JP3482348B2 - Remote pump light transmission system - Google Patents

Remote pump light transmission system

Info

Publication number
JP3482348B2
JP3482348B2 JP32241798A JP32241798A JP3482348B2 JP 3482348 B2 JP3482348 B2 JP 3482348B2 JP 32241798 A JP32241798 A JP 32241798A JP 32241798 A JP32241798 A JP 32241798A JP 3482348 B2 JP3482348 B2 JP 3482348B2
Authority
JP
Japan
Prior art keywords
optical
fiber
pumping light
wavelength
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32241798A
Other languages
Japanese (ja)
Other versions
JP2000151521A (en
Inventor
利彦 杉江
秀雄 川田
信幸 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32241798A priority Critical patent/JP3482348B2/en
Publication of JP2000151521A publication Critical patent/JP2000151521A/en
Application granted granted Critical
Publication of JP3482348B2 publication Critical patent/JP3482348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光中継器(再生光
中継器、線形光中継器)を含まない無中継伝送システム
に用いられる遠隔励起光伝送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote pumping optical transmission system used in a repeaterless transmission system that does not include an optical repeater (regenerative optical repeater or linear optical repeater).

【0002】[0002]

【従来の技術】光伝送システムは、光伝送路の途中に、
光中継器(再生光中継器、線形光中継器)を含まない無
中継伝送システムと、光中継器を含む中継伝送システム
に大別される。例えば海底光伝送システムにおいて、短
距離浅海用には無中継伝送システムが用いられ、長距離
深海用には中継伝送システムが用いられている。
2. Description of the Related Art An optical transmission system is provided in the middle of an optical transmission line.
It is roughly classified into a repeaterless transmission system that does not include an optical repeater (regenerative optical repeater or linear optical repeater) and a repeater transmission system that includes an optical repeater. For example, in a submarine optical transmission system, a non-relay transmission system is used for short-distance shallow seas, and a relay transmission system is used for long-distance deep seas.

【0003】中継伝送システムは、送信局または受信局
から光中継器に給電を行う給電装置や給電ケーブルを必
要とするが、無中継伝送システムは、給電装置等を必要
としないために安価なシステムになる。しかし、無中継
伝送システムは、光伝送路における損失や波形劣化のた
め伝送距離に制限が生じる。長距離伝送するために送信
光パワーを大きくすると、光ファイバの非線形光学効果
により伝送品質が劣化し、やはり伝送距離を制限するこ
とになる。
The relay transmission system requires a power feeding device and a power feeding cable for feeding power from the transmitting station or the receiving station to the optical repeater, whereas the non-repeating transmission system does not require a power feeding device or the like and is therefore an inexpensive system. become. However, in the repeaterless transmission system, the transmission distance is limited due to loss and waveform deterioration in the optical transmission line. When the transmission light power is increased for long distance transmission, the transmission quality is deteriorated due to the non-linear optical effect of the optical fiber and the transmission distance is also limited.

【0004】そこで、無中継伝送システムにおいて伝送
距離の長距離化を図るために、伝送用光ファイバの途中
にエルビウム等の希土類元素を添加した光増幅ファイバ
(以下「EDF」という)を挿入する構成が提案されて
いる。これは、送信局または受信局に設けた励起光源か
ら、伝送用光ファイバとは別の励起光用光ファイバを介
してEDFに励起光を入力し、減衰した信号光を増幅し
て伝送距離の長距離化を図る構成である。なお、線形光
中継器は、EDFと励起光源を内部に備えており、送信
局または受信局から給電を行う必要がある。本明細書に
おける外部から励起光を入力するEDFは、線形光中継
器と区別している。
Therefore, in order to increase the transmission distance in the repeaterless transmission system, an optical amplification fiber (hereinafter referred to as "EDF") doped with a rare earth element such as erbium is inserted in the middle of the transmission optical fiber. Is proposed. This is because pumping light is input to the EDF from a pumping light source provided in a transmitting station or a receiving station via an optical fiber for pumping light different from the optical fiber for transmission, and the attenuated signal light is amplified to transmit the transmission distance. This is a configuration for increasing the distance. The linear optical repeater has an EDF and a pumping light source inside, and it is necessary to supply power from a transmitting station or a receiving station. The EDF that inputs pumping light from the outside in the present specification is distinguished from a linear optical repeater.

