JP2000151521A - Remote excitation light transmission system - Google Patents

Remote excitation light transmission system

Info

Publication number
JP2000151521A
JP2000151521A JP10322417A JP32241798A JP2000151521A JP 2000151521 A JP2000151521 A JP 2000151521A JP 10322417 A JP10322417 A JP 10322417A JP 32241798 A JP32241798 A JP 32241798A JP 2000151521 A JP2000151521 A JP 2000151521A
Authority
JP
Japan
Prior art keywords
fiber
optical
pumping light
wavelength
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10322417A
Other languages
Japanese (ja)
Other versions
JP3482348B2 (en
Inventor
Toshihiko Sugie
利彦 杉江
Hideo Kawada
秀雄 川田
Nobuyuki Yoshizawa
信幸 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32241798A priority Critical patent/JP3482348B2/en
Publication of JP2000151521A publication Critical patent/JP2000151521A/en
Application granted granted Critical
Publication of JP3482348B2 publication Critical patent/JP3482348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system where optical fiber for excitation light is not employed and the excitation light is efficiently transmitted to a plurality of optical amplification fibers inserted to a transmission optical fiber. SOLUTION: At least a transmission station 11 or a reception station 12 is provided with excitation light sources 15-1-15-2 with a wavelength in response to a distance up to each optical amplification fiber 14 with respect to a plurality of the optical amplification fibers 14-1-14-2 inserted to a transmission optical fiber 13 and the excitation lights with each wavelength are transmission to the transmission optical fiber through wavelength multiplex. Each optical amplification fiber 14 amplifies a signal light by using the excitation light with an assigned wavelength among the excitation lights sent through the transmission optical fiber 13 and transmits the excitation light with other wavelength to a succeeding optical amplification fiber 14. Furthermore, the excitation light with a wavelength λ2 having a large loss is used for the optical amplification fiber 14-2 close to the excitation light source 15 and the excitation light with a wavelength λ1 having a small loss is used for the optical amplification fiber 14-1 remote from the excitation light source 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光中継器(再生光
中継器、線形光中継器)を含まない無中継伝送システム
に用いられる遠隔励起光伝送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote pumping light transmission system used in a repeaterless transmission system that does not include an optical repeater (regenerative optical repeater, linear optical repeater).

【0002】[0002]

【従来の技術】光伝送システムは、光伝送路の途中に、
光中継器(再生光中継器、線形光中継器)を含まない無
中継伝送システムと、光中継器を含む中継伝送システム
に大別される。例えば海底光伝送システムにおいて、短
距離浅海用には無中継伝送システムが用いられ、長距離
深海用には中継伝送システムが用いられている。
2. Description of the Related Art An optical transmission system is provided in the middle of an optical transmission line.
It is broadly classified into a non-repeater transmission system that does not include an optical repeater (regenerative light repeater, linear optical repeater), and a repeater transmission system that includes an optical repeater. For example, in a submarine optical transmission system, a relayless transmission system is used for short-distance shallow water, and a relay transmission system is used for long-distance deepwater.

【0003】中継伝送システムは、送信局または受信局
から光中継器に給電を行う給電装置や給電ケーブルを必
要とするが、無中継伝送システムは、給電装置等を必要
としないために安価なシステムになる。しかし、無中継
伝送システムは、光伝送路における損失や波形劣化のた
め伝送距離に制限が生じる。長距離伝送するために送信
光パワーを大きくすると、光ファイバの非線形光学効果
により伝送品質が劣化し、やはり伝送距離を制限するこ
とになる。
A repeater transmission system requires a power supply device or a power supply cable for supplying power from a transmitting station or a receiving station to an optical repeater, while a non-repeated transmission system does not require a power supply device or the like, so an inexpensive system is required. become. However, in the repeaterless transmission system, the transmission distance is limited due to loss and waveform deterioration in the optical transmission line. When the transmission light power is increased for long-distance transmission, the transmission quality deteriorates due to the nonlinear optical effect of the optical fiber, and the transmission distance is also limited.

