から放出される光をそれぞれ異なる複数の波長領域の分離光に前記光路から波長分割する光学フィルタと、前記光学フィルタによって波長分割された複数の波長領域の前記分離光に応じて複数設けられ、前記分離光を入射して被測定物の物理量に応じた出力光を前記光路に出力する光学センサと、前記光路に設けられ、複数の前記光学センサから出力された複数の前記出力光を入射して前記光路から分光するビームスプリッタと、前記ビームスプリッタから出力された複数の前記出力光を入射して、前記波長領域に応じて分光する分光素子と、前記分光素子によって分光された複数の前記出力光を検出する光検出部と、を備え、前記光学センサは、入射する前記波長領域の前記分離光の伝送損失率の大きさの順に、前記光源の近くから遠くに向かって配置されることを特徴とする。 The physical quantity measuring device of the present invention includes a light source that emits light having a wide band wavelength, an optical path in which light emitted from the light source is incident, and a plurality of light paths provided in the optical path that emit light emitted from the light source. An optical filter that divides the wavelength of the separated light in the wavelength region from the optical path and a plurality of optical filters that are wavelength-divided by the optical filter according to the separated light in a plurality of wavelength regions are provided, and the separated light is incident on the object to be measured. An optical sensor that outputs output light according to a physical quantity to the optical path, a beam splitter provided in the optical path that incidents a plurality of output lights output from the plurality of optical sensors and disperses the output light from the optical path, and the above. The present invention includes a spectroscopic element that incidents a plurality of the output lights output from the beam splitter and disperses them according to the wavelength region, and a light detection unit that detects the plurality of the output lights dispersed by the spectroscopic elements. The optical sensor is characterized in that it is arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region.
 本発明では、光学センサは、光学フィルタによって波長分割された複数の波長領域の分離光に応じて複数設けられ、分離光を入射して被測定物の物理量に応じた出力光を光路に出力する。そして、光学センサは、入射する波長領域の分離光の伝送損失率の大きさの順に、光源の近くから遠くに向かって配置される。つまり、伝送損失率の大きい波長領域の分離光を入射する光学センサは光源の近くに配置され、伝送損失率の小さい波長領域の分離光を入射する光学フィルタは光源の遠くに配置される。これにより、伝送損失率の大きな波長領域の分離光を利用して物理量を測定した場合でも、伝送損失率の大きな波長領域の分離光を入射する光学センサが光源の近くに配置されるので、ビームスプリッタから光学センサまでの伝送損失を抑制することができる。そのため、ビームスプリッタから光学センサまでの伝送損失によって測定精度が低下することを抑制することができ、より広い波長領域の光を利用することができるので、測定精度を確保しつつ測定点を増やすことができる。 In the present invention, a plurality of optical sensors are provided according to the separated light in a plurality of wavelength regions wavelength-divided by an optical filter, and the separated light is incident to output the output light according to the physical quantity of the object to be measured to the optical path. .. Then, the optical sensors are arranged in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region from near to far from the light source. That is, the optical sensor that injects the separated light in the wavelength region having a large transmission loss rate is arranged near the light source, and the optical filter that injects the separated light in the wavelength region having a small transmission loss rate is arranged far from the light source. As a result, even when the physical quantity is measured using the separated light in the wavelength region having a large transmission loss rate, the optical sensor that incidents the separated light in the wavelength region having a large transmission loss rate is arranged near the light source, so that the beam The transmission loss from the splitter to the optical sensor can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter to the optical sensor, and it is possible to use light in a wider wavelength range, so that the number of measurement points can be increased while ensuring measurement accuracy. Can be done.
 本発明の物理量測定装置において、前記光検出部は、異なる素材から形成された複数の光検出素子がアレイ状に配置されていてもよい。
 この構成では、光検出部に、異なる素材から形成された複数の光検出素子がアレイ状に配置されているので、それぞれ異なる波長領域の複数の出力光を、光検出部でそれぞれ検出することができる。そのため、光検出部にて検出する出力光の波長範囲を容易に広げることができる。
In the physical quantity measuring device of the present invention, in the photodetector, a plurality of photodetectors formed of different materials may be arranged in an array.
In this configuration, a plurality of photodetectors formed of different materials are arranged in an array in the photodetector, so that the photodetector can detect a plurality of output lights in different wavelength regions. it can. Therefore, the wavelength range of the output light detected by the photodetector can be easily expanded.
 本発明の物理量測定装置において、前記分光素子は、回折格子を有していてもよい。
 この構成では、複数の出力光を分光する分光素子が回折格子を有しているため、簡単な構成で、出力光をそれぞれ異なる波長領域に分光することができる。
In the physical quantity measuring device of the present invention, the spectroscopic element may have a diffraction grating.
In this configuration, since the spectroscopic element that disperses the plurality of output lights has a diffraction grating, the output lights can be separated into different wavelength regions with a simple configuration.
 本発明の物理量測定装置において、前記光学センサは、前記分離光を入射して前記被測定物の物理量に応じた第1偏波光および前記第1偏波光と位相の異なる第2偏波光を出力する偏波保持光ファイバセンサ部を有していてもよい。
 この構成では、光学センサは、被測定物の物理量に応じた第1偏波光および第2偏波光を出力する偏波保持光ファイバセンサ部を有しているので、当該第1偏波光および第2偏波光の干渉光を解析することにより、物理量を測定できる。そのため、圧力や歪みといった物理量を高精度で測定することができる。
In the physical quantity measuring device of the present invention, the optical sensor incidents the separated light and outputs a first polarized light corresponding to the physical quantity of the object to be measured and a second polarized light having a phase different from that of the first polarized light. It may have a polarization holding optical fiber sensor unit.
In this configuration, since the optical sensor has a polarization-holding optical fiber sensor unit that outputs first polarized light and second polarized light according to the physical quantity of the object to be measured, the first polarized light and the second polarized light. Physical quantities can be measured by analyzing the interference light of polarized light. Therefore, physical quantities such as pressure and strain can be measured with high accuracy.
 本発明の物理量測定装置は、広帯域な波長の光を放出する光源と、前記光源から放出される光が入射する光路と、前記光路に複数設けられ、前記光源から放出される光を入射して、それぞれ異なる波長の出力光を、被測定物の物理量に応じて出力する光学センサと、前記光路に設けられ、複数の前記光学センサから出力された複数の前記出力光を入射して前記光路から分光するビームスプリッタと、前記ビームスプリッタから出力された複数の前記出力光を入射して、前記波長に応じて分光する分光素子と、前記分光素子によって分光された複数の前記出力光を検出する光検出部と、を備え、前記光学センサは、出力する波長の前記出力光の伝送損失率の大きさの順に、前記光源の近くから遠くに向かって配置されることを特徴とする。 The physical quantity measuring device of the present invention is provided with a light source that emits light having a wide band wavelength, an optical path into which the light emitted from the light source is incident, and a plurality of light paths provided in the optical path to incident the light emitted from the light source. An optical sensor that outputs output light of different wavelengths according to the physical quantity of the object to be measured, and a plurality of output lights provided in the optical path and output from the plurality of optical sensors are incident from the optical path. A beam splitter that disperses, a spectroscopic element that incidents a plurality of the output lights output from the beam splitter and disperses the light according to the wavelength, and a light that detects a plurality of the output lights dispersed by the spectroscopic element. The optical sensor includes a detection unit, and is characterized in that the optical sensor is arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the output light of the output wavelength.
 本発明では、光学センサは、光源から放射された光が入射する光路に複数配置され、当該光を入射して、それぞれ異なる波長の出力光を、被測定物の物理量に応じて出力する。そして、光学センサは、出力する波長の出力光の伝送損失率の大きさの順に、光源の近くから遠くに向かって配置される。つまり、伝送損失率の大きい波長の出力光を出力する光学センサは光源の近くに配置され、伝送損失率の小さい波長の出力光を反射する光学センサは光源の遠くに配置される。これにより、伝送損失率の大きな波長の出力光を利用して物理量を測定した場合でも、伝送損失率の大きな波長の出力光を出力する光学センサが光源の近くに配置されるので、当該出力光の伝送損失を抑制することができる。そのため、出力光の伝送損失によって測定精度が低下することを抑制することができ、より広い波長領域の光を利用することができるので、測定精度を確保しつつ測定点を増やすことができる。 In the present invention, a plurality of optical sensors are arranged in an optical path where light emitted from a light source is incident, and the light is incident and outputs light having different wavelengths according to the physical quantity of the object to be measured. Then, the optical sensors are arranged from near the light source toward far away in the order of the magnitude of the transmission loss rate of the output light of the output wavelength. That is, the optical sensor that outputs the output light having a wavelength having a large transmission loss rate is arranged near the light source, and the optical sensor that reflects the output light having a wavelength having a small transmission loss rate is arranged far from the light source. As a result, even when the physical quantity is measured using the output light having a wavelength having a large transmission loss rate, the optical sensor that outputs the output light having a wavelength having a large transmission loss rate is arranged near the light source. Transmission loss can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss of output light, and it is possible to use light in a wider wavelength region, so that it is possible to increase the number of measurement points while ensuring measurement accuracy.
本発明の第1実施形態に係る物理量測定装置の概略構成を示す図。The figure which shows the schematic structure of the physical quantity measuring apparatus which concerns on 1st Embodiment of this invention. 前記実施形態の光路の伝送損失率と光学フィルタにより波長分割される分離光の波長領域を示す図。The figure which shows the transmission loss rate of the optical path of the said embodiment, and the wavelength region of the separated light which is wavelength-divided by an optical filter. 前記実施形態の光学センサの概略構成を示す図。The figure which shows the schematic structure of the optical sensor of the said embodiment. 前記実施形態の干渉光を示す図。The figure which shows the interference light of the said embodiment. 第2実施形態の物理量測定装置の概略構成を示す図。The figure which shows the schematic structure of the physical quantity measuring apparatus of 2nd Embodiment. 第3実施形態の物理量測定装置の概略構成を示す図。The figure which shows the schematic structure of the physical quantity measuring apparatus of 3rd Embodiment.
 [第1実施形態]
 本発明の第1実施形態を図面に基づいて説明する。
 図1は、第1実施形態の物理量測定装置1の概略構成を示す図である。
 図1に示すように、物理量測定装置1は、光源10と、光路20と、ビームスプリッタ30と、光学フィルタ40と、光学センサ50と、受光器60とを備える。
[First Embodiment]
The first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of the physical quantity measuring device 1 of the first embodiment.
As shown in FIG. 1, the physical quantity measuring device 1 includes a light source 10, an optical path 20, a beam splitter 30, an optical filter 40, an optical sensor 50, and a receiver 60.
 [光源10]
 光源10は、広帯域な波長の光を放出する光源である。光源10は、例えば、SC(Super Continuum)光源であり、1250nm~1650nmの波長領域の光を放出可能に構成されている。なお、光源10は、上記構成に限られるものではなく、ASE(Amplified Spontaneous Emission)光源やSLD(Super luminescent diode)光源等を組み合わせたものであってもよく、また、チューナブルレーザーのように広帯域を掃引する狭帯域光源であってもよい。さらに、光源10は、例示した波長領域よりも広い波長領域の光を放出可能に構成されていてもよく、あるいは、例示した波長領域よりも狭い波長領域の光を放出可能に構成されていてもよい。
[Light source 10]
The light source 10 is a light source that emits light having a wide band wavelength. The light source 10 is, for example, an SC (Super Continuum) light source, and is configured to be capable of emitting light in a wavelength region of 1250 nm to 1650 nm. The light source 10 is not limited to the above configuration, and may be a combination of an ASE (Amplified Spontaneous Emission) light source, an SLD (Super luminescent diode) light source, or the like, and has a wide band like a tunable laser. It may be a narrow band light source that sweeps. Further, the light source 10 may be configured to be capable of emitting light in a wavelength region wider than the illustrated wavelength region, or may be configured to be capable of emitting light in a wavelength region narrower than the illustrated wavelength region. Good.
 [光路20]
 光路20は、所謂光ファイバから構成され、光源10から放出される光が入射される。本実施形態では、光路20は、第1光路21と、第2光路22と、第3光路23とを有する。第1光路21は、光源10から放出された光を、ビームスプリッタ30および光学フィルタ40に伝送する。第2光路22は、光学フィルタ40から分離された分離光を光学センサ50に伝送する。第3光路23は、ビームスプリッタ30によって分光された出力光を受光器60に伝送する。
[Optical path 20]
The optical path 20 is composed of a so-called optical fiber, and the light emitted from the light source 10 is incident on the optical path 20. In the present embodiment, the optical path 20 has a first optical path 21, a second optical path 22, and a third optical path 23. The first optical path 21 transmits the light emitted from the light source 10 to the beam splitter 30 and the optical filter 40. The second optical path 22 transmits the separated light separated from the optical filter 40 to the optical sensor 50. The third optical path 23 transmits the output light dispersed by the beam splitter 30 to the receiver 60.
 [ビームスプリッタ30]
 ビームスプリッタ30は、光源10から放出された光を光学フィルタ40および光学センサ50に送るとともに、光学センサ50から出力された出力光を入射して、第1光路21から第3光路23に分光する。
 なお、ビームスプリッタ30は、上記構成に限られず、例えば、サーキュレータから構成されていてもよい。
[Beam Splitter 30]
The beam splitter 30 sends the light emitted from the light source 10 to the optical filter 40 and the optical sensor 50, incidents the output light output from the optical sensor 50, and splits it from the first optical path 21 to the third optical path 23. ..
The beam splitter 30 is not limited to the above configuration, and may be composed of, for example, a circulator.
 [光学フィルタ40]
 光学フィルタ40は、光源10から放出された光を入射して、所定の波長領域の分離光を、第1光路21から第2光路22へと波長分割するWDM(Wavelength Division Multiplexing 波長分割多重)フィルタから構成される。
 光学フィルタ40は、第1光路21にn個(nは自然数)設けられる。本実施形態では、光学フィルタ40は19個、すなわち、複数設けられている。そして、光学フィルタ40は、光源10から放出された光を、20nm間隔で、それぞれ異なる波長領域Δλ1~Δλ19の分離光に波長分割する。なお、光学フィルタ40は、上記構成に限られず、例えば、特定の波長領域の光のみを反射するダイクロイックミラーから構成されていてもよい。また、光学フィルタ40は、例えば、15nm間隔で、それぞれ異なる波長領域の分離光に波長分割可能に構成されていてもよく、所定の間隔の波長領域に波長分割可能に構成することができる。
[Optical filter 40]
The optical filter 40 is a WDM (Wavelength Division Multiplexing) filter that incidents the light emitted from the light source 10 and divides the separated light in a predetermined wavelength region into wavelength divisions from the first optical path 21 to the second optical path 22. Consists of.
N optical filters 40 (n is a natural number) are provided in the first optical path 21. In this embodiment, 19 optical filters 40 are provided, that is, a plurality of optical filters 40 are provided. Then, the optical filter 40 divides the light emitted from the light source 10 into separated light having different wavelength regions Δλ1 to Δλ19 at intervals of 20 nm. The optical filter 40 is not limited to the above configuration, and may be composed of, for example, a dichroic mirror that reflects only light in a specific wavelength region. Further, the optical filter 40 may be configured so as to be able to divide the wavelength into separated light having different wavelength regions at intervals of 15 nm, for example, and can be configured to be capable of dividing the wavelength into wavelength regions having a predetermined interval.
 図2は、光路20の伝送損失率と光学フィルタ40により波長分割される分離光の波長領域を示す図である。
 本実施形態の光路20の伝送損失率は、伝送する光の波長に依存する。例えば、1250nmの波長の伝送損失率は、約0.45dB/kmであるのに対して、1550nmの波長の光の伝送損失率は、約0.02dB/kmである。また、1375nmの波長付近では、光の伝送損失率が特異的に大きくなる。すなわち、光路20は、伝送する光の波長によって、伝送損失率が大きくことなる。
 そこで、本実施形態では、光学フィルタ40は、波長分割する波長領域の分離光の伝送損失率の大きさの順に、光源10の近くから遠くに向かって配置されている。すなわち、図2に示す、最も伝送損失率が大きいΔλ1の波長領域、つまり、1250nm~1270nmの分離光を波長分割する光学フィルタ40が光源10の最も近くに配置される。そして、Δλ2、Δλ3と、伝送損失率の大きい波長領域の分離光を波長分割する光学フィルタ40が順に配置され、Δλ19の波長領域の分離光を波長分割する光学フィルタ40が光源10の最も遠くに配置される。また、Δλ20の波長領域、つまり、1550nm~1570nmの波長領域の光は、全ての光学フィルタ40を通過して、光源10から最も遠くに配置される光学センサ50に入射される。
FIG. 2 is a diagram showing a transmission loss rate of the optical path 20 and a wavelength region of separated light whose wavelength is divided by the optical filter 40.
The transmission loss rate of the optical path 20 of the present embodiment depends on the wavelength of the light to be transmitted. For example, the transmission loss rate at a wavelength of 1250 nm is about 0.45 dB / km, while the transmission loss rate of light at a wavelength of 1550 nm is about 0.02 dB / km. Further, in the vicinity of the wavelength of 1375 nm, the light transmission loss rate becomes specifically large. That is, the optical path 20 has a large transmission loss rate depending on the wavelength of the light to be transmitted.
Therefore, in the present embodiment, the optical filters 40 are arranged from near to far from the light source 10 in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division. That is, the optical filter 40 for wavelength-dividing the separated light of 1250 nm to 1270 nm, which is the wavelength region of Δλ1 having the largest transmission loss rate shown in FIG. 2, is arranged closest to the light source 10. Then, Δλ2 and Δλ3 and an optical filter 40 for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate are arranged in order, and the optical filter 40 for wavelength-dividing the separated light in the wavelength region of Δλ19 is the farthest from the light source 10. Be placed. Further, the light in the wavelength region of Δλ20, that is, the wavelength region of 1550 nm to 1570 nm passes through all the optical filters 40 and is incident on the optical sensor 50 arranged farthest from the light source 10.
 [光学センサ50]
 図1に戻って、光学センサ50は、図示略の被測定物に配置されている。光学センサ50は、光学フィルタ40に応じて、n+1個設けられる。本実施形態では、光学センサ50は20個設けられている。そして、光学センサ50は、光学フィルタ40によって波長分割された分離光を入射して、被測定物の物理量、例えば、圧力や歪みに応じた出力光を、第2光路22および光学フィルタ40を介して、第1光路21に出力する。すなわち、光学センサ50は、被測定物の物理量を検出可能に構成されている。
 なお、被測定物としては、数十キロメートルに亘って敷設されるパイプラインなどが例示される。また、光学センサ50は、被測定物の圧力や歪みに応じた出力光を出力することに限定されるものではなく、例えば、被測定物の加速度や温度に応じた出力光を出力可能に構成されていてもよい。つまり、光学センサ50は、被測定物の物理量として、加速度や温度を検出可能に構成されていてもよい。
[Optical sensor 50]
Returning to FIG. 1, the optical sensor 50 is arranged on an object to be measured (not shown). N + 1 optical sensors 50 are provided according to the optical filter 40. In this embodiment, 20 optical sensors 50 are provided. Then, the optical sensor 50 incidents the separated light wavelength-divided by the optical filter 40, and transmits the output light according to the physical quantity of the object to be measured, for example, pressure and distortion, through the second optical path 22 and the optical filter 40. Then, it is output to the first optical path 21. That is, the optical sensor 50 is configured to be able to detect the physical quantity of the object to be measured.
An example of the object to be measured is a pipeline laid over several tens of kilometers. Further, the optical sensor 50 is not limited to outputting the output light according to the pressure and strain of the object to be measured, and for example, the optical sensor 50 can output the output light according to the acceleration and temperature of the object to be measured. It may have been. That is, the optical sensor 50 may be configured to be able to detect acceleration and temperature as physical quantities of the object to be measured.
 図3は、光学センサ50の概略構成を示す図である。
 図3に示すように、本実施形態では、光学センサ50は、偏波保持光ファイバセンサ部51と、反射板52とを有する、所謂偏波保持光ファイバセンサとして構成される。
 偏波保持光ファイバセンサ部51は、光学フィルタ40によって波長分割された分離光を入射して、被測定物の物理量に応じた第1偏波光および第1偏波光と位相の異なる第2偏波光を出力する偏波保持光ファイバから構成される。本実施形態では、光学フィルタ40によって波長分割された分離光は、偏波保持光ファイバセンサ部51を透過し、当該透過光が反射板52によって反射される。そして、当該反射光が、再度、偏波保持光ファイバセンサ部51を透過して、第1偏波光と第2偏波光との干渉光が出力光として、光学センサ50から出力される。
FIG. 3 is a diagram showing a schematic configuration of the optical sensor 50.
As shown in FIG. 3, in the present embodiment, the optical sensor 50 is configured as a so-called polarization-holding optical fiber sensor having a polarization-holding optical fiber sensor unit 51 and a reflector 52.
The polarization-holding optical fiber sensor unit 51 incidents the separated light wavelength-divided by the optical filter 40, and the first-polarized light according to the physical quantity of the object to be measured and the second-polarized light having a phase different from that of the first polarized light. It is composed of a polarization-retaining optical fiber that outputs. In the present embodiment, the separated light wavelength-divided by the optical filter 40 is transmitted through the polarization-holding optical fiber sensor unit 51, and the transmitted light is reflected by the reflecting plate 52. Then, the reflected light passes through the polarization-holding optical fiber sensor unit 51 again, and the interference light between the first polarization light and the second polarization light is output from the optical sensor 50 as output light.
 図4は、光学センサ50から出力される第1偏波光および第2偏波光の干渉光のスペクトルを示す図である。なお、図4では、1530nm~1550nmの波長領域、つまり、図2に示すΔλ18の波長領域の分離光を入射した場合に、光学センサ50から出力される干渉光を例示している。
 図4の実線L1で示すように、本実施形態では、光学センサ50から出力される干渉光において、山の領域Xおよび谷の領域Yが観察される。すなわち、干渉縞が観察される。なお、光学センサ50から出力される干渉光は、図4に例示されるものに限られるものではなく、例えば、干渉縞がより密に観察されてもよく、あるいは、干渉縞の一部が観察されてもよい。
FIG. 4 is a diagram showing spectra of interference light of the first polarized light and the second polarized light output from the optical sensor 50. Note that FIG. 4 illustrates the interference light output from the optical sensor 50 when the separated light in the wavelength region of 1530 nm to 1550 nm, that is, the wavelength region of Δλ18 shown in FIG. 2 is incident.
As shown by the solid line L1 in FIG. 4, in the present embodiment, the mountain region X and the valley region Y are observed in the interference light output from the optical sensor 50. That is, interference fringes are observed. The interference light output from the optical sensor 50 is not limited to that illustrated in FIG. 4, and for example, the interference fringes may be observed more closely, or a part of the interference fringes may be observed. May be done.
 [受光器60]
 図1に戻って、受光器60は、光学センサ50から出力された出力光としての干渉光を入射して、当該干渉光に応じた物理量を演算する。受光器60は、分光器61と、光検出部62と、MPU63とを有する。
[Receiver 60]
Returning to FIG. 1, the receiver 60 incidents interference light as output light output from the optical sensor 50, and calculates a physical quantity corresponding to the interference light. The receiver 60 includes a spectroscope 61, a photodetector 62, and an MPU 63.
 [分光器61]
 分光器61は、ビームスプリッタ30から出力された複数の出力光、つまり、光学センサ50から出力された干渉光を入射して、当該干渉光をΔλ1~Δλ20までの波長領域に応じて分光する。分光器61は、本発明の分光素子の一例である。
 本実施形態では、分光器61は、干渉光をΔλ1~Δλ20の波長領域に分光する回折格子611を備える。
 なお、分光器61は、上記構成に限られるものではなく、例えば、WDMや複数の回折格子を備えて構成されていてもよい。
[Spectroscope 61]
The spectroscope 61 incidents a plurality of output lights output from the beam splitter 30, that is, interference light output from the optical sensor 50, and disperses the interference light according to a wavelength region from Δλ1 to Δλ20. The spectroscope 61 is an example of the spectroscopic element of the present invention.
In the present embodiment, the spectroscope 61 includes a diffraction grating 611 that disperses the interference light in the wavelength region of Δλ1 to Δλ20.
The spectroscope 61 is not limited to the above configuration, and may be configured to include, for example, WDM or a plurality of diffraction gratings.
 [光検出部62]
 光検出部62は、光検出素子621や図示略の光電変換機、増幅器、AD変換器などを備えて構成され、分光器61によって分光された複数の干渉光を検出し、それぞれの干渉光に応じた干渉信号を出力する。
 また、本実施形態では、異なる素材から形成された複数の光検出素子621がアレイ状に配置されて構成されている。例えば、光検出部62には、Siから形成され短波長の波長領域の干渉光を検出する光検出素子621がアレイ状に複数配置される。また、光検出部62には、InGaAsから形成され長波長の波長領域の干渉光を検出する光検出素子621がアレイ状に複数配置される。
 なお、光検出部62は、上記構成に限られるものではなく、分光器61によって分光された複数の干渉光を検出し、それぞれの干渉光に応じた干渉信号を出力可能に構成されていればよい。
[Light detection unit 62]
The photodetector 62 includes a photodetector 621, a photoelectric converter (not shown), an amplifier, an AD converter, and the like, detects a plurality of interference lights dispersed by the spectroscope 61, and converts the interference light into each interference light. Outputs the corresponding interference signal.
Further, in the present embodiment, a plurality of photodetector elements 621 formed of different materials are arranged in an array. For example, in the photodetection unit 62, a plurality of photodetector elements 621 formed of Si and detecting interference light in a wavelength region having a short wavelength are arranged in an array. Further, in the photodetection unit 62, a plurality of photodetector elements 621 formed of InGaAs and detecting interference light in a wavelength region having a long wavelength are arranged in an array.
The photodetector 62 is not limited to the above configuration, as long as it can detect a plurality of interference lights dispersed by the spectroscope 61 and output an interference signal corresponding to each interference light. Good.
 MPU63は、所謂Micro Processing Unitであり、光検出部62から出力される複数の干渉信号を入力して、それぞれの干渉信号に応じた物理量を演算する。本実施形態では、MPU63は、公知の演算方法により、干渉信号から物理量を測定する。すなわち、MPU63は、干渉信号から図4に示す干渉縞を求める。そして、MPU63は、図4で実線L1および一点鎖線L2で示す干渉縞の周期的な強度変化から、位相変化を算出する。MPU63は、この位相変化と物理量との相関関係を予め求めておくことで、位相変化に応じた物理量を算出する。 The MPU 63 is a so-called Micro Processing Unit, which inputs a plurality of interference signals output from the photodetector 62 and calculates a physical quantity corresponding to each interference signal. In the present embodiment, the MPU 63 measures a physical quantity from an interference signal by a known calculation method. That is, the MPU 63 obtains the interference fringes shown in FIG. 4 from the interference signal. Then, the MPU 63 calculates the phase change from the periodic intensity change of the interference fringes shown by the solid line L1 and the alternate long and short dash line L2 in FIG. The MPU 63 calculates the physical quantity according to the phase change by obtaining the correlation between the phase change and the physical quantity in advance.
 [第1実施形態の効果]
 以上のような第1実施形態では、次の効果を奏することができる。
(1)本実施形態では、光学フィルタ40は、光源10から放射された光が入射する光路20に複数配置され、当該光をそれぞれ異なる波長領域の分離光に波長分割する。そして、光学フィルタ40は、波長分割する波長領域の分離光の伝送損失率の大きさの順に、光源10の近くから遠くに向かって配置される。つまり、伝送損失率の大きい波長領域、例えば、Δλ1の波長領域の分離光を波長分割する光学フィルタ40は光源10の近くに配置される。そして、伝送損失率の小さい波長領域、例えば、Δλ19の波長領域の分離光を波長分割する光学フィルタ40は光源10の遠くに配置される。これにより、伝送損失率の大きな波長領域の分離光を利用して物理量を測定した場合でも、伝送損失率の大きな波長領域の分離光を波長分割する光学フィルタ40が光源10の近くに配置されるので、ビームスプリッタ30から光学センサ50までの伝送損失を抑制することができる。そのため、ビームスプリッタ30から光学センサ50までの伝送損失によって測定精度が低下することを抑制することができ、より広い波長領域の光を利用することができるので、測定精度を確保しつつ測定点を増やすことができる。
[Effect of the first embodiment]
In the first embodiment as described above, the following effects can be obtained.
(1) In the present embodiment, a plurality of optical filters 40 are arranged in the optical path 20 in which the light radiated from the light source 10 is incident, and the light is wavelength-divided into separated light having different wavelength regions. Then, the optical filter 40 is arranged from near to far from the light source 10 in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division. That is, the optical filter 40 for wavelength-dividing the separated light in the wavelength region having a large transmission loss rate, for example, the wavelength region of Δλ1, is arranged near the light source 10. Then, the optical filter 40 for wavelength-dividing the separated light in the wavelength region having a small transmission loss rate, for example, the wavelength region of Δλ19, is arranged far from the light source 10. As a result, the optical filter 40 that divides the separated light in the wavelength region having a large transmission loss rate into wavelengths is arranged near the light source 10 even when the physical quantity is measured by using the separated light in the wavelength region having a large transmission loss rate. Therefore, the transmission loss from the beam splitter 30 to the optical sensor 50 can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter 30 to the optical sensor 50, and light in a wider wavelength region can be used, so that the measurement point can be set while ensuring measurement accuracy. Can be increased.
(2)本実施形態では、20個目の光学センサ50には、19個目の光学フィルタ40によって波長分割されず透過した光が入射される。そのため、光源10から放出された光を20個の波長領域の分離光に波長分割させて、それぞれ光学センサ50に入射させる場合において、例えば、光学フィルタ40を20個設ける場合に比べて、光学フィルタ40の数を少なくすることができる。 (2) In the present embodiment, the light transmitted through the 20th optical sensor 50 without being wavelength-divided by the 19th optical filter 40 is incident. Therefore, in the case where the light emitted from the light source 10 is divided into wavelengths of separated light in 20 wavelength regions and incident on each of the optical sensors 50, the optical filter is compared with the case where 20 optical filters 40 are provided, for example. The number of 40 can be reduced.
(3)本実施形態では、光検出部62に、異なる素材から形成された複数の光検出素子621がアレイ状に配置されているので、それぞれ異なる波長領域の複数の出力光としての干渉光を、光検出部62でそれぞれ検出することができる。そのため、光検出部62にて検出する出力光の波長範囲を容易に広げることができる。 (3) In the present embodiment, since a plurality of photodetector elements 621 formed of different materials are arranged in an array in the photodetector 62, interference light as a plurality of output lights in different wavelength regions is emitted. , Each can be detected by the light detection unit 62. Therefore, the wavelength range of the output light detected by the photodetector 62 can be easily expanded.
(4)本実施形態では、複数の出力光を波長分割する分光器61が回折格子611を有しているため、簡単な構成で、出力光としての干渉光をそれぞれ異なる波長領域Δλ1~Δλ20に分光することができる。 (4) In the present embodiment, since the spectroscope 61 that divides the wavelengths of the plurality of output lights has a diffraction grating 611, the interference light as the output light is divided into different wavelength regions Δλ1 to Δλ20 with a simple configuration. Can be spectroscopic.
(5)本実施形態では、光学センサ50は、被測定物の物理量に応じた第1偏波光および第2偏波光を出力する偏波保持光ファイバセンサ部51を有しているので、当該第1偏波光および第2偏波光の干渉光を解析することにより、物理量を測定できる。そのため、圧力や歪みといった物理量を高精度で測定することができる。 (5) In the present embodiment, the optical sensor 50 has a polarization-holding optical fiber sensor unit 51 that outputs first-polarized light and second-polarized light according to the physical quantity of the object to be measured. The physical quantity can be measured by analyzing the interference light of the first polarized light and the second polarized light. Therefore, physical quantities such as pressure and strain can be measured with high accuracy.
 [第2実施形態]
 次に、本発明の第2実施形態について図面に基づいて説明する。
 第2実施形態では、光学センサ50Aは、入射する波長領域の分離光の伝送損失率の大きさの順に、光源10Aの近くから遠くに向かって配置される点で第1実施形態と異なる。
[Second Embodiment]
Next, the second embodiment of the present invention will be described with reference to the drawings.
The second embodiment is different from the first embodiment in that the optical sensor 50A is arranged from near to far from the light source 10A in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region.
 図5は、第2実施形態の物理量測定装置1Aの概略構成を示す図である。
 図5に示すように、物理量測定装置1Aは、光源10Aと、光路20Aと、ビームスプリッタ30Aと、光学フィルタ40Aと、光学センサ50Aと、受光器60Aとを備える。また、受光器60Aは、分光器61Aと、光検出部62Aと、MPU63Aとを有する。分光器61Aは回折格子611Aを有し、光検出部62Aは光検出素子621Aを有する。
 なお、光源10A、光路20A、ビームスプリッタ30A、受光器60A、分光器61A、光検出部62A、MPU63A、回折格子611A、光検出素子621Aは、前述した第1実施形態と同様であるため、詳細な説明を省略する。
FIG. 5 is a diagram showing a schematic configuration of the physical quantity measuring device 1A of the second embodiment.
As shown in FIG. 5, the physical quantity measuring device 1A includes a light source 10A, an optical path 20A, a beam splitter 30A, an optical filter 40A, an optical sensor 50A, and a receiver 60A. Further, the receiver 60A includes a spectroscope 61A, a photodetector 62A, and an MPU 63A. The spectroscope 61A has a diffraction grating 611A, and the photodetector 62A has a photodetector 621A.
The light source 10A, the optical path 20A, the beam splitter 30A, the photodetector 60A, the spectroscope 61A, the photodetector 62A, the MPU 63A, the diffraction grating 611A, and the photodetector 621A are the same as those in the first embodiment described above. Explanation is omitted.
 [光学フィルタ40A]
 光学フィルタ40Aは、前述した第1実施形態と同様にWDMフィルタから構成され、光源10Aから放出された光を第1光路21Aから入射する。そして、当該光をそれぞれ異なる複数の波長領域の分離光に波長分割し、第2光路22Aに出力する。
 本実施形態では、光学フィルタ40Aは、光源10Aから放出された光を、20nm間隔で、それぞれ異なる波長領域Δλ1~Δλ20の分離光に波長分割する。すなわち、光学フィルタ40Aは、光源10Aから放出された光を、20個の波長領域の分離光に波長分割する。
[Optical filter 40A]
The optical filter 40A is composed of a WDM filter as in the first embodiment described above, and incidents light emitted from the light source 10A from the first optical path 21A. Then, the light is divided into wavelengths of separated light having a plurality of different wavelength regions, and the light is output to the second optical path 22A.
In the present embodiment, the optical filter 40A divides the light emitted from the light source 10A into separated light having different wavelength regions Δλ1 to Δλ20 at intervals of 20 nm. That is, the optical filter 40A divides the light emitted from the light source 10A into separated light having 20 wavelength regions.
 [光学センサ50A]
 光学センサ50Aは、前述した第1実施形態と同様に、偏波保持光ファイバセンサとして構成され、図示略の被測定物に配置されている。
 本実施形態では、光学センサ50Aは、光学フィルタ40Aによって波長分割された複数の波長領域の分離光に応じて20個設けられる。そして、それぞれの光学センサ50Aは、被測定物の物理量に応じた出力光を、第2光路22Aおよび光学フィルタ40Aを介して、第1光路21Aに出力する。第1光路21Aに入射した出力光は、ビームスプリッタ30Aおよび第3光路23Aを介して、受光器60Aに入射される。
[Optical sensor 50A]
Similar to the first embodiment described above, the optical sensor 50A is configured as a polarization-retaining optical fiber sensor and is arranged on an object to be measured (not shown).
In the present embodiment, 20 optical sensors 50A are provided according to the separated light in a plurality of wavelength regions whose wavelengths are divided by the optical filter 40A. Then, each optical sensor 50A outputs output light corresponding to the physical quantity of the object to be measured to the first optical path 21A via the second optical path 22A and the optical filter 40A. The output light incident on the first optical path 21A is incident on the receiver 60A via the beam splitter 30A and the third optical path 23A.
 ここで、本実施形態では、光学センサ50Aは、入射する波長領域の分離光の伝送損失率の大きさの順に、光源10Aの近くから遠くに向かって配置される。すなわち、図2に示す、最も伝送損失率が大きいΔλ1の波長領域、つまり、1250nm~1270nmの分離光を入射する光学センサ50Aが光源10Aの最も近くに配置される。そして、Δλ2、Δλ3と、伝送損失率の大きい波長領域の分離光を入射する光学センサ50Aが順に配置され、Δλ20の波長領域の分離光を入射する光学センサ50Aが光源10Aの最も遠くに配置される。 Here, in the present embodiment, the optical sensors 50A are arranged from near to far from the light source 10A in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region. That is, the wavelength region of Δλ1 having the largest transmission loss rate shown in FIG. 2, that is, the optical sensor 50A that incidents the separated light of 1250 nm to 1270 nm is arranged closest to the light source 10A. Then, Δλ2 and Δλ3 and the optical sensor 50A that injects the separated light in the wavelength region having a large transmission loss rate are arranged in order, and the optical sensor 50A that injects the separated light in the wavelength region of Δλ20 is arranged farthest from the light source 10A. Ru.
 [第2実施形態の効果]
 以上のような第2実施形態では、次の効果を奏することができる。
(6)本実施形態では、光学センサ50Aは、光学フィルタ40Aによって波長分割された複数の波長領域の分離光に応じて複数設けられ、分離光を入射して被測定物の物理量に応じた出力光を光路20Aに出力する。そして、光学センサ50Aは、入射する波長領域の分離光の伝送損失率の大きさの順に、光源10Aの近くから遠くに向かって配置される。これにより、伝送損失率の大きな波長領域の分離光を利用して物理量を測定した場合でも、伝送損失率の大きな波長領域の分離光を入射する光学センサ50Aが光源10Aの近くに配置されるので、ビームスプリッタ30Aから光学センサ50Aまでの伝送損失を抑制することができる。そのため、前述した第1実施形態と同様に、ビームスプリッタ30Aから光学センサ50Aまでの伝送損失によって測定精度が低下することを抑制することができ、より広い波長領域の光を利用することができるので、測定精度を確保しつつ測定点を増やすことができる。
[Effect of the second embodiment]
In the second embodiment as described above, the following effects can be obtained.
(6) In the present embodiment, a plurality of optical sensors 50A are provided according to the separated light in a plurality of wavelength regions wavelength-divided by the optical filter 40A, and the separated light is incident and output according to the physical quantity of the object to be measured. Light is output to the optical path 20A. Then, the optical sensor 50A is arranged from near to far from the light source 10A in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region. As a result, even when the physical quantity is measured using the separated light in the wavelength region having a large transmission loss rate, the optical sensor 50A that incidents the separated light in the wavelength region having a large transmission loss rate is arranged near the light source 10A. , The transmission loss from the beam splitter 30A to the optical sensor 50A can be suppressed. Therefore, as in the first embodiment described above, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter 30A to the optical sensor 50A, and it is possible to use light in a wider wavelength region. , The number of measurement points can be increased while ensuring the measurement accuracy.
 [第3実施形態]
 次に、本発明の第3実施形態について図面に基づいて説明する。
 第3実施形態では、光学センサ50Bは、所謂FBG(ファイバ・ブラッグ・グレーティング)センサから構成される点で第1,第2実施形態と異なる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to the drawings.
In the third embodiment, the optical sensor 50B differs from the first and second embodiments in that it is composed of a so-called FBG (fiber Bragg grating) sensor.
 図6は、第3実施形態の物理量測定装置1Bの概略構成を示す図である。
 図6に示すように、物理量測定装置1Bは、光源10Bと、光路20Bと、ビームスプリッタ30Bと、光学センサ50Bと、受光器60Bとを備える。また、受光器60Bは、分光器61Bと、光検出部62Bと、MPU63Bとを有する。分光器61Bは回折格子611Bを有し、光検出部62Bは光検出素子621Bを有する。
 なお、光源10B、光路20B、第3光路23B、ビームスプリッタ30B、受光器60B、分光器61B、光検出部62B、MPU63B、回折格子611B、光検出素子621Bは、前述した第1、第2実施形態と同様であるため、詳細な説明を省略する。
FIG. 6 is a diagram showing a schematic configuration of the physical quantity measuring device 1B of the third embodiment.
As shown in FIG. 6, the physical quantity measuring device 1B includes a light source 10B, an optical path 20B, a beam splitter 30B, an optical sensor 50B, and a receiver 60B. Further, the receiver 60B includes a spectroscope 61B, a photodetector 62B, and an MPU 63B. The spectroscope 61B has a diffraction grating 611B, and the photodetector 62B has a photodetector 621B.
The light source 10B, the optical path 20B, the third optical path 23B, the beam splitter 30B, the photodetector 60B, the spectroscope 61B, the photodetector 62B, the MPU 63B, the diffraction grating 611B, and the photodetector 621B are the first and second implementations described above. Since it is the same as the form, detailed description thereof will be omitted.
 [光学センサ50B]
 光学センサ50B、ファイバ・ブラッグ・グレーティングを有する所謂FBGセンサであり、第1光路21Bにおいて、図示しない被測定物に複数配置される。本実施形態では、光学センサ50Bは、第1光路21Bに20個配置される。また、光学センサ50Bは、前述した第1,2実施形態と同様に、被測定物の圧力や歪みを測定するものである。なお、被測定物としては、前述した第1,第2実施形態と同様に、数十キロメートルに亘って敷設されるパイプラインなどが例示される。また、光学センサ50Bは、被測定物の圧力や歪みを測定するものに限られるものではなく、例えば、被測定物の加速度や温度を測定するものであってもよい。
 さらに、光学センサ50Bは、上記構成に限られるものではなく、例えば、CFBG(チャープ・ファイバ・ブラッグ・グレーティング)、TFBG(傾斜型・ファイバ・ブラッグ・グレーティング)、FP-FBG(ファブリペロー型・ファイバ・ブラッグ・グレーティング)、LPG(長周期光型・ファイバ・グレーティング)等を有して構成されていてもよい。
[Optical sensor 50B]
It is a so-called FBG sensor having an optical sensor 50B and a fiber Bragg grating, and a plurality of them are arranged on an object to be measured (not shown) in the first optical path 21B. In this embodiment, 20 optical sensors 50B are arranged in the first optical path 21B. Further, the optical sensor 50B measures the pressure and strain of the object to be measured, as in the first and second embodiments described above. Examples of the object to be measured include a pipeline laid over several tens of kilometers, as in the first and second embodiments described above. Further, the optical sensor 50B is not limited to measuring the pressure or strain of the object to be measured, and may be, for example, measuring the acceleration or temperature of the object to be measured.
Further, the optical sensor 50B is not limited to the above configuration, and for example, CFBG (chirp fiber Bragg grating), TFBG (tilted fiber Bragg grating), FP-FBG (Fabry-Perot type fiber). -Bragg grating), LPG (long-period optical type, fiber grating), etc. may be included.
 各光学センサ50Bは、光源10Bから放出される所定の波長領域の光を入射して、それぞれ異なる波長λの出力光を、被測定物の物理量に応じて出力する。
 本実施形態では、光学センサ50Bは、干渉光を出力光として出力する。なお、光学センサ50Bが出力する出力光は、上記構成に限られるものではなく、例えば、光学センサ50Bにて反射された反射光であってもよく、また、光学センサ50Bを透過した透過光であってもよい。光学センサ50Bは、透過光を出力光として出力する場合、ループミラー、カプラ、サーキュレータ等を備えて構成されていてもよい。
Each optical sensor 50B incidents light in a predetermined wavelength region emitted from the light source 10B, and outputs output light having different wavelengths λ according to the physical quantity of the object to be measured.
In the present embodiment, the optical sensor 50B outputs the interference light as the output light. The output light output by the optical sensor 50B is not limited to the above configuration, and may be, for example, the reflected light reflected by the optical sensor 50B or the transmitted light transmitted through the optical sensor 50B. There may be. When the transmitted light is output as output light, the optical sensor 50B may be configured to include a loop mirror, a coupler, a circulator, and the like.
 ここで、本実施形態では、光学センサ50Bは、出力する波長の伝送損失率の大きさの順に、光源10Bの近くから遠くに向かって配置されている。例えば、図2に示すように、伝送損失率の大きい1260nmの波長λ1の出力光を出力する光学センサ50Bは、光源10Bの近くに配置され、伝送損失率の小さい1560nmの波長λ20の出力光を出力する光学センサ50Bは、光源10Bの遠くに配置される。このように、本実施形態では、出力する出力光の波長が、光源10Bの近くから遠くに向かって、伝送損失率の大きい波長λ1から伝送損失率の小さい波長λ20の順になるように、光学センサ50Bが配置されている。 Here, in the present embodiment, the optical sensors 50B are arranged from near to far from the light source 10B in the order of the magnitude of the transmission loss rate of the output wavelength. For example, as shown in FIG. 2, the optical sensor 50B that outputs the output light of the wavelength λ1 of 1260 nm having a large transmission loss rate is arranged near the light source 10B, and outputs the output light of the wavelength λ20 of 1560 nm having a small transmission loss rate. The output optical sensor 50B is arranged far from the light source 10B. As described above, in the present embodiment, the wavelength of the output light to be output is in the order of the wavelength λ1 having the larger transmission loss rate to the wavelength λ20 having the smaller transmission loss rate from near to far from the light source 10B. 50B is arranged.
 [第3実施形態の効果]
 以上のような第3実施形態では、次の効果を奏することができる。
(7)本実施形態では、光学センサ50Bは、光源10Bから放射された光が入射する光路20Bに複数配置され、当該光を入射して、それぞれ異なる波長λの出力光を、被測定物の物理量に応じて出力する。そして、光学センサ50Bは、出力する波長の出力光の伝送損失率の大きさの順に、光源10Bの近くから遠くに向かって配置される。つまり、伝送損失率の大きい波長λ1の出力光を出力する光学センサ50Bは光源10Bの近くに配置され、伝送損失率の小さい波長λ20の出力光を出力する光学センサ50Bは光源10Bの遠くに配置される。これにより、伝送損失率の大きな波長の出力光を利用して物理量を測定した場合でも、伝送損失率の大きな波長の出力光を出力する光学センサ50Bが光源10Bの近くに配置されるので、ビームスプリッタ30Bから光学センサ50Bまでの伝送損失を抑制することができる。そのため、ビームスプリッタ30Bから光学センサ50Bまでの伝送損失によって測定精度が低下することを抑制することができ、より広い波長領域の光を利用することができるので、測定精度を確保しつつ測定点を増やすことができる。
[Effect of Third Embodiment]
In the third embodiment as described above, the following effects can be obtained.
(7) In the present embodiment, a plurality of optical sensors 50B are arranged in the optical path 20B in which the light radiated from the light source 10B is incident, and the light is incident on the optical sensor 50B, and the output light having a different wavelength λ is emitted from the object to be measured. Output according to the physical quantity. Then, the optical sensor 50B is arranged from near to far from the light source 10B in the order of the magnitude of the transmission loss rate of the output light of the output wavelength. That is, the optical sensor 50B that outputs the output light of the wavelength λ1 having a large transmission loss rate is arranged near the light source 10B, and the optical sensor 50B that outputs the output light of the wavelength λ20 having a small transmission loss rate is arranged far from the light source 10B. Will be done. As a result, even when the physical quantity is measured using the output light having a wavelength having a large transmission loss rate, the optical sensor 50B that outputs the output light having a wavelength having a large transmission loss rate is arranged near the light source 10B. The transmission loss from the splitter 30B to the optical sensor 50B can be suppressed. Therefore, it is possible to suppress a decrease in measurement accuracy due to transmission loss from the beam splitter 30B to the optical sensor 50B, and it is possible to use light in a wider wavelength range, so that the measurement point can be set while ensuring measurement accuracy. Can be increased.
(8)本実施形態では、光学センサ50Bとして、所謂FBGセンサを用いるので、光源10Bから放出される所定の波長領域の光に対して、光学センサ50Bをより多く配置することができる。そのため、測定点をより増やすことができる。 (8) In the present embodiment, since the so-called FBG sensor is used as the optical sensor 50B, more optical sensors 50B can be arranged with respect to the light in a predetermined wavelength region emitted from the light source 10B. Therefore, the number of measurement points can be increased.
 [変形例]
 なお、本発明は前述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 前記第1、第2実施形態では、光学センサ50,50Aは、偏波保持光ファイバセンサ部51と、反射板52とを有する、所謂偏波保持光ファイバセンサとして構成されていたが、これに限定されない。例えば、光学センサ50,50Aは、ファブリペロー式、マッハツェンダー式、マイケルソン式、FBG式などの干渉型センサとして構成されていてもよい。さらに、光学センサ50,50Aとして、これらが混在する場合も本発明に含まれる。
[Modification example]
The present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
In the first and second embodiments, the optical sensors 50 and 50A are configured as a so-called polarization-holding optical fiber sensor having a polarization-holding optical fiber sensor unit 51 and a reflector 52. Not limited. For example, the optical sensors 50 and 50A may be configured as interference type sensors such as Fabry-Perot type, Mach-Zehnder type, Michelson type, and FBG type. Further, the case where these are mixed as the optical sensors 50 and 50A is also included in the present invention.
 前記第1実施形態では、光学フィルタ40は、光路20に19個設けられていたが、これに限定されるものではなく、光学フィルタ40は、19個以上設けられていてもよく、あるいは、19個未満であってもよい。すなわち、光学フィルタ40は、複数設けられていればよい。
 同様に、前記第1実施形態では、光学センサ50は、20個設けられていたが、これに限定されるものではない。例えば、光学センサ50は、20個以上設けられていてもよく、あるいは、20個未満であってもよい。すなわち、光学センサ50は、複数設けられていればよい。
In the first embodiment, 19 optical filters 40 are provided in the optical path 20, but the present invention is not limited to this, and 19 or more optical filters 40 may be provided, or 19 It may be less than one. That is, a plurality of optical filters 40 may be provided.
Similarly, in the first embodiment, 20 optical sensors 50 are provided, but the present invention is not limited to this. For example, the number of optical sensors 50 may be 20 or more, or may be less than 20. That is, a plurality of optical sensors 50 may be provided.
 前記第2実施形態では、光学フィルタ40Aは、光源10Aから放出された光を、20個の波長領域の分離光に波長分割していたが、これに限定されるものではない。例えば、光学フィルタ40Aは、光源10Aから放出された光を、20個以上の波長領域の分離光に波長分割してもよく、あるいは、20個未満の波長領域の分離光に波長分割してもよく、複数の波長領域の分離光に波長分割可能に構成されていればよい。
 同様に、前記2実施形態では、光学センサ50Aは、20個設けられていたが、これに限定されるものではない。例えば、光学センサ50Aは、20個以上設けられていてもよく、あるいは、20個未満であってもよい。すなわち、光学センサ50Aは、複数設けられていればよい。
In the second embodiment, the optical filter 40A divides the light emitted from the light source 10A into separated light having 20 wavelength regions, but the present invention is not limited to this. For example, the optical filter 40A may divide the light emitted from the light source 10A into separated light having 20 or more wavelength regions, or may divide the light into separated light having less than 20 wavelength regions. It suffices that the light can be divided into wavelengths of separated light in a plurality of wavelength regions.
Similarly, in the above two embodiments, 20 optical sensors 50A are provided, but the present invention is not limited to this. For example, the number of optical sensors 50A may be 20 or more, or may be less than 20. That is, a plurality of optical sensors 50A may be provided.
 前記第3実施形態では、光学センサ50Bは、光路20Bに20個設けられていたが、これに限定されるものではなく、光学センサ50Bは、20個以上設けられていてもよく、あるいは、20個未満であってもよい。すなわち、光学センサ50Bは、複数設けられていればよい。 In the third embodiment, 20 optical sensors 50B are provided in the optical path 20B, but the present invention is not limited to this, and 20 or more optical sensors 50B may be provided, or 20. It may be less than one. That is, a plurality of optical sensors 50B may be provided.
 前記第3実施形態では、光学センサ50Bが反射光を出力光として出力する場合において、光学センサ50Bは、出力する波長の反射光の伝送損失率の大きさの順、かつ、波長の短い順に、光源10Bの近くから遠くに向かって配置されていてもよい。
 すなわち、図2において、伝送損失率の大きさ順と、波長の短い順とが異なるλ4、λ11、λ14、λ17、λ19の波長の反射光を出力する光学センサ50Bは配置しないようにすることで、光学センサ50Bを、出力する波長の反射光の伝送損失率の大きさの順、かつ、波長の短い順に配置する。これにより、反射光によるクラッドモードの影響を抑制することができる。
In the third embodiment, when the optical sensor 50B outputs the reflected light as the output light, the optical sensor 50B orders the reflected light of the output wavelength in the order of the magnitude of the transmission loss rate and the order of the shortest wavelength. It may be arranged from near the light source 10B toward a distance.
That is, in FIG. 2, the optical sensor 50B that outputs the reflected light having the wavelengths of λ4, λ11, λ14, λ17, and λ19, which are different in the order of the magnitude of the transmission loss rate and the order of the shortest wavelength, is not arranged. , The optical sensor 50B is arranged in the order of the magnitude of the transmission loss rate of the reflected light of the output wavelength and in the order of the shortest wavelength. As a result, the influence of the clad mode due to the reflected light can be suppressed.
 1,1A,1B…物理量測定装置、10,10A,10B…光源、20,20A,20B…光路、30,30A,30B…ビームスプリッタ、40,40A…光学フィルタ、50,50A,50B…光学センサ、51…偏波保持光ファイバセンサ部、60,60A,60B…受光器、61,61A,61B…分光器(分光素子)、62,62A,62B…光検出部、63,63A,63B…MPU、611,611A,611B…回折格子、621,621A,621B…光検出素子。 1,1A, 1B ... Physical quantity measuring device, 10,10A, 10B ... Light source, 20,20A, 20B ... Optical path, 30,30A, 30B ... Beam splitter, 40,40A ... Optical filter, 50,50A, 50B ... Optical sensor , 51 ... Polarization-holding optical fiber sensor unit, 60, 60A, 60B ... Receiver, 61, 61A, 61B ... Spectrometer (spectrometer), 62, 62A, 62B ... Optical detection unit, 63, 63A, 63B ... MPU , 611, 611A, 611B ... Diffraction grating, 621, 621A, 621B ... Optical detection element.

Claims (7)

  1.  広帯域な波長の光を放出する光源と、
     前記光源から放出される光が入射する光路と、
     前記光路に複数設けられ、前記光源から放出される光をそれぞれ異なる波長領域の分離光に前記光路から波長分割する光学フィルタと、
     複数の前記光学フィルタに応じて複数設けられ、前記分離光を入射して被測定物の物理量に応じた出力光を前記光路に出力する光学センサと、
     前記光路に設けられ、複数の前記光学センサから出力された複数の前記出力光を入射して前記光路から分光するビームスプリッタと、
     前記ビームスプリッタから出力された複数の前記出力光を入射して、前記波長領域に応じて分光する分光素子と、
     前記分光素子によって分光された複数の前記出力光を検出する光検出部と、を備え、
     前記光学フィルタは、波長分割する前記波長領域の前記分離光の伝送損失率の大きさの順に、前記光源の近くから遠くに向かって配置される
     ことを特徴とする物理量測定装置。
    A light source that emits light of a wide band wavelength,
    An optical path in which the light emitted from the light source is incident, and
    An optical filter provided in a plurality of optical paths and dividing the light emitted from the light source into separated light having different wavelength regions from the optical path.
    An optical sensor that is provided in plurality according to the plurality of optical filters and that incidents the separated light and outputs output light corresponding to the physical quantity of the object to be measured to the optical path.
    A beam splitter provided in the optical path, and a plurality of the output lights output from the plurality of optical sensors are incident and split from the optical path.
    A spectroscopic element that incidents a plurality of the output lights output from the beam splitter and splits them according to the wavelength region.
    A photodetector for detecting a plurality of the output lights dispersed by the spectroscopic element is provided.
    The optical filter is a physical quantity measuring device, which is arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the separated light in the wavelength region for wavelength division.
  2.  請求項1に記載の物理量測定装置において、
     前記光学フィルタは、n(nは自然数)個設けられ、
     前記光学センサは、n+1個設けられる
     ことを特徴とする物理量測定装置。
    In the physical quantity measuring device according to claim 1,
    The optical filters are provided with n (n is a natural number).
    The physical quantity measuring device is characterized in that n + 1 optical sensors are provided.
  3.  広帯域な波長の光を放出する光源と、
     前記光源から放出される光が入射する光路と、
     前記光路に設けられ、前記光源から放出される光をそれぞれ異なる複数の波長領域の分離光に前記光路から波長分割する光学フィルタと、
     前記光学フィルタによって波長分割された複数の波長領域の前記分離光に応じて複数設けられ、前記分離光を入射して被測定物の物理量に応じた出力光を前記光路に出力する光学センサと、
     前記光路に設けられ、複数の前記光学センサから出力された複数の前記出力光を入射して前記光路から分光するビームスプリッタと、
     前記ビームスプリッタから出力された複数の前記出力光を入射して、前記波長領域に応じて分光する分光素子と、
     前記分光素子によって分光された複数の前記出力光を検出する光検出部と、を備え、
     前記光学センサは、入射する前記波長領域の前記分離光の伝送損失率の大きさの順に、前記光源の近くから遠くに向かって配置される
     ことを特徴とする物理量測定装置。
    A light source that emits light of a wide band wavelength,
    An optical path in which the light emitted from the light source is incident, and
    An optical filter provided in the optical path that divides the light emitted from the light source into separated light having a plurality of different wavelength regions from the optical path.
    An optical sensor provided in a plurality of wavelength regions according to the separated light in a plurality of wavelength regions divided by the optical filter, and the separated light is incident and the output light corresponding to the physical quantity of the object to be measured is output to the optical path.
    A beam splitter provided in the optical path, and a plurality of the output lights output from the plurality of optical sensors are incident and split from the optical path.
    A spectroscopic element that incidents a plurality of the output lights output from the beam splitter and splits them according to the wavelength region.
    A photodetector for detecting a plurality of the output lights dispersed by the spectroscopic element is provided.
    The optical sensor is a physical quantity measuring device, which is arranged from near to far from the light source in the order of the magnitude of the transmission loss rate of the separated light in the incident wavelength region.
  4.  請求項1から請求項3のいずれか一項に記載の物理量測定装置において、
     前記光検出部は、異なる素材から形成された複数の光検出素子がアレイ状に配置されている
     ことを特徴とする物理量測定装置。
    In the physical quantity measuring device according to any one of claims 1 to 3.
    The photodetector is a physical quantity measuring device characterized in that a plurality of photodetectors formed of different materials are arranged in an array.
  5.  請求項1から請求項4のいずれか一項に記載の物理量測定装置において、
     前記分光素子は、回折格子を有する
     ことを特徴とする物理量測定装置。
    In the physical quantity measuring device according to any one of claims 1 to 4.
    The spectroscopic element is a physical quantity measuring device characterized by having a diffraction grating.
  6.  請求項1から請求項5のいずれか一項に記載の物理量測定装置において、
     前記光学センサは、前記分離光を入射して前記被測定物の物理量に応じた第1偏波光および前記第1偏波光と位相の異なる第2偏波光を出力する偏波保持光ファイバセンサ部を有する
     ことを特徴とする物理量測定装置。
    In the physical quantity measuring device according to any one of claims 1 to 5.
    The optical sensor includes a polarization-holding optical fiber sensor unit that incidents the separated light and outputs a first polarized light according to a physical quantity of the object to be measured and a second polarized light having a phase different from that of the first polarized light. A physical quantity measuring device characterized by having.
  7.  広帯域な波長の光を放出する光源と、
     前記光源から放出される光が入射する光路と、
     前記光路に複数設けられ、前記光源から放出される光を入射して、それぞれ異なる波長の出力光を、被測定物の物理量に応じて出力する光学センサと、
     前記光路に設けられ、複数の前記光学センサから出力された複数の前記出力光を入射して前記光路から分光するビームスプリッタと、
     前記ビームスプリッタから出力された複数の前記出力光を入射して、前記波長に応じて分光する分光素子と、
     前記分光素子によって分光された複数の前記出力光を検出する光検出部と、を備え、
     前記光学センサは、出力する波長の前記出力光の伝送損失率の大きさの順に、前記光源の近くから遠くに向かって配置される
     ことを特徴とする物理量測定装置。
    A light source that emits light of a wide band wavelength,
    An optical path in which the light emitted from the light source is incident, and
    An optical sensor provided in a plurality of optical paths, incident light emitted from the light source, and output output light having different wavelengths according to the physical quantity of the object to be measured.
    A beam splitter provided in the optical path, and a plurality of the output lights output from the plurality of optical sensors are incident and split from the optical path.
    A spectroscopic element that incidents a plurality of the output lights output from the beam splitter and splits them according to the wavelength.
    A photodetector for detecting a plurality of the output lights dispersed by the spectroscopic element is provided.
    The optical sensor is a physical quantity measuring device, which is arranged from near the light source toward a distance in the order of the magnitude of the transmission loss rate of the output light having an output wavelength.
PCT/JP2020/015601 2019-04-17 2020-04-07 Physical quantity measurement device WO2020213466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-078323 2019-04-17
JP2019078323A JP2020176884A (en) 2019-04-17 2019-04-17 Physical quantity measuring device

Publications (1)

Publication Number Publication Date
WO2020213466A1 true WO2020213466A1 (en) 2020-10-22

Family

ID=72837818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015601 WO2020213466A1 (en) 2019-04-17 2020-04-07 Physical quantity measurement device

Country Status (2)

Country Link
JP (1) JP2020176884A (en)
WO (1) WO2020213466A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344142A (en) * 1986-08-11 1988-02-25 Nippon Telegr & Teleph Corp <Ntt> Monitoring of immersion for optical fiber cable
JPH09189824A (en) * 1996-01-10 1997-07-22 Furukawa Electric Co Ltd:The Wavelength division multiplex transmission device
JP2000266948A (en) * 1999-03-12 2000-09-29 Furukawa Electric Co Ltd:The Wave-length mutiplexing-demultiplexer module
JP2004233070A (en) * 2003-01-28 2004-08-19 Kyocera Corp Fbg sensing system
JP2012117867A (en) * 2010-11-30 2012-06-21 Sony Corp Optical device and electronic device
JP2014182101A (en) * 2013-03-21 2014-09-29 Ihi Inspection & Instrumentation Co Ltd Strain measurement method and strain measurement device
JP2016173365A (en) * 2015-03-16 2016-09-29 トータル ワイヤ コーポレーション Remote pressure sensor and method for operating remote pressure sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482348B2 (en) * 1998-11-12 2003-12-22 日本電信電話株式会社 Remote pump light transmission system
JP2008092194A (en) * 2006-09-29 2008-04-17 Fujitsu Ltd Light wavelength assignment method and optical communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344142A (en) * 1986-08-11 1988-02-25 Nippon Telegr & Teleph Corp <Ntt> Monitoring of immersion for optical fiber cable
JPH09189824A (en) * 1996-01-10 1997-07-22 Furukawa Electric Co Ltd:The Wavelength division multiplex transmission device
JP2000266948A (en) * 1999-03-12 2000-09-29 Furukawa Electric Co Ltd:The Wave-length mutiplexing-demultiplexer module
JP2004233070A (en) * 2003-01-28 2004-08-19 Kyocera Corp Fbg sensing system
JP2012117867A (en) * 2010-11-30 2012-06-21 Sony Corp Optical device and electronic device
JP2014182101A (en) * 2013-03-21 2014-09-29 Ihi Inspection & Instrumentation Co Ltd Strain measurement method and strain measurement device
JP2016173365A (en) * 2015-03-16 2016-09-29 トータル ワイヤ コーポレーション Remote pressure sensor and method for operating remote pressure sensor

Also Published As

Publication number Publication date
JP2020176884A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US6525308B1 (en) Apparatus and method for wavelength detection with fiber bragg grating sensors
US7292345B2 (en) Fibre-optic interferometric remote sensor
US10731969B2 (en) In-line fiber sensing, noise cancellation and strain detection
CN100507455C (en) Intensity modulation type optical fiber sensor multiplexing method
JP2001525938A (en) Distributed detection system
EP3237846B1 (en) Detection of local property changes in an optical sensing fiber
MY147887A (en) Apparatus for interferometric sensing
GB2514699A (en) Optical sensor and method of use
NL2015448B1 (en) Fiber Bragg grating interrogator assembly and method for the same.
US20230349760A1 (en) Device and method for optical spectrum measurement
JP6290798B2 (en) OFDR device
WO2020213466A1 (en) Physical quantity measurement device
WO2022191201A1 (en) Physical quantity measurement device
KR20000031822A (en) Wavemeter of optical signal, fiber bragg grating sensor and method thereof using wave selection type optical detector
US20190346296A1 (en) Optical sensor system
JP2010261776A5 (en)
JP2007057251A (en) Optical interferometer type phase detection apparatus
JP2010261776A (en) Device for measuring optical interference
JP2010054357A (en) Optical spectrum monitor
US8989573B2 (en) Sensing apparatus
WO2021192717A1 (en) Physical quantity measurement device
US20150153247A1 (en) Optical sensor interrogation system a method of manufacturing the optical sensor interrogation system
AU2015201357B2 (en) Optical sensor and method of use
KR100317140B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio in wavelength division multiplexing optical telecommunications
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791218

Country of ref document: EP

Kind code of ref document: A1