【0005】図6は、伝送距離の長距離化は図った従来
の無中継伝送システムの構成例を示す。(a) は受信局か
ら数十km以上離れた位置にEDFを挿入した構成例で
あり、(b) は送信局および受信局からそれぞれ数十km
以上離れた位置にEDFを挿入した構成例である。
FIG. 6 shows an example of the configuration of a conventional relayless transmission system in which the transmission distance is increased. (a) is a configuration example in which the EDF is inserted at a position several tens of kilometers away from the receiving station, and (b) is several tens of kilometers from the transmitting station and the receiving station.
This is a configuration example in which the EDF is inserted at the positions separated as described above.

【0006】図6(a) において、送信局61と受信局6
2は、1.55μm帯の信号光を伝送する伝送用光ファイバ
63および受信局側に挿入されたEDF64−1,64
−2を介して接続される。EDF64−1,64−2に
は、受信局62に設けられた励起光源65から、それぞ
れ励起光用光ファイバ66−1,66−2を介して伝送
された励起光が入力され、信号光を増幅する。67−
1,67−2は、励起光を入力する光カプラである。
In FIG. 6A, the transmitting station 61 and the receiving station 6
Reference numeral 2 denotes an optical fiber 63 for transmission that transmits a signal light in the 1.55 μm band and EDFs 64-1, 64 inserted in the receiving station side.
-2 is connected. The pumping light transmitted from the pumping light source 65 provided in the receiving station 62 via the pumping light optical fibers 66-1 and 66-2, respectively, is input to the EDFs 64-1 and 64-2, and the signal light is transmitted. Amplify. 67-
Reference numerals 1 and 67-2 are optical couplers for inputting pumping light.

【0007】図6(b) において、送信局61と受信局6
2は、1.55μm帯の信号光を伝送する伝送用光ファイバ
63と、送信局側および受信局側に挿入されたEDF6
4−1〜64−4を介して接続される。EDF64−
1,64−2には、送信局61に設けられた励起光源6
5−1から、それぞれ励起光用光ファイバ66−1,6
6−2を介して伝送された励起光が入力され、信号光を
増幅する。EDF64−3,64−4には、受信局62
に設けられた励起光源65−2から、それぞれ励起光用
光ファイバ66−3,66−4を介して伝送された励起
光が入力され、信号光を増幅する。67−1〜67−4
は、励起光を入力する光カプラである。
In FIG. 6B, the transmitting station 61 and the receiving station 6
2 is a transmission optical fiber 63 for transmitting a signal light in the 1.55 μm band, and an EDF 6 inserted in the transmitting station side and the receiving station side.
It is connected via 4-1 to 64-4. EDF64-
1, 64-2, the pumping light source 6 provided in the transmitting station 61
5-1 to pump optical fibers 66-1 and 6 respectively
The pumping light transmitted via 6-2 is input and amplifies the signal light. The EDF 64-3 and 64-4 include a receiving station 62.
The pumping light transmitted from the pumping light source 65-2 provided in the pump light source via the pumping light optical fibers 66-3 and 66-4 is input to amplify the signal light. 67-1 to 67-4
Is an optical coupler for inputting excitation light.

【0008】なお、励起光は、EDFの前方または後方
のいずれから入力してもよい。励起光には、主に波長1.
48μmが用いられる。実際に、図6(a) の構成におい
て、 2.5Gbit/s で 350kmの無中継伝送が実現され、
図6(b) の構成において、 2.5Gbit/s で 511km、16
× 2.5Gbit/sで 427kmの無中継伝送が実現されてい
る(参考文献:OFC'95 San Diego CApostdeadline p
aper PD26, ECOC'95 Brussel Beligium paper Th.
A.3.3)。
The pumping light may be input from either the front side or the rear side of the EDF. The excitation light has a wavelength of 1.
48 μm is used. Actually, in the configuration of FIG. 6 (a), non-relay transmission of 350 km at 2.5 Gbit / s is realized,
In the configuration of FIG. 6 (b), 511km, 16 at 2.5Gbit / s
× 427km non-relay transmission is realized at 2.5Gbit / s (Reference: OFC'95 San Diego CApostdeadline p
aper PD26, ECOC'95 Brussel Beligium paper Th.
A.3.3).

