WO2021192717A1 - Physical quantity measurement device - Google Patents
Physical quantity measurement device Download PDFInfo
- Publication number
- WO2021192717A1 WO2021192717A1 PCT/JP2021/005422 JP2021005422W WO2021192717A1 WO 2021192717 A1 WO2021192717 A1 WO 2021192717A1 JP 2021005422 W JP2021005422 W JP 2021005422W WO 2021192717 A1 WO2021192717 A1 WO 2021192717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- physical quantity
- light
- measuring device
- wavelength
- optical sensor
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title abstract description 33
- 230000003287 optical effect Effects 0.000 claims abstract description 112
- 239000000835 fiber Substances 0.000 claims description 12
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 10
- 239000000126 substance Substances 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 description 30
- 238000001514 detection method Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 239000013307 optical fiber Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 6
- 238000010408 sweeping Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
Definitions
- the present invention relates to a physical quantity measuring device.
- a physical quantity measuring device including an optical fiber sensor having a Fabry-Perot etalon composed of a pair of FBGs (fiber bragg gratings) is known (for example, Patent Document 1).
- the light emitted from the broadband light source is incident on an optical fiber sensor composed of Fabry-Perot etalon by a fiber Bragg grating pair, and the transmitted light of the optical fiber sensor is the wavelength of the transmitted light. It is incident on the interferometer through a bandpass filter centered on the peak.
- the half-value full width of the transmission spectrum of the optical fiber sensor can be made smaller than the half-value full width of the reflection spectrum of the optical fiber sensor using the conventional FBG, and the coherence length of light becomes long.
- the difference in optical path length of the interferometer can be made larger than that. Therefore, the measurement resolution can be improved.
- Patent Document 1 since only the phase information is measured as the output of the interferometer, there is a problem that the absolute value of the wavelength of the optical fiber sensor cannot be obtained and cannot be used for static measurement. ..
- An object of the present invention is to provide a physical quantity measuring device capable of improving measurement resolution and obtaining an absolute value of wavelength.
- the physical quantity measuring device of the present invention has a wavelength-variable light source configured so that the wavelength of the emitted light can be changed, and the light emitted from the wavelength-variable light source is incident, depending on the physical quantity acting on the object to be measured.
- the optical sensor emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved and the information of the absolute value of the output wavelength of the optical sensor can be obtained. Further, since the light is incident on the optical sensor while changing the wavelength of the light, the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a WDM filter required for multiplexing in Patent Document 1 and a bandpass filter required for obtaining narrow-band light of transmitted light can be eliminated.
- the physical quantity measuring device of the present invention incidents a wideband light source that emits wideband light and the light emitted from the wideband light source, and emits output light having a small half-value and full width according to the physical quantity acting on the object to be measured.
- An optical sensor that emits light, an interferometer that emits interfering light by incident the output light emitted from the optical sensor, a spectroscope that disperses the interfering light emitted from the interferometer, and the spectroscope. It is characterized by including an optical detection unit for detecting the interference light dispersed by the above.
- the interfering light emitted from the interferometer is separated by a spectroscope to obtain the wavelength spectrum information of the interfering light, and the phase information of the interferometer output is analyzed using the output light intensity of the optical sensor.
- the optical sensor emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved and the information of the absolute value of the output wavelength of the optical sensor can be obtained.
- the interference light is separated and introduced into the detection unit, it is possible to cut a wavelength region unnecessary for detection by analyzing the spectrum of the interference light. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
- the optical sensor has a measuring sensor element that constitutes Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other.
- the optical sensor since the optical sensor has a measurement sensor element that constitutes Fabry-Perot Etalon from a pair of fiber Bragg gratings that are arranged close to each other, the half-value full width of the spectrum of light emitted from the measurement sensor element can be reduced. , The measurement resolution can be improved.
- the optical sensor has a Fizeau interference type measuring sensor element.
- the optical sensor since the optical sensor has a Fizeau interferometer type measurement sensor element, the half-value full width of the spectrum of the light emitted from the measurement sensor element can be reduced, and the measurement resolution can be improved.
- the optical sensors having different centers of wavelength peaks are provided.
- this configuration by arranging a plurality of optical sensors having different center wavelengths in the measured portion, changes in physical quantities at different positions of the object to be measured and changes in different physical quantities such as pressure and temperature can be accurately measured. Can be done.
- the plurality of optical sensors are provided at the same location on the object to be measured.
- changes in different physical quantities such as pressure and temperature can be accurately measured at the same location on the object to be measured.
- the plurality of optical sensors are provided at different locations on the object to be measured.
- changes in physical quantities at different positions on the object to be measured can be accurately measured.
- FIG. 6 is an enlarged view of a part of the spectrum of FIG. The figure which superposed the three spectra of FIG.
- FIG. 1 is a diagram showing a schematic configuration of the physical quantity measuring device 1 of the first embodiment.
- the physical quantity measuring device 1 is configured to be capable of measuring physical quantities such as pressure, acceleration, displacement, and inclination.
- the physical quantity measuring device 1 includes a variable wavelength light source 10, a circulator 20, a coupler 30, an isolator 40, an optical sensor 50, a beam splitter 60, an interferometer 70, and a light detection unit 80. And.
- the wavelength tunable light source 10 is configured so that the wavelength of the emitted light can be changed.
- the tunable light source 10 is composed of, for example, a tunable laser capable of sweeping a wide band, and is configured to be capable of emitting light having a wavelength of 1200 nm to 1600 nm.
- the tunable light source 10 may be configured to be capable of emitting light in a wavelength region wider than the illustrated wavelength region, or may be configured to be capable of emitting light in a wavelength region narrower than the exemplified wavelength region. You may.
- the circulator 20 incidents the light emitted from the tunable light source 10 and sends it to the optical sensor 50 via the coupler 30 and the isolator 40. Further, the circulator 20 incidents the transmitted light output from the optical sensor 50 and sends it to the interferometer 70 via the beam splitter 60.
- the circulator 20 is not limited to the above configuration, and may be composed of, for example, a beam splitter.
- the coupler 30 is an optical element that sends the light emitted from the circulator 20 to the optical sensor 50 via the isolator 40 and sends the transmitted light output from the optical sensor 50 to the circulator 20.
- the coupler 30 is not limited to the above configuration, and may be composed of, for example, a beam splitter.
- the isolator 40 transmits the light emitted from the coupler 30 and sends it to the optical sensor 50. Further, the isolator 40 blocks a part of the reflected light of the light incident on the optical sensor 50. That is, the isolator 40 transmits only light in the direction from the coupler 30 toward the optical sensor 50.
- the optical sensor 50 is arranged on an object to be measured (not shown), and is configured to be capable of emitting output light having a small full width at half maximum according to a physical quantity acting on the object to be measured.
- the optical sensor 50 has a measurement sensor element 51 that injects the light emitted from the coupler 30 via the isolator 40 and outputs the transmitted light to the coupler 30.
- the measurement sensor element 51 is composed of a pair of fiber Bragg gratings arranged close to each other to form a Fabry-Perot Etalon. Specifically, the pair of fiber Bragg gratings constituting the measurement sensor element 51 are formed at a predetermined distance, and each of them serves as a mirror. Then, the pair of fiber Bragg gratings reflect light in a predetermined wavelength region. As a result, the pair of fiber Bragg gratings constitutes a Fabry-Perot Etalon. In the present embodiment, as described above, the measurement sensor element 51 outputs transmitted light to the coupler 30.
- the beam splitter 60 is an optical element that splits incident light into a plurality of lights at a predetermined division ratio or combines the plurality of lights.
- the beam splitter 60 includes a first beam splitter 61 and a second beam splitter 62.
- the first beam splitter 61 is arranged between the circulator 20 and the interferometer 70. Then, the first beam splitter 61 splits the light emitted from the circulator 20 into two lights and causes them to enter the interferometer 70.
- the second beam splitter 62 is arranged between the interferometer 70 and the photodetector 80. Then, the second beam splitter 62 causes interference by combining the two lights emitted from the interferometer 70, and splits the interference light into three to incident on the photodetector 80.
- the three interference lights demultiplexed by the second beam splitter 62 are different in phase by 2 ⁇ / 3.
- the interferometer 70 causes the two lights emitted from the first beam splitter 61 to interfere with each other and outputs the interferometric light.
- the interferometer 70 is composed of a so-called Mach-Zehnder type interferometer, and has two optical paths 71 and 72 for providing an optical path length difference.
- the light detection unit 80 is configured to be able to detect the interference light emitted from the interferometer 70.
- the photodetector 80 includes a photoelectric converter 81, an amplifier 82, an AD converter 83, and an MPU 84.
- the photoelectric converter 81 incidents the interference light emitted from the interferometer 70 and converts it into an electric signal.
- three photoelectric converters 81 are provided corresponding to the three interference lights demultiplexed by the second beam splitter 62.
- the amplifier 82 amplifies the electric signal converted by the photoelectric converter 81.
- three amplifiers 82 are provided according to the photoelectric converter 81.
- the AD converter 83 converts the electric signal amplified by the amplifier 82 into a digital signal and causes the MPU 84 to input the electric signal.
- three AD converters 83 are provided according to the amplifier 82.
- the MPU 84 is a so-called Micro Processing Unit, and calculates a physical quantity acting on an object to be measured by performing a predetermined calculation based on a digital signal output from the AD converter 83. The method of calculating the physical quantity by the MPU 84 will be described later.
- the MPU 84 is not limited to the above configuration, and may be composed of, for example, a CPU (Central Processing Unit).
- FIG. 2 is a diagram showing the relationship between the spectrum transmitted from the optical sensor 50 and the wavelength
- FIG. 3 is an enlarged view of the peak portion of the spectrum of FIG. 2, and FIG. It is the figure which superposed the spectrum.
- the wavelength spectrum information of the interference light as shown in FIGS. 2 and 3 can be obtained by sweeping the wavelength of the light emitted by the tunable light source 10.
- the three wavelength spectrum information shown in FIG. 2 correspond to the electric signals amplified by the three amplifiers 82, respectively.
- the spectral information shown in FIG. 4 can be obtained by superimposing the electric signals amplified by these three amplifiers 82. As shown in FIG.
- the transmittance is almost 0 over a predetermined wavelength band on both sides of the side, and further, the transmittance increases from that wavelength band toward both the short wavelength and the long wavelength, and then is attenuated.
- the center wavelength ⁇ of the optical sensor 50 is an example, and an optical sensor 50 having a center wavelength different from the above may be used.
- the light intensity detected by the photoelectric converter 81 draws a sine wave as the wavelength of the optical sensor 50 changes.
- the phase change ⁇ of this sine wave can be expressed by the mathematical formula (1).
- Equation (1) lambda is the wavelength of the optical sensor 50, n e is the effective refractive index of the core of the optical fiber, d represents the difference in optical path length of the two optical paths 71, 72 of the interferometer 70, [Delta] [lambda] is the optical sensor 50 It is the amount of change in wavelength of.
- the amount of wavelength change can be calculated conversely.
- Demodulation of the phase change is performed using the output voltage of the amplifier 82.
- the output voltage V n of the three amplifiers 82 can be expressed by the mathematical formula (2).
- ⁇ n is a constant representing the signal amplitude of each of the three amplifiers 82 due to the path loss of light, individual differences of the photoelectric converter 81, etc.
- C is the dark current of the photoelectric converter 81 and the amplifier 82.
- V 1 is the voltage value of the first amplifier 82 of the three amplifiers 82.
- the amount of phase change can be calculated from the outputs of these three amplifiers 82 using the equation (3).
- ⁇ n is a disturbance component due to a transient intensity change of light
- ⁇ 2 is a disturbance due to a transient intensity change of light contained in the signal output from the second amplifier 82. It is a component
- ⁇ 3 is a disturbance component due to a transient intensity change of light contained in the signal output from the third amplifier 82.
- the transient intensity change of light occurs in common with ⁇ 2 and ⁇ 3 , so the calculation is performed by simply inserting the constant 1. This changes due to fluctuations in the light intensity of the light source and fluctuations in the optical fiber loss due to disturbance factors (stress fluctuations, temperature fluctuations) applied to the optical fibers in the path.
- the amount of change in wavelength can be calculated by performing the calculation of the formula (3) with the MPU 84, calculating the amount of phase change from the three outputs of the amplifier 82, and then performing the calculation of the formula (1).
- the optical sensor 50 mounted so as to be affected by the change in the physical quantity of the object to be measured outputs the change in the physical quantity of the object to be measured as a change in the peak wavelength. Since the amount of change in wavelength and the amount of change in physical quantity are usually in a proportional relationship, the physical quantity can be obtained.
- the optical sensor 50 emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved. Further, the portion of the spectrum other than the signal obtained by the optical sensor 50 has a trigonometric waveform generated by the interferometer 70 as shown in the mathematical formula (4). Then, from the spectral information shown in FIGS. 2 and 3, the optical path length difference d of the interferometer 70 can be obtained by using a technique such as curve fitting.
- the absolute value information ⁇ C of the wavelength can also be calculated by the following mathematical formula (5).
- the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
- the phase information of the output of the interferometer 70 is obtained from the output light intensity of the optical sensor 50 while obtaining the wavelength spectrum information of the interference light. It can be obtained by analysis using. Further, the optical sensor 50 emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved, and information on the absolute value of the output wavelength of the optical sensor 50 can be obtained. Further, since the light is incident on the optical sensor 50 while changing the wavelength of the light, the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
- the optical sensor 50 since the optical sensor 50 has a measurement sensor element 51 that constitutes a Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other, the light emitted from the measurement sensor element 51 The half-value full width of the spectrum can be reduced, and the measurement resolution can be improved.
- the physical quantity measuring device 1A according to the second embodiment of the present invention will be described with reference to the drawings.
- the second embodiment is different from the first embodiment in that the optical sensor 50A has a measurement sensor element 51A that reflects the light incident from the circulator 20A and outputs the reflected light to the circulator 20A.
- the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
- FIG. 5 is a diagram showing a schematic configuration of the physical quantity measuring device 1A of the second embodiment.
- the physical quantity measuring device 1A includes a wavelength variable light source 10, a circulator 20A, an optical sensor 50A, a beam splitter 60, an interferometer 70, and a light detection unit 80.
- the circulator 20A is configured in the same manner as the circulator 20 of the first embodiment. Then, in the present embodiment, the circulator 20A incidents the light emitted from the tunable light source 10 and sends it to the optical sensor 50A. Further, the circulator 20A incidents the reflected light output from the optical sensor 50A and sends it to the interferometer 70 via the beam splitter 60.
- the circulator 20A may be composed of, for example, a beam splitter as in the first embodiment.
- optical sensor 50A The optical sensor 50A is arranged on the object to be measured (not shown) as in the first embodiment described above, and is configured to be capable of emitting output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. ing.
- the optical sensor 50A has a measurement sensor element 51A that incidents the light emitted from the circulator 20A and outputs the reflected light to the circulator 20A.
- the measurement sensor element 51A is composed of a pair of fiber Bragg gratings arranged close to each other, and constitutes a Fabry-Perot Etalon, as in the first embodiment described above. In the present embodiment, as described above, the measurement sensor element 51A outputs the reflected light to the circulator 20A.
- FIG. 6 is a diagram showing the relationship between the spectrum reflected from the optical sensor 50A and the wavelength
- FIG. 7 is an enlarged view of a part of the spectrum of FIG. 6, and FIG. It is the figure which superposed the spectrum.
- the wavelength spectrum information of the interference light as shown in FIGS. 6 and 7 can be obtained by sweeping the wavelength of the light emitted by the tunable light source 10 as in the first embodiment described above. ..
- the three wavelength spectrum information shown in FIG. 6 correspond to the electric signals amplified by the three amplifiers 82, respectively. Further, the spectral information shown in FIG.
- the reflectance is about 0.7 over a predetermined wavelength band on both sides, and the reflectance is further attenuated from that wavelength band toward both the short wavelength and the long wavelength. That is, the tendency is completely opposite to the spectrum of the transmitted light of the first embodiment described above.
- the center wavelength ⁇ of the optical sensor 50A is an example, and an optical sensor 50A having a center wavelength different from the above may be used.
- the intensity I m of the reflected light detected by the photoelectric converter 81, except for the part of a very narrow band is cut by the Fabry-Perot interferometer, it can be represented by Equation (6).
- S m the actual relative measured signal S m of the photoelectric converter 81 (S m -I m) curve fitting, such as 2 becomes minimum, A m , A, b, d can be obtained.
- Equation (7) by subtracting the measured signal S m from I m obtained in Equation (6), the output voltage V has a meaning similar to the first embodiment using the transmitted light n can be calculated.
- the amount of phase change can be calculated from the outputs of the three amplifiers 82 using the mathematical formula (3) as in the first embodiment described above. Therefore, the wavelength change amount can be calculated by performing the calculation of the formula (3) with the MPU 84, calculating the phase change amount from the three outputs of the amplifier 82, and then performing the calculation of the formula (1).
- the optical sensor 50A mounted so as to be affected by a change in the physical quantity of the object to be measured outputs the change in the physical quantity of the object to be measured as a change in peak wavelength. Since the amount of change in wavelength and the amount of change in physical quantity are usually in a proportional relationship, the physical quantity can be obtained. Further, similarly to the first embodiment described above, the absolute value information ⁇ C of the wavelength can also be calculated by the mathematical formula (5).
- the third embodiment is different from the first and second embodiments in that the wideband light source 11 is used as the light source and the spectroscope 90 is arranged on the secondary side of the interferometer 70.
- the same components as those in the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted.
- FIG. 9 is a diagram showing a schematic configuration of the physical quantity measuring device 1B of the third embodiment.
- the physical quantity measuring device 1B includes a broadband light source 11, a circulator 20, a coupler 30, an isolator 40, an optical sensor 50, a beam splitter 60, an interferometer 70, a spectroscope 90, and the like. It is provided with an optical detection unit 80.
- the wideband light source 11 is a light source that emits light having a wide band wavelength.
- the wideband light source 11 is, for example, an SC (Super Continuum) light source, and is configured to be capable of emitting light in a wavelength region of 1250 nm to 1650 nm.
- the broadband light source 11 is not limited to the above configuration, and may be a combination of an ASE (Amplified Spontaneous Emission) light source, an SLD (Super Luminescent Diode) light source, or the like.
- the wideband light source 11 may be configured to be capable of emitting light in a wavelength region wider than the illustrated wavelength region, or may be configured to be capable of emitting light in a wavelength region narrower than the illustrated wavelength region. May be good.
- the spectroscope 90 injects and disperses the interference light emitted from the interferometer 70.
- three spectroscopes 90 are provided corresponding to the three interference lights demultiplexed by the second beam splitter 62.
- the physical quantity acting on the object to be measured is measured by analyzing the interference light in which the transmitted light of the optical sensor 50 is interfered with by the interference meter 70.
- the wavelength spectrum information of the interference light can be obtained by splitting the interference light with the spectroscope 90. Therefore, the absolute value information ⁇ C of the output wavelength of the optical sensor 50 can be obtained as in the first embodiment described above.
- the interference light emitted from the interference meter 70 is separated by the spectroscope 90, so that the phase information of the interference meter output is output from the optical sensor 50 while obtaining the wavelength spectrum information of the interference light. It can be obtained by analysis using light intensity. Further, the optical sensor 50 emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved, and information on the absolute value of the output wavelength of the optical sensor 50 can be obtained. Further, since the interference light is separated and introduced into the detection unit, it is possible to cut a wavelength region unnecessary for detection by analyzing the spectrum of the interference light. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
- the physical quantity measuring device 1C according to the fourth embodiment of the present invention will be described with reference to the drawings.
- the fourth embodiment is different from the third embodiment in that the optical sensor 50A has a measurement sensor element 51A that reflects the light incident from the circulator 20A and outputs the reflected light to the circulator 20A.
- the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- FIG. 10 is a diagram showing a schematic configuration of the physical quantity measuring device 1C of the fourth embodiment.
- the physical quantity measuring device 1C includes a broadband light source 11, a circulator 20A, an optical sensor 50A, a beam splitter 60, an interferometer 70, a spectroscope 90, and a light detection unit 80.
- the physical quantity acting on the object to be measured is measured by analyzing the interference light in which the reflected light of the optical sensor 50A is interfered with by the interference meter 70.
- the wavelength spectrum information of the interference light can be obtained by splitting the interference light with the spectroscope 90. Therefore, the absolute value information ⁇ C of the output wavelength of the optical sensor 50A can be obtained as in the second embodiment described above.
- the optical sensors 50 and 50A are configured to include measurement sensor elements 51 and 51A constituting Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other.
- the optical sensor may be configured to include a Fizeau interference type measurement sensor element.
- the interferometer 70 was composed of a Mach-Zehnder type interferometer, but the present invention is not limited to this.
- the interferometer may be composed of a Michaelson type interferometer.
- the physical quantity measuring devices 1, 1A, 1B, and 1C are provided with one optical sensor 50, 50A, but the present invention is not limited to this.
- the physical quantity measuring device may be provided with a plurality of optical sensors having different centers of wavelength peaks.
- the plurality of optical sensors may be provided at the same location on the object to be measured. With this configuration, changes in different physical quantities such as pressure and temperature can be accurately measured at the same location of the object to be measured. Further, the plurality of optical sensors may be provided at different locations on the object to be measured. With this configuration, changes in physical quantities at different positions of the object to be measured can be accurately measured.
- the physical quantity measuring devices 1 and 1C are configured to include the coupler 30 and the isolator 40, but the present invention is not limited thereto.
- the physical quantity measuring devices 1 and 1C may be configured to include a circulator instead of the coupler 30 and the isolator 40.
- 1,1A, 1B, 1C Physical quantity measuring device, 10 ... Variable wavelength light source, 11 ... Wideband light source, 20,20A ... Circulator, 30 ... Coupler, 40 ... Isolator, 50,50A ... Optical sensor, 51,51A ... For measurement Sensor element, 60 ... beam splitter, 61 ... first beam splitter, 62 ... second beam splitter, 70 ... interferometer, 71 ... optical path, 72 ... optical path, 80 ... optical detector, 81 ... photoelectric converter, 82 ... amplifier , 83 ... AD converter, 84 ... MPU, 90 ... spectroscope.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
Abstract
A physical quantity measurement device (1) comprises: a variable-wavelength light source (10) configured so that the wavelength of light emitted thereby can be modified; an optical sensor (50) on which light emitted from the variable-wavelength light source (10) is incident, and which emits output light having a small full width at half maximum in accordance with a physical quantity acting on a substance to be measured; an interferometer (70) on which the output light emitted from the optical sensor (50) is incident, and which emits interference light; and a light detector (80) that detects the interference light emitted from the interferometer (70).
Description
本発明は、物理量測定装置に関する。
The present invention relates to a physical quantity measuring device.
一対となるFBG(ファイバブラッググレーティング)から構成されたファブリペローエタロンを有する光ファイバセンサを備える物理量測定装置が知られている(例えば、特許文献1など)。
A physical quantity measuring device including an optical fiber sensor having a Fabry-Perot etalon composed of a pair of FBGs (fiber bragg gratings) is known (for example, Patent Document 1).
特許文献1の物理量測定装置では、広帯域光源から出射される光をファイバブラッググレーティング対によるファブリペローエタロンで構成された光ファイバセンサに入射し、当該光ファイバセンサの透過光を、当該透過光の波長ピークを中心とするバンドパスフィルタを介して、干渉計に入射させている。
これにより、光ファイバセンサの透過スペクトルの半値全幅を、従来のFBGを用いた光ファイバセンサの反射スペクトルの半値全幅よりも小さくでき、光のコヒーレンス長が長くなるため、従来のFBGを用いた場合よりも干渉計の光路長差を大きくすることができる。このため、測定分解能を向上することができる。 In the physical quantity measuring device ofPatent Document 1, the light emitted from the broadband light source is incident on an optical fiber sensor composed of Fabry-Perot etalon by a fiber Bragg grating pair, and the transmitted light of the optical fiber sensor is the wavelength of the transmitted light. It is incident on the interferometer through a bandpass filter centered on the peak.
As a result, the half-value full width of the transmission spectrum of the optical fiber sensor can be made smaller than the half-value full width of the reflection spectrum of the optical fiber sensor using the conventional FBG, and the coherence length of light becomes long. The difference in optical path length of the interferometer can be made larger than that. Therefore, the measurement resolution can be improved.
これにより、光ファイバセンサの透過スペクトルの半値全幅を、従来のFBGを用いた光ファイバセンサの反射スペクトルの半値全幅よりも小さくでき、光のコヒーレンス長が長くなるため、従来のFBGを用いた場合よりも干渉計の光路長差を大きくすることができる。このため、測定分解能を向上することができる。 In the physical quantity measuring device of
As a result, the half-value full width of the transmission spectrum of the optical fiber sensor can be made smaller than the half-value full width of the reflection spectrum of the optical fiber sensor using the conventional FBG, and the coherence length of light becomes long. The difference in optical path length of the interferometer can be made larger than that. Therefore, the measurement resolution can be improved.
しかしながら、特許文献1では、干渉計の出力として位相情報のみを測定しているため、光ファイバセンサの波長の絶対値を得ることができず、静的な測定に用いることができないといった問題がある。
However, in Patent Document 1, since only the phase information is measured as the output of the interferometer, there is a problem that the absolute value of the wavelength of the optical fiber sensor cannot be obtained and cannot be used for static measurement. ..
本発明の目的は、測定分解能を向上でき、かつ、波長の絶対値を得ることができる物理量測定装置を提供することにある。
An object of the present invention is to provide a physical quantity measuring device capable of improving measurement resolution and obtaining an absolute value of wavelength.
本発明の物理量測定装置は、出射する光の波長を変更可能に構成された波長可変光源と、前記波長可変光源から出射される前記光を入射して、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する光学センサと、前記光学センサから出射された前記出力光を入射して、干渉光を出射する干渉計と、前記干渉計から出射される前記干渉光を検出する光検出部と、を備えることを特徴とする。
The physical quantity measuring device of the present invention has a wavelength-variable light source configured so that the wavelength of the emitted light can be changed, and the light emitted from the wavelength-variable light source is incident, depending on the physical quantity acting on the object to be measured. Detects an optical sensor that emits output light having a small half-value full width, an interferometer that emits interfering light by injecting the output light emitted from the optical sensor, and the interfering light emitted from the interferometer. It is characterized in that it includes an optical detection unit.
本発明では、波長可変光源が出射する光の波長を掃引することで、干渉光の波長スペクトル情報を得ながら、干渉計出力の位相情報を光学センサの出力光強度を用いた解析により得ることができる。また、光学センサは、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上でき、かつ、光学センサの出力波長の絶対値の情報を得ることができる。
さらに、光の波長を変更しながら光学センサに入射させるので、干渉光を時間的に解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、特許文献1において多重化に必要なWDMフィルタや、透過光の狭帯域光を得るのに必要なバンドパスフィルタを不要にできる。 In the present invention, by sweeping the wavelength of the light emitted by the variable wavelength light source, it is possible to obtain the phase information of the output of the interferometer by analysis using the output light intensity of the optical sensor while obtaining the wavelength spectrum information of the interference light. can. Further, the optical sensor emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved and the information of the absolute value of the output wavelength of the optical sensor can be obtained.
Further, since the light is incident on the optical sensor while changing the wavelength of the light, the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a WDM filter required for multiplexing inPatent Document 1 and a bandpass filter required for obtaining narrow-band light of transmitted light can be eliminated.
さらに、光の波長を変更しながら光学センサに入射させるので、干渉光を時間的に解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、特許文献1において多重化に必要なWDMフィルタや、透過光の狭帯域光を得るのに必要なバンドパスフィルタを不要にできる。 In the present invention, by sweeping the wavelength of the light emitted by the variable wavelength light source, it is possible to obtain the phase information of the output of the interferometer by analysis using the output light intensity of the optical sensor while obtaining the wavelength spectrum information of the interference light. can. Further, the optical sensor emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved and the information of the absolute value of the output wavelength of the optical sensor can be obtained.
Further, since the light is incident on the optical sensor while changing the wavelength of the light, the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a WDM filter required for multiplexing in
本発明の物理量測定装置は、広帯域の光を出射する広帯域光源と、前記広帯域光源から出射される前記光を入射して、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する光学センサと、前記光学センサから出射された前記出力光を入射して、干渉光を出射する干渉計と、前記干渉計から出射される前記干渉光を分光する分光器と、前記分光器により分光された前記干渉光を検出する光検出部と、を備えることを特徴とする。
The physical quantity measuring device of the present invention incidents a wideband light source that emits wideband light and the light emitted from the wideband light source, and emits output light having a small half-value and full width according to the physical quantity acting on the object to be measured. An optical sensor that emits light, an interferometer that emits interfering light by incident the output light emitted from the optical sensor, a spectroscope that disperses the interfering light emitted from the interferometer, and the spectroscope. It is characterized by including an optical detection unit for detecting the interference light dispersed by the above.
本発明では、干渉計から出射される干渉光を分光器にて分光することで、干渉光の波長スペクトル情報を得ながら、干渉計出力の位相情報を光学センサの出力光強度を用いた解析により得ることができる。また、光学センサは、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上でき、かつ、光学センサの出力波長の絶対値の情報を得ることができる。
さらに、干渉光を分光して検出部に導入させるので、干渉光のスペクトルを解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。 In the present invention, the interfering light emitted from the interferometer is separated by a spectroscope to obtain the wavelength spectrum information of the interfering light, and the phase information of the interferometer output is analyzed using the output light intensity of the optical sensor. Obtainable. Further, the optical sensor emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved and the information of the absolute value of the output wavelength of the optical sensor can be obtained.
Further, since the interference light is separated and introduced into the detection unit, it is possible to cut a wavelength region unnecessary for detection by analyzing the spectrum of the interference light. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
さらに、干渉光を分光して検出部に導入させるので、干渉光のスペクトルを解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。 In the present invention, the interfering light emitted from the interferometer is separated by a spectroscope to obtain the wavelength spectrum information of the interfering light, and the phase information of the interferometer output is analyzed using the output light intensity of the optical sensor. Obtainable. Further, the optical sensor emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved and the information of the absolute value of the output wavelength of the optical sensor can be obtained.
Further, since the interference light is separated and introduced into the detection unit, it is possible to cut a wavelength region unnecessary for detection by analyzing the spectrum of the interference light. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
本発明の物理量測定装置において、前記光学センサは、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子を有することが好ましい。
この構成では、光学センサは、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子を有するので、測定用センサ素子から出射される光のスペクトルの半値全幅を小さくでき、測定分解能を向上させることができる。 In the physical quantity measuring device of the present invention, it is preferable that the optical sensor has a measuring sensor element that constitutes Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other.
In this configuration, since the optical sensor has a measurement sensor element that constitutes Fabry-Perot Etalon from a pair of fiber Bragg gratings that are arranged close to each other, the half-value full width of the spectrum of light emitted from the measurement sensor element can be reduced. , The measurement resolution can be improved.
この構成では、光学センサは、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子を有するので、測定用センサ素子から出射される光のスペクトルの半値全幅を小さくでき、測定分解能を向上させることができる。 In the physical quantity measuring device of the present invention, it is preferable that the optical sensor has a measuring sensor element that constitutes Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other.
In this configuration, since the optical sensor has a measurement sensor element that constitutes Fabry-Perot Etalon from a pair of fiber Bragg gratings that are arranged close to each other, the half-value full width of the spectrum of light emitted from the measurement sensor element can be reduced. , The measurement resolution can be improved.
本発明の物理量測定装置において、前記光学センサは、フィゾー干渉型の測定用センサ素子を有することが好ましい。
この構成では、光学センサは、フィゾー干渉型の測定用センサ素子を有するので、測定用センサ素子から出射される光のスペクトルの半値全幅を小さくでき、測定分解能を向上させることができる。 In the physical quantity measuring device of the present invention, it is preferable that the optical sensor has a Fizeau interference type measuring sensor element.
In this configuration, since the optical sensor has a Fizeau interferometer type measurement sensor element, the half-value full width of the spectrum of the light emitted from the measurement sensor element can be reduced, and the measurement resolution can be improved.
この構成では、光学センサは、フィゾー干渉型の測定用センサ素子を有するので、測定用センサ素子から出射される光のスペクトルの半値全幅を小さくでき、測定分解能を向上させることができる。 In the physical quantity measuring device of the present invention, it is preferable that the optical sensor has a Fizeau interference type measuring sensor element.
In this configuration, since the optical sensor has a Fizeau interferometer type measurement sensor element, the half-value full width of the spectrum of the light emitted from the measurement sensor element can be reduced, and the measurement resolution can be improved.
本発明の物理量測定装置において、波長ピークの中心がそれぞれ異なる複数の前記光学センサが設けられることが好ましい。
この構成では、中心波長が異なる光学センサを被測定部に複数配置することで、被測定物の異なる位置での物理量の変化や、例えば、圧力および温度といった異なる物理量の変化を正確に測定することができる。 In the physical quantity measuring device of the present invention, it is preferable that a plurality of the optical sensors having different centers of wavelength peaks are provided.
In this configuration, by arranging a plurality of optical sensors having different center wavelengths in the measured portion, changes in physical quantities at different positions of the object to be measured and changes in different physical quantities such as pressure and temperature can be accurately measured. Can be done.
この構成では、中心波長が異なる光学センサを被測定部に複数配置することで、被測定物の異なる位置での物理量の変化や、例えば、圧力および温度といった異なる物理量の変化を正確に測定することができる。 In the physical quantity measuring device of the present invention, it is preferable that a plurality of the optical sensors having different centers of wavelength peaks are provided.
In this configuration, by arranging a plurality of optical sensors having different center wavelengths in the measured portion, changes in physical quantities at different positions of the object to be measured and changes in different physical quantities such as pressure and temperature can be accurately measured. Can be done.
本発明の物理量測定装置において、複数の前記光学センサは、被測定物における同じ箇所に設けられることが好ましい。
この構成では、複数の光学センサが被測定物における同じ箇所に設けられるので、被測定物の同じ箇所において、例えば、圧力および温度といった異なる物理量の変化を正確に測定することができる。 In the physical quantity measuring device of the present invention, it is preferable that the plurality of optical sensors are provided at the same location on the object to be measured.
In this configuration, since a plurality of optical sensors are provided at the same location on the object to be measured, changes in different physical quantities such as pressure and temperature can be accurately measured at the same location on the object to be measured.
この構成では、複数の光学センサが被測定物における同じ箇所に設けられるので、被測定物の同じ箇所において、例えば、圧力および温度といった異なる物理量の変化を正確に測定することができる。 In the physical quantity measuring device of the present invention, it is preferable that the plurality of optical sensors are provided at the same location on the object to be measured.
In this configuration, since a plurality of optical sensors are provided at the same location on the object to be measured, changes in different physical quantities such as pressure and temperature can be accurately measured at the same location on the object to be measured.
本発明の物理量測定装置において、複数の前記光学センサは、被測定物における異なる箇所にそれぞれ設けられることが好ましい。
この構成では、複数の光学センサが被測定物における異なる箇所にそれぞれ設けられるので、被測定物の異なる位置での物理量の変化を正確に測定することができる。 In the physical quantity measuring device of the present invention, it is preferable that the plurality of optical sensors are provided at different locations on the object to be measured.
In this configuration, since a plurality of optical sensors are provided at different locations on the object to be measured, changes in physical quantities at different positions on the object to be measured can be accurately measured.
この構成では、複数の光学センサが被測定物における異なる箇所にそれぞれ設けられるので、被測定物の異なる位置での物理量の変化を正確に測定することができる。 In the physical quantity measuring device of the present invention, it is preferable that the plurality of optical sensors are provided at different locations on the object to be measured.
In this configuration, since a plurality of optical sensors are provided at different locations on the object to be measured, changes in physical quantities at different positions on the object to be measured can be accurately measured.
[第1実施形態]
本発明の第1実施形態の物理量測定装置1を図面に基づいて説明する。
図1は、第1実施形態の物理量測定装置1の概略構成を示す図である。なお、物理量測定装置1は、圧力、加速度、変位、傾斜などの物理量を測定可能に構成されている。
図1に示すように、物理量測定装置1は、波長可変光源10と、サーキュレータ20と、カプラ30と、アイソレータ40と、光学センサ50と、ビームスプリッタ60と、干渉計70と、光検出部80とを備える。 [First Embodiment]
The physicalquantity measuring device 1 of the first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of the physicalquantity measuring device 1 of the first embodiment. The physical quantity measuring device 1 is configured to be capable of measuring physical quantities such as pressure, acceleration, displacement, and inclination.
As shown in FIG. 1, the physicalquantity measuring device 1 includes a variable wavelength light source 10, a circulator 20, a coupler 30, an isolator 40, an optical sensor 50, a beam splitter 60, an interferometer 70, and a light detection unit 80. And.
本発明の第1実施形態の物理量測定装置1を図面に基づいて説明する。
図1は、第1実施形態の物理量測定装置1の概略構成を示す図である。なお、物理量測定装置1は、圧力、加速度、変位、傾斜などの物理量を測定可能に構成されている。
図1に示すように、物理量測定装置1は、波長可変光源10と、サーキュレータ20と、カプラ30と、アイソレータ40と、光学センサ50と、ビームスプリッタ60と、干渉計70と、光検出部80とを備える。 [First Embodiment]
The physical
FIG. 1 is a diagram showing a schematic configuration of the physical
As shown in FIG. 1, the physical
[波長可変光源10]
波長可変光源10は、出射する光の波長を変更可能に構成されている。本実施形態では、波長可変光源10は、例えば、広帯域を掃引可能なチューナブルレーザにより構成されており、1200nm~1600nmの波長の光を出射可能に構成されている。
なお、波長可変光源10は、例示した波長領域よりも広い波長領域の光を出射可能に構成されていてもよく、あるいは、例示した波長領域よりも狭い波長領域の光を出射可能に構成されていてもよい。 [Tunable light source 10]
The wavelengthtunable light source 10 is configured so that the wavelength of the emitted light can be changed. In the present embodiment, the tunable light source 10 is composed of, for example, a tunable laser capable of sweeping a wide band, and is configured to be capable of emitting light having a wavelength of 1200 nm to 1600 nm.
Thetunable light source 10 may be configured to be capable of emitting light in a wavelength region wider than the illustrated wavelength region, or may be configured to be capable of emitting light in a wavelength region narrower than the exemplified wavelength region. You may.
波長可変光源10は、出射する光の波長を変更可能に構成されている。本実施形態では、波長可変光源10は、例えば、広帯域を掃引可能なチューナブルレーザにより構成されており、1200nm~1600nmの波長の光を出射可能に構成されている。
なお、波長可変光源10は、例示した波長領域よりも広い波長領域の光を出射可能に構成されていてもよく、あるいは、例示した波長領域よりも狭い波長領域の光を出射可能に構成されていてもよい。 [Tunable light source 10]
The wavelength
The
[サーキュレータ20]
サーキュレータ20は、波長可変光源10から出射された光を入射して、カプラ30およびアイソレータ40を介して光学センサ50に送る。さらに、サーキュレータ20は、光学センサ50から出力された透過光を入射して、ビームスプリッタ60を介して干渉計70に送る。
なお、サーキュレータ20は、上記構成に限られず、例えば、ビームスプリッタから構成されていてもよい。 [Circulator 20]
Thecirculator 20 incidents the light emitted from the tunable light source 10 and sends it to the optical sensor 50 via the coupler 30 and the isolator 40. Further, the circulator 20 incidents the transmitted light output from the optical sensor 50 and sends it to the interferometer 70 via the beam splitter 60.
Thecirculator 20 is not limited to the above configuration, and may be composed of, for example, a beam splitter.
サーキュレータ20は、波長可変光源10から出射された光を入射して、カプラ30およびアイソレータ40を介して光学センサ50に送る。さらに、サーキュレータ20は、光学センサ50から出力された透過光を入射して、ビームスプリッタ60を介して干渉計70に送る。
なお、サーキュレータ20は、上記構成に限られず、例えば、ビームスプリッタから構成されていてもよい。 [Circulator 20]
The
The
[カプラ30]
カプラ30は、サーキュレータ20から出射された光を、アイソレータ40を介して光学センサ50に送るとともに、光学センサ50から出力された透過光をサーキュレータ20に送る光学素子である。
なお、カプラ30は、上記構成に限られるものではなく、例えば、ビームスプリッタから構成されていてもよい。 [Coupler 30]
Thecoupler 30 is an optical element that sends the light emitted from the circulator 20 to the optical sensor 50 via the isolator 40 and sends the transmitted light output from the optical sensor 50 to the circulator 20.
Thecoupler 30 is not limited to the above configuration, and may be composed of, for example, a beam splitter.
カプラ30は、サーキュレータ20から出射された光を、アイソレータ40を介して光学センサ50に送るとともに、光学センサ50から出力された透過光をサーキュレータ20に送る光学素子である。
なお、カプラ30は、上記構成に限られるものではなく、例えば、ビームスプリッタから構成されていてもよい。 [Coupler 30]
The
The
[アイソレータ40]
アイソレータ40は、カプラ30から出射された光を透過して、光学センサ50に送る。また、アイソレータ40は、光学センサ50に入射された光のうち、反射された一部の光を遮断する。すなわち、アイソレータ40は、カプラ30から光学センサ50に向かう方向の光のみを透過させる。 [Isolator 40]
Theisolator 40 transmits the light emitted from the coupler 30 and sends it to the optical sensor 50. Further, the isolator 40 blocks a part of the reflected light of the light incident on the optical sensor 50. That is, the isolator 40 transmits only light in the direction from the coupler 30 toward the optical sensor 50.
アイソレータ40は、カプラ30から出射された光を透過して、光学センサ50に送る。また、アイソレータ40は、光学センサ50に入射された光のうち、反射された一部の光を遮断する。すなわち、アイソレータ40は、カプラ30から光学センサ50に向かう方向の光のみを透過させる。 [Isolator 40]
The
[光学センサ50]
光学センサ50は、図示略の被測定物に配置されており、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射可能に構成されている。本実施形態では、光学センサ50は、アイソレータ40を介してカプラ30から出射された光を入射して、その透過光をカプラ30に出力する測定用センサ素子51を有する。 [Optical sensor 50]
Theoptical sensor 50 is arranged on an object to be measured (not shown), and is configured to be capable of emitting output light having a small full width at half maximum according to a physical quantity acting on the object to be measured. In the present embodiment, the optical sensor 50 has a measurement sensor element 51 that injects the light emitted from the coupler 30 via the isolator 40 and outputs the transmitted light to the coupler 30.
光学センサ50は、図示略の被測定物に配置されており、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射可能に構成されている。本実施形態では、光学センサ50は、アイソレータ40を介してカプラ30から出射された光を入射して、その透過光をカプラ30に出力する測定用センサ素子51を有する。 [Optical sensor 50]
The
測定用センサ素子51は、互いに近接配置された一対のファイバブラッググレーティングから構成され、ファブリペローエタロンを構成する。具体的には、測定用センサ素子51を構成する一対のファイバブラッググレーティングは、所定の距離を隔てて形成されており、それぞれミラーの役割を有する。そして、一対のファイバブラッググレーティングは、所定の波長領域の光を反射する。これにより、当該一対のファイバブラッググレーティングは、ファブリペローエタロンを構成する。本実施形態では、前述したように、測定用センサ素子51は、透過光をカプラ30に出力する。
The measurement sensor element 51 is composed of a pair of fiber Bragg gratings arranged close to each other to form a Fabry-Perot Etalon. Specifically, the pair of fiber Bragg gratings constituting the measurement sensor element 51 are formed at a predetermined distance, and each of them serves as a mirror. Then, the pair of fiber Bragg gratings reflect light in a predetermined wavelength region. As a result, the pair of fiber Bragg gratings constitutes a Fabry-Perot Etalon. In the present embodiment, as described above, the measurement sensor element 51 outputs transmitted light to the coupler 30.
[ビームスプリッタ60]
ビームスプリッタ60は、入射した光を所定の分割比で複数の光に分波する、または、複数の光を合波する光学素子である。本実施形態では、ビームスプリッタ60は、第1ビームスプリッタ61と、第2ビームスプリッタ62とを有する。 [Beam Splitter 60]
Thebeam splitter 60 is an optical element that splits incident light into a plurality of lights at a predetermined division ratio or combines the plurality of lights. In this embodiment, the beam splitter 60 includes a first beam splitter 61 and a second beam splitter 62.
ビームスプリッタ60は、入射した光を所定の分割比で複数の光に分波する、または、複数の光を合波する光学素子である。本実施形態では、ビームスプリッタ60は、第1ビームスプリッタ61と、第2ビームスプリッタ62とを有する。 [Beam Splitter 60]
The
第1ビームスプリッタ61は、サーキュレータ20と干渉計70との間に配置される。そして、第1ビームスプリッタ61は、サーキュレータ20から出射された光を2つの光に分波して、干渉計70に入射させる。
第2ビームスプリッタ62は、干渉計70と光検出部80との間に配置される。そして、第2ビームスプリッタ62は、干渉計70から出射された2つの光を合波させることで干渉させるとともに、当該干渉光を3つに分波して、光検出部80に入射させる。なお、第2ビームスプリッタ62により分波された3つの干渉光は、それぞれ位相が2π/3ずつ異なっている。 Thefirst beam splitter 61 is arranged between the circulator 20 and the interferometer 70. Then, the first beam splitter 61 splits the light emitted from the circulator 20 into two lights and causes them to enter the interferometer 70.
Thesecond beam splitter 62 is arranged between the interferometer 70 and the photodetector 80. Then, the second beam splitter 62 causes interference by combining the two lights emitted from the interferometer 70, and splits the interference light into three to incident on the photodetector 80. The three interference lights demultiplexed by the second beam splitter 62 are different in phase by 2π / 3.
第2ビームスプリッタ62は、干渉計70と光検出部80との間に配置される。そして、第2ビームスプリッタ62は、干渉計70から出射された2つの光を合波させることで干渉させるとともに、当該干渉光を3つに分波して、光検出部80に入射させる。なお、第2ビームスプリッタ62により分波された3つの干渉光は、それぞれ位相が2π/3ずつ異なっている。 The
The
[干渉計70]
干渉計70は、第1ビームスプリッタ61から出射された2つの光を干渉させて、干渉光を出力する。本実施形態では、干渉計70は、所謂マッハツェンダー型干渉計により構成されており、光路長差を設けるための2つの光路71,72を有する。 [Interferometer 70]
Theinterferometer 70 causes the two lights emitted from the first beam splitter 61 to interfere with each other and outputs the interferometric light. In the present embodiment, the interferometer 70 is composed of a so-called Mach-Zehnder type interferometer, and has two optical paths 71 and 72 for providing an optical path length difference.
干渉計70は、第1ビームスプリッタ61から出射された2つの光を干渉させて、干渉光を出力する。本実施形態では、干渉計70は、所謂マッハツェンダー型干渉計により構成されており、光路長差を設けるための2つの光路71,72を有する。 [Interferometer 70]
The
[光検出部80]
光検出部80は、干渉計70から出射された干渉光を検出可能に構成されている。
本実施形態では、光検出部80は、光電変換器81と、増幅器82と、AD変換器83と、MPU84とを備える。 [Light detection unit 80]
Thelight detection unit 80 is configured to be able to detect the interference light emitted from the interferometer 70.
In the present embodiment, thephotodetector 80 includes a photoelectric converter 81, an amplifier 82, an AD converter 83, and an MPU 84.
光検出部80は、干渉計70から出射された干渉光を検出可能に構成されている。
本実施形態では、光検出部80は、光電変換器81と、増幅器82と、AD変換器83と、MPU84とを備える。 [Light detection unit 80]
The
In the present embodiment, the
光電変換器81は、干渉計70から出射された干渉光を入射して、電気信号に変換する。本実施形態では、第2ビームスプリッタ62により分波された3つの干渉光に対応して、光電変換器81が3つ設けられている。
増幅器82は、光電変換器81にて変換された電気信号を増幅させる。本実施形態では、増幅器82は、光電変換器81に応じて3つ設けられている。
AD変換器83は、増幅器82によって増幅された電気信号をデジタル信号に変換して、MPU84に入力させる。本実施形態では、AD変換器83は、増幅器82に応じて3つ設けられている。
MPU84は、所謂Micro Processing Unitであり、AD変換器83から出力されたデジタル信号に基づいて所定の演算を行うことにより、被測定物に作用する物理量を算出する。MPU84による物理量の算出方法については、後述する。なお、MPU84は、上記構成に限られるものではなく、例えば、CPU(Central Processing Unit)から構成されていてもよい。 Thephotoelectric converter 81 incidents the interference light emitted from the interferometer 70 and converts it into an electric signal. In this embodiment, three photoelectric converters 81 are provided corresponding to the three interference lights demultiplexed by the second beam splitter 62.
Theamplifier 82 amplifies the electric signal converted by the photoelectric converter 81. In this embodiment, three amplifiers 82 are provided according to the photoelectric converter 81.
TheAD converter 83 converts the electric signal amplified by the amplifier 82 into a digital signal and causes the MPU 84 to input the electric signal. In this embodiment, three AD converters 83 are provided according to the amplifier 82.
TheMPU 84 is a so-called Micro Processing Unit, and calculates a physical quantity acting on an object to be measured by performing a predetermined calculation based on a digital signal output from the AD converter 83. The method of calculating the physical quantity by the MPU 84 will be described later. The MPU 84 is not limited to the above configuration, and may be composed of, for example, a CPU (Central Processing Unit).
増幅器82は、光電変換器81にて変換された電気信号を増幅させる。本実施形態では、増幅器82は、光電変換器81に応じて3つ設けられている。
AD変換器83は、増幅器82によって増幅された電気信号をデジタル信号に変換して、MPU84に入力させる。本実施形態では、AD変換器83は、増幅器82に応じて3つ設けられている。
MPU84は、所謂Micro Processing Unitであり、AD変換器83から出力されたデジタル信号に基づいて所定の演算を行うことにより、被測定物に作用する物理量を算出する。MPU84による物理量の算出方法については、後述する。なお、MPU84は、上記構成に限られるものではなく、例えば、CPU(Central Processing Unit)から構成されていてもよい。 The
The
The
The
[物理量の測定方法について]
次に、被測定物に作用する物理量の測定方法について説明する。
図2は、光学センサ50から透過されるスペクトルと波長との関係を示す図であり、図3は、図2のスペクトルのピーク部を拡大した図であり、図4は、図2の3つのスペクトルを重ね合わせた図である。本実施形態では、波長可変光源10が出射する光の波長を掃引することで、図2、3に示すような干渉光の波長スペクトル情報を得ることができる。なお、図2に示す3つの波長スペクトル情報は、それぞれ3つの増幅器82によって増幅された電気信号に対応するものである。また、これらの3つの増幅器82によって増幅された電気信号を重ね合わせることによって、図4に示すスペクトル情報を得ることができる。
図4に示すように、光学センサ50の測定用センサ素子51から透過される透過光は、中心波長λ(λ=1552nm付近)を透過率のピークとし、そのピーク値の短波長側と長波長側の両側に所定の波長帯域に渡り透過率がほぼ0となり、さらに、その波長帯域から短波長と長波長の両側にむけて透過率が上昇した後、減衰している。なお、光学センサ50の上記中心波長λは例示であり、中心波長が上記と異なる光学センサ50を用いてもよい。
ここで、光電変換器81で検出される光強度は、光学センサ50の波長変化に伴い正弦波を描くことになる。この正弦波の位相変化Δφは数式(1)で示すことができる。 [How to measure physical quantities]
Next, a method for measuring the physical quantity acting on the object to be measured will be described.
FIG. 2 is a diagram showing the relationship between the spectrum transmitted from theoptical sensor 50 and the wavelength, FIG. 3 is an enlarged view of the peak portion of the spectrum of FIG. 2, and FIG. It is the figure which superposed the spectrum. In the present embodiment, the wavelength spectrum information of the interference light as shown in FIGS. 2 and 3 can be obtained by sweeping the wavelength of the light emitted by the tunable light source 10. The three wavelength spectrum information shown in FIG. 2 correspond to the electric signals amplified by the three amplifiers 82, respectively. Further, the spectral information shown in FIG. 4 can be obtained by superimposing the electric signals amplified by these three amplifiers 82.
As shown in FIG. 4, the transmitted light transmitted from themeasurement sensor element 51 of the optical sensor 50 has a center wavelength λ (around λ = 1552 nm) as a transmittance peak, and the short wavelength side and the long wavelength of the peak value. The transmittance is almost 0 over a predetermined wavelength band on both sides of the side, and further, the transmittance increases from that wavelength band toward both the short wavelength and the long wavelength, and then is attenuated. The center wavelength λ of the optical sensor 50 is an example, and an optical sensor 50 having a center wavelength different from the above may be used.
Here, the light intensity detected by thephotoelectric converter 81 draws a sine wave as the wavelength of the optical sensor 50 changes. The phase change Δφ of this sine wave can be expressed by the mathematical formula (1).
次に、被測定物に作用する物理量の測定方法について説明する。
図2は、光学センサ50から透過されるスペクトルと波長との関係を示す図であり、図3は、図2のスペクトルのピーク部を拡大した図であり、図4は、図2の3つのスペクトルを重ね合わせた図である。本実施形態では、波長可変光源10が出射する光の波長を掃引することで、図2、3に示すような干渉光の波長スペクトル情報を得ることができる。なお、図2に示す3つの波長スペクトル情報は、それぞれ3つの増幅器82によって増幅された電気信号に対応するものである。また、これらの3つの増幅器82によって増幅された電気信号を重ね合わせることによって、図4に示すスペクトル情報を得ることができる。
図4に示すように、光学センサ50の測定用センサ素子51から透過される透過光は、中心波長λ(λ=1552nm付近)を透過率のピークとし、そのピーク値の短波長側と長波長側の両側に所定の波長帯域に渡り透過率がほぼ0となり、さらに、その波長帯域から短波長と長波長の両側にむけて透過率が上昇した後、減衰している。なお、光学センサ50の上記中心波長λは例示であり、中心波長が上記と異なる光学センサ50を用いてもよい。
ここで、光電変換器81で検出される光強度は、光学センサ50の波長変化に伴い正弦波を描くことになる。この正弦波の位相変化Δφは数式(1)で示すことができる。 [How to measure physical quantities]
Next, a method for measuring the physical quantity acting on the object to be measured will be described.
FIG. 2 is a diagram showing the relationship between the spectrum transmitted from the
As shown in FIG. 4, the transmitted light transmitted from the
Here, the light intensity detected by the
数式(1)において、λは光学センサ50の波長、neは光ファイバのコアの実効屈折率、dは干渉計70の2本の光路71,72の光路長の差、Δλは光学センサ50の波長変化量である。
この数式(1)からわかる通り、位相変化がわかれば、逆に波長変化量を計算することができる。位相変化の復調は、増幅器82の出力電圧を用いて行われる。3つの増幅器82の出力電圧Vnは数式(2)で表すことができる。 In Equation (1), lambda is the wavelength of theoptical sensor 50, n e is the effective refractive index of the core of the optical fiber, d represents the difference in optical path length of the two optical paths 71, 72 of the interferometer 70, [Delta] [lambda] is the optical sensor 50 It is the amount of change in wavelength of.
As can be seen from this mathematical formula (1), if the phase change is known, the amount of wavelength change can be calculated conversely. Demodulation of the phase change is performed using the output voltage of theamplifier 82. The output voltage V n of the three amplifiers 82 can be expressed by the mathematical formula (2).
この数式(1)からわかる通り、位相変化がわかれば、逆に波長変化量を計算することができる。位相変化の復調は、増幅器82の出力電圧を用いて行われる。3つの増幅器82の出力電圧Vnは数式(2)で表すことができる。 In Equation (1), lambda is the wavelength of the
As can be seen from this mathematical formula (1), if the phase change is known, the amount of wavelength change can be calculated conversely. Demodulation of the phase change is performed using the output voltage of the
数式(2)では、αnは光の経路損失や光電変換器81の個体差等に起因する3つの増幅器82それぞれの信号振幅を表す定数、Cは光電変換器81の暗電流と増幅器82のDC成分とが合算された数値、nは3つの増幅器82の番号を示し、n=1~3である。例えば、V1は3つの増幅器82のうちの1番目の増幅器82電圧値である。数式(3)を用いてこの3つの増幅器82の出力から位相変化量を算出できる。ここで、αnは光の過渡的な強度変化による外乱成分であり、数式(3)において、α2は2番目の増幅器82から出力された信号に含まれる光の過渡的な強度変化による外乱成分であり、α3は3番目の増幅器82から出力された信号に含まれる光の過渡的な強度変化による外乱成分である。通常、光の過渡的な強度変化はα2およびα3に共通して発生するために、単に定数の1を入れて演算を行う。これは、光源の光強度揺らぎ、経路中の光ファイバに加わる外乱因子(応力変動、温度変動)による光ファイバ損失変動によって変化する。
In equation (2), α n is a constant representing the signal amplitude of each of the three amplifiers 82 due to the path loss of light, individual differences of the photoelectric converter 81, etc., and C is the dark current of the photoelectric converter 81 and the amplifier 82. The value obtained by adding the DC components and n indicates the numbers of the three amplifiers 82, and n = 1 to 3. For example, V 1 is the voltage value of the first amplifier 82 of the three amplifiers 82. The amount of phase change can be calculated from the outputs of these three amplifiers 82 using the equation (3). Here, α n is a disturbance component due to a transient intensity change of light, and in equation (3), α 2 is a disturbance due to a transient intensity change of light contained in the signal output from the second amplifier 82. It is a component, and α 3 is a disturbance component due to a transient intensity change of light contained in the signal output from the third amplifier 82. Normally, the transient intensity change of light occurs in common with α 2 and α 3 , so the calculation is performed by simply inserting the constant 1. This changes due to fluctuations in the light intensity of the light source and fluctuations in the optical fiber loss due to disturbance factors (stress fluctuations, temperature fluctuations) applied to the optical fibers in the path.
したがって、MPU84で数式(3)の演算を行い、増幅器82の3つの出力から位相変化量を算出し、続いて数式(1)の演算を行うことで、波長変化量を算出することができる。被測定物の物理量の変化の影響を受けるように取り付けられた光学センサ50は、被測定物の物理量変化を出力するピーク波長の変化として出力する。この波長の変化量と物理量の変化量とは通常比例関係にあるため、物理量を求めることができる。
Therefore, the amount of change in wavelength can be calculated by performing the calculation of the formula (3) with the MPU 84, calculating the amount of phase change from the three outputs of the amplifier 82, and then performing the calculation of the formula (1). The optical sensor 50 mounted so as to be affected by the change in the physical quantity of the object to be measured outputs the change in the physical quantity of the object to be measured as a change in the peak wavelength. Since the amount of change in wavelength and the amount of change in physical quantity are usually in a proportional relationship, the physical quantity can be obtained.
ここで、本実施形態では、図4に示すように、光学センサ50は、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上できる。
さらに、スペクトルのうち光学センサ50による信号以外の部分は、数式(4)に示すように、干渉計70によって生じる三角関数状の波形となっている。そして、図2、3に示されるスペクトル情報から、カーブフィット等の手法を用いて干渉計70の光路長差dを求めることができる。 Here, in the present embodiment, as shown in FIG. 4, theoptical sensor 50 emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved.
Further, the portion of the spectrum other than the signal obtained by theoptical sensor 50 has a trigonometric waveform generated by the interferometer 70 as shown in the mathematical formula (4). Then, from the spectral information shown in FIGS. 2 and 3, the optical path length difference d of the interferometer 70 can be obtained by using a technique such as curve fitting.
さらに、スペクトルのうち光学センサ50による信号以外の部分は、数式(4)に示すように、干渉計70によって生じる三角関数状の波形となっている。そして、図2、3に示されるスペクトル情報から、カーブフィット等の手法を用いて干渉計70の光路長差dを求めることができる。 Here, in the present embodiment, as shown in FIG. 4, the
Further, the portion of the spectrum other than the signal obtained by the
数式(4)で求めた干渉計70の光路長差dと、数式(3)とを用いて、以下の数式(5)により、波長の絶対値情報λCも算出することができる。
Using the optical path length difference d of the interferometer 70 obtained by the mathematical formula (4) and the mathematical formula (3), the absolute value information λ C of the wavelength can also be calculated by the following mathematical formula (5).
さらに、光の波長を掃引しながら光学センサ50に入射させるので、干渉光を時間的に解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。
Further, since the light wavelength is swept and incident on the optical sensor 50, the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
[第1実施形態の効果]
以上のような第1実施形態では、次の効果を奏することができる。
(1)本実施形態では、波長可変光源10が出射する光の波長を掃引することで、干渉光の波長スペクトル情報を得ながら、干渉計70の出力の位相情報を光学センサ50の出力光強度を用いた解析により得ることができる。また、光学センサ50は、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上でき、かつ、光学センサ50の出力波長の絶対値の情報を得ることができる。
さらに、光の波長を変更しながら光学センサ50に入射させるので、干渉光を時間的に解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。 [Effect of the first embodiment]
In the first embodiment as described above, the following effects can be obtained.
(1) In the present embodiment, by sweeping the wavelength of the light emitted by the variable wavelengthlight source 10, the phase information of the output of the interferometer 70 is obtained from the output light intensity of the optical sensor 50 while obtaining the wavelength spectrum information of the interference light. It can be obtained by analysis using. Further, the optical sensor 50 emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved, and information on the absolute value of the output wavelength of the optical sensor 50 can be obtained.
Further, since the light is incident on theoptical sensor 50 while changing the wavelength of the light, the wavelength region unnecessary for detection can be cut by analyzing the interference light in time. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
以上のような第1実施形態では、次の効果を奏することができる。
(1)本実施形態では、波長可変光源10が出射する光の波長を掃引することで、干渉光の波長スペクトル情報を得ながら、干渉計70の出力の位相情報を光学センサ50の出力光強度を用いた解析により得ることができる。また、光学センサ50は、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上でき、かつ、光学センサ50の出力波長の絶対値の情報を得ることができる。
さらに、光の波長を変更しながら光学センサ50に入射させるので、干渉光を時間的に解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。 [Effect of the first embodiment]
In the first embodiment as described above, the following effects can be obtained.
(1) In the present embodiment, by sweeping the wavelength of the light emitted by the variable wavelength
Further, since the light is incident on the
(2)本実施形態では、光学センサ50は、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子51を有するので、測定用センサ素子51から出射される光のスペクトルの半値全幅を小さくでき、測定分解能を向上させることができる。
(2) In the present embodiment, since the optical sensor 50 has a measurement sensor element 51 that constitutes a Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other, the light emitted from the measurement sensor element 51 The half-value full width of the spectrum can be reduced, and the measurement resolution can be improved.
[第2実施形態]
次に、本発明の第2実施形態の物理量測定装置1Aについて図面に基づいて説明する。
第2実施形態では、光学センサ50Aは、サーキュレータ20Aから入射した光を反射して、その反射光をサーキュレータ20Aに出力する測定用センサ素子51Aを有する点で第1実施形態と異なる。第2実施形態の説明において、第1実施形態の構成と同一のものは、同一符号を付して説明を省略する。 [Second Embodiment]
Next, the physicalquantity measuring device 1A according to the second embodiment of the present invention will be described with reference to the drawings.
The second embodiment is different from the first embodiment in that theoptical sensor 50A has a measurement sensor element 51A that reflects the light incident from the circulator 20A and outputs the reflected light to the circulator 20A. In the description of the second embodiment, the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
次に、本発明の第2実施形態の物理量測定装置1Aについて図面に基づいて説明する。
第2実施形態では、光学センサ50Aは、サーキュレータ20Aから入射した光を反射して、その反射光をサーキュレータ20Aに出力する測定用センサ素子51Aを有する点で第1実施形態と異なる。第2実施形態の説明において、第1実施形態の構成と同一のものは、同一符号を付して説明を省略する。 [Second Embodiment]
Next, the physical
The second embodiment is different from the first embodiment in that the
図5は、第2実施形態の物理量測定装置1Aの概略構成を示す図である。
図5に示すように、物理量測定装置1Aは、波長可変光源10と、サーキュレータ20Aと、光学センサ50Aと、ビームスプリッタ60と、干渉計70と、光検出部80とを備える。 FIG. 5 is a diagram showing a schematic configuration of the physicalquantity measuring device 1A of the second embodiment.
As shown in FIG. 5, the physicalquantity measuring device 1A includes a wavelength variable light source 10, a circulator 20A, an optical sensor 50A, a beam splitter 60, an interferometer 70, and a light detection unit 80.
図5に示すように、物理量測定装置1Aは、波長可変光源10と、サーキュレータ20Aと、光学センサ50Aと、ビームスプリッタ60と、干渉計70と、光検出部80とを備える。 FIG. 5 is a diagram showing a schematic configuration of the physical
As shown in FIG. 5, the physical
[サーキュレータ20A]
サーキュレータ20Aは、第1実施形態のサーキュレータ20と同様に構成されている。そして、本実施形態では、サーキュレータ20Aは、波長可変光源10から出射された光を入射して、光学センサ50Aに送る。さらに、サーキュレータ20Aは、光学センサ50Aから出力された反射光を入射して、ビームスプリッタ60を介して干渉計70に送る。
なお、サーキュレータ20Aは、第1実施形態と同様に、例えば、ビームスプリッタから構成されていてもよい。 [Circulator 20A]
Thecirculator 20A is configured in the same manner as the circulator 20 of the first embodiment. Then, in the present embodiment, the circulator 20A incidents the light emitted from the tunable light source 10 and sends it to the optical sensor 50A. Further, the circulator 20A incidents the reflected light output from the optical sensor 50A and sends it to the interferometer 70 via the beam splitter 60.
Thecirculator 20A may be composed of, for example, a beam splitter as in the first embodiment.
サーキュレータ20Aは、第1実施形態のサーキュレータ20と同様に構成されている。そして、本実施形態では、サーキュレータ20Aは、波長可変光源10から出射された光を入射して、光学センサ50Aに送る。さらに、サーキュレータ20Aは、光学センサ50Aから出力された反射光を入射して、ビームスプリッタ60を介して干渉計70に送る。
なお、サーキュレータ20Aは、第1実施形態と同様に、例えば、ビームスプリッタから構成されていてもよい。 [
The
The
[光学センサ50A]
光学センサ50Aは、前述した第1実施形態と同様に、図示略の被測定物に配置されており、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射可能に構成されている。本実施形態では、光学センサ50Aは、サーキュレータ20Aから出射された光を入射して、その反射光をサーキュレータ20Aに出力する測定用センサ素子51Aを有する。 [Optical sensor 50A]
Theoptical sensor 50A is arranged on the object to be measured (not shown) as in the first embodiment described above, and is configured to be capable of emitting output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. ing. In the present embodiment, the optical sensor 50A has a measurement sensor element 51A that incidents the light emitted from the circulator 20A and outputs the reflected light to the circulator 20A.
光学センサ50Aは、前述した第1実施形態と同様に、図示略の被測定物に配置されており、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射可能に構成されている。本実施形態では、光学センサ50Aは、サーキュレータ20Aから出射された光を入射して、その反射光をサーキュレータ20Aに出力する測定用センサ素子51Aを有する。 [
The
測定用センサ素子51Aは、前述した第1実施形態と同様に、互いに近接配置された一対のファイバブラッググレーティングから構成され、ファブリペローエタロンを構成する。本実施形態では、前述したように、測定用センサ素子51Aは、反射光をサーキュレータ20Aに出力する。
The measurement sensor element 51A is composed of a pair of fiber Bragg gratings arranged close to each other, and constitutes a Fabry-Perot Etalon, as in the first embodiment described above. In the present embodiment, as described above, the measurement sensor element 51A outputs the reflected light to the circulator 20A.
[物理量の測定方法について]
次に、被測定物に作用する物理量の測定方法について説明する。
図6は、光学センサ50Aから反射されるスペクトルと波長との関係を示す図であり、図7は、図6のスペクトルの一部を拡大した図であり、図8は、図6の3つのスペクトルを重ね合わせた図である。本実施形態では、前述した第1実施形態と同様に、波長可変光源10が出射する光の波長を掃引することで、図6、7に示すような干渉光の波長スペクトル情報を得ることができる。なお、図6に示す3つの波長スペクトル情報は、それぞれ3つの増幅器82によって増幅された電気信号に対応するものである。また、これらの3つの増幅器82によって増幅された電気信号を重ね合わせることによって、図8に示すスペクトル情報を得ることができる。
図8に示すように、光学センサ50Aの測定用センサ素子51Aから反射される反射光は、中心波長λ(λ=1553nm付近)において反射率がほぼ0となり、その短波長側と長波長側の両側に所定の波長帯域に渡り反射率が0.7程度となり、さらに、その波長帯域から短波長と長波長の両側にむけて反射率が減衰している。つまり、前述した第1実施形態の透過光のスペクトルと、全く反対の傾向となっている。なお、光学センサ50Aの上記中心波長λは例示であり、中心波長が上記と異なる光学センサ50Aを用いてもよい。
ここで、光電変換器81で検出される反射光の強度Imは、ファブリペロー干渉によって切り取られるごく狭帯域の部分を除いて、数式(6)で示すことができる。 [How to measure physical quantities]
Next, a method for measuring the physical quantity acting on the object to be measured will be described.
FIG. 6 is a diagram showing the relationship between the spectrum reflected from theoptical sensor 50A and the wavelength, FIG. 7 is an enlarged view of a part of the spectrum of FIG. 6, and FIG. It is the figure which superposed the spectrum. In the present embodiment, the wavelength spectrum information of the interference light as shown in FIGS. 6 and 7 can be obtained by sweeping the wavelength of the light emitted by the tunable light source 10 as in the first embodiment described above. .. The three wavelength spectrum information shown in FIG. 6 correspond to the electric signals amplified by the three amplifiers 82, respectively. Further, the spectral information shown in FIG. 8 can be obtained by superimposing the electric signals amplified by these three amplifiers 82.
As shown in FIG. 8, the reflected light reflected from themeasurement sensor element 51A of the optical sensor 50A has a reflectance of almost 0 at the center wavelength λ (around λ = 1553 nm), and has a reflectance on the short wavelength side and the long wavelength side thereof. The reflectance is about 0.7 over a predetermined wavelength band on both sides, and the reflectance is further attenuated from that wavelength band toward both the short wavelength and the long wavelength. That is, the tendency is completely opposite to the spectrum of the transmitted light of the first embodiment described above. The center wavelength λ of the optical sensor 50A is an example, and an optical sensor 50A having a center wavelength different from the above may be used.
Here, the intensity I m of the reflected light detected by thephotoelectric converter 81, except for the part of a very narrow band is cut by the Fabry-Perot interferometer, it can be represented by Equation (6).
次に、被測定物に作用する物理量の測定方法について説明する。
図6は、光学センサ50Aから反射されるスペクトルと波長との関係を示す図であり、図7は、図6のスペクトルの一部を拡大した図であり、図8は、図6の3つのスペクトルを重ね合わせた図である。本実施形態では、前述した第1実施形態と同様に、波長可変光源10が出射する光の波長を掃引することで、図6、7に示すような干渉光の波長スペクトル情報を得ることができる。なお、図6に示す3つの波長スペクトル情報は、それぞれ3つの増幅器82によって増幅された電気信号に対応するものである。また、これらの3つの増幅器82によって増幅された電気信号を重ね合わせることによって、図8に示すスペクトル情報を得ることができる。
図8に示すように、光学センサ50Aの測定用センサ素子51Aから反射される反射光は、中心波長λ(λ=1553nm付近)において反射率がほぼ0となり、その短波長側と長波長側の両側に所定の波長帯域に渡り反射率が0.7程度となり、さらに、その波長帯域から短波長と長波長の両側にむけて反射率が減衰している。つまり、前述した第1実施形態の透過光のスペクトルと、全く反対の傾向となっている。なお、光学センサ50Aの上記中心波長λは例示であり、中心波長が上記と異なる光学センサ50Aを用いてもよい。
ここで、光電変換器81で検出される反射光の強度Imは、ファブリペロー干渉によって切り取られるごく狭帯域の部分を除いて、数式(6)で示すことができる。 [How to measure physical quantities]
Next, a method for measuring the physical quantity acting on the object to be measured will be described.
FIG. 6 is a diagram showing the relationship between the spectrum reflected from the
As shown in FIG. 8, the reflected light reflected from the
Here, the intensity I m of the reflected light detected by the
数式(6)では、mは3つの光電変換器81の番号を示し、m=1~3である。そして、図6、7に示されるスペクトル情報から、実際の光電変換器81の実測信号Smに対して(Sm-Im)2が最小となるようなカーブフィッティングを行うことにより、Am、a、b、dを求めることができる。
ここで、数式(7)に示すように、数式(6)で求めたImから実測信号Smを差し引くことで、透過光を用いた上記第1実施形態と同様の意味を持つ出力電圧Vnを算出することができる。 In the mathematical formula (6), m indicates the number of the threephotoelectric converters 81, and m = 1 to 3. By performing the spectral information shown in FIGS. 6 and 7, the actual relative measured signal S m of the photoelectric converter 81 (S m -I m) curve fitting, such as 2 becomes minimum, A m , A, b, d can be obtained.
Here, as shown in Equation (7), by subtracting the measured signal S m from I m obtained in Equation (6), the output voltage V has a meaning similar to the first embodiment using the transmitted light n can be calculated.
ここで、数式(7)に示すように、数式(6)で求めたImから実測信号Smを差し引くことで、透過光を用いた上記第1実施形態と同様の意味を持つ出力電圧Vnを算出することができる。 In the mathematical formula (6), m indicates the number of the three
Here, as shown in Equation (7), by subtracting the measured signal S m from I m obtained in Equation (6), the output voltage V has a meaning similar to the first embodiment using the transmitted light n can be calculated.
これにより、前述した第1実施形態と同様に、数式(3)を用いてこの3つの増幅器82の出力から位相変化量を算出できる。
したがって、MPU84で数式(3)の演算を行い、増幅器82の3つの出力から位相変化量を算出し、続いて数式(1)の演算を行うことで、波長変化量を算出することができる。被測定物の物理量の変化の影響を受けるように取り付けられた光学センサ50Aは、被測定物の物理量変化を出力するピーク波長の変化として出力する。この波長の変化量と物理量の変化量とは通常比例関係にあるため、物理量を求めることができる。
さらに、前述した第1実施形態と同様に、数式(5)により、波長の絶対値情報λCも算出することができる。 As a result, the amount of phase change can be calculated from the outputs of the threeamplifiers 82 using the mathematical formula (3) as in the first embodiment described above.
Therefore, the wavelength change amount can be calculated by performing the calculation of the formula (3) with theMPU 84, calculating the phase change amount from the three outputs of the amplifier 82, and then performing the calculation of the formula (1). The optical sensor 50A mounted so as to be affected by a change in the physical quantity of the object to be measured outputs the change in the physical quantity of the object to be measured as a change in peak wavelength. Since the amount of change in wavelength and the amount of change in physical quantity are usually in a proportional relationship, the physical quantity can be obtained.
Further, similarly to the first embodiment described above, the absolute value information λ C of the wavelength can also be calculated by the mathematical formula (5).
したがって、MPU84で数式(3)の演算を行い、増幅器82の3つの出力から位相変化量を算出し、続いて数式(1)の演算を行うことで、波長変化量を算出することができる。被測定物の物理量の変化の影響を受けるように取り付けられた光学センサ50Aは、被測定物の物理量変化を出力するピーク波長の変化として出力する。この波長の変化量と物理量の変化量とは通常比例関係にあるため、物理量を求めることができる。
さらに、前述した第1実施形態と同様に、数式(5)により、波長の絶対値情報λCも算出することができる。 As a result, the amount of phase change can be calculated from the outputs of the three
Therefore, the wavelength change amount can be calculated by performing the calculation of the formula (3) with the
Further, similarly to the first embodiment described above, the absolute value information λ C of the wavelength can also be calculated by the mathematical formula (5).
[第2実施形態の効果]
以上のような第2実施形態では、上記(1)、(2)と同様の効果を奏することができるほか、次の効果を奏することができる。
(3)本実施形態では、光学センサ50Aの反射光を、サーキュレータ20Aを介して干渉計70に入射させる。そのため、光学センサの透過光を干渉計に入射させる場合に比べて、カプラやアイソレータを不要にでき、物理量測定装置1Aの構成を簡素化することができる。 [Effect of the second embodiment]
In the second embodiment as described above, the same effects as those in (1) and (2) above can be obtained, and the following effects can be obtained.
(3) In the present embodiment, the reflected light of theoptical sensor 50A is incident on the interferometer 70 via the circulator 20A. Therefore, as compared with the case where the transmitted light of the optical sensor is incident on the interferometer, the coupler and the isolator can be eliminated, and the configuration of the physical quantity measuring device 1A can be simplified.
以上のような第2実施形態では、上記(1)、(2)と同様の効果を奏することができるほか、次の効果を奏することができる。
(3)本実施形態では、光学センサ50Aの反射光を、サーキュレータ20Aを介して干渉計70に入射させる。そのため、光学センサの透過光を干渉計に入射させる場合に比べて、カプラやアイソレータを不要にでき、物理量測定装置1Aの構成を簡素化することができる。 [Effect of the second embodiment]
In the second embodiment as described above, the same effects as those in (1) and (2) above can be obtained, and the following effects can be obtained.
(3) In the present embodiment, the reflected light of the
[第3実施形態]
次に、本発明の第3実施形態の物理量測定装置1Bについて図面に基づいて説明する。
第3実施形態では、光源として、広帯域光源11が用いられ、干渉計70の二次側に分光器90が配置される点で第1、2実施形態と異なる。第3実施形態において、第1、2実施形態の構成と同一のものは、同一符号を付して説明を省略する。 [Third Embodiment]
Next, the physicalquantity measuring device 1B according to the third embodiment of the present invention will be described with reference to the drawings.
The third embodiment is different from the first and second embodiments in that the widebandlight source 11 is used as the light source and the spectroscope 90 is arranged on the secondary side of the interferometer 70. In the third embodiment, the same components as those in the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted.
次に、本発明の第3実施形態の物理量測定装置1Bについて図面に基づいて説明する。
第3実施形態では、光源として、広帯域光源11が用いられ、干渉計70の二次側に分光器90が配置される点で第1、2実施形態と異なる。第3実施形態において、第1、2実施形態の構成と同一のものは、同一符号を付して説明を省略する。 [Third Embodiment]
Next, the physical
The third embodiment is different from the first and second embodiments in that the wideband
図9は、第3実施形態の物理量測定装置1Bの概略構成を示す図である。
図9に示すように、物理量測定装置1Bは、広帯域光源11と、サーキュレータ20と、カプラ30と、アイソレータ40と、光学センサ50と、ビームスプリッタ60と、干渉計70と、分光器90と、光検出部80とを備える。 FIG. 9 is a diagram showing a schematic configuration of the physicalquantity measuring device 1B of the third embodiment.
As shown in FIG. 9, the physicalquantity measuring device 1B includes a broadband light source 11, a circulator 20, a coupler 30, an isolator 40, an optical sensor 50, a beam splitter 60, an interferometer 70, a spectroscope 90, and the like. It is provided with an optical detection unit 80.
図9に示すように、物理量測定装置1Bは、広帯域光源11と、サーキュレータ20と、カプラ30と、アイソレータ40と、光学センサ50と、ビームスプリッタ60と、干渉計70と、分光器90と、光検出部80とを備える。 FIG. 9 is a diagram showing a schematic configuration of the physical
As shown in FIG. 9, the physical
[広帯域光源11]
広帯域光源11は、広帯域な波長の光を放出する光源である。広帯域光源11は、例えば、SC(Super Continuum)光源であり、1250nm~1650nmの波長領域の光を放出可能に構成されている。なお、広帯域光源11は、上記構成に限られるものではなく、ASE(Amplified Spontaneous Emission)光源やSLD(Super Luminescent Diode)光源等を組み合わせたものであってもよい。さらに、広帯域光源11は、例示した波長領域よりも広い波長領域の光を放出可能に構成されていてもよく、あるいは、例示した波長領域よりも狭い波長領域の光を放出可能に構成されていてもよい。 [Wideband light source 11]
The widebandlight source 11 is a light source that emits light having a wide band wavelength. The wideband light source 11 is, for example, an SC (Super Continuum) light source, and is configured to be capable of emitting light in a wavelength region of 1250 nm to 1650 nm. The broadband light source 11 is not limited to the above configuration, and may be a combination of an ASE (Amplified Spontaneous Emission) light source, an SLD (Super Luminescent Diode) light source, or the like. Further, the wideband light source 11 may be configured to be capable of emitting light in a wavelength region wider than the illustrated wavelength region, or may be configured to be capable of emitting light in a wavelength region narrower than the illustrated wavelength region. May be good.
広帯域光源11は、広帯域な波長の光を放出する光源である。広帯域光源11は、例えば、SC(Super Continuum)光源であり、1250nm~1650nmの波長領域の光を放出可能に構成されている。なお、広帯域光源11は、上記構成に限られるものではなく、ASE(Amplified Spontaneous Emission)光源やSLD(Super Luminescent Diode)光源等を組み合わせたものであってもよい。さらに、広帯域光源11は、例示した波長領域よりも広い波長領域の光を放出可能に構成されていてもよく、あるいは、例示した波長領域よりも狭い波長領域の光を放出可能に構成されていてもよい。 [Wideband light source 11]
The wideband
[分光器90]
分光器90は、干渉計70から出射された干渉光を入射して分光する。本実施形態では、第2ビームスプリッタ62により分波された3つの干渉光に対応して、分光器90が3つ設けられている。 [Spectroscope 90]
Thespectroscope 90 injects and disperses the interference light emitted from the interferometer 70. In this embodiment, three spectroscopes 90 are provided corresponding to the three interference lights demultiplexed by the second beam splitter 62.
分光器90は、干渉計70から出射された干渉光を入射して分光する。本実施形態では、第2ビームスプリッタ62により分波された3つの干渉光に対応して、分光器90が3つ設けられている。 [Spectroscope 90]
The
[物理量の測定方法について]
本実施形態では、前述した第1実施形態と同様に、光学センサ50の透過光を干渉計70にて干渉させた干渉光を解析することにより、被測定物に作用した物理量を測定する。この際、本実施形態では、前述した第1実施形態とは異なり、干渉光を分光器90にて分光することにより、干渉光の波長スペクトル情報を得ることができる。そのため、前述した第1実施形態と同様に、光学センサ50の出力波長の絶対値情報λCを得ることができる。 [How to measure physical quantities]
In the present embodiment, similarly to the first embodiment described above, the physical quantity acting on the object to be measured is measured by analyzing the interference light in which the transmitted light of theoptical sensor 50 is interfered with by the interference meter 70. At this time, in the present embodiment, unlike the first embodiment described above, the wavelength spectrum information of the interference light can be obtained by splitting the interference light with the spectroscope 90. Therefore, the absolute value information λ C of the output wavelength of the optical sensor 50 can be obtained as in the first embodiment described above.
本実施形態では、前述した第1実施形態と同様に、光学センサ50の透過光を干渉計70にて干渉させた干渉光を解析することにより、被測定物に作用した物理量を測定する。この際、本実施形態では、前述した第1実施形態とは異なり、干渉光を分光器90にて分光することにより、干渉光の波長スペクトル情報を得ることができる。そのため、前述した第1実施形態と同様に、光学センサ50の出力波長の絶対値情報λCを得ることができる。 [How to measure physical quantities]
In the present embodiment, similarly to the first embodiment described above, the physical quantity acting on the object to be measured is measured by analyzing the interference light in which the transmitted light of the
[第3実施形態の効果]
以上のような第3実施形態では、上記(2)と同様の効果を奏することができるほか、次の効果を奏することができる。
(4)本実施形態では、干渉計70から出射される干渉光を分光器90にて分光することで、干渉光の波長スペクトル情報を得ながら、干渉計出力の位相情報を光学センサ50の出力光強度を用いた解析により得ることができる。また、光学センサ50は、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上でき、かつ、光学センサ50の出力波長の絶対値の情報を得ることができる。
さらに、干渉光を分光して検出部に導入させるので、干渉光のスペクトルを解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。 [Effect of Third Embodiment]
In the third embodiment as described above, in addition to being able to achieve the same effect as in (2) above, the following effects can be achieved.
(4) In the present embodiment, the interference light emitted from theinterference meter 70 is separated by the spectroscope 90, so that the phase information of the interference meter output is output from the optical sensor 50 while obtaining the wavelength spectrum information of the interference light. It can be obtained by analysis using light intensity. Further, the optical sensor 50 emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured. Therefore, the measurement resolution can be improved, and information on the absolute value of the output wavelength of the optical sensor 50 can be obtained.
Further, since the interference light is separated and introduced into the detection unit, it is possible to cut a wavelength region unnecessary for detection by analyzing the spectrum of the interference light. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
以上のような第3実施形態では、上記(2)と同様の効果を奏することができるほか、次の効果を奏することができる。
(4)本実施形態では、干渉計70から出射される干渉光を分光器90にて分光することで、干渉光の波長スペクトル情報を得ながら、干渉計出力の位相情報を光学センサ50の出力光強度を用いた解析により得ることができる。また、光学センサ50は、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する。そのため、測定分解能を向上でき、かつ、光学センサ50の出力波長の絶対値の情報を得ることができる。
さらに、干渉光を分光して検出部に導入させるので、干渉光のスペクトルを解析することにより、検出に不要な波長領域をカットすることができる。そのため、波長領域をカットするための光学機器、例えば、バンドパスフィルタを不要にできる。 [Effect of Third Embodiment]
In the third embodiment as described above, in addition to being able to achieve the same effect as in (2) above, the following effects can be achieved.
(4) In the present embodiment, the interference light emitted from the
Further, since the interference light is separated and introduced into the detection unit, it is possible to cut a wavelength region unnecessary for detection by analyzing the spectrum of the interference light. Therefore, an optical device for cutting the wavelength region, for example, a bandpass filter can be eliminated.
[第4実施形態]
次に、本発明の第4実施形態の物理量測定装置1Cについて図面に基づいて説明する。
第4実施形態では、光学センサ50Aは、サーキュレータ20Aから入射した光を反射して、その反射光をサーキュレータ20Aに出力する測定用センサ素子51Aを有する点で第3実施形態と異なる。第4実施形態の説明において、第1実施形態の構成と同一のものは、同一符号を付して説明を省略する。 [Fourth Embodiment]
Next, the physicalquantity measuring device 1C according to the fourth embodiment of the present invention will be described with reference to the drawings.
The fourth embodiment is different from the third embodiment in that theoptical sensor 50A has a measurement sensor element 51A that reflects the light incident from the circulator 20A and outputs the reflected light to the circulator 20A. In the description of the fourth embodiment, the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
次に、本発明の第4実施形態の物理量測定装置1Cについて図面に基づいて説明する。
第4実施形態では、光学センサ50Aは、サーキュレータ20Aから入射した光を反射して、その反射光をサーキュレータ20Aに出力する測定用センサ素子51Aを有する点で第3実施形態と異なる。第4実施形態の説明において、第1実施形態の構成と同一のものは、同一符号を付して説明を省略する。 [Fourth Embodiment]
Next, the physical
The fourth embodiment is different from the third embodiment in that the
図10は、第4実施形態の物理量測定装置1Cの概略構成を示す図である。
図10に示すように、物理量測定装置1Cは、広帯域光源11と、サーキュレータ20Aと、光学センサ50Aと、ビームスプリッタ60と、干渉計70と、分光器90と、光検出部80とを備える。 FIG. 10 is a diagram showing a schematic configuration of the physicalquantity measuring device 1C of the fourth embodiment.
As shown in FIG. 10, the physicalquantity measuring device 1C includes a broadband light source 11, a circulator 20A, an optical sensor 50A, a beam splitter 60, an interferometer 70, a spectroscope 90, and a light detection unit 80.
図10に示すように、物理量測定装置1Cは、広帯域光源11と、サーキュレータ20Aと、光学センサ50Aと、ビームスプリッタ60と、干渉計70と、分光器90と、光検出部80とを備える。 FIG. 10 is a diagram showing a schematic configuration of the physical
As shown in FIG. 10, the physical
[物理量の測定方法について]
本実施形態では、前述した第2実施形態と同様に、光学センサ50Aの反射光を干渉計70にて干渉させた干渉光を解析することにより、被測定物に作用した物理量を測定する。この際、本実施形態では、前述した第2実施形態とは異なり、干渉光を分光器90にて分光することにより、干渉光の波長スペクトル情報を得ることができる。そのため、前述した第2実施形態と同様に、光学センサ50Aの出力波長の絶対値情報λCを得ることができる。 [How to measure physical quantities]
In the present embodiment, similarly to the second embodiment described above, the physical quantity acting on the object to be measured is measured by analyzing the interference light in which the reflected light of theoptical sensor 50A is interfered with by the interference meter 70. At this time, in the present embodiment, unlike the second embodiment described above, the wavelength spectrum information of the interference light can be obtained by splitting the interference light with the spectroscope 90. Therefore, the absolute value information λ C of the output wavelength of the optical sensor 50A can be obtained as in the second embodiment described above.
本実施形態では、前述した第2実施形態と同様に、光学センサ50Aの反射光を干渉計70にて干渉させた干渉光を解析することにより、被測定物に作用した物理量を測定する。この際、本実施形態では、前述した第2実施形態とは異なり、干渉光を分光器90にて分光することにより、干渉光の波長スペクトル情報を得ることができる。そのため、前述した第2実施形態と同様に、光学センサ50Aの出力波長の絶対値情報λCを得ることができる。 [How to measure physical quantities]
In the present embodiment, similarly to the second embodiment described above, the physical quantity acting on the object to be measured is measured by analyzing the interference light in which the reflected light of the
[第4実施形態の効果]
以上のような第3実施形態では、上記(2)~(4)と同様の効果を奏することができる。 [Effect of Fourth Embodiment]
In the third embodiment as described above, the same effects as those in (2) to (4) above can be obtained.
以上のような第3実施形態では、上記(2)~(4)と同様の効果を奏することができる。 [Effect of Fourth Embodiment]
In the third embodiment as described above, the same effects as those in (2) to (4) above can be obtained.
[変形例]
なお、本発明は前述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前述した第1~第4実施形態では、光学センサ50,50Aは、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子51,51Aを有して構成されていたが、これに限定されない。例えば、光学センサは、フィゾー干渉型の測定用センサ素子を有して構成されていてもよい。 [Modification example]
The present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
In the first to fourth embodiments described above, the optical sensors 50 and 50A are configured to include measurement sensor elements 51 and 51A constituting Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other. However, it is not limited to this. For example, the optical sensor may be configured to include a Fizeau interference type measurement sensor element.
なお、本発明は前述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前述した第1~第4実施形態では、光学センサ50,50Aは、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子51,51Aを有して構成されていたが、これに限定されない。例えば、光学センサは、フィゾー干渉型の測定用センサ素子を有して構成されていてもよい。 [Modification example]
The present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
In the first to fourth embodiments described above, the
前述した第1~第4実施形態では、干渉計70は、マッハツェンダー型干渉計により構成されていたが、これに限定されない。例えば、干渉計は、マイケルソン型干渉計により構成されていてもよい。
In the first to fourth embodiments described above, the interferometer 70 was composed of a Mach-Zehnder type interferometer, but the present invention is not limited to this. For example, the interferometer may be composed of a Michaelson type interferometer.
前述した第1~第4実施形態では、物理量測定装置1,1A,1B,1Cには、光学センサ50,50Aが1個設けられていたが、これに限定されない。例えば、物理量測定装置には、波長ピークの中心がそれぞれ異なる複数の光学センサが設けられていてもよい。
この場合、複数の光学センサは、被測定物における同じ箇所に設けられていてもよい。このように構成することで、被測定物の同じ箇所において、例えば、圧力および温度といった異なる物理量の変化を正確に測定することができる。
また、複数の光学センサは、被測定物における異なる箇所にそれぞれ設けられていてもよい。このように構成することで、被測定物の異なる位置での物理量の変化を正確に測定することができる。 In the first to fourth embodiments described above, the physical quantity measuring devices 1, 1A, 1B, and 1C are provided with one optical sensor 50, 50A, but the present invention is not limited to this. For example, the physical quantity measuring device may be provided with a plurality of optical sensors having different centers of wavelength peaks.
In this case, the plurality of optical sensors may be provided at the same location on the object to be measured. With this configuration, changes in different physical quantities such as pressure and temperature can be accurately measured at the same location of the object to be measured.
Further, the plurality of optical sensors may be provided at different locations on the object to be measured. With this configuration, changes in physical quantities at different positions of the object to be measured can be accurately measured.
この場合、複数の光学センサは、被測定物における同じ箇所に設けられていてもよい。このように構成することで、被測定物の同じ箇所において、例えば、圧力および温度といった異なる物理量の変化を正確に測定することができる。
また、複数の光学センサは、被測定物における異なる箇所にそれぞれ設けられていてもよい。このように構成することで、被測定物の異なる位置での物理量の変化を正確に測定することができる。 In the first to fourth embodiments described above, the physical
In this case, the plurality of optical sensors may be provided at the same location on the object to be measured. With this configuration, changes in different physical quantities such as pressure and temperature can be accurately measured at the same location of the object to be measured.
Further, the plurality of optical sensors may be provided at different locations on the object to be measured. With this configuration, changes in physical quantities at different positions of the object to be measured can be accurately measured.
前述した第1、第3実施形態では、物理量測定装置1,1Cは、カプラ30およびアイソレータ40を備えて構成されていたが、これに限定されない。例えば、物理量測定装置1,1Cは、カプラ30およびアイソレータ40に代えてサーキュレータを備えて構成されていてもよい。
In the first and third embodiments described above, the physical quantity measuring devices 1 and 1C are configured to include the coupler 30 and the isolator 40, but the present invention is not limited thereto. For example, the physical quantity measuring devices 1 and 1C may be configured to include a circulator instead of the coupler 30 and the isolator 40.
1,1A,1B,1C…物理量測定装置、10…波長可変光源、11…広帯域光源、20,20A…サーキュレータ、30…カプラ,40…アイソレータ,50,50A…光学センサ、51,51A…測定用センサ素子、60…ビームスプリッタ、61…第1ビームスプリッタ、62…第2ビームスプリッタ、70…干渉計、71…光路、72…光路、80…光検出部、81…光電変換器、82…増幅器、83…AD変換器、84…MPU、90…分光器。
1,1A, 1B, 1C ... Physical quantity measuring device, 10 ... Variable wavelength light source, 11 ... Wideband light source, 20,20A ... Circulator, 30 ... Coupler, 40 ... Isolator, 50,50A ... Optical sensor, 51,51A ... For measurement Sensor element, 60 ... beam splitter, 61 ... first beam splitter, 62 ... second beam splitter, 70 ... interferometer, 71 ... optical path, 72 ... optical path, 80 ... optical detector, 81 ... photoelectric converter, 82 ... amplifier , 83 ... AD converter, 84 ... MPU, 90 ... spectroscope.
Claims (7)
- 出射する光の波長を変更可能に構成された波長可変光源と、
前記波長可変光源から出射される前記光を入射して、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する光学センサと、
前記光学センサから出射された前記出力光を入射して、干渉光を出射する干渉計と、
前記干渉計から出射される前記干渉光を検出する光検出部と、を備える
ことを特徴とする物理量測定装置。 A tunable light source configured to change the wavelength of the emitted light,
An optical sensor that incidents the light emitted from the wavelength variable light source and emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured.
An interferometer that injects the output light emitted from the optical sensor and emits interference light,
A physical quantity measuring device including a photodetector for detecting the interference light emitted from the interferometer. - 広帯域の光を出射する広帯域光源と、
前記広帯域光源から出射される前記光を入射して、被測定物に作用する物理量に応じて、半値全幅の小さい出力光を出射する光学センサと、
前記光学センサから出射された前記出力光を入射して、干渉光を出射する干渉計と、
前記干渉計から出射される前記干渉光を分光する分光器と、
前記分光器により分光された前記干渉光を検出する光検出部と、を備える
ことを特徴とする物理量測定装置。 A wideband light source that emits wideband light,
An optical sensor that injects the light emitted from the wideband light source and emits output light having a small full width at half maximum according to the physical quantity acting on the object to be measured.
An interferometer that injects the output light emitted from the optical sensor and emits interference light,
A spectroscope that disperses the interferometric light emitted from the interferometer, and
A physical quantity measuring device including a photodetector for detecting the interference light dispersed by the spectroscope. - 請求項1または請求項2に記載の物理量測定装置において、
前記光学センサは、互いに近接配置された一対のファイバブラッググレーティングからファブリペローエタロンを構成する測定用センサ素子を有する
ことを特徴とする物理量測定装置。 In the physical quantity measuring device according to claim 1 or 2.
The optical sensor is a physical quantity measuring device including a measuring sensor element constituting a Fabry-Perot Etalon from a pair of fiber Bragg gratings arranged close to each other. - 請求項1または請求項2に記載の物理量測定装置において、
前記光学センサは、フィゾー干渉型の測定用センサ素子を有する
ことを特徴とする物理量測定装置。 In the physical quantity measuring device according to claim 1 or 2.
The optical sensor is a physical quantity measuring device characterized by having a Fizeau interference type measuring sensor element. - 請求項1から請求項4のいずれか一項に記載の物理量測定装置において、
波長ピークの中心がそれぞれ異なる複数の前記光学センサが設けられる
ことを特徴とする物理量測定装置。 In the physical quantity measuring device according to any one of claims 1 to 4.
A physical quantity measuring device characterized in that a plurality of the optical sensors having different centers of wavelength peaks are provided. - 請求項5に記載の物理量測定装置において、
複数の前記光学センサは、被測定物における同じ箇所に設けられる
ことを特徴とする物理量測定装置。 In the physical quantity measuring device according to claim 5.
A physical quantity measuring device characterized in that a plurality of the optical sensors are provided at the same location on an object to be measured. - 請求項5に記載の物理量測定装置において、
複数の前記光学センサは、被測定物における異なる箇所にそれぞれ設けられる
ことを特徴とする物理量測定装置。 In the physical quantity measuring device according to claim 5.
A physical quantity measuring device characterized in that a plurality of the optical sensors are provided at different locations on an object to be measured.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020058244A JP2021156771A (en) | 2020-03-27 | 2020-03-27 | Physical quantity measurement device |
JP2020-058244 | 2020-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192717A1 true WO2021192717A1 (en) | 2021-09-30 |
Family
ID=77891195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005422 WO2021192717A1 (en) | 2020-03-27 | 2021-02-15 | Physical quantity measurement device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021156771A (en) |
WO (1) | WO2021192717A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004163155A (en) * | 2002-11-11 | 2004-06-10 | Fuji Electric Systems Co Ltd | Wavelength-measuring apparatus |
JP2006003197A (en) * | 2004-06-17 | 2006-01-05 | Hitachi Cable Ltd | Optical cable for fbg sensor |
US20100085572A1 (en) * | 2008-10-06 | 2010-04-08 | Schlumberger Technology Corporation | Time domain multiplexing of interferometric sensors |
JP2011149875A (en) * | 2010-01-22 | 2011-08-04 | Institute Of National Colleges Of Technology Japan | Wavelength detection type optical fiber sensor system |
JP2013148475A (en) * | 2012-01-19 | 2013-08-01 | Nagano Keiki Co Ltd | Physical quantity measurement device and physical quantity measurement method |
-
2020
- 2020-03-27 JP JP2020058244A patent/JP2021156771A/en active Pending
-
2021
- 2021-02-15 WO PCT/JP2021/005422 patent/WO2021192717A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004163155A (en) * | 2002-11-11 | 2004-06-10 | Fuji Electric Systems Co Ltd | Wavelength-measuring apparatus |
JP2006003197A (en) * | 2004-06-17 | 2006-01-05 | Hitachi Cable Ltd | Optical cable for fbg sensor |
US20100085572A1 (en) * | 2008-10-06 | 2010-04-08 | Schlumberger Technology Corporation | Time domain multiplexing of interferometric sensors |
JP2011149875A (en) * | 2010-01-22 | 2011-08-04 | Institute Of National Colleges Of Technology Japan | Wavelength detection type optical fiber sensor system |
JP2013148475A (en) * | 2012-01-19 | 2013-08-01 | Nagano Keiki Co Ltd | Physical quantity measurement device and physical quantity measurement method |
Also Published As
Publication number | Publication date |
---|---|
JP2021156771A (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6525308B1 (en) | Apparatus and method for wavelength detection with fiber bragg grating sensors | |
US6137565A (en) | Bragg grating temperature/strain fiber sensor having combination interferometer/spectrometer output arrangement | |
US6888125B2 (en) | Fiber optic sensing systems and method of use thereof | |
US7324714B1 (en) | Multicore fiber curvature sensor | |
EP2839554B1 (en) | Frequency tunable laser system | |
JP5322238B2 (en) | Physical quantity measuring device | |
US20080204759A1 (en) | Method for demodulating signals from a dispersive white light interferometric sensor and its application to remote optical sensing | |
Lee et al. | Interrogation techniques for fiber grating sensors and the theory of fiber gratings | |
JP6290798B2 (en) | OFDR device | |
EP3710787B1 (en) | A fibre optic sensing device | |
Lo | In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing | |
KR100275521B1 (en) | Optical signal wavelength measurement device and optical fiber Bragg grating sensor device and method using wavelength selective photodetector | |
WO2021192717A1 (en) | Physical quantity measurement device | |
JP2014149190A (en) | Measuring device, measuring method, light source device, and article manufacturing method | |
US5333045A (en) | Process and apparatus for absolute interferometric measurement of physical magnitudes utilizing a variable center frequency pass-band filter located downstream of a light beam source | |
Hlubina | Measuring a spectral bandpass of a fibre-optic spectrometer using time-domain and spectral-domain two-beam interference | |
WO2020213466A1 (en) | Physical quantity measurement device | |
CN115031824B (en) | Low noise white light PMDI signal detection and multiplexing system and method | |
JP2002116087A (en) | Wavelength-measuring apparatus | |
US20220326069A1 (en) | Demodulation Of Fiber Optic Sensors | |
Poiana et al. | Compact system of dispersion spectroscopy for interrogating fiber Bragg grating sensors using multi-wavelength phase shift interferometry | |
JP2004163154A (en) | Wavelength-measuring apparatus | |
JP2010096597A (en) | Optical sensor measuring device and optical sensor measuring method | |
JP3632825B2 (en) | Wavelength measuring device | |
JP2021043050A (en) | Optical sensor and physical amount measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21777143 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21777143 Country of ref document: EP Kind code of ref document: A1 |