JP2008092194A - Light wavelength assignment method and optical communication system - Google Patents

Light wavelength assignment method and optical communication system Download PDF

Info

Publication number
JP2008092194A
JP2008092194A JP2006269636A JP2006269636A JP2008092194A JP 2008092194 A JP2008092194 A JP 2008092194A JP 2006269636 A JP2006269636 A JP 2006269636A JP 2006269636 A JP2006269636 A JP 2006269636A JP 2008092194 A JP2008092194 A JP 2008092194A
Authority
JP
Japan
Prior art keywords
side device
wavelength
transmission
reception
transmission loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006269636A
Other languages
Japanese (ja)
Inventor
Nobuyuki Igarashi
信行 五十嵐
Hidesuke Motoi
秀介 本居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Ltd
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Fujitsu Telecom Networks Ltd filed Critical Fujitsu Ltd
Priority to JP2006269636A priority Critical patent/JP2008092194A/en
Publication of JP2008092194A publication Critical patent/JP2008092194A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress effectively deterioration of line quality caused by the transmission loss in each receiving side device, with the respect to a light wavelength assignment method and an optical communications system. <P>SOLUTION: In the light wavelength assignment method for assigning received wave length of two or more reception side devices in an optical communications system using a wavelength division multiplex transmission method, the longest wavelength is transmitted to each reception side device from a transmitting side device among wavelengths of light used by communications between a transmitting side device and each reception side device. The transmission loss of the longest wavelength is measured in each reception side device, and the result is notified to the transmitting side device. Based on the notice of the transmission loss from each reception side device, the transmitting side device is constituted so as to assign a wavelength in order from a receiving side device of the largest transmission loss and from the longest received wave length. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光波長割り当て方法及び光通信システムに係り、特に波長分割多重伝送方式で光通信を行う際に受信側装置に対して受信波長を割り当てる光波長割り当て方法及びそのような光波長割り当て方法を用いた光通信システムに関する。   The present invention relates to an optical wavelength allocation method and an optical communication system, and in particular, an optical wavelength allocation method for allocating a reception wavelength to a receiving apparatus when performing optical communication using a wavelength division multiplexing transmission system, and such an optical wavelength allocation method. TECHNICAL FIELD

光ファイバからなる光伝送路を用いた光通信を行う場合、伝送周波数が高いからといってその割合で伝送容量を多くすることはできない。そこで、波長分割多重(WDM:Wavelength Division Multiplex)伝送方式を用いることで、例えばOSU(Optical Subscriber Unit)等の送信側装置と複数のONU(Optical Network Unit)等の受信側装置との間の光伝送路を有効利用することができる。この場合、各ONUに対しては、例えば各ONUのIDに応じて受信波長が固定的に割り当てられる。OSUから光カプラを介して複数のONUに情報が伝送されると、各ONUでは各々に割り当てられた受信波長の情報を取り込む。   When performing optical communication using an optical transmission line composed of an optical fiber, the transmission capacity cannot be increased at that rate simply because the transmission frequency is high. Therefore, by using a wavelength division multiplexing (WDM) transmission method, for example, light between a transmission side device such as an OSU (Optical Subscriber Unit) and a reception side device such as a plurality of ONUs (Optical Network Unit). The transmission path can be used effectively. In this case, for each ONU, for example, a reception wavelength is fixedly assigned according to the ID of each ONU. When information is transmitted from the OSU to a plurality of ONUs via the optical coupler, each ONU captures information on the reception wavelength assigned to each ONU.

尚、光カプラによって各子局から親局への上り光信号を合成し、光路切り分け器を通して親局に送り出すことで、光分波器は下り信号のみを分波すれば良い構成として、光ポート数を最小限に抑える波長多重PON(Passive Optical Network)システムが、例えば特許文献1にて提案されている。
特開2005−12278号公報
The optical demultiplexer only has to demultiplex only the downstream signal by synthesizing the upstream optical signal from each slave station to the master station by the optical coupler and sending it to the master station through the optical path separator. A wavelength multiplexing PON (Passive Optical Network) system that minimizes the number is proposed in Patent Document 1, for example.
Japanese Patent Laying-Open No. 2005-12278

従来、OSUから光カプラを介して各ONUに情報を伝送する場合、光カプラから各ONUまでの光ファイバの距離が異なるため、たとえ各ONU自体の特性が略同じであっても、伝送損失による回線品質の劣化は各ONU毎に異なる。又、光ファイバの特性により、伝送波形の減衰は伝送波長が短い程大きくなる傾向があり、光カプラからONUまでの光ファイバの距離が同じであっても短い受信波長が割り当てられたONUの回線品質の劣化の方が長い受信波長が割り当てられたONUの回線品質の劣化と比べると大きくなる。このため、各ONUにおける伝送損失による回線品質の劣化を抑制することは難しいという問題があった。   Conventionally, when information is transmitted from an OSU to each ONU via an optical coupler, the distance of the optical fiber from the optical coupler to each ONU is different, so even if the characteristics of each ONU itself are substantially the same, due to transmission loss The degradation of the line quality differs for each ONU. Also, due to the characteristics of the optical fiber, the attenuation of the transmission waveform tends to increase as the transmission wavelength is shorter. Even if the distance of the optical fiber from the optical coupler to the ONU is the same, the ONU line to which a shorter reception wavelength is assigned. The deterioration in quality is greater than the deterioration in line quality of an ONU to which a longer reception wavelength is assigned. For this reason, there is a problem that it is difficult to suppress deterioration of the line quality due to transmission loss in each ONU.

そこで、本発明は、各受信側装置における伝送損失による回線品質の劣化を効果的に抑制することが可能な光波長割り当て方法及び光通信システムを提供することを目的とする。   Therefore, an object of the present invention is to provide an optical wavelength allocation method and an optical communication system that can effectively suppress degradation of channel quality due to transmission loss in each receiving-side apparatus.

上記の課題は、波長分割多重伝送方式を用いる光通信システムにおいて複数の受信側装置の受信波長を割り当てる光波長割り当て方法であって、送信側装置と各受信側装置との間の通信で使用される光の波長のうち最も長い波長を該送信側装置から各受信側装置へ送信するステップと、各受信側装置において該最も長い波長の伝送損失を測定するステップと、各受信側装置から測定した伝送損失を該送信側装置へ通知するステップと、該送信側装置において、各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てるステップとを含むことを特徴とする光波長割り当て方法によって達成できる。   The above problem is an optical wavelength allocation method for allocating reception wavelengths of a plurality of reception side devices in an optical communication system using a wavelength division multiplexing transmission system, and is used in communication between a transmission side device and each reception side device. Measuring the longest wavelength among the wavelengths of light transmitted from the transmitting device to each receiving device, measuring the transmission loss of the longest wavelength in each receiving device, and measuring from each receiving device. Informing the transmission side device of the transmission loss, and in the transmission side device, assigning from the longest reception wavelength in order from the reception side device with the largest transmission loss based on the transmission loss notification from each reception side device The method can be achieved by an optical wavelength assignment method characterized in that

上記の課題は、波長分割多重伝送方式を用いる光通信システムであって、送信側装置と、該送信側装置と光伝送路を介して通信可能な複数の受信側装置とを備え、該送信側装置は、各受信側装置との間の通信で使用される光の波長のうち最も長い波長を各受信側装置へ送信する送信手段を備え、各受信側装置は、該最も長い波長の伝送損失を測定する測定手段と、測定した伝送損失を該送信側装置へ通知する通知手段とを備え、該送信側装置は、各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てる波長割り当て手段を更に備えたことを特徴とする光通信システムによって達成できる。   An object of the present invention is an optical communication system using a wavelength division multiplex transmission system, comprising: a transmission side device; and a plurality of reception side devices capable of communicating with the transmission side device via an optical transmission line. The apparatus includes transmission means for transmitting the longest wavelength of light used in communication with each receiving apparatus to each receiving apparatus, and each receiving apparatus transmits a transmission loss of the longest wavelength. Measuring means for measuring the transmission loss, and a notification means for notifying the transmission side device of the measured transmission loss, the transmission side device is based on the transmission loss notification from each reception side device, the largest transmission loss of This can be achieved by an optical communication system characterized by further comprising wavelength allocation means for allocating from the longest reception wavelength in order from the reception side device.

本発明によれば、各受信側装置における伝送損失による回線品質の劣化を効果的に抑制することが可能な光波長割り当て方法及び光通信システムを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical wavelength allocation method and optical communication system which can suppress effectively deterioration of the channel quality by the transmission loss in each receiving side apparatus are realizable.

光通信に用いる光ファイバは、伝送波長が長い程、伝送距離が長くても減衰が少ないという特性を有する。そこで、本発明は、この光ファイバの特性を有効利用する。   An optical fiber used for optical communication has a characteristic that the longer the transmission wavelength, the less the attenuation even if the transmission distance is longer. Therefore, the present invention makes effective use of the characteristics of this optical fiber.

具体的には、送信側装置と複数の受信側装置との間で使用される光の波長のうち最も長い波長を送信側装置から各受信側装置へ伝送する。各受信側装置は、受信した波長の伝送損失を求めて送信側装置へ通知する。送信側装置は、各受信側装置からの通知に基づいて、伝送損失の最も大きい受信側装置から順に、最も長い受信波長から割り当てる。つまり、伝送損失が大きい受信側装置には長い受信波長が割り当てられ、伝送損失が小さい受信側装置には短い受信波長が割り当てられる。   Specifically, the longest wavelength among the wavelengths of light used between the transmission side device and the plurality of reception side devices is transmitted from the transmission side device to each reception side device. Each receiving side device calculates the transmission loss of the received wavelength and notifies the transmitting side device. Based on the notification from each receiving side device, the transmitting side device assigns from the longest receiving wavelength in order from the receiving side device with the largest transmission loss. That is, a long reception wavelength is assigned to a reception-side device with a large transmission loss, and a short reception wavelength is assigned to a reception-side device with a small transmission loss.

これにより、各受信側装置における伝送損失による回線品質の劣化を効果的に抑制することが可能となる。又、受信側装置の増減に応じて受信波長の再割り当てを行うことで、受信側装置の増減にかかわらず回線品質を最適化することができる。   As a result, it is possible to effectively suppress deterioration of the line quality due to transmission loss in each receiving-side apparatus. Also, by performing the reassignment of the reception wavelength according to the increase / decrease of the receiving side device, the line quality can be optimized regardless of the increase / decrease of the receiving side device.

以下に、本発明の光波長割り当て方法及び光通信システムの各実施例を、図面と共に説明する。   Embodiments of an optical wavelength assignment method and an optical communication system according to the present invention will be described below with reference to the drawings.

図1及び図2は、本発明の光通信システムの一実施例の動作を説明するブロック図である。光通信システムの本実施例は、本発明の光波長割り当て方法の一実施例を用いる。本実施例では、説明の便宜上、本発明がWDM−PONシステムに適用されているものとする。   1 and 2 are block diagrams for explaining the operation of an embodiment of the optical communication system of the present invention. This embodiment of the optical communication system uses an embodiment of the optical wavelength assignment method of the present invention. In this embodiment, for convenience of explanation, it is assumed that the present invention is applied to a WDM-PON system.

図1及び図2に示すように、WDM−PONシステム1は、送信側装置を構成するOSU2と、光カプラ3と、受信側装置を構成する複数のONU4−1〜4−nを有する。ここで、nは2以上の整数である。OSU2と光カプラ3の間は光ファイバケーブル11により接続され、光カプラ3とONU4−1〜4−nの間は対応する光ファイバケーブル12−1〜12−nにより接続されている。光ファイバケーブル12−1〜12−nの長さは、ONU4−1〜4−nの物理的な配置等に応じて異なり、全て同じ長さではない。又、各光ファイバケーブル11,12−1〜12−nの線数(又は、光ファイバ数)は、伝送する情報の種類等に応じて任意に設定可能である。   As shown in FIGS. 1 and 2, the WDM-PON system 1 includes an OSU 2 that constitutes a transmission-side device, an optical coupler 3, and a plurality of ONUs 4-1 to 4-n that constitute a reception-side device. Here, n is an integer of 2 or more. The OSU 2 and the optical coupler 3 are connected by an optical fiber cable 11, and the optical coupler 3 and the ONUs 4-1 to 4-n are connected by corresponding optical fiber cables 12-1 to 12-n. The lengths of the optical fiber cables 12-1 to 12-n differ depending on the physical arrangement of the ONUs 4-1 to 4-n and are not all the same length. Further, the number of wires (or the number of optical fibers) of each of the optical fiber cables 11, 12-1 to 12-n can be arbitrarily set according to the type of information to be transmitted.

例えば、OSU2とONU4−1〜4−nとの間の光伝送路の伝送速度が1Gbsであり、n=32であれば、各ONU4−1〜4−32では30Mbps以上の伝送速度が得られる。   For example, if the transmission speed of the optical transmission line between the OSU 2 and the ONUs 4-1 to 4-n is 1 Gbps and n = 32, each ONU 4-1 to 4-32 can obtain a transmission speed of 30 Mbps or more. .

先ず、図1に示すように、OSU2と各ONU4−1〜4−nとの間の通信で使用される光の波長のうち最も長い波長λ1を、OSU2から光カプラ3を介して各ONU4−1〜4−nに伝送する。   First, as shown in FIG. 1, the longest wavelength λ1 among the wavelengths of light used in communication between the OSU 2 and each of the ONUs 4-1 to 4-n is changed from the OSU 2 through the optical coupler 3 to each ONU 4- 1 to 4-n.

又、図1に示すように、ONU4−1〜4−nは、受信した波長λ1の伝送損失l1〜lnを求めてOSU2へ通知する。ここでは説明の便宜上、伝送損失l1〜lnがl1>l2>...>lnなる関係を満足するものとする。尚、説明の便宜上、図1は添え字の数字の順にONU4−1〜4−nが配置されている場合を示すが、ONU4−1〜4−nの相対位置関係は、図1に示すものに限定されないことは言うまでもない。   Also, as shown in FIG. 1, the ONUs 4-1 to 4-n obtain the transmission losses 11 to ln of the received wavelength λ1 and notify the OSU 2 of them. Here, for convenience of explanation, it is assumed that the transmission losses l1 to ln satisfy the relationship of l1> l2>. For convenience of explanation, FIG. 1 shows a case where the ONUs 4-1 to 4-n are arranged in the order of the subscript numbers, but the relative positional relationship of the ONUs 4-1 to 4-n is that shown in FIG. Needless to say, it is not limited to.

OSU2は、ONU4−1〜4−nからの伝送損失l1〜lnの通知に基づいて、図2に示すように最も大きい伝送損失l1のONU4−1から順に、最も長い受信波長λ1から割り当てる。つまり、伝送損失が大きいONUには長い受信波長が割り当てられ、伝送損失が小さいONUには短い受信波長が割り当てられる。この結果、ONU4−1〜4−nには、夫々受信波長λ1〜λnが割り当てられる。受信波長λ1〜λnは、λ1>λ2>...>λnなる関係を満足する。   Based on the notification of the transmission losses 11 to ln from the ONUs 4-1 to 4-n, the OSU 2 assigns from the longest reception wavelength λ1 in order from the ONU 4-1 having the largest transmission loss 11 as shown in FIG. That is, a long reception wavelength is assigned to an ONU having a large transmission loss, and a short reception wavelength is assigned to an ONU having a small transmission loss. As a result, the reception wavelengths λ1 to λn are assigned to the ONUs 4-1 to 4-n, respectively. The reception wavelengths λ1 to λn satisfy the relationship of λ1> λ2>.

これにより、各ONU4−1〜4−nにおける伝送損失による回線品質の劣化を効果的に抑制することが可能となる。又、ONUの増減に応じて受信波長の再割り当てを行うことで、ONUの増減にかかわらず回線品質を最適化することができる。   As a result, it is possible to effectively suppress deterioration in line quality due to transmission loss in each of the ONUs 4-1 to 4-n. Also, by reassigning the received wavelength according to the increase / decrease of the ONU, the line quality can be optimized regardless of the increase / decrease of the ONU.

尚、伝送損失が同じONUが2台以上存在する場合には、同じ伝送損失のONUに任意の順に受信波長を割り当てることができる。例えば、任意の順は、予め決められていても、各ONUのIDに応じて決められても良い。   If there are two or more ONUs having the same transmission loss, the received wavelengths can be assigned to the ONUs having the same transmission loss in any order. For example, the arbitrary order may be determined in advance or may be determined according to the ID of each ONU.

図3は、本実施例の動作を説明するタイミングチャートである。図3に示すように、OSU2が波長λ1を各ONU4−1〜4−nに伝送すると、ONU4−1〜4−nは受信した波長λ1の伝送損失l1〜lnを求めてOSU2へ通知する。   FIG. 3 is a timing chart for explaining the operation of this embodiment. As shown in FIG. 3, when the OSU 2 transmits the wavelength λ1 to each of the ONUs 4-1 to 4-n, the ONUs 4-1 to 4-n determine the transmission losses l1 to ln of the received wavelength λ1 and notify the OSU2.

図4は、各ONU4−1〜4−nの伝送損失測定処理(又は、伝送損失算出処理)を説明する図である。図4において、ステップST1は、OSU2から受信した波長λ1の光の受信レベルを光/電気変換部により対応する電圧レベルに変換する。ステップST2は、光/電気変換部から得られた電圧レベルをアナログ/デジタル(A/D)変換部により対応するデジタル値に変換する。ステップST3は、伝送損失算出部により、A/D変換部から得られたデジタル値と予め分かっている基準値とを比較して伝送損失を算出する。この基準値は、予め分かっているOSU2の光出力レベルを、上記光/電気変換部とA/D変換部を通した場合に得られるデジタル値である。尚、各ONU4−1〜4−nの伝送損失測定処理は、図4に示すものに限定されず、任意の方法により測定可能である。例えば、ONUが、受信した光の受信レベルを所定レベルに増幅する増幅部を含む自動利得制御部を有する場合には、自動利得制御部により制御された増幅部の利得の理想値からの増加分に基づいて電送損失を測定(又は、算出)することもできる。   FIG. 4 is a diagram for explaining transmission loss measurement processing (or transmission loss calculation processing) of each ONU 4-1 to 4-n. In FIG. 4, step ST1 converts the reception level of the light of wavelength λ1 received from OSU2 into a corresponding voltage level by the optical / electrical converter. In step ST2, the voltage level obtained from the optical / electrical converter is converted into a corresponding digital value by an analog / digital (A / D) converter. In step ST3, the transmission loss calculation unit calculates the transmission loss by comparing the digital value obtained from the A / D conversion unit with a known reference value. This reference value is a digital value obtained when the optical output level of the OSU 2 known in advance is passed through the optical / electrical converter and the A / D converter. Note that the transmission loss measurement processing of each ONU 4-1 to 4-n is not limited to the one shown in FIG. 4, and can be measured by any method. For example, when the ONU has an automatic gain control unit including an amplification unit that amplifies the reception level of received light to a predetermined level, an increase from the ideal value of the gain of the amplification unit controlled by the automatic gain control unit The transmission loss can also be measured (or calculated) based on the above.

図3の説明に戻るに、OSU2は、ONU4−1〜4−nからの伝送損失l1〜lnの通知に基づいて、最も大きい伝送損失l1のONU4−1に最も長い受信波長λ1の受信指示を送り、受信指示に対する受信応答がONU4−1から戻ってくると、ONU4−1に対するこの最も長い受信波長λ1の割り当てが終了する。以下同様にして、最も小さい伝送損失lnのONU4−nに最も短い受信波長λnの受信指示を送り、受信指示に対する受信応答がONU4−nから戻ってくると、ONU4−nに対するこの最も短い受信波長λnの割り当てが終了する。このようにして、伝送損失が大きいONUには長い受信波長が割り当てられ、伝送損失が小さいONUには短い受信波長が割り当てられ、ONU4−1〜4−nには結果的に夫々受信波長λ1〜λnが割り当てられる。   Returning to the description of FIG. 3, the OSU 2 gives an instruction to receive the longest reception wavelength λ1 to the ONU 4-1 having the largest transmission loss 11 based on the notification of the transmission losses 11 to 1 -n from the ONUs 4-1 to 4 -n. When the reception response to the transmission and reception instruction returns from the ONU 4-1, the allocation of the longest reception wavelength λ 1 to the ONU 4-1 is completed. Similarly, when a reception instruction of the shortest reception wavelength λn is sent to the ONU 4-n having the smallest transmission loss ln and a reception response to the reception instruction returns from the ONU 4-n, this shortest reception wavelength for the ONU 4-n The assignment of λn ends. In this way, a long reception wavelength is assigned to an ONU with a large transmission loss, a short reception wavelength is assigned to an ONU with a small transmission loss, and as a result, the reception wavelengths λ1 to λ1 are assigned to the ONUs 4-1 to 4-n, respectively. λn is assigned.

尚、本発明は、以下に付記する発明をも包含するものである。
(付記1) 波長分割多重伝送方式を用いる光通信システムにおいて複数の受信側装置の受信波長を割り当てる光波長割り当て方法であって、
送信側装置と各受信側装置との間の通信で使用される光の波長のうち最も長い波長を該送信側装置から各受信側装置へ送信するステップと、
各受信側装置において該最も長い波長の伝送損失を測定するステップと、
各受信側装置から測定した伝送損失を該送信側装置へ通知するステップと、
該送信側装置において、各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てるステップとを含むことを特徴とする、光波長割り当て方法。
(付記2) 該複数の受信側装置の数はn台、nは2以上の整数であり、
該測定するステップで測定した最も長い波長λ1の伝送損失はl1〜ln、l1>l2>...>lnであり、
該割り当てるステップは、伝送損失l1〜lnの受信側装置の順で夫々受信波長λ1〜λnを割り当て、λ1>λ2>...>λnであることを特徴とする、付記1記載の光波長割り当て方法。
(付記3) 該割り当てるステップは、伝送損失が同じ2台以上の受信側装置に対しては、任意の順に受信波長を割り当てることを特徴とする、付記1又は2記載の光波長割り当て方法。
(付記4) 該任意の順は、予め決められた順番、或いは、各受信側装置のIDに応じて決められた順番であることを特徴とする、付記3記載の光波長割り当て方法。
(付記5) 該光通信システムはWDM−PONシステムであり、該送信側装置はOSUであり、各受信側装置はONUであることを特徴とする、付記1〜4のいずれか1項記載の光波長割り当て方法。
(付記6) 波長分割多重伝送方式を用いる光通信システムであって、
送信側装置と、
該送信側装置と光伝送路を介して通信可能な複数の受信側装置とを備え、
該送信側装置は、各受信側装置との間の通信で使用される光の波長のうち最も長い波長を各受信側装置へ送信する送信手段を備え、
各受信側装置は、該最も長い波長の伝送損失を測定する測定手段と、測定した伝送損失を該送信側装置へ通知する通知手段とを備え、
該送信側装置は、各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てる波長割り当て手段を更に備えたことを特徴とする、光通信システム。
(付記7) 該複数の受信側装置の数はn台、nは2以上の整数であり、
各受信側装置の該測定手段で測定した最も長い波長λ1の伝送損失はl1〜ln、l1>l2>...>lnであり、
該送信側装置の該波長割り当て手段は、伝送損失l1〜lnの受信側装置の順で夫々受信波長λ1〜λnを割り当て、λ1>λ2>...>λnであることを特徴とする、付記6記載の光通信システム。
(付記8) 該送信側装置の該波長割り当て手段は、伝送損失が同じ2台以上の受信側装置に対しては、任意の順に受信波長を割り当てることを特徴とする、付記6又は7記載の光通信システム。
(付記9) 該任意の順は、予め決められた順番、或いは、各受信側装置のIDに応じて決められた順番であることを特徴とする、付記8記載の光通信システム。
(付記10) 該送信側装置はOSUであり、各受信側装置はONUであり、WDM−PONシステムを構成することを特徴とする、付記6〜9のいずれか1項記載の光通信システム。
(付記11) 波長分割多重伝送方式を用いて複数の受信側装置と光通信を行う送信側装置であって、
該送信側装置と各受信側装置との間の通信で使用される光の波長のうち最も長い波長を各受信側装置へ送信する送信手段と、
送信した最も長い波長に対する各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てる波長割り当て手段とを備えたことを特徴とする、送信側装置。
(付記12) 波長分割多重伝送方式を用いて送信側装置と光通信を行う受信側装置であって、
該受信側装置と該送信側装置との間の通信で使用される光の波長のうち最も長い波長を該送信側装置から受信する受信手段と、
該最も長い波長の伝送損失を測定する測定手段と、
該測定した伝送損失を該送信側装置へ通知する通知手段とを備えたことを特徴とする、受信側装置。
In addition, this invention also includes the invention attached to the following.
(Supplementary note 1) An optical wavelength assignment method for assigning reception wavelengths of a plurality of reception-side apparatuses in an optical communication system using a wavelength division multiplexing transmission system,
Transmitting the longest wavelength among the wavelengths of light used in communication between the transmission-side device and each reception-side device from the transmission-side device to each reception-side device;
Measuring the transmission loss of the longest wavelength at each receiving device;
Notifying the transmitting device of transmission loss measured from each receiving device;
And a step of allocating from the longest receiving wavelength in order from the receiving device with the largest transmission loss based on the transmission loss notification from each receiving device in the transmitting device. Method.
(Supplementary Note 2) The number of the plurality of receiving side devices is n, n is an integer of 2 or more,
The transmission loss of the longest wavelength λ1 measured in the measuring step is l1 to ln, l1>l2>...> ln,
The assigning step assigns the received wavelengths λ1 to λn in the order of the receiving side devices having transmission losses 11 to ln, and λ1>λ2>. Method.
(Supplementary note 3) The optical wavelength allocation method according to supplementary note 1 or 2, wherein the assigning step assigns reception wavelengths in an arbitrary order to two or more reception-side devices having the same transmission loss.
(Additional remark 4) The said arbitrary order is a predetermined order or the order determined according to ID of each receiving side apparatus, The optical wavelength allocation method of Additional remark 3 characterized by the above-mentioned.
(Supplementary note 5) The optical communication system is a WDM-PON system, the transmission side device is an OSU, and each reception side device is an ONU. Optical wavelength allocation method.
(Supplementary note 6) An optical communication system using a wavelength division multiplexing transmission system,
A transmitting device;
A plurality of receiving side devices capable of communicating with the transmitting side device via an optical transmission line;
The transmission side device includes transmission means for transmitting the longest wavelength among the wavelengths of light used in communication with each reception side device to each reception side device,
Each receiving side device includes a measuring unit that measures the transmission loss of the longest wavelength, and a notification unit that notifies the transmitting side device of the measured transmission loss,
The transmission side device further comprises wavelength allocation means for allocating from the longest reception wavelength in order from the reception side device having the largest transmission loss based on the transmission loss notification from each reception side device. Optical communication system.
(Supplementary note 7) The number of the plurality of receiving side devices is n, n is an integer of 2 or more,
The transmission loss of the longest wavelength λ1 measured by the measuring means of each receiving device is 11 to ln, l1>l2>...> ln,
The wavelength allocating means of the transmission side apparatus allocates reception wavelengths λ1 to λn in the order of the reception side apparatuses of transmission losses 11 to ln, and λ1>λ2>. 6. The optical communication system according to 6.
(Supplementary note 8) The wavelength assignment means of the transmission side device assigns reception wavelengths in any order to two or more reception side devices having the same transmission loss. Optical communication system.
(Supplementary note 9) The optical communication system according to supplementary note 8, wherein the arbitrary order is a predetermined order or an order determined according to an ID of each receiving-side apparatus.
(Supplementary note 10) The optical communication system according to any one of supplementary notes 6 to 9, wherein the transmission side device is an OSU, and each reception side device is an ONU and constitutes a WDM-PON system.
(Supplementary Note 11) A transmission-side apparatus that performs optical communication with a plurality of reception-side apparatuses using a wavelength division multiplex transmission method,
Transmitting means for transmitting the longest wavelength among the wavelengths of light used in communication between the transmitting device and each receiving device to each receiving device;
Based on the notification of transmission loss from each receiving-side device for the longest transmitted wavelength, the wavelength allocation means for assigning from the longest receiving wavelength in order from the receiving device with the largest transmission loss, Sender device.
(Additional remark 12) It is the receiving side apparatus which performs optical communication with a transmitting side apparatus using a wavelength division multiplexing transmission system,
Receiving means for receiving the longest wavelength among the wavelengths of light used in communication between the receiving apparatus and the transmitting apparatus;
Measuring means for measuring the transmission loss of the longest wavelength;
A receiving-side apparatus comprising: a notification unit that notifies the transmitting-side apparatus of the measured transmission loss.

以上、本発明を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。   While the present invention has been described with reference to the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made within the scope of the present invention.

本発明の光通信システムの一実施例の動作を説明するブロック図である。It is a block diagram explaining operation | movement of one Example of the optical communication system of this invention. 実施例の動作を説明するブロック図である。It is a block diagram explaining operation | movement of an Example. 実施例の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of an Example. ONUの伝送損失測定処理を説明する図である。It is a figure explaining the transmission loss measurement process of ONU.

符号の説明Explanation of symbols

1 WDM−PONシステム
2 OSU
3 光カプラ
4−1〜4−n ONU
11,12−1〜12−n 光ファイバケーブル
1 WDM-PON system 2 OSU
3 Optical couplers 4-1 to 4-n ONU
11, 12-1 to 12-n optical fiber cable

Claims (5)

波長分割多重伝送方式を用いる光通信システムにおいて複数の受信側装置の受信波長を割り当てる光波長割り当て方法であって、
送信側装置と各受信側装置との間の通信で使用される光の波長のうち最も長い波長を該送信側装置から各受信側装置へ送信するステップと、
各受信側装置において該最も長い波長の伝送損失を測定するステップと、
各受信側装置から測定した伝送損失を該送信側装置へ通知するステップと、
該送信側装置において、各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てるステップとを含むことを特徴とする、光波長割り当て方法。
An optical wavelength allocation method for allocating reception wavelengths of a plurality of reception side devices in an optical communication system using a wavelength division multiplexing transmission system,
Transmitting the longest wavelength among the wavelengths of light used in communication between the transmission-side device and each reception-side device from the transmission-side device to each reception-side device;
Measuring the transmission loss of the longest wavelength at each receiving device;
Notifying the transmitting device of transmission loss measured from each receiving device;
And a step of allocating from the longest receiving wavelength in order from the receiving device with the largest transmission loss based on the transmission loss notification from each receiving device in the transmitting device. Method.
該複数の受信側装置の数はn台、nは2以上の整数であり、
該測定するステップで測定した最も長い波長λ1の伝送損失はl1〜ln、l1>l2>...>lnであり、
該割り当てるステップは、伝送損失l1〜lnの受信側装置の順で夫々受信波長λ1〜λnを割り当て、λ1>λ2>...>λnであることを特徴とする、請求項1記載の光波長割り当て方法。
The number of the plurality of receiving side devices is n, where n is an integer of 2 or more,
The transmission loss of the longest wavelength λ1 measured in the measuring step is l1 to ln, l1>l2>...> ln,
2. The optical wavelength according to claim 1, wherein the assigning step assigns reception wavelengths λ <b> 1 to λn in the order of receiving devices having transmission losses 11 to ln, and λ <b>1> λ <b>2>. Assignment method.
波長分割多重伝送方式を用いる光通信システムであって、
送信側装置と、
該送信側装置と光伝送路を介して通信可能な複数の受信側装置とを備え、
該送信側装置は、各受信側装置との間の通信で使用される光の波長のうち最も長い波長を各受信側装置へ送信する送信手段を備え、
各受信側装置は、該最も長い波長の伝送損失を測定する測定手段と、測定した伝送損失を該送信側装置へ通知する通知手段とを備え、
該送信側装置は、各受信側装置からの伝送損失の通知に基づいて、最も大きい伝送損失の受信側装置から順に、最も長い受信波長から割り当てる波長割り当て手段を更に備えたことを特徴とする、光通信システム。
An optical communication system using a wavelength division multiplexing transmission system,
A transmitting device;
A plurality of receiving side devices capable of communicating with the transmitting side device via an optical transmission line;
The transmission side device includes transmission means for transmitting the longest wavelength among the wavelengths of light used in communication with each reception side device to each reception side device,
Each receiving side device includes a measuring unit that measures the transmission loss of the longest wavelength, and a notification unit that notifies the transmitting side device of the measured transmission loss,
The transmission side device further comprises wavelength allocation means for allocating from the longest reception wavelength in order from the reception side device having the largest transmission loss based on the transmission loss notification from each reception side device. Optical communication system.
該送信側装置の該波長割り当て手段は、伝送損失が同じ2台以上の受信側装置に対しては、任意の順に受信波長を割り当てることを特徴とする、請求項3記載の光通信システム。   4. The optical communication system according to claim 3, wherein the wavelength allocation means of the transmission side apparatus allocates reception wavelengths in an arbitrary order to two or more reception side apparatuses having the same transmission loss. 該送信側装置はOSUであり、各受信側装置はONUであり、WDM−PONシステムを構成することを特徴とする、請求項3又は4記載の光通信システム。   5. The optical communication system according to claim 3, wherein the transmitting side device is an OSU, and each receiving side device is an ONU, and constitutes a WDM-PON system.
JP2006269636A 2006-09-29 2006-09-29 Light wavelength assignment method and optical communication system Withdrawn JP2008092194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269636A JP2008092194A (en) 2006-09-29 2006-09-29 Light wavelength assignment method and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269636A JP2008092194A (en) 2006-09-29 2006-09-29 Light wavelength assignment method and optical communication system

Publications (1)

Publication Number Publication Date
JP2008092194A true JP2008092194A (en) 2008-04-17

Family

ID=39375871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269636A Withdrawn JP2008092194A (en) 2006-09-29 2006-09-29 Light wavelength assignment method and optical communication system

Country Status (1)

Country Link
JP (1) JP2008092194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712241B2 (en) 2012-04-20 2017-07-18 Mitsubishi Electric Corporation Communication system, master station device, slave station device, control unit, and communication control method
JP2017143378A (en) * 2016-02-09 2017-08-17 日本電信電話株式会社 Communication device and wavelength allocation method
JP2020176884A (en) * 2019-04-17 2020-10-29 長野計器株式会社 Physical quantity measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712241B2 (en) 2012-04-20 2017-07-18 Mitsubishi Electric Corporation Communication system, master station device, slave station device, control unit, and communication control method
JP2017143378A (en) * 2016-02-09 2017-08-17 日本電信電話株式会社 Communication device and wavelength allocation method
JP2020176884A (en) * 2019-04-17 2020-10-29 長野計器株式会社 Physical quantity measuring device

Similar Documents

Publication Publication Date Title
KR101410158B1 (en) System, method and relevant device for signal transmission
EP3570463A1 (en) Optical transmission system, pon system and transmission method
JP5092895B2 (en) Optical communication apparatus and optical communication system
JP4994300B2 (en) Optical termination device
JP2011082908A (en) Intra-station device, optical communication system, band allocation method, and device program
WO2007086514A1 (en) Optical wavelength multiplexing access system
EP2700181B1 (en) Passive optical network optical network terminal apparatus and configuration method
JPWO2009066733A1 (en) Communication apparatus and bandwidth allocation method
US9178610B1 (en) Optical loopback in a wavelength division multiplexing system
JP5556921B1 (en) Subscriber side apparatus registration method and optical network system
KR100678024B1 (en) Hybrid passive optical network using wireless communication
KR100754601B1 (en) Hybrid passive optical network
JP5414373B2 (en) Optical access network, optical communication method, and optical subscriber unit
JP2008092194A (en) Light wavelength assignment method and optical communication system
KR100960110B1 (en) Optical Backhaul Network for Wireless Broadband Service
KR20150096159A (en) Method and apparatus for selecting wavelength on wavelength tunable optical receiver
US20120163818A1 (en) Passive optical network apparatus for transmitting optical signal
KR101404107B1 (en) Optical network system for wireless broadband service
JP2009200956A (en) Subscriber-side optical transmit/receive unit (onu), optical terminal-station-side optical transmit/receive unit (osu), optical terminal station device (olt), and star-shaped network with them
JP2009218920A (en) Communication system and communication method
JP3568878B2 (en) Optical communication method
KR100767898B1 (en) Optical transmission system and method for sharing optical fiber cable between hybrid fiber coaxial network and coarse wavelength division multiplexing passive optical network
JP2008206031A (en) Communication system, communication device, communication method and communication program
JP2002290379A (en) Signal transmission system
KR20130101961A (en) Optical line terminal for controlling and monitoring optical power and wavelength of downstream wdm optical signals in bidirectional wavelength-division-multiplexing optical network

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201