【0009】[0009]

【発明が解決しようとする課題】ところで、EDFまで
の距離(励起光用光ファイバの長さ)に応じて、それぞ
れに送出する励起光パワーが決められるが、EDFと励
起光源が離れているために励起光源を大出力にする必要
がある。さらに、無中継での伝送距離を延ばすためにE
DFの数を増やすと、従来の構成ではEDFの数だけ励
起光用光ファイバが必要となる。この場合、信号光の伝
送用光ファイバと同じケーブルに励起光用光ファイバを
収容するとケーブルが太くなり、別に励起光用光ファイ
バを収容するケーブルを設けると構成が複雑になる。
By the way, the pumping light power to be sent to each is determined according to the distance to the EDF (the length of the pumping light optical fiber), but since the EDF and the pumping light source are separated from each other. It is necessary to make the excitation light source have a large output. Furthermore, in order to extend the transmission distance without relay, E
When the number of DFs is increased, the conventional configuration requires as many pumping optical fibers as the number of EDFs. In this case, if the optical fiber for pumping light is housed in the same cable as the optical fiber for transmitting signal light, the cable becomes thick, and if a separate cable for housing the optical fiber for pumping light is provided, the configuration becomes complicated.

【0010】本発明は、励起光用光ファイバを用いず、
かつ伝送用光ファイバに挿入された複数の光増幅ファイ
バ(例えばEDF)に対して効率よく励起光を伝送する
ことができる遠隔励起光伝送システムを提供することを
目的とする。
The present invention does not use an optical fiber for pumping light,
Another object of the present invention is to provide a remote pumping light transmission system capable of efficiently transmitting pumping light to a plurality of optical amplification fibers (for example, EDF) inserted in a transmission optical fiber.

【0011】[0011]

【課題を解決するための手段】本発明の遠隔励起光伝送
システムは、伝送用光ファイバに挿入される複数の光増
幅ファイバに対して、各光増幅ファイバまでの距離に応
じた波長の励起光源を送信局または受信局の少なくとも
一方に備え、各波長の励起光を伝送用光ファイバに波長
多重して伝送する。各光増幅ファイバは、伝送用光ファ
イバを用いて伝送された励起光から、それぞれ割り当て
られた波長の励起光を用いて信号光の増幅を行い、他の
波長の励起光は次の光増幅ファイバに送出する。
A remote pumping optical transmission system of the present invention is a pumping light source of a wavelength corresponding to a distance to each optical amplifying fiber with respect to a plurality of optical amplifying fibers inserted in a transmission optical fiber. Is provided in at least one of a transmitting station and a receiving station, and pumping light of each wavelength is wavelength-multiplexed with a transmission optical fiber and transmitted. Each optical amplification fiber amplifies the signal light from the pumping light transmitted using the transmission optical fiber by using the pumping light of the respectively assigned wavelength, and the pumping light of the other wavelengths is amplified by the next optical amplification fiber. Send to.

【0012】ここで、励起光の波長に応じて伝送用光フ
ァイバにおける損失が異なるので、損失が大きい波長の
励起光を励起光源に近い光増幅ファイバで使用し、損失
が小さい波長の励起光を励起光源に遠い光増幅ファイバ
で使用することにより、効率よく励起光を伝送すること
ができる。
Here, since the loss in the transmission optical fiber differs depending on the wavelength of the pumping light, the pumping light of the wavelength with large loss is used in the optical amplifying fiber close to the pumping light source, and the pumping light of the wavelength with small loss is used. The pumping light can be efficiently transmitted by using the optical amplification fiber far from the pumping light source.

【0013】[0013]

【発明の実施の形態】図1は、本発明の遠隔励起光伝送
システムの第1の実施形態を示す。図において、送信局
11と受信局12とを接続する光伝送路は、1.55μm帯
の信号光を伝送する伝送用光ファイバ13と、受信局側
に挿入された光増幅ファイバ14−1,14−2により
構成される。
FIG. 1 shows a first embodiment of a remote pumping optical transmission system of the present invention. In the figure, an optical transmission line that connects the transmitting station 11 and the receiving station 12 includes an optical fiber 13 for transmission that transmits signal light in the 1.55 μm band, and optical amplifying fibers 14-1 and 14 inserted in the receiving station side. -2.

【0014】ここで、受信局から遠い光増幅ファイバ1
4−1を励起する励起光波長はファイバ損失が小さいλ
1 (例えば1.48μm)とし、受信局から近い光増幅ファ
イバ14−2を励起する励起光波長はファイバ損失が大
きいλ2 (例えば0.98μm)とし、それぞれの励起光波
長に対応する光増幅ファイバを形成する。波長λ1 の励
起光源15−1と波長λ2 の励起光源15−2は受信局
12内に配置され、それぞれから出力される励起光はW
DMカプラ16を介して伝送用光ファイバ13に波長多
重される。
Here, the optical amplifying fiber 1 far from the receiving station
The wavelength of pumping light for pumping 4-1 is λ with a small fiber loss.
1 (for example, 1.48 μm), the pumping light wavelength for pumping the optical amplifying fiber 14-2 close to the receiving station is set to λ 2 (for example, 0.98 μm) with a large fiber loss, and an optical amplifying fiber corresponding to each pumping light wavelength is formed. To do. The pumping light source 15-1 having the wavelength λ1 and the pumping light source 15-2 having the wavelength λ2 are arranged in the receiving station 12, and the pumping light output from each of them is W.
The wavelength is multiplexed on the transmission optical fiber 13 via the DM coupler 16.

【0015】また、光増幅ファイバ14−2の前後に
は、1.55μm帯の信号光および波長λ2 の励起光を入力
させ、波長λ1 の励起光をバイパスする光フィルタ17
−1,17−2を配置し、それぞれのポート2間に光増
幅ファイバ14−2を接続し、ポート3間にバイパス用
光ファイバ18を接続する。この光フィルタ17のポー
ト1,2間の透過特性を図2(a) に示し、ポート1,3
間の透過特性を図2(b)に示す。ポート1,2間の透過
波長は1.55μmおよびλ2 (0.98μm)に設定され、ポ
ート1,3間の透過波長はλ1 (1.48μm)に設定され
る。このような光フィルタ17は、誘電体多層膜フィル
タやグレーティングフィルタ、光平面回路(PLC)に
より実現可能である。
Before and after the optical amplifying fiber 14-2, an optical filter 17 for inputting signal light in the 1.55 μm band and pumping light of wavelength λ2 and bypassing pumping light of wavelength λ1.
-1, 17-2 are arranged, the optical amplification fiber 14-2 is connected between the respective ports 2, and the bypass optical fiber 18 is connected between the ports 3. The transmission characteristics between ports 1 and 2 of this optical filter 17 are shown in Fig. 2 (a).
The transmission characteristics between them are shown in FIG. 2 (b). The transmission wavelength between ports 1 and 2 is set to 1.55 μm and λ 2 (0.98 μm), and the transmission wavelength between ports 1 and 3 is set to λ 1 (1.48 μm). Such an optical filter 17 can be realized by a dielectric multilayer filter, a grating filter, or an optical plane circuit (PLC).

【0016】このような構成により、ファイバ損失が大
きい波長λ2 の励起光は、手前の光増幅ファイバ14−
2に入力され、1.55μm帯の信号光を増幅することがで
きる。また、ファイバ損失が小さい波長λ1 の励起光
は、光増幅ファイバ14−2を迂回して次の光増幅ファ
イバ14−1に入力され、1.55μm帯の信号光を増幅す
ることができる。すなわち、ファイバ損失の大小に応じ
て、各波長の励起光を効率よく目的の光増幅ファイバま
で伝送することができる。
With such a structure, the pumping light of wavelength λ2, which has a large fiber loss, is transmitted to the optical amplification fiber 14-
It is possible to amplify the signal light of the 1.55 μm band that is input to the optical fiber 2. Further, the pumping light of wavelength λ1 having a small fiber loss bypasses the optical amplifying fiber 14-2 and is input to the next optical amplifying fiber 14-1, and the 1.55 μm band signal light can be amplified. That is, the pumping light of each wavelength can be efficiently transmitted to the target optical amplification fiber according to the magnitude of the fiber loss.

【0017】また、波長λ2 (0.98μm)の励起光によ
り励起される光増幅ファイバ14−2は、波長λ1 (1.
48μm)の励起光により励起される光増幅ファイバ14
−1に比べて感度が高いので、効率よく信号光の増幅を
行うことができる。
The optical amplifying fiber 14-2 pumped by the pumping light having the wavelength λ2 (0.98 μm) has a wavelength λ1 (1.
48 μm) optical amplification fiber 14 excited by excitation light
Since the sensitivity is higher than that of -1, the signal light can be efficiently amplified.

【0018】図3は、第1の実施形態における伝送距離
の改善効果を示す。損失係数が 0.2dB/kmで入力信
号光が40dBとしたときに、光増幅ファイバを2つ接続
した場合(実線)と、光増幅ファイバを接続しない場合
(破線)を示す。光増幅ファイバを接続しない場合に
は、伝送距離は 200kmが限界である。一方、利得が15
dBの光増幅ファイバを2つ接続した場合には、伝送距
離を 350kmまで延ばすことができる。
FIG. 3 shows the effect of improving the transmission distance in the first embodiment. When the loss coefficient is 0.2 dB / km and the input signal light is 40 dB, two optical amplifying fibers are connected (solid line) and an optical amplifying fiber is not connected (broken line). If optical amplification fiber is not connected, the maximum transmission distance is 200 km. On the other hand, the gain is 15
When two dB optical amplification fibers are connected, the transmission distance can be extended to 350 km.

【0019】図4は、本発明の遠隔励起光伝送システム
の第2の実施形態を示す。本実施形態の特徴は、3以上
の光増幅部20−1〜20−nを受信局12から遠い順
に接続し、各光増幅部20−1〜20−nに入力する励
起光波長λ1 〜λn をファイバ損失が小さい順に設定す
るところにある。なお、各光増幅部20は、第1の実施
形態で示した光増幅ファイバ14と光フィルタ17とバ
イパス用光ファイバ18を含む。
FIG. 4 shows a second embodiment of the remotely pumped optical transmission system of the present invention. The feature of the present embodiment is that three or more optical amplification units 20-1 to 20-n are connected in order from the receiving station 12 in the distant order, and pumping light wavelengths λ1 to λn input to the respective optical amplification units 20-1 to 20-n. Is set in the ascending order of fiber loss. Each optical amplification unit 20 includes the optical amplification fiber 14, the optical filter 17, and the bypass optical fiber 18 shown in the first embodiment.

【0020】波長λ1 の励起光源15−1〜波長λn の
励起光源15−nは受信局12内に配置され、それぞれ
から出力される励起光はWDMカプラ16を介して伝送
用光ファイバ13に波長多重される。光増幅部20−n
の光増幅ファイバの前後に配置される光フィルタは、1.
55μm帯の信号光および波長λn の励起光を光増幅ファ
イバに入力させ、波長λ1 〜λn-1 の励起光をバイパス
する。以下同様に、それぞれの光増幅部で使用する励起
光を分離し、他の励起光を次の光増幅部に送出する構成
となる。
The pumping light source 15-1 having the wavelength λ1 to the pumping light source 15-n having the wavelength λn are arranged in the receiving station 12, and the pumping light output from each of them is transmitted through the WDM coupler 16 to the transmission optical fiber 13 to the wavelength. It is multiplexed. Optical amplifier 20-n
The optical filters placed before and after the optical amplification fiber in 1.
The 55 μm band signal light and pumping light of wavelength λn are input to the optical amplification fiber, and pumping light of wavelengths λ1 to λn-1 is bypassed. Similarly, the pumping light used in each optical amplification unit is separated, and another pumping light is sent to the next optical amplification unit.

【0021】図5は、本発明の遠隔励起光伝送システム
の第3の実施形態を示す。本実施形態の特徴は、第2の
実施形態における光増幅部20−1〜20−n、励起光
源15−1〜励起光源15−n、WDMカプラ16を送
信局側にも設置したところにある。なお、送信局側に設
置される光増幅部20−1〜20−nと、受信局側に設
置される光増幅部20−1〜20−nの数は同一でなく
てもよい。また、双方で使用する各励起光波長は任意で
あり、それぞれ同一表記している双方の波長(例えばλ
1)は同一でなくてもよい。
FIG. 5 shows a third embodiment of the remotely pumped optical transmission system of the present invention. The feature of this embodiment is that the optical amplifiers 20-1 to 20-n, the pumping light sources 15-1 to 15-n, and the WDM coupler 16 in the second embodiment are also installed on the transmitting station side. . The number of the optical amplification units 20-1 to 20-n installed on the transmission station side and the number of the optical amplification units 20-1 to 20-n installed on the reception station side do not have to be the same. Also, the wavelengths of the pumping light used by both are arbitrary, and both wavelengths of the same notation (for example, λ
1) need not be the same.

【0022】[0022]

【発明の効果】以上説明したように、本発明の遠隔励起
光伝送システムは、伝送用光ファイバに挿入される複数
の光増幅ファイバで使用する各波長の励起光を伝送用光
ファイバに波長多重して伝送し、各光増幅ファイバがそ
れぞれ割り当てられた波長の励起光を用いて信号光の増
幅を行い、他の波長の励起光は次の光増幅ファイバに送
出することにより、励起光用光ファイバを用いずに励起
光を伝送することができる。
As described above, the remote pumping light transmission system of the present invention wavelength-multiplexes pumping light of each wavelength used in a plurality of optical amplifying fibers inserted in a transmission optical fiber into the transmission optical fiber. Each optical amplification fiber amplifies the signal light using the pumping light of the assigned wavelength, and pumping light of other wavelengths is sent to the next optical amplification fiber to generate the pumping light. The pumping light can be transmitted without using a fiber.

【0023】また、損失が大きい波長の励起光を励起光
源に近い光増幅ファイバで使用し、損失が小さい波長の
励起光を励起光源に遠い光増幅ファイバで使用すること
により、効率よく励起光を伝送し、光増幅効率を高める
ことができる。
Further, by using the pumping light of the wavelength with large loss in the optical amplification fiber near the pumping light source and the pumping light of the wavelength with small loss in the optical amplification fiber far from the pumping light source, the pumping light is efficiently supplied. It can be transmitted and the optical amplification efficiency can be improved.

【0024】また、受信局側から励起光が入力される複
数の光増幅ファイバを感度の高い順に受信局側から設置
することにより、信号光を効率よく増幅することができ
る。
Further, by arranging a plurality of optical amplification fibers to which pumping light is input from the receiving station side from the receiving station side in descending order of sensitivity, the signal light can be efficiently amplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の遠隔励起光伝送システムの第1の実施
形態を示す図。
FIG. 1 is a diagram showing a first embodiment of a remote pumping optical transmission system of the present invention.

【図2】光フィルタ17の透過特性を示す図。FIG. 2 is a diagram showing a transmission characteristic of an optical filter 17.

【図3】第1の実施形態における伝送距離の改善効果を
示す図。
FIG. 3 is a diagram showing an effect of improving a transmission distance in the first embodiment.

【図4】本発明の遠隔励起光伝送システムの第2の実施
形態を示す図。
FIG. 4 is a diagram showing a second embodiment of the remotely pumped optical transmission system of the present invention.

【図5】本発明の遠隔励起光伝送システムの第3の実施
形態を示す図。
FIG. 5 is a diagram showing a third embodiment of the remotely pumped optical transmission system of the present invention.

【図6】伝送距離の長距離化は図った従来の無中継伝送
システムの構成例を示す図。
FIG. 6 is a diagram showing a configuration example of a conventional non-repeatered transmission system in which the transmission distance is increased.

【符号の説明】 11 送信局 12 受信局 13 伝送用光ファイバ 14 光増幅ファイバ 15 励起光源 16 WDMカプラ 17 光フィルタ 18 バイパス用光ファイバ 20 光増幅部(光増幅ファイバ,光フィルタ,バイパ
ス用光ファイバ)
[Description of Reference Signs] 11 transmitting station 12 receiving station 13 transmission optical fiber 14 optical amplification fiber 15 pumping light source 16 WDM coupler 17 optical filter 18 bypass optical fiber 20 optical amplification unit (optical amplification fiber, optical filter, bypass optical fiber) )

フロントページの続き (56)参考文献 特開 平9−197452(JP,A) 飯田隆行 他,遠隔励起伝送方式用高 出力励起光源の試作検討,1996年電子情 報通信学会通信ソサイエティ大会,日 本,社団法人電子情報通信学会,1996年 8月13日,B−1044,p.529 大越春喜 他,遠隔励起光増幅システ ムの検討,1996年電子情報通信学会エレ クトロニクスソサイエティ大会,日本, 社団法人電子情報通信学会,1996年 8 月13日,C−183,p.183 大川典男 他,遠隔励起による大容量 海底無中継ネットワークシステムの検 討,1997年電子情報通信学会総合大会, 日本,社団法人電子情報通信学会,1997 年 3月 6日,SB−10−7,pp. 829−830 (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 H01S 3/06 H01S 3/094 H01S 3/10 JICSTファイル(JOIS)Continuation of the front page (56) References Japanese Patent Laid-Open No. 9-197452 (JP, A) Takayuki Iida et al., Prototype study of high-power pumping light source for remote pumping transmission system, 1996 Institute of Electronics, Information and Communication Engineers Communication Society Conference, Nihon , The Institute of Electronics, Information and Communication Engineers, August 13, 1996, B-1044, p. 529 Haruki Ogoshi et al., Study on Remotely Pumped Optical Amplification System, 1996 IEICE Electronics Society Conference, Japan, The Institute of Electronics, Information and Communication Engineers, August 13, 1996, C-183, p. 183 Norio Okawa et al., Study on large-capacity undersea relay network system by remote excitation, 1997 IEICE General Conference, Japan, Institute of Electronics, Information and Communication Engineers, March 6, 1997, SB-10-7, pp. 829-830 (58) Fields surveyed (Int.Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 H01S 3/06 H01S 3/094 H01S 3/10 JISST File (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 信号光を伝送する伝送用光ファイバと、
前記伝送用光ファイバの所定の位置に挿入して信号光を
増幅する光増幅ファイバとを備え、 前記伝送用光ファイバを介して接続される送信局または
受信局の少なくとも一方に、前記光増幅ファイバを励起
する励起光を発生する励起光源と、前記励起光を前記伝
送用光ファイバに波長多重して送信する手段とを備えた
遠隔励起光伝送システムにおいて、 励起光波長が異なる複数の光増幅ファイバおよび各波長
の励起光を発生する複数の励起光源を備え、励起光源か
ら近い光増幅ファイバから順にそれぞれの励起光波長を
ファイバ損失が大きい順に設定し、各波長の励起光を波
長多重して前記伝送用光ファイバに送信する構成とし、 各光増幅ファイバの前後に、信号光およびそれぞれ割り
当てられた波長の励起光を選択して各光増幅ファイバに
入力し、他の波長の励起光を迂回して次段に送信する手
段を備えた ことを特徴とする遠隔励起光伝送システム。
1. A transmission optical fiber for transmitting signal light,
An optical amplification fiber that is inserted into a predetermined position of the transmission optical fiber and amplifies signal light, and the optical amplification fiber is provided in at least one of a transmission station and a reception station connected via the transmission optical fiber. A pumping light source for generating pumping light for pumping, and means for wavelength-multiplexing and transmitting the pumping light to the transmission optical fiber.
In a remote pumping optical transmission system, a plurality of optical amplification fibers having different pumping light wavelengths and each wavelength
Equipped with multiple excitation light sources that generate excitation light of
From the optical amplification fiber closer to
Set in order of decreasing fiber loss, and pump the pumping light of each wavelength.
It is configured to long-multiplex and transmit to the transmission optical fiber, and the signal light and the
Select the pumping light of the applied wavelength to each optical amplification fiber
Input and bypass the pumping light of other wavelengths and send it to the next stage.
Remotely pumped optical transmission system characterized by having steps .
【請求項2】 請求項1に記載の遠隔励起光伝送システ
ムにおいて、 受信局に備えられ複数の励起光源から入力する各波長の
励起光によりそれぞれ光増幅を行う複数の光増幅ファイ
バを、感度の高い順に受信局側から設置する構成である
ことを特徴とする遠隔励起光伝送システム。
2. The remote pumping light transmission system according to claim 1, wherein a plurality of optical amplifying fibers each provided with a receiving station and optically amplifying by a pumping light of each wavelength input from a plurality of pumping light sources are provided. A remote-pumped optical transmission system characterized in that it is installed from the receiving station side in descending order.
【請求項3】 請求項1または請求項2に記載の遠隔励
起光伝送システムにおいて、信号光波長を1.55μm
帯としたときに、ファイバ損失が大きく光増幅ファイバ
の感度が高い励起光波長を0.98μm帯とし、ファイ
バ損失が小さく光増幅ファイバの感度が低い励起光波長
を1.48μm帯とすることを特徴とする遠隔励起光伝
送システム。
3. The remote pumping optical transmission system according to claim 1 or 2, wherein the signal light wavelength is 1.55 μm.
In the band, the pumping light wavelength with large fiber loss and high sensitivity of the optical amplifying fiber is set to 0.98 μm band, and the pumping light wavelength with small fiber loss and low sensitivity of the optical amplifying fiber is set to 1.48 μm band. A feature of the remote pumping optical transmission system.
JP32241798A 1998-11-12 1998-11-12 Remote pump light transmission system Expired - Fee Related JP3482348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32241798A JP3482348B2 (en) 1998-11-12 1998-11-12 Remote pump light transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32241798A JP3482348B2 (en) 1998-11-12 1998-11-12 Remote pump light transmission system

Publications (2)

Publication Number Publication Date
JP2000151521A JP2000151521A (en) 2000-05-30
JP3482348B2 true JP3482348B2 (en) 2003-12-22

Family

ID=18143440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32241798A Expired - Fee Related JP3482348B2 (en) 1998-11-12 1998-11-12 Remote pump light transmission system

Country Status (1)

Country Link
JP (1) JP3482348B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211446B2 (en) 2003-03-19 2009-01-21 日本電気株式会社 Remote pumping optical amplification module, optical fiber communication transmission line using the same, and optical fiber communication system
WO2004112284A1 (en) * 2003-06-10 2004-12-23 Fujitsu Limited Optical transmission system of remote excitation method
US7471900B2 (en) 2004-12-08 2008-12-30 Electronics And Telecommunications Research Institute Passive optical network system and method of transmitting broadcasting signal in same
EP3457186B1 (en) * 2016-06-16 2022-10-26 Nippon Telegraph and Telephone Corporation An optical transmission system
JP2020176884A (en) * 2019-04-17 2020-10-29 長野計器株式会社 Physical quantity measuring device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
大川典男 他,遠隔励起による大容量海底無中継ネットワークシステムの検討,1997年電子情報通信学会総合大会,日本,社団法人電子情報通信学会,1997年 3月 6日,SB−10−7,pp.829−830
大越春喜 他,遠隔励起光増幅システムの検討,1996年電子情報通信学会エレクトロニクスソサイエティ大会,日本,社団法人電子情報通信学会,1996年 8月13日,C−183,p.183
飯田隆行 他,遠隔励起伝送方式用高出力励起光源の試作検討,1996年電子情報通信学会通信ソサイエティ大会,日本,社団法人電子情報通信学会,1996年 8月13日,B−1044,p.529

Also Published As

Publication number Publication date
JP2000151521A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
US5742416A (en) Bidirectional WDM optical communication systems with bidirectional optical amplifiers
US5812306A (en) Bidirectional WDM optical communication systems with bidirectional optical amplifiers
EP1248392B1 (en) Optical amplifier device and bidirectional wavelength division multiplexing optical communication system using the same
US7372622B2 (en) Optical transmission system, optical repeater, and optical transmission method
US7349150B2 (en) Optical terminal apparatus
EP3917036A2 (en) Gain equalization in c+l erbium-doped fiber amplifiers
US6771854B2 (en) Optical transmission system and optical coupler/branching filter
US6603598B1 (en) Optical amplifying unit and optical transmission system
US6359728B1 (en) Pump device for pumping an active fiber of an optical amplifier and corresponding optical amplifier
JP4798997B2 (en) Method and apparatus for distributing pump energy from a single pump device to optical fibers located in different pairs of fibers
US6556346B1 (en) Optical amplifying unit and optical transmission system
US6141468A (en) Method of apparatus for remotely pumping a rare-earth doped optical fiber amplifier and a communication system employing same
JP3482348B2 (en) Remote pump light transmission system
EP1155478A1 (en) Optical amplifier
EP0943192B1 (en) Method and apparatus for saturating an optical amplifier chain to prevent over amplification of a wavelength division multiplexed signal
EP1304775B1 (en) Dispersion-compensated optical fiber amplifier
CA2321439A1 (en) Optical amplifying unit and optical transmission system
JP2001044934A (en) Wavelength multiplex optical transmitter
US20090174932A1 (en) Optical amplifier bandwidth alteration
EP0989693A1 (en) Optical amplification system including an Erbium-Ytterbium co-doped fiber
EP1113541A2 (en) Raman amplified optical amplifier
JPH11242130A (en) Light source module incorporating synthesizing function, optical amplifier using this module, and bidirectional optical transmission equipment
JP3275855B2 (en) Wavelength multiplexing optical transmission device and wavelength multiplexing optical transmission device provided with this device
EP0989638A1 (en) Pump device for pumping an actice fiber of an optical amplifier and corresponding optical amplifier
WO2002003575A1 (en) Optical fiber raman amplifier and optical fiber communication system comprising at least one such amplifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees