JP2001044934A - Wavelength multiplex optical transmitter - Google Patents
Wavelength multiplex optical transmitterInfo
- Publication number
- JP2001044934A JP2001044934A JP11221465A JP22146599A JP2001044934A JP 2001044934 A JP2001044934 A JP 2001044934A JP 11221465 A JP11221465 A JP 11221465A JP 22146599 A JP22146599 A JP 22146599A JP 2001044934 A JP2001044934 A JP 2001044934A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical
- polarization
- signal light
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、広帯域波長多重光
伝送システムに用いられる波長多重光送信器に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a wavelength division multiplexing optical transmitter used in a broadband wavelength division multiplexing optical transmission system.
【0002】[0002]
【従来の技術】波長多重光伝送システムの送信側では、
互いに異なる波長の光をそれぞれ対応する電気信号で変
調し、各波長の信号光を波長フィルタ等の光受動部品に
より波長多重して光ファイバ伝送路に送出する。受信側
では、波長多重信号光を波長フィルタ等により波長ごと
に分波し、それぞれ光電気変換してもとの電気信号に復
調する。このような波長多重光伝送システムでは、複数
の信号光の多重分離を光受動部品のみによって容易に行
うことができ、大容量光伝送が可能になっている。2. Description of the Related Art On the transmitting side of a wavelength division multiplexing optical transmission system,
Light having different wavelengths is modulated by corresponding electric signals, and the signal light of each wavelength is wavelength-multiplexed by an optical passive component such as a wavelength filter and transmitted to an optical fiber transmission line. On the receiving side, the wavelength-division multiplexed signal light is demultiplexed for each wavelength by a wavelength filter or the like, and is demodulated into the original electric signal after each photoelectric conversion. In such a wavelength division multiplexing optical transmission system, the multiplexing and demultiplexing of a plurality of signal lights can be easily performed only by optical passive components, and large-capacity optical transmission is possible.
【0003】近年、通信トラヒックの急増に対応し、広
い波長帯域を利用した広帯域波長多重光伝送システムの
研究が進められている。特に、エルビウム添加ファイバ
増幅器の利得帯域(波長1530〜1565nm)と、利得シフ
トエルビウム添加ファイバ増幅器の利得帯域(波長1565
〜1605nm)を同時に利用する波長多重光伝送システム
や、さらにツリウム添加ファイバ増幅器の利得帯域(波
長1450〜1500nm)も同時に利用する波長多重光伝送シ
ステム等の有用性が実証されている。[0003] In recent years, in response to a rapid increase in communication traffic, research on a wideband WDM optical transmission system using a wide wavelength band has been advanced. In particular, the gain band of the erbium-doped fiber amplifier (wavelength 1530-1565 nm) and the gain band of the gain-shifted erbium-doped fiber amplifier (wavelength 1565 nm)
(Wavelength multiplexing optical transmission system) that simultaneously uses the wavelength band of the thulium-doped fiber amplifier (wavelength 1450-1500 nm).
【0004】図6は、広帯域波長多重光伝送システムに
用いられる従来の波長多重光送信器の構成例を示す。こ
こでは、波長λ1 〜λk の帯域と、波長λ(k+1) 〜λn
の帯域が、上記各希土類添加ファイバ増幅器(以下「光
増幅器」という)の利得帯域に対応するものとする。な
お、nは2以上の整数、kは1〜n−1の整数である。FIG. 6 shows a configuration example of a conventional wavelength multiplexing optical transmitter used in a broadband wavelength multiplexing optical transmission system. Here, the wavelength bands λ1 to λk and the wavelengths λ (k + 1) to λn
Corresponds to the gain band of each of the rare earth-doped fiber amplifiers (hereinafter referred to as “optical amplifiers”). Note that n is an integer of 2 or more, and k is an integer of 1 to n-1.
【0005】図において、光源61−1〜61−kから
出力される波長λ1 〜λk の光は、それぞれ光変調器6
2−1〜62−kで対応する送信信号により変調され、
光合波器63−1で合波されて波長多重信号光となり、
光増幅器64−1で増幅される。一方、光源61−(k+
1) 〜61−nから出力される波長λ(k+1) 〜λn の光
は、それぞれ光変調器62−(k+1) 〜62−nで対応す
る送信信号により変調され、光合波器63−2で合波さ
れて波長多重信号光となり、光増幅器64−2で増幅さ
れる。各波長帯の波長多重信号光は、WDMフィルタ6
5のような波長帯域合波手段により合波して光ファイバ
伝送路66に送信される。In FIG. 1, light beams having wavelengths λ 1 to λ k output from light sources 61-1 to 61-k are applied to optical modulators 6 respectively.
2-1 to 62-k are modulated by corresponding transmission signals,
The light is multiplexed by the optical multiplexer 63-1 to become a wavelength multiplexed signal light,
The signal is amplified by the optical amplifier 64-1. On the other hand, the light source 61− (k +
1) The lights of wavelengths λ (k + 1) to λn output from to 61-n are modulated by corresponding transmission signals in optical modulators 62- (k + 1) to 62-n, respectively, The signal light is multiplexed by 63-2 to become a wavelength multiplexed signal light, and is amplified by an optical amplifier 64-2. The wavelength division multiplexed signal light of each wavelength band is
5, and are transmitted to the optical fiber transmission line 66.
【0006】[0006]
【発明が解決しようとする課題】ところで、特に分散シ
フトファイバ、またはノンゼロ分散シフトファイバ上で
上記の複数の波長帯を同時に利用する広帯域波長多重光
伝送システムでは、異なる波長帯の信号光間で生じる
「非縮退型四光波混合」と呼ばれる非線形効果や、「相
互位相変調」と呼ばれる非線形効果により、伝送特性に
劣化をもたらす可能性が指摘されている(参考文献:J.
Kani et al.,"Bi-directional transmissionfor suppre
ssing inter-wavelength-band nonlinear interactions
in ultra-wide band WDM transmission systems", IEE
E Photonics Technology Letters, vol.11, pp.376-37
8, 1999)。By the way, especially in a broadband wavelength division multiplexing optical transmission system using a plurality of wavelength bands at the same time on a dispersion-shifted fiber or a non-zero dispersion-shifted fiber, there occurs between signal lights in different wavelength bands. It has been pointed out that nonlinear characteristics called "non-degenerate four-wave mixing" and nonlinear effects called "cross-phase modulation" may cause deterioration in transmission characteristics (Reference: J.
Kani et al., "Bi-directional transmission for suppre
ssing inter-wavelength-band nonlinear interactions
in ultra-wide band WDM transmission systems ", IEE
E Photonics Technology Letters, vol.11, pp.376-37
8, 1999).
【0007】また、上記の広帯域波長多重光伝送システ
ムでは、短波長帯の信号光が「誘導ラマン散乱」と呼ば
れる非線形効果により減衰を受け、伝送特性が劣化する
問題がある。誘導ラマン散乱は、波長の異なる2つの光
が非線形媒質を伝搬する際に、短波長の光が励起光とな
って長波長の光を増幅させる現象であり、石英系光ファ
イバにおける誘導ラマン散乱の発生効率は、2つの光の
波長間隔が大きくなると増大し、 100nm程度で最大に
なることが知られている。[0007] Further, in the above-mentioned wideband wavelength division multiplexing optical transmission system, there is a problem that signal light in a short wavelength band is attenuated by a nonlinear effect called "stimulated Raman scattering", and transmission characteristics are deteriorated. Stimulated Raman scattering is a phenomenon in which short-wavelength light becomes excitation light and amplifies long-wavelength light when two lights having different wavelengths propagate in a nonlinear medium. It is known that the generation efficiency increases as the wavelength interval between two lights increases, and reaches a maximum at about 100 nm.
【0008】さらに、2つ以上の異なる波長帯の信号光
を合波するWDMフィルタ65には、図7に示すように
透過率がクロスする帯域がある。この帯域は、信号波長
を割り当てることができない無駄な帯域(以下「デッド
バンド」という)であり、帯域の有効利用の妨げになっ
ている。Further, the WDM filter 65 for multiplexing signal lights of two or more different wavelength bands has a band where the transmittance crosses as shown in FIG. This band is a useless band to which a signal wavelength cannot be assigned (hereinafter, referred to as “dead band”), and hinders effective use of the band.
【0009】本発明は、複数の波長帯を利用する広帯域
波長多重光伝送システムにおいて、以上示した異なる波
長帯の信号光間で生じる非縮退型四光波混合および相互
位相変調による伝送特性劣化を低減し、また誘導ラマン
散乱による短波長側信号光の減衰を低減し、さらに複数
の異なる波長帯の信号光を合波する際にデッドバンドを
生じさせず帯域を有効利用できる波長多重光送信器を提
供することを目的とする。According to the present invention, in a broadband wavelength division multiplexing optical transmission system using a plurality of wavelength bands, transmission characteristics deterioration due to non-degenerate four-wave mixing and cross-phase modulation occurring between signal lights in different wavelength bands described above is reduced. In addition, a wavelength multiplexing optical transmitter that can reduce the attenuation of signal light on the short wavelength side due to stimulated Raman scattering and can effectively use the band without generating a dead band when combining signal lights of a plurality of different wavelength bands. The purpose is to provide.
【0010】[0010]
【課題を解決するための手段】本発明の波長多重光送信
器は、短波長帯の信号光と長波長帯の信号光を合波して
光ファイバ伝送路に送出する際に、各波長帯の信号光の
偏波が直交するようにして偏波合成する構成である。SUMMARY OF THE INVENTION A wavelength division multiplexing optical transmitter according to the present invention, when multiplexing a signal light of a short wavelength band and a signal light of a long wavelength band and transmitting the multiplexed signal light to an optical fiber transmission line, transmits each wavelength band. And the polarization combining is performed so that the polarizations of the signal lights are orthogonal to each other.
【0011】この構成により、帯域間の非縮退型四光波
混合が発生する効率は低減する。これは、非縮退型四光
波混合の発生に関わる3波の信号光のうち、一方の波長
帯の2波の信号光の偏波と、他方の波長帯の1波の信号
光の偏波が直交すると、非縮退型四光波混合の発生効率
が1/4になるためである(参考文献:K.Inoue,"Polar
ization effect on four-wave mixing efficiency in a
single-mode fiber",IEEE J. of Quantum Electronic
s, vol.28, pp.883-894, 1992)。With this configuration, the efficiency of non-degenerate four-wave mixing between bands is reduced. This is because, out of three signal lights involved in the generation of non-degenerate four-wave mixing, the polarization of two signal lights in one wavelength band and the polarization of one signal light in the other wavelength band are different. This is because when orthogonal, the generation efficiency of non-degenerate four-wave mixing is reduced to 1/4 (Reference: K. Inoue, "Polar"
ization effect on four-wave mixing efficiency in a
single-mode fiber ", IEEE J. of Quantum Electronic
s, vol.28, pp.883-894, 1992).
【0012】また、本発明の構成により、帯域間の相互
位相変調効果が発生する効率も低減する。これは、相互
位相変調の発生に関わる2波の信号光の偏波が光ファイ
バ中で直交すると、相互位相変調の発生効率が2/3に
なるためである(参考文献:G.P.Agrawal 著 "Nonlinea
r fiber optics second edition", Academic press,p.2
44)。Further, according to the configuration of the present invention, the efficiency at which the cross-phase modulation effect between the bands occurs is reduced. This is because the generation efficiency of the cross-phase modulation becomes 2/3 when the polarizations of the two signal lights related to the generation of the cross-phase modulation are orthogonal to each other in the optical fiber (reference: GPAgrawal, "Nonlinea").
r fiber optics second edition ", Academic press, p.2
44).
【0013】また、本発明の構成により、長波長帯の信
号光に生じる誘導ラマン散乱により短波長帯の信号光が
減衰する効率は低減する。これは、励起光の偏波と増幅
される信号光の偏波が光ファイバ中で直交すると、誘導
ラマン散乱の発生効率が零になるためである。この偏波
と誘導ラマン散乱の発生効率の関係は参考文献(R.H.St
olen, "Crosstalk due to stimulated Raman Scatterin
g in single-mode fibers for optical communication
in wavelength division multiplex systems",IEEE J.
of Quantum Electronics, vol.15, pp.1157-1160, 197
9)に記載されているが、これは光ファイバに2波のレー
ザ光を入射した場合の基礎物性に関するもので、広帯域
波長多重光伝送システムの波長配置に関しては言及して
いない。Further, according to the configuration of the present invention, the efficiency of attenuating the signal light in the short wavelength band due to stimulated Raman scattering generated in the signal light in the long wavelength band is reduced. This is because if the polarization of the pump light and the polarization of the signal light to be amplified are orthogonal in the optical fiber, the generation efficiency of stimulated Raman scattering becomes zero. The relationship between this polarization and the generation efficiency of stimulated Raman scattering is described in the reference (RHSt
olen, "Crosstalk due to stimulated Raman Scatterin
g in single-mode fibers for optical communication
in wavelength division multiplex systems ", IEEE J.
of Quantum Electronics, vol.15, pp.1157-1160, 197
Although this is described in 9), it relates to basic physical properties when two laser beams are incident on an optical fiber, and does not refer to the wavelength arrangement of a broadband WDM optical transmission system.
【0014】ところで、信号光が光ファイバ伝送路を伝
搬するときの偏波状態の変化には波長依存性がある。こ
のため、上記の短波長帯の信号光と長波長帯の信号光の
直交偏波関係は、光ファイバ伝送路の出力端まで保たれ
ない場合がある。この場合には、上記の非縮退型四光波
混合、相互位相変調、誘導ラマン散乱の抑圧効果は小さ
くなる。By the way, the change in the polarization state when the signal light propagates through the optical fiber transmission line has wavelength dependence. For this reason, the orthogonal polarization relationship between the signal light in the short wavelength band and the signal light in the long wavelength band may not be maintained up to the output end of the optical fiber transmission line. In this case, the effect of suppressing the non-degenerate four-wave mixing, cross-phase modulation, and stimulated Raman scattering is reduced.
【0015】一方、参考文献(井上、「波長多重光ファ
イバ伝送系における四光波混合の研究」、東京大学工学
系研究科1996年度博士論文)には、波長の離れた2つの
光の偏波を直交させ、これが光ファイバを伝搬していっ
たときにどのくらい直交状態からずれてゆくかという結
果が記載されている。これによると、10nm程度離れた
信号光間の偏波は、25km程度の光ファイバ伝送で直交
状態から50%程ずれることがわかる。ITU−T規定の
リンク距離である80kmの光ファイバ伝送における非線
形長(実効的に非線形効果が作用する距離)は15km程
度である。したがって、上記の手法による非縮退型四光
波混合、相互位相変調、誘導ラマン散乱の抑圧は、少な
くとも2波長帯域の間隔が10nm以下程度の場合に効果
的であることがわかる。On the other hand, the reference (Inoue, "Study of Four-Wave Mixing in Wavelength Division Multiplexing Optical Fiber Transmission System", Ph.D. It describes the result of how much the light is deviated from the orthogonal state as it propagates through the optical fiber. According to this, it is understood that the polarization between the signal lights separated by about 10 nm deviates from the orthogonal state by about 50% in the optical fiber transmission of about 25 km. A non-linear length (a distance where a non-linear effect is effective) in an optical fiber transmission of 80 km, which is a link distance specified by the ITU-T, is about 15 km. Therefore, it can be seen that the suppression of non-degenerate four-wave mixing, cross-phase modulation, and stimulated Raman scattering by the above method is effective at least when the interval between two wavelength bands is about 10 nm or less.
【0016】さらに、本発明の構成では、短波長帯の信
号光の偏波と長波長帯の信号光の偏波が互いに直交した
状態で偏波合成する偏波合成手段(偏波ビームスプリッ
タ)を用いている。これにより、2波長帯の合波にWD
Mフィルタを用いた場合に問題となったデッドバンドが
生じなくなり、帯域を有効利用することができる。Furthermore, in the configuration of the present invention, a polarization combining means (polarization beam splitter) for performing polarization combining in a state where the polarization of the short wavelength band signal light and the polarization of the long wavelength band signal light are orthogonal to each other. Is used. This allows WD to be combined into two wavelength bands.
When the M filter is used, a dead band which is a problem does not occur, and the band can be effectively used.
【0017】[0017]
【発明の実施の形態】(第1実施形態)図1は、本発明
の波長多重光送信器の第1実施形態を示す。(First Embodiment) FIG. 1 shows a first embodiment of the wavelength division multiplexing optical transmitter according to the present invention.
【0018】図において、光源11−1〜11−kおよ
び光変調器12−1〜12−kで生成される波長λ1 〜
λk の信号光は、光合波器13−1で合波され、光増幅
器14−1で増幅される。光源11−(k+1) 〜11−n
および光変調器12−(k+1)〜12−nで生成される波
長λ(k+1) 〜λn の信号光は、光合波器13−2で合波
され、光増幅器14−2で増幅される。ここでは、波長
λ1 〜λk の帯域と波長λ(k+1) 〜λn の帯域が、光増
幅器14−1,14−2の利得帯域に対応するものとす
る。In FIG. 1, wavelengths λ 1 to λ 1 generated by light sources 11-1 to 11-k and optical modulators 12-1 to 12-k are used.
The signal light of λk is multiplexed by the optical multiplexer 13-1 and amplified by the optical amplifier 14-1. Light source 11- (k + 1) to 11-n
The signal lights having wavelengths λ (k + 1) to λn generated by the optical modulators 12- (k + 1) to 12-n are multiplexed by the optical multiplexer 13-2, and are multiplexed by the optical amplifier 14-2. Amplified. Here, it is assumed that the band of wavelengths λ1 to λk and the band of wavelengths λ (k + 1) to λn correspond to the gain bands of the optical amplifiers 14-1 and 14-2.
【0019】本実施形態では、光変調器12−1〜12
−n、光合波器13−1,13−2、光増幅器14−
1,14−2を偏波保持型とし、各部を偏波保持光ファ
イバ15を介して接続する。さらに、光増幅器14−
1,14−2と偏波ビームスプリッタ16の対応する入
力ポートを偏波保持光ファイバ15で接続する。ここ
で、光源11−1〜11−nの出力偏波がすべて同一と
すると、光増幅器14−1,14−2と偏波ビームスプ
リッタ16を接続する偏波保持光ファイバ15のいずれ
か一方を90度回転することにより、各波長帯の波長多重
信号光の偏波が直交する。これにより、各波長帯の波長
多重信号光を偏波ビームスプリッタ16で偏波合成して
光ファイバ伝送路17に送出することができる。なお、
光源11−1〜11−kと光源11−(k+1) 〜11−n
が互いに直交する偏波を出力する場合には、偏波保持光
ファイバ15を90度回転させる必要はない。In the present embodiment, the optical modulators 12-1 to 12-12
-N, optical multiplexers 13-1, 13-2, optical amplifier 14-
1 and 14-2 are of a polarization maintaining type, and each part is connected via a polarization maintaining optical fiber 15. Further, the optical amplifier 14-
The input ports 1 and 14-2 and the corresponding input ports of the polarization beam splitter 16 are connected by a polarization maintaining optical fiber 15. Here, assuming that the output polarizations of the light sources 11-1 to 11-n are all the same, one of the polarization maintaining optical fibers 15 connecting the optical amplifiers 14-1 and 14-2 and the polarization beam splitter 16 is connected. By rotating by 90 degrees, the polarization of the wavelength multiplexed signal light in each wavelength band becomes orthogonal. This allows the polarization multiplexing of the wavelength multiplexed signal light of each wavelength band by the polarization beam splitter 16 and transmission to the optical fiber transmission line 17. In addition,
Light sources 11-1 to 11-k and light sources 11- (k + 1) to 11-n
Output the polarizations orthogonal to each other, there is no need to rotate the polarization maintaining optical fiber 15 by 90 degrees.
【0020】図2は、波長λ1 〜λn の信号光の波長配
置例を示す。ここでは、波長λ1 〜λk を短波長帯と
し、波長λ(k+1) 〜λn を長波長帯とする。各波長帯の
信号光の偏波は直交し、偏波ビームスプリッタ16で偏
波合成されるのでデッドバンドは生じない。FIG. 2 shows an example of the wavelength arrangement of signal lights having wavelengths λ1 to λn. Here, the wavelengths λ1 to λk are defined as short wavelength bands, and the wavelengths λ (k + 1) to λn are defined as long wavelength bands. The polarization of the signal light in each wavelength band is orthogonal, and the polarization is combined by the polarization beam splitter 16, so that no dead band occurs.
【0021】短波長帯を1530〜1565nm、長波長帯を15
65〜1605nmとすると、光増幅器14−1はエルビウム
添加ファイバ増幅器、光増幅器14−2は利得シフトエ
ルビウム添加ファイバ増幅器を用いる。短波長帯を1450
〜1500nm、長波長帯を1530〜1605nmとすると、光増
幅器14−1はツリウム添加ファイバ増幅器、光増幅器
14−2は広帯域エルビウム添加ファイバ増幅器を用い
る。ここで、広帯域エルビウム添加ファイバ増幅器は、
波長1530〜1565nmに利得帯域を有するエルビウム添加
ファイバ増幅器と、波長1565〜1605nmに利得帯域を有
する利得シフトエルビウム添加ファイバ増幅器を並列接
続して構成することができる。The short wavelength band is 1530-1565 nm, the long wavelength band is 15
When the wavelength is 65 to 1605 nm, the optical amplifier 14-1 uses an erbium-doped fiber amplifier, and the optical amplifier 14-2 uses a gain-shifted erbium-doped fiber amplifier. 1450 short wavelength band
If the long wavelength band is 1530-1605 nm, the optical amplifier 14-1 uses a thulium-doped fiber amplifier, and the optical amplifier 14-2 uses a broadband erbium-doped fiber amplifier. Here, the broadband erbium-doped fiber amplifier is
An erbium-doped fiber amplifier having a gain band at a wavelength of 1530 to 1565 nm and a gain shift erbium-doped fiber amplifier having a gain band at a wavelength of 1565 to 1605 nm can be connected in parallel.
【0022】(第2実施形態)図3は、本発明の波長多
重光送信器の第2実施形態を示す。図において、光源1
1−1〜11−kおよび光変調器22−1〜22−kで
生成される波長λ1 〜λk の信号光は、光合波器23−
1で合波され、光増幅器24−1で増幅される。光源1
1−(k+1) 〜11−nおよび光変調器22−(k+1)〜2
2−nで生成される波長λ(k+1) 〜λn の信号光は、光
合波器23−2で合波され、光増幅器24−2で増幅さ
れる。ここでは、波長λ1 〜λk の帯域と波長λ(k+1)
〜λn の帯域が、光増幅器24−1,24−2の利得帯
域に対応するものとする。(Second Embodiment) FIG. 3 shows a second embodiment of the wavelength division multiplexing optical transmitter according to the present invention. In the figure, light source 1
The signal lights of wavelengths λ1 to λk generated by 1-1 to 11-k and the optical modulators 22-1 to 22-k are combined with the optical multiplexer 23-.
1 and are amplified by the optical amplifier 24-1. Light source 1
1- (k + 1) -11-n and optical modulator 22- (k + 1) -2
The signal lights of wavelengths λ (k + 1) to λn generated by 2-n are multiplexed by the optical multiplexer 23-2 and amplified by the optical amplifier 24-2. Here, the wavelength band λ1 to λk and the wavelength λ (k + 1)
.Lambda.n correspond to the gain bands of the optical amplifiers 24-1 and 24-2.
【0023】本実施形態では、光変調器22−1〜22
−kと光合波器23−1との間にそれぞれ偏波制御器
(PC)25−1〜25−kを挿入し、光変調器22−
(k+1)〜22−nと光合波器23−2との間にそれぞれ
偏波制御器(PC)25−(k+1) 〜25−nを挿入す
る。さらに、光増幅器24−1,24−2と偏波ビーム
スプリッタ16の対応する入力ポートを接続する。偏波
制御器25−1〜25−nは、光変調器22−1〜22
−kから出力される波長λ1 〜λk の信号光の偏波と、
光変調器22−(k+1) 〜22−nから出力される波長λ
(k+1) 〜λn の信号光の偏波が、偏波ビームスプリッタ
16の入力端で直交するように制御する。これにより、
各波長帯の波長多重信号光を偏波ビームスプリッタ16
で偏波合成して光ファイバ伝送路17に送出することが
できる。In this embodiment, the optical modulators 22-1 to 22-2
Polarization controllers (PCs) 25-1 to 25-k are inserted between the optical modulators 22-1 and 25-k, respectively.
Polarization controllers (PC) 25- (k + 1) to 25-n are inserted between (k + 1) to 22-n and the optical multiplexer 23-2, respectively. Further, the optical amplifiers 24-1 and 24-2 are connected to corresponding input ports of the polarization beam splitter 16. The polarization controllers 25-1 to 25-n include the optical modulators 22-1 to 22-22.
-K of the signal light of wavelengths λ1 to λk output from
Wavelength λ output from optical modulators 22- (k + 1) to 22-n
Control is performed so that the polarizations of the signal lights of (k + 1) to λn are orthogonal at the input end of the polarization beam splitter 16. This allows
The wavelength multiplexed signal light of each wavelength band is converted into a polarization beam splitter 16.
, And can be transmitted to the optical fiber transmission line 17.
【0024】(第3実施形態)図4は、本発明の波長多
重光送信器の第3実施形態を示す。図において、光源1
1−1〜11−n、光変調器12−1〜12−n、光合
波器13−1,13−2、光増幅器24−1,24−2
は、第1実施形態および第2実施形態と同様に各波長帯
の信号光をそれぞれ合波して増幅する構成である。ここ
では、波長λ1 〜λk の帯域と波長λ(k+1) 〜λn の帯
域が、光増幅器24−1,24−2の利得帯域に対応す
るものとする。(Third Embodiment) FIG. 4 shows a wavelength multiplexing optical transmitter according to a third embodiment of the present invention. In the figure, light source 1
1-1 to 11-n, optical modulators 12-1 to 12-n, optical multiplexers 13-1 and 13-2, optical amplifiers 24-1 and 24-2
Is configured to multiplex and amplify the signal light of each wavelength band as in the first and second embodiments. Here, it is assumed that the band of the wavelengths λ1 to λk and the band of the wavelengths λ (k + 1) to λn correspond to the gain bands of the optical amplifiers 24-1 and 24-2.
【0025】本実施形態では、光変調器12−1〜12
−nおよび光合波器13−1,13−2を偏波保持型と
する。さらに、光合波器13−1と光増幅器24−1と
の間に偏波制御器(PC)25−1を挿入し、光合波器
13−2と光増幅器24−2との間に偏波制御器(P
C)25−2を挿入する。そして、各光源11−1〜1
1−nから偏波制御器25−1,25−2までの間を偏
波保持光ファイバ15を介して接続し、光増幅器24−
1,24−2と偏波ビームスプリッタ16の対応する入
力ポートを接続する。偏波制御器25−1,25−2
は、光合波器13−1で合波された波長λ1 〜λk の波
長多重信号光の偏波と、光合波器13−2で合波された
波長λ(k+1) 〜λn の波長多重信号光の偏波が、偏波ビ
ームスプリッタ16の入力端で直交するように制御す
る。これにより、各波長帯の波長多重信号光を偏波ビー
ムスプリッタ16で偏波合成して光ファイバ伝送路17
に送出することができる。In this embodiment, the optical modulators 12-1 to 12-12
−n and the optical multiplexers 13-1 and 13-2 are of a polarization maintaining type. Further, a polarization controller (PC) 25-1 is inserted between the optical multiplexer 13-1 and the optical amplifier 24-1, and a polarization controller (PC) 25-1 is inserted between the optical multiplexer 13-2 and the optical amplifier 24-2. Controller (P
C) Insert 25-2. Each of the light sources 11-1 to 11-1
1-n to the polarization controllers 25-1 and 25-2 via the polarization-maintaining optical fiber 15;
1, 24-2 and the corresponding input ports of the polarization beam splitter 16 are connected. Polarization controllers 25-1, 25-2
Is the polarization of the wavelength multiplexed signal light of wavelengths λ1 to λk multiplexed by the optical multiplexer 13-1 and the wavelength multiplexing of the wavelengths λ (k + 1) to λn multiplexed by the optical multiplexer 13-2. Control is performed so that the polarization of the signal light is orthogonal at the input end of the polarization beam splitter 16. As a result, the wavelength-division multiplexed signal light of each wavelength band is polarization-combined by the polarization beam splitter 16 and the optical fiber transmission path 17
Can be sent to
【0026】(第4実施形態)図5は、本発明の波長多
重光送信器の第4実施形態を示す。本実施形態は、図3
に示す第2の実施形態の構成において、偏波ビームスプ
リッタ16の出力光の一部を光カプラ31を介して制御
回路32で受光し、各波長帯の波長多重信号光の光強度
が最大になるように各偏波制御器25−1〜25−nを
負帰還制御する。(Fourth Embodiment) FIG. 5 shows a wavelength multiplexing optical transmitter according to a fourth embodiment of the present invention. In the present embodiment, FIG.
In the configuration of the second embodiment shown in (1), a part of the output light of the polarization beam splitter 16 is received by the control circuit 32 via the optical coupler 31, and the light intensity of the wavelength multiplexed signal light in each wavelength band is maximized. Each of the polarization controllers 25-1 to 25-n is subjected to negative feedback control.
【0027】なお、図4に示す第3の実施形態の構成に
おいて、偏波ビームスプリッタ16の出力光の一部をモ
ニタし、各波長帯の波長多重信号光の光強度が最大にな
るように各偏波制御器25−1,25−2を負帰還制御
してもよい。In the configuration of the third embodiment shown in FIG. 4, a part of the output light of the polarization beam splitter 16 is monitored so that the light intensity of the wavelength multiplexed signal light in each wavelength band is maximized. Each of the polarization controllers 25-1 and 25-2 may be subjected to negative feedback control.
【0028】また、以上示した各実施形態における波長
多重光送信器に対応する光受信器は、波長多重信号光を
波長フィルタ等により波長ごとに分波し、それぞれ光電
気変換して送信信号を復調すればよい。すなわち、本発
明の波長多重光送信器を用いる波長多重光伝送システム
は、いわゆる偏波多重化方式とは異なり、受信側で偏波
多重分離する必要はない。The optical receiver corresponding to the wavelength division multiplexing optical transmitter in each of the embodiments described above demultiplexes the wavelength division multiplexed signal light for each wavelength using a wavelength filter or the like, and performs optical-electrical conversion to convert the transmission signal. What is necessary is just to demodulate. That is, the wavelength division multiplexing optical transmission system using the wavelength division multiplexing optical transmitter of the present invention does not need to perform polarization demultiplexing on the receiving side, unlike the so-called polarization multiplexing system.
【0029】[0029]
【発明の効果】以上説明したように、本発明の波長多重
光送信器は、短波長帯の信号光と長波長帯の信号光の偏
波を直交させ、偏波合成して光ファイバ伝送路に送出す
ることにより、帯域間の非縮退型四光波混合や相互位相
変調に起因する信号劣化を低減することができる。さら
に、誘導ラマン散乱による短波長帯の信号光の過剰損失
を低減することができる。As described above, the wavelength division multiplexing optical transmitter of the present invention makes the polarizations of the short wavelength band signal light and the long wavelength band signal light orthogonal, combines the polarizations, and synthesizes the optical fiber transmission line. , It is possible to reduce signal deterioration due to non-degenerate four-wave mixing between bands and cross-phase modulation. Further, excess loss of signal light in a short wavelength band due to stimulated Raman scattering can be reduced.
【0030】さらに、短波長帯の信号光と長波長帯の信
号光を偏波合成する構成であるので、WDMフィルタを
用いた場合に問題となったデッドバンドが生じなくな
り、帯域を有効利用することができる。Further, since the configuration is such that the signal light in the short wavelength band and the signal light in the long wavelength band are polarization-synthesized, a dead band which is a problem when a WDM filter is used does not occur, and the band is effectively used. be able to.
【図1】本発明の波長多重光送信器の第1実施形態を示
すブロック図。FIG. 1 is a block diagram showing a first embodiment of a wavelength division multiplexing optical transmitter according to the present invention.
【図2】第1実施形態の波長配置例を示す図。FIG. 2 is a diagram illustrating an example of a wavelength arrangement according to the first embodiment.
【図3】本発明の波長多重光送信器の第2実施形態を示
すブロック図。FIG. 3 is a block diagram showing a second embodiment of the wavelength division multiplexing optical transmitter according to the present invention.
【図4】本発明の波長多重光送信器の第3実施形態を示
すブロック図。FIG. 4 is a block diagram showing a third embodiment of the wavelength division multiplexing optical transmitter according to the present invention.
【図5】本発明の波長多重光送信器の第4実施形態を示
すブロック図。FIG. 5 is a block diagram showing a fourth embodiment of the wavelength division multiplexing optical transmitter according to the present invention.
【図6】広帯域波長多重光伝送システムに用いられる従
来の波長多重光送信器の構成例を示すブロック図。FIG. 6 is a block diagram showing a configuration example of a conventional wavelength multiplexing optical transmitter used in a broadband wavelength multiplexing optical transmission system.
【図7】従来構成の波長配置例とWDMフィルタの透過
帯域の関係を示す図。FIG. 7 is a diagram illustrating a relationship between a wavelength arrangement example of a conventional configuration and a transmission band of a WDM filter.
11 光源 12 光変調器(偏波保持型) 13 光合波器(偏波保持型) 14 光増幅器(偏波保持型) 15 偏波保持光ファイバ 16 偏波ビームスプリッタ 17 光ファイバ伝送路 22 光変調器 23 光合波器 24 光増幅器 25 偏波制御器(PC) 31 光カプラ 32 制御回路 Reference Signs List 11 light source 12 optical modulator (polarization maintaining type) 13 optical multiplexer (polarization maintaining type) 14 optical amplifier (polarization maintaining type) 15 polarization maintaining optical fiber 16 polarization beam splitter 17 optical fiber transmission line 22 optical modulation Device 23 optical multiplexer 24 optical amplifier 25 polarization controller (PC) 31 optical coupler 32 control circuit
Claims (4)
を合波して光ファイバ伝送路に送出する波長多重光送信
器において、 前記長波長帯の信号光の偏波と前記短波長帯の信号光の
偏波が直交するように制御する偏波制御手段と、 前記偏波制御手段によって制御された直交する偏波の長
波長帯の信号光と短波長帯の信号光とを偏波合成する偏
波合成手段とを備えたことを特徴とする波長多重光送信
器。1. A wavelength division multiplexing optical transmitter for multiplexing a signal light in a long wavelength band and a signal light in a short wavelength band and transmitting the multiplexed signal light to an optical fiber transmission line, wherein: Polarization control means for controlling the polarization of the signal light in the short wavelength band to be orthogonal, and the signal light in the long wavelength band and the signal light in the short wavelength band of the orthogonal polarization controlled by the polarization control means. And a polarization combining means for combining the polarizations of the wavelengths.
帯の信号光は、それぞれ異なる波長の複数の信号光を波
長多重した波長多重信号光であり、 前記偏波制御手段は、各波長帯の波長多重信号光の偏波
が直交するように制御する構成であることを特徴とする
請求項1に記載の波長多重光送信器。2. The signal light of the long wavelength band and the signal light of the short wavelength band are wavelength multiplexed signal lights obtained by wavelength multiplexing a plurality of signal lights having different wavelengths, respectively. 2. The wavelength division multiplexing optical transmitter according to claim 1, wherein the wavelength division multiplexing signal transmitter is configured to control the polarizations of the wavelength division multiplexing signal light to be orthogonal.
号光(波長多重信号光)の偏波が直交するように各偏波
状態を保持または調整する構成であることを特徴とする
請求項1または請求項2に記載の波長多重光送信器。3. The polarization control means is configured to maintain or adjust each polarization state such that the polarization of the signal light (wavelength multiplexed signal light) in each wavelength band is orthogonal. The wavelength division multiplexing optical transmitter according to claim 1.
号光(波長多重信号光)の光強度が前記偏波合成手段の
出力端で最大になるように各偏波状態を制御する構成で
あることを特徴とする請求項1または請求項2に記載の
波長多重光送信器。4. The polarization control means controls each polarization state such that the light intensity of the signal light (wavelength multiplexed signal light) in each wavelength band becomes maximum at the output terminal of the polarization combining means. 3. The wavelength division multiplexing optical transmitter according to claim 1, wherein the transmitter has a configuration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11221465A JP2001044934A (en) | 1999-08-04 | 1999-08-04 | Wavelength multiplex optical transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11221465A JP2001044934A (en) | 1999-08-04 | 1999-08-04 | Wavelength multiplex optical transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001044934A true JP2001044934A (en) | 2001-02-16 |
Family
ID=16767153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11221465A Pending JP2001044934A (en) | 1999-08-04 | 1999-08-04 | Wavelength multiplex optical transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001044934A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037559A (en) * | 2001-07-25 | 2003-02-07 | Mitsubishi Electric Corp | Signal state control equipment and signal state control method |
KR100440568B1 (en) * | 2001-11-28 | 2004-07-21 | 한국전자통신연구원 | A wideband optical link control devices |
US7245422B2 (en) | 2004-02-05 | 2007-07-17 | Fujitsu Limited | Raman optical amplifier, optical transmission system using the same, and raman optical amplification method |
US7366209B2 (en) | 2002-01-16 | 2008-04-29 | Nec Corporation | Orthogonal polarization multiplexing transmission apparatus and multiplexing method used for the same |
US20120257899A1 (en) * | 2011-04-06 | 2012-10-11 | Tyco Electronics Subsea Communications Llc | Orthogonal band launch for repeaterless systems |
KR101219058B1 (en) * | 2006-02-17 | 2013-01-07 | 엘지디스플레이 주식회사 | Liquid cystal display device module |
JP2013168681A (en) * | 2003-06-03 | 2013-08-29 | Imra America Inc | In-line, high energy fiber chirped pulse amplification system |
CN109061802A (en) * | 2018-10-17 | 2018-12-21 | 四川光恒通信技术有限公司 | A kind of hermetically sealed transmitting optical device of multichannel wavelength-division palarization multiplexing cell type |
JP2021152569A (en) * | 2020-03-24 | 2021-09-30 | 富士通株式会社 | Optical communication element, optical transmitter, and control method |
-
1999
- 1999-08-04 JP JP11221465A patent/JP2001044934A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037559A (en) * | 2001-07-25 | 2003-02-07 | Mitsubishi Electric Corp | Signal state control equipment and signal state control method |
JP4619578B2 (en) * | 2001-07-25 | 2011-01-26 | 三菱電機株式会社 | Signal state control device and signal state control method |
KR100440568B1 (en) * | 2001-11-28 | 2004-07-21 | 한국전자통신연구원 | A wideband optical link control devices |
US7366209B2 (en) | 2002-01-16 | 2008-04-29 | Nec Corporation | Orthogonal polarization multiplexing transmission apparatus and multiplexing method used for the same |
JP2013168681A (en) * | 2003-06-03 | 2013-08-29 | Imra America Inc | In-line, high energy fiber chirped pulse amplification system |
US7245422B2 (en) | 2004-02-05 | 2007-07-17 | Fujitsu Limited | Raman optical amplifier, optical transmission system using the same, and raman optical amplification method |
KR101219058B1 (en) * | 2006-02-17 | 2013-01-07 | 엘지디스플레이 주식회사 | Liquid cystal display device module |
US20120257899A1 (en) * | 2011-04-06 | 2012-10-11 | Tyco Electronics Subsea Communications Llc | Orthogonal band launch for repeaterless systems |
CN109061802A (en) * | 2018-10-17 | 2018-12-21 | 四川光恒通信技术有限公司 | A kind of hermetically sealed transmitting optical device of multichannel wavelength-division palarization multiplexing cell type |
JP2021152569A (en) * | 2020-03-24 | 2021-09-30 | 富士通株式会社 | Optical communication element, optical transmitter, and control method |
JP7415715B2 (en) | 2020-03-24 | 2024-01-17 | 富士通株式会社 | Optical communication device, optical transmitter and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1248392B1 (en) | Optical amplifier device and bidirectional wavelength division multiplexing optical communication system using the same | |
JP3995781B2 (en) | Optical branching / inserting device and optical branching device using wavelength selective filter | |
US5400164A (en) | Polarization-insensitive optical four-photon mixer | |
CA2409251A1 (en) | Broadband amplifier and communication system | |
JP3557134B2 (en) | Optical transmitting apparatus, wavelength division multiplexing optical signal generation method, and channel expansion method | |
JPH0799477A (en) | Optical transmission method for optical communication system, optical transmitter and method and device for optical amplification | |
US6771854B2 (en) | Optical transmission system and optical coupler/branching filter | |
JP2019200314A (en) | Wavelength converter, wavelength conversion method and transmission apparatus | |
JPH10173264A (en) | Gain equalizer | |
JPWO2002035665A1 (en) | Optical transmitter, optical repeater, optical receiver, and optical transmission method | |
JP2001333015A (en) | Device and method for optical multiplexing | |
JP2003188830A (en) | Wavelength multiplex light transmission apparatus, relaying apparatus, distribution apparatus, and wavelength multiplex light transmission system | |
JP6094294B2 (en) | Optical node | |
JP2001044934A (en) | Wavelength multiplex optical transmitter | |
JP4798997B2 (en) | Method and apparatus for distributing pump energy from a single pump device to optical fibers located in different pairs of fibers | |
JP2003188831A (en) | Optical transmission system and optical repeater | |
JP2710199B2 (en) | Optical fiber amplifier for WDM transmission | |
EP0943192B1 (en) | Method and apparatus for saturating an optical amplifier chain to prevent over amplification of a wavelength division multiplexed signal | |
JP2006294819A (en) | Component for optical amplification, optical amplifier, and optical communication system | |
JP3482348B2 (en) | Remote pump light transmission system | |
JP3239590B2 (en) | Two-wavelength band amplifier and wavelength division multiplex transmission device using the same | |
JP4029515B2 (en) | Wavelength converter and wavelength converter | |
JP3275855B2 (en) | Wavelength multiplexing optical transmission device and wavelength multiplexing optical transmission device provided with this device | |
Bessin et al. | Mach-Zehnder FOPA for Dual Polarization Wavelength-Division-Multiplexed 100G Signal Amplification | |
US20240103338A1 (en) | Wavelength converter and optical transmission system |