【0004】そこで、無中継伝送システムにおいて伝送
距離の長距離化を図るために、伝送用光ファイバの途中
にエルビウム等の希土類元素を添加した光増幅ファイバ
(以下「EDF」という)を挿入する構成が提案されて
いる。これは、送信局または受信局に設けた励起光源か
ら、伝送用光ファイバとは別の励起光用光ファイバを介
してEDFに励起光を入力し、減衰した信号光を増幅し
て伝送距離の長距離化を図る構成である。なお、線形光
中継器は、EDFと励起光源を内部に備えており、送信
局または受信局から給電を行う必要がある。本明細書に
おける外部から励起光を入力するEDFは、線形光中継
器と区別している。
In order to extend the transmission distance in a repeaterless transmission system, an optical amplification fiber (hereinafter, referred to as "EDF") doped with a rare earth element such as erbium is inserted in the transmission optical fiber. Has been proposed. This is because the pump light is input to the EDF from the pump light source provided at the transmitting station or the receiving station via the pump light optical fiber different from the transmission optical fiber, and the attenuated signal light is amplified to reduce the transmission distance. This is a configuration for increasing the distance. Note that the linear optical repeater includes an EDF and an excitation light source therein, and needs to be supplied with power from a transmitting station or a receiving station. In this specification, an EDF that inputs pump light from the outside is distinguished from a linear optical repeater.

【0005】図6は、伝送距離の長距離化は図った従来
の無中継伝送システムの構成例を示す。(a) は受信局か
ら数十km以上離れた位置にEDFを挿入した構成例で
あり、(b) は送信局および受信局からそれぞれ数十km
以上離れた位置にEDFを挿入した構成例である。
FIG. 6 shows an example of the configuration of a conventional relayless transmission system in which the transmission distance is increased. (a) is a configuration example in which an EDF is inserted at a position more than several tens of kilometers from the receiving station, and (b) is a configuration example of several tens of kilometers from the transmitting station and the receiving station.
This is a configuration example in which an EDF is inserted at a position distant from the above.

【0006】図6(a) において、送信局61と受信局6
2は、1.55μm帯の信号光を伝送する伝送用光ファイバ
63および受信局側に挿入されたEDF64−1,64
−2を介して接続される。EDF64−1,64−2に
は、受信局62に設けられた励起光源65から、それぞ
れ励起光用光ファイバ66−1,66−2を介して伝送
された励起光が入力され、信号光を増幅する。67−
1,67−2は、励起光を入力する光カプラである。
In FIG. 6A, a transmitting station 61 and a receiving station 6
Reference numeral 2 denotes a transmission optical fiber 63 for transmitting signal light in the 1.55 μm band, and EDFs 64-1 and 64 inserted on the receiving station side.
-2. The pump light transmitted from the pump light source 65 provided in the receiving station 62 via the pump light optical fibers 66-1 and 66-2 is input to the EDFs 64-1 and 64-2. Amplify. 67-
Reference numerals 1 and 67-2 denote optical couplers for inputting excitation light.

【0007】図6(b) において、送信局61と受信局6
2は、1.55μm帯の信号光を伝送する伝送用光ファイバ
63と、送信局側および受信局側に挿入されたEDF6
4−1〜64−4を介して接続される。EDF64−
1,64−2には、送信局61に設けられた励起光源6
5−1から、それぞれ励起光用光ファイバ66−1,6
6−2を介して伝送された励起光が入力され、信号光を
増幅する。EDF64−3,64−4には、受信局62
に設けられた励起光源65−2から、それぞれ励起光用
光ファイバ66−3,66−4を介して伝送された励起
光が入力され、信号光を増幅する。67−1〜67−4
は、励起光を入力する光カプラである。
In FIG. 6B, a transmitting station 61 and a receiving station 6
Reference numeral 2 denotes a transmission optical fiber 63 for transmitting a signal light in the 1.55 μm band, and an EDF 6 inserted into the transmitting station and the receiving station.
They are connected via 4-1 to 64-4. EDF64-
1, 64-2 includes an excitation light source 6 provided in the transmission station 61.
5-1, the excitation light optical fibers 66-1 and 66-6, respectively.
The pumping light transmitted through 6-2 is input and amplifies the signal light. The EDFs 64-3 and 64-4 include the receiving station 62.
The pumping light transmitted through the pumping light optical fibers 66-3 and 66-4 is input from the pumping light source 65-2 provided in the above, and amplifies the signal light. 67-1 to 67-4
Is an optical coupler for inputting excitation light.

【0008】なお、励起光は、EDFの前方または後方
のいずれから入力してもよい。励起光には、主に波長1.
48μmが用いられる。実際に、図6(a) の構成におい
て、 2.5Gbit/s で 350kmの無中継伝送が実現され、
図6(b) の構成において、 2.5Gbit/s で 511km、16
× 2.5Gbit/sで 427kmの無中継伝送が実現されてい
る(参考文献:OFC'95 San Diego CApostdeadline p
aper PD26, ECOC'95 Brussel Beligium paper Th.
A.3.3)。
The excitation light may be input from either the front or the back of the EDF. Excitation light mainly has wavelength 1.
48 μm is used. Actually, in the configuration of FIG. 6 (a), non-repeated transmission of 350 km at 2.5 Gbit / s is realized,
In the configuration of Fig. 6 (b), 511km, 16G at 2.5Gbit / s
× 427 km of repeaterless transmission at 2.5 Gbit / s has been realized (Reference: OFC'95 San Diego CApostdeadlinep.
aper PD26, ECOC'95 Brussel Beligium paper Th.
A.3.3).

【0009】[0009]

【発明が解決しようとする課題】ところで、EDFまで
の距離(励起光用光ファイバの長さ)に応じて、それぞ
れに送出する励起光パワーが決められるが、EDFと励
起光源が離れているために励起光源を大出力にする必要
がある。さらに、無中継での伝送距離を延ばすためにE
DFの数を増やすと、従来の構成ではEDFの数だけ励
起光用光ファイバが必要となる。この場合、信号光の伝
送用光ファイバと同じケーブルに励起光用光ファイバを
収容するとケーブルが太くなり、別に励起光用光ファイ
バを収容するケーブルを設けると構成が複雑になる。
The power of the pumping light to be transmitted is determined according to the distance to the EDF (the length of the optical fiber for the pumping light). However, since the EDF and the pumping light source are distant from each other. It is necessary to increase the output of the excitation light source. Furthermore, in order to extend the transmission distance without relay, E
When the number of DFs is increased, the conventional configuration requires the same number of optical fibers for excitation light as the number of EDFs. In this case, if the excitation light optical fiber is accommodated in the same cable as the signal light transmission optical fiber, the cable becomes thicker, and if a cable accommodating the excitation light optical fiber is separately provided, the configuration becomes complicated.

【0010】本発明は、励起光用光ファイバを用いず、
かつ伝送用光ファイバに挿入された複数の光増幅ファイ
バ(例えばEDF)に対して効率よく励起光を伝送する
ことができる遠隔励起光伝送システムを提供することを
目的とする。
The present invention does not use an optical fiber for excitation light,
It is another object of the present invention to provide a remote pumping light transmission system capable of efficiently transmitting pumping light to a plurality of optical amplification fibers (for example, EDFs) inserted into a transmission optical fiber.

【0011】[0011]

【課題を解決するための手段】本発明の遠隔励起光伝送
システムは、伝送用光ファイバに挿入される複数の光増
幅ファイバに対して、各光増幅ファイバまでの距離に応
じた波長の励起光源を送信局または受信局の少なくとも
一方に備え、各波長の励起光を伝送用光ファイバに波長
多重して伝送する。各光増幅ファイバは、伝送用光ファ
イバを用いて伝送された励起光から、それぞれ割り当て
られた波長の励起光を用いて信号光の増幅を行い、他の
波長の励起光は次の光増幅ファイバに送出する。
SUMMARY OF THE INVENTION A remote pumping light transmission system according to the present invention provides a pumping light source having a wavelength corresponding to a distance to each optical amplifying fiber for a plurality of optical amplifying fibers inserted into a transmission optical fiber. Is provided in at least one of the transmitting station and the receiving station, and the pump light of each wavelength is wavelength-multiplexed and transmitted to the transmission optical fiber. Each optical amplification fiber amplifies the signal light using the excitation light of the assigned wavelength from the excitation light transmitted using the transmission optical fiber, and the excitation light of the other wavelength is transmitted to the next optical amplification fiber. To send to.

【0012】ここで、励起光の波長に応じて伝送用光フ
ァイバにおける損失が異なるので、損失が大きい波長の
励起光を励起光源に近い光増幅ファイバで使用し、損失
が小さい波長の励起光を励起光源に遠い光増幅ファイバ
で使用することにより、効率よく励起光を伝送すること
ができる。
Here, since the loss in the transmission optical fiber varies depending on the wavelength of the pumping light, the pumping light having a large loss is used in the optical amplification fiber close to the pumping light source, and the pumping light having the small loss is used. By using an optical amplification fiber far from the excitation light source, the excitation light can be transmitted efficiently.

【0013】[0013]

【発明の実施の形態】図1は、本発明の遠隔励起光伝送
システムの第1の実施形態を示す。図において、送信局
11と受信局12とを接続する光伝送路は、1.55μm帯
の信号光を伝送する伝送用光ファイバ13と、受信局側
に挿入された光増幅ファイバ14−1,14−2により
構成される。
FIG. 1 shows a first embodiment of a remote pumping light transmission system according to the present invention. In the figure, an optical transmission line connecting a transmitting station 11 and a receiving station 12 is composed of a transmission optical fiber 13 for transmitting signal light in the 1.55 μm band, and optical amplifying fibers 14-1 and 14 inserted into the receiving station. -2.

【0014】ここで、受信局から遠い光増幅ファイバ1
4−1を励起する励起光波長はファイバ損失が小さいλ
1 (例えば1.48μm)とし、受信局から近い光増幅ファ
イバ14−2を励起する励起光波長はファイバ損失が大
きいλ2 (例えば0.98μm)とし、それぞれの励起光波
長に対応する光増幅ファイバを形成する。波長λ1 の励
起光源15−1と波長λ2 の励起光源15−2は受信局
12内に配置され、それぞれから出力される励起光はW
DMカプラ16を介して伝送用光ファイバ13に波長多
重される。
Here, the optical amplification fiber 1 far from the receiving station
The wavelength of the pump light for pumping 4-1 is λ where the fiber loss is small.
1 (for example, 1.48 μm), the pumping light wavelength for pumping the optical amplification fiber 14-2 close to the receiving station is λ2 (for example, 0.98 μm), which has a large fiber loss, and forms an optical amplification fiber corresponding to each pumping light wavelength. I do. The pumping light source 15-1 having the wavelength λ1 and the pumping light source 15-2 having the wavelength λ2 are arranged in the receiving station 12, and the pumping light outputted from each of them is W.
The wavelength is multiplexed on the transmission optical fiber 13 via the DM coupler 16.

【0015】また、光増幅ファイバ14−2の前後に
は、1.55μm帯の信号光および波長λ2 の励起光を入力
させ、波長λ1 の励起光をバイパスする光フィルタ17
−1,17−2を配置し、それぞれのポート2間に光増
幅ファイバ14−2を接続し、ポート3間にバイパス用
光ファイバ18を接続する。この光フィルタ17のポー
ト1,2間の透過特性を図2(a) に示し、ポート1,3
間の透過特性を図2(b)に示す。ポート1,2間の透過
波長は1.55μmおよびλ2 (0.98μm)に設定され、ポ
ート1,3間の透過波長はλ1 (1.48μm)に設定され
る。このような光フィルタ17は、誘電体多層膜フィル
タやグレーティングフィルタ、光平面回路(PLC)に
より実現可能である。
An optical filter 17 for inputting signal light of 1.55 μm band and pumping light of wavelength λ2 and bypassing pumping light of wavelength λ1 is provided before and after the optical amplification fiber 14-2.
-1, 17-2 are arranged, the optical amplification fiber 14-2 is connected between the respective ports 2, and the bypass optical fiber 18 is connected between the ports 3. FIG. 2A shows the transmission characteristics between the ports 1 and 2 of the optical filter 17, and FIG.
FIG. 2 (b) shows the transmission characteristics between the two. The transmission wavelength between ports 1 and 2 is set to 1.55 μm and λ2 (0.98 μm), and the transmission wavelength between ports 1 and 3 is set to λ1 (1.48 μm). Such an optical filter 17 can be realized by a dielectric multilayer filter, a grating filter, or an optical planar circuit (PLC).

【0016】このような構成により、ファイバ損失が大
きい波長λ2 の励起光は、手前の光増幅ファイバ14−
2に入力され、1.55μm帯の信号光を増幅することがで
きる。また、ファイバ損失が小さい波長λ1 の励起光
は、光増幅ファイバ14−2を迂回して次の光増幅ファ
イバ14−1に入力され、1.55μm帯の信号光を増幅す
ることができる。すなわち、ファイバ損失の大小に応じ
て、各波長の励起光を効率よく目的の光増幅ファイバま
で伝送することができる。
With such a configuration, the pumping light of the wavelength λ 2 having a large fiber loss is supplied to the optical amplification fiber 14-
2 and can amplify the signal light in the 1.55 μm band. The pumping light having the wavelength .lambda.1 having a small fiber loss bypasses the optical amplifying fiber 14-2 and is input to the next optical amplifying fiber 14-1 to amplify the 1.55 .mu.m band signal light. That is, the pump light of each wavelength can be efficiently transmitted to the target optical amplification fiber according to the magnitude of the fiber loss.

【0017】また、波長λ2 (0.98μm)の励起光によ
り励起される光増幅ファイバ14−2は、波長λ1 (1.
48μm)の励起光により励起される光増幅ファイバ14
−1に比べて感度が高いので、効率よく信号光の増幅を
行うことができる。
The optical amplifying fiber 14-2 pumped by the pumping light having the wavelength λ2 (0.98 μm) has the wavelength λ1 (1.
Optical amplification fiber 14 pumped by 48 μm) pump light
Since the sensitivity is higher than -1, the signal light can be efficiently amplified.

【0018】図3は、第1の実施形態における伝送距離
の改善効果を示す。損失係数が 0.2dB/kmで入力信
号光が40dBとしたときに、光増幅ファイバを2つ接続
した場合(実線)と、光増幅ファイバを接続しない場合
(破線)を示す。光増幅ファイバを接続しない場合に
は、伝送距離は 200kmが限界である。一方、利得が15
dBの光増幅ファイバを2つ接続した場合には、伝送距
離を 350kmまで延ばすことができる。
FIG. 3 shows the effect of improving the transmission distance in the first embodiment. When the loss coefficient is 0.2 dB / km and the input signal light is 40 dB, a case where two optical amplification fibers are connected (solid line) and a case where no optical amplification fiber is connected (dashed line) are shown. If no optical amplification fiber is connected, the transmission distance is limited to 200 km. On the other hand, the gain is 15
When two dB optical amplification fibers are connected, the transmission distance can be extended to 350 km.

【0019】図4は、本発明の遠隔励起光伝送システム
の第2の実施形態を示す。本実施形態の特徴は、3以上
の光増幅部20−1〜20−nを受信局12から遠い順
に接続し、各光増幅部20−1〜20−nに入力する励
起光波長λ1 〜λn をファイバ損失が小さい順に設定す
るところにある。なお、各光増幅部20は、第1の実施
形態で示した光増幅ファイバ14と光フィルタ17とバ
イパス用光ファイバ18を含む。
FIG. 4 shows a second embodiment of the remote pumping light transmission system of the present invention. A feature of the present embodiment is that three or more optical amplifiers 20-1 to 20-n are connected in order from the farthest from the receiving station 12, and the pumping light wavelengths λ1 to λn input to the respective optical amplifiers 20-1 to 20-n. Are set in ascending order of fiber loss. Each optical amplifier 20 includes the optical amplifier fiber 14, the optical filter 17, and the bypass optical fiber 18 described in the first embodiment.

【0020】波長λ1 の励起光源15−1〜波長λn の
励起光源15−nは受信局12内に配置され、それぞれ
から出力される励起光はWDMカプラ16を介して伝送
用光ファイバ13に波長多重される。光増幅部20−n
の光増幅ファイバの前後に配置される光フィルタは、1.
55μm帯の信号光および波長λn の励起光を光増幅ファ
イバに入力させ、波長λ1 〜λn-1 の励起光をバイパス
する。以下同様に、それぞれの光増幅部で使用する励起
光を分離し、他の励起光を次の光増幅部に送出する構成
となる。
The pumping light sources 15-1 to 15-n having the wavelength λ1 are disposed in the receiving station 12, and the pumping light outputted from each of them is transmitted to the transmission optical fiber 13 via the WDM coupler 16 by the WDM coupler 16. Multiplexed. Optical amplifier 20-n
Optical filters placed before and after the optical amplification fiber of 1.
The signal light in the 55 .mu.m band and the pump light of wavelength .lambda.n are input to the optical amplification fiber, and the pump lights of wavelengths .lambda.1 to .lambda.n-1 are bypassed. Similarly, the pump light used in each optical amplifier is separated, and another pump light is transmitted to the next optical amplifier.

【0021】図5は、本発明の遠隔励起光伝送システム
の第3の実施形態を示す。本実施形態の特徴は、第2の
実施形態における光増幅部20−1〜20−n、励起光
源15−1〜励起光源15−n、WDMカプラ16を送
信局側にも設置したところにある。なお、送信局側に設
置される光増幅部20−1〜20−nと、受信局側に設
置される光増幅部20−1〜20−nの数は同一でなく
てもよい。また、双方で使用する各励起光波長は任意で
あり、それぞれ同一表記している双方の波長(例えばλ
1)は同一でなくてもよい。
FIG. 5 shows a third embodiment of the remote pumping light transmission system according to the present invention. The feature of the present embodiment lies in that the optical amplifiers 20-1 to 20-n, the pump light sources 15-1 to 15-n, and the WDM coupler 16 in the second embodiment are also installed on the transmitting station side. . The number of optical amplifiers 20-1 to 20-n installed on the transmitting station side and the number of optical amplifiers 20-1 to 20-n installed on the receiving station side may not be the same. Further, the wavelengths of the respective pumping lights used for both are arbitrary, and both wavelengths (for example, λ
1) need not be the same.

【0022】[0022]

【発明の効果】以上説明したように、本発明の遠隔励起
光伝送システムは、伝送用光ファイバに挿入される複数
の光増幅ファイバで使用する各波長の励起光を伝送用光
ファイバに波長多重して伝送し、各光増幅ファイバがそ
れぞれ割り当てられた波長の励起光を用いて信号光の増
幅を行い、他の波長の励起光は次の光増幅ファイバに送
出することにより、励起光用光ファイバを用いずに励起
光を伝送することができる。
As described above, the remote pumping light transmission system according to the present invention uses the wavelength multiplexing of the pumping light of each wavelength used by the plurality of optical amplification fibers inserted into the transmission optical fiber. Each optical amplification fiber amplifies the signal light using the excitation light of the assigned wavelength, and transmits the excitation light of the other wavelength to the next optical amplification fiber, thereby transmitting the excitation light. Excitation light can be transmitted without using a fiber.

【0023】また、損失が大きい波長の励起光を励起光
源に近い光増幅ファイバで使用し、損失が小さい波長の
励起光を励起光源に遠い光増幅ファイバで使用すること
により、効率よく励起光を伝送し、光増幅効率を高める
ことができる。
Further, by using pump light having a wavelength with a large loss in an optical amplifying fiber near the pump light source and using pump light with a wavelength with a small loss in an optical amplifier fiber far from the pump light source, the pump light can be efficiently converted. It can transmit and increase the optical amplification efficiency.

【0024】また、受信局側から励起光が入力される複
数の光増幅ファイバを感度の高い順に受信局側から設置
することにより、信号光を効率よく増幅することができ
る。
Further, by installing a plurality of optical amplifying fibers to which the pumping light is input from the receiving station side in the descending order of sensitivity, the signal light can be efficiently amplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の遠隔励起光伝送システムの第1の実施
形態を示す図。
FIG. 1 is a diagram showing a first embodiment of a remote pumping light transmission system according to the present invention.

【図2】光フィルタ17の透過特性を示す図。FIG. 2 is a diagram showing transmission characteristics of an optical filter 17;

【図3】第1の実施形態における伝送距離の改善効果を
示す図。
FIG. 3 is a diagram showing the effect of improving the transmission distance in the first embodiment.

【図4】本発明の遠隔励起光伝送システムの第2の実施
形態を示す図。
FIG. 4 is a diagram showing a second embodiment of the remote pumping light transmission system of the present invention.

【図5】本発明の遠隔励起光伝送システムの第3の実施
形態を示す図。
FIG. 5 is a diagram showing a third embodiment of the remote pumping light transmission system of the present invention.

【図6】伝送距離の長距離化は図った従来の無中継伝送
システムの構成例を示す図。
FIG. 6 is a diagram showing a configuration example of a conventional relayless transmission system in which a transmission distance is increased.

【符号の説明】[Explanation of symbols]

11 送信局 12 受信局 13 伝送用光ファイバ 14 光増幅ファイバ 15 励起光源 16 WDMカプラ 17 光フィルタ 18 バイパス用光ファイバ 20 光増幅部(光増幅ファイバ,光フィルタ,バイパ
ス用光ファイバ)
DESCRIPTION OF SYMBOLS 11 Transmitting station 12 Receiving station 13 Transmission optical fiber 14 Optical amplification fiber 15 Excitation light source 16 WDM coupler 17 Optical filter 18 Bypass optical fiber 20 Optical amplifier (optical amplification fiber, optical filter, bypass optical fiber)

フロントページの続き (72)発明者 吉沢 信幸 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 5F072 AB09 AK06 JJ08 KK30 PP10 RR01 YY17 5K002 AA01 AA03 AA06 BA05 CA10 CA13 DA02 FA01 Continuation of front page (72) Inventor Nobuyuki Yoshizawa 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo F-term within Nippon Telegraph and Telephone Corporation (reference) 5F072 AB09 AK06 JJ08 KK30 PP10 RR01 YY17 5K002 AA01 AA03 AA06 BA05 CA10 CA13 DA02 FA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 信号光を伝送する伝送用光ファイバと、
前記伝送用光ファイバの所定の位置に挿入して信号光を
増幅する光増幅ファイバとを備え、 前記伝送用光ファイバを介して接続される送信局または
受信局の少なくとも一方に、前記光増幅ファイバを励起
する励起光を発生する励起光源と、前記励起光を前記伝
送用光ファイバに波長多重して送信する手段とを備えた
ことを特徴とする遠隔励起光伝送システム。
A transmission optical fiber for transmitting a signal light;
An optical amplification fiber that is inserted into a predetermined position of the transmission optical fiber and amplifies the signal light, wherein at least one of a transmission station and a reception station connected via the transmission optical fiber includes the optical amplification fiber. A pumping light source for generating pumping light for pumping, and a means for wavelength-multiplexing and transmitting the pumping light to the transmission optical fiber and transmitting the pumping light.
【請求項2】 請求項1に記載の遠隔励起光伝送システ
ムにおいて、 励起光波長が異なる複数の光増幅ファイバおよび各波長
の励起光を発生する複数の励起光源を備え、励起光源か
ら近い光増幅ファイバから順にそれぞれの励起光波長を
ファイバ損失が大きい順に設定し、各波長の励起光を波
長多重して前記伝送用光ファイバに送信する構成とし、 各光増幅ファイバの前後に、信号光およびそれぞれ割り
当てられた波長の励起光を選択して各光増幅ファイバに
入力し、他の波長の励起光を迂回して次段に送信する手
段を備えたことを特徴とする遠隔励起光伝送システム。
2. The remote pumping light transmission system according to claim 1, further comprising a plurality of optical amplifying fibers having different pumping light wavelengths, and a plurality of pumping light sources for generating pumping lights of respective wavelengths, wherein the optical amplification is close to the pumping light source. The pump light wavelengths are set in order from the fiber in the order of larger fiber loss, and the pump light of each wavelength is wavelength-multiplexed and transmitted to the transmission optical fiber.Before and after each optical amplification fiber, signal light and A remote pumping light transmission system comprising means for selecting a pumping light of an assigned wavelength, inputting the selected pumping light to each optical amplification fiber, and transmitting the pumping light of another wavelength to a next stage.
【請求項3】 請求項2に記載の遠隔励起光伝送システ
ムにおいて、 受信局に備えられ複数の励起光源から入力する各波長の
励起光によりそれぞれ光増幅を行う複数の光増幅ファイ
バを、感度の高い順に受信局側から設置する構成である
ことを特徴とする遠隔励起光伝送システム。
3. The remote pumping light transmission system according to claim 2, wherein a plurality of optical amplifying fibers provided in the receiving station and each performing optical amplification by pumping light of each wavelength input from a plurality of pumping light sources are provided. A remote pumping light transmission system characterized by being installed from the receiving station side in ascending order.
【請求項4】 請求項2または請求項3に記載の遠隔励
起光伝送システムにおいて、 信号光波長を1.55μm帯としたときに、ファイバ損失が
大きく光増幅ファイバの感度が高い励起光波長を0.98μ
m帯とし、ファイバ損失が小さく光増幅ファイバの感度
が低い励起光波長を1.48μm帯とすることを特徴とする
遠隔励起光伝送システム。
4. The remote pumping light transmission system according to claim 2, wherein when the signal light wavelength is in the 1.55 μm band, the pumping light wavelength having a large fiber loss and a high sensitivity of the optical amplification fiber is 0.98. μ
A remote pumping light transmission system characterized in that the pumping light wavelength is in the m band and the pumping light wavelength is low and the sensitivity of the optical amplification fiber is low in the 1.48 µm band.
JP32241798A 1998-11-12 1998-11-12 Remote pump light transmission system Expired - Fee Related JP3482348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32241798A JP3482348B2 (en) 1998-11-12 1998-11-12 Remote pump light transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32241798A JP3482348B2 (en) 1998-11-12 1998-11-12 Remote pump light transmission system

Publications (2)

Publication Number Publication Date
JP2000151521A true JP2000151521A (en) 2000-05-30
JP3482348B2 JP3482348B2 (en) 2003-12-22

Family

ID=18143440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32241798A Expired - Fee Related JP3482348B2 (en) 1998-11-12 1998-11-12 Remote pump light transmission system

Country Status (1)

Country Link
JP (1) JP3482348B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112284A1 (en) * 2003-06-10 2004-12-23 Fujitsu Limited Optical transmission system of remote excitation method
US7158698B2 (en) 2003-03-19 2007-01-02 Nec Corporation Module for amplifying signal light with remote excitation-light and optical-fiber communication system including the same
US7471900B2 (en) 2004-12-08 2008-12-30 Electronics And Telecommunications Research Institute Passive optical network system and method of transmitting broadcasting signal in same
WO2017217334A1 (en) * 2016-06-16 2017-12-21 日本電信電話株式会社 Optical fiber and optical transmission system
JP2020176884A (en) * 2019-04-17 2020-10-29 長野計器株式会社 Physical quantity measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158698B2 (en) 2003-03-19 2007-01-02 Nec Corporation Module for amplifying signal light with remote excitation-light and optical-fiber communication system including the same
WO2004112284A1 (en) * 2003-06-10 2004-12-23 Fujitsu Limited Optical transmission system of remote excitation method
US7471900B2 (en) 2004-12-08 2008-12-30 Electronics And Telecommunications Research Institute Passive optical network system and method of transmitting broadcasting signal in same
WO2017217334A1 (en) * 2016-06-16 2017-12-21 日本電信電話株式会社 Optical fiber and optical transmission system
JPWO2017217334A1 (en) * 2016-06-16 2018-10-18 日本電信電話株式会社 Optical fiber and optical transmission system
CN109313307A (en) * 2016-06-16 2019-02-05 日本电信电话株式会社 Optical fiber and optical transmission system
JP2020176884A (en) * 2019-04-17 2020-10-29 長野計器株式会社 Physical quantity measuring device

Also Published As

Publication number Publication date
JP3482348B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
EP1248392B1 (en) Optical amplifier device and bidirectional wavelength division multiplexing optical communication system using the same
US5812306A (en) Bidirectional WDM optical communication systems with bidirectional optical amplifiers
US5742416A (en) Bidirectional WDM optical communication systems with bidirectional optical amplifiers
US6411407B1 (en) Method for providing a bidirectional optical supervisory channel
US6771854B2 (en) Optical transmission system and optical coupler/branching filter
US20060176545A1 (en) Optical transmission system, optical repeater, and optical transmission method
US7349150B2 (en) Optical terminal apparatus
JPH10341206A (en) Wavelength multiplex transmitter
KR19990065030A (en) Bidirectional add / drop optical amplifier module using one waveguide string multiplexer
US6359728B1 (en) Pump device for pumping an active fiber of an optical amplifier and corresponding optical amplifier
JP4798997B2 (en) Method and apparatus for distributing pump energy from a single pump device to optical fibers located in different pairs of fibers
US6556346B1 (en) Optical amplifying unit and optical transmission system
AU2000233234A1 (en) Optical amplifier and optical transmission system
US8195048B2 (en) Optical transport system architecture for remote terminal connectivity
WO1999049601A1 (en) Wdm transmission repeater, wdm transmission system and wdm transmission method
JP3482348B2 (en) Remote pump light transmission system
WO2000044072A1 (en) Optical amplifier
EP0943192B1 (en) Method and apparatus for saturating an optical amplifier chain to prevent over amplification of a wavelength division multiplexed signal
JP2002221742A (en) Repeater and relaying transmission system for raman amplification
EP0989693A1 (en) Optical amplification system including an Erbium-Ytterbium co-doped fiber
JP3275855B2 (en) Wavelength multiplexing optical transmission device and wavelength multiplexing optical transmission device provided with this device
EP1113541A2 (en) Raman amplified optical amplifier
JP2004007662A (en) Wavelength interleaving bi-directional optical add/drop multiplexer
EP0989638A1 (en) Pump device for pumping an actice fiber of an optical amplifier and corresponding optical amplifier
WO2002003575A1 (en) Optical fiber raman amplifier and optical fiber communication system comprising at least one such amplifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees