JP3632825B2 - Wavelength measuring device - Google Patents

Wavelength measuring device Download PDF

Info

Publication number
JP3632825B2
JP3632825B2 JP09251999A JP9251999A JP3632825B2 JP 3632825 B2 JP3632825 B2 JP 3632825B2 JP 09251999 A JP09251999 A JP 09251999A JP 9251999 A JP9251999 A JP 9251999A JP 3632825 B2 JP3632825 B2 JP 3632825B2
Authority
JP
Japan
Prior art keywords
wavelength
bragg diffraction
diffraction grating
light
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09251999A
Other languages
Japanese (ja)
Other versions
JP2000283845A (en
Inventor
紀友 平山
安一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP09251999A priority Critical patent/JP3632825B2/en
Publication of JP2000283845A publication Critical patent/JP2000283845A/en
Application granted granted Critical
Publication of JP3632825B2 publication Critical patent/JP3632825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度や歪み(圧力)等の物理量を、光ファイバのブラッグ回折格子(Fiber Bragg Grating、以下FBGと略す)からの反射光の波長によって測定する物理量測定システムに適用可能な波長計測装置に関する。
【0002】
【従来の技術】
図6は、従来技術としての、光ファイバ上を伝送する光のスペクトラムを測定する波長計測装置である。
図6において、1は後述するチャープ及びブレーズの両方の特性を有するチャープドアンドブレーズドブラッグ回折格子(以下、C&BFBGという)、2は光ファイバ4と屈折率が等しいプリズム、3は256個の受光素子がアレイ化されている検出器アレイである。
【0003】
光ファイバのブラッグ回折格子は、周知のようにコアの屈折率が光軸に沿って周期的に変化しており、屈折率に応じて特定波長を中心とした狭帯域の光を反射する。
これにチャープ特性(ファイバの長手方向に沿って徐々に屈折率変化の周期間隔を変えていく特性)と、ブレーズ特性(屈折率変化の周期間隔をファイバの断面方向に対して傾斜角度を持って形成する特性)とを持たせれば、C&BFBGを形成することができる。
すると、図7(a)のように、光ファイバ4の長手方向に沿って徐々に波長が変化しながら光ファイバ4から光が放射していく分光器としての機能を得ることができる。同時に、図7(b)に示すように、同じ周期間隔のブラッグ回折格子の位置によっても、ブラッグ回折角度により反射波長が異なるようになる。
【0004】
図6に示したように、これらの反射光が焦点を結ぶ位置に検出器アレイ3を設置することで、特定波長のパワーを測定することができる。この検出器アレイ3の各受光素子が特定波長のパワーを示すので、アレイ3に沿って描画すれば光ファイバ4への入射光のスペクトラムが得られる。この技術に関する論文としては、「Fiber grating optical spectrum analyzer Tap」(Jefferson L.Wagener et.al, ECOC’97,22−25 September 1997,Conference Publication No.448 )等が知られている。
この技術では、計測範囲14〔nm〕に対して256個の受光素子を用いているので、分解能は最大でも0.05〔nm〕である。
【0005】
【発明が解決しようとする課題】
上記従来技術において、波長の計測分解能を上げるには、検出器アレイ3の受光素子の間隔を小さくするか、C&BFBGの設計を変えることが考えられる。
しかし、受光素子の間隔を小さくする方法によると、波長の計測範囲が狭くなるため、これを補うには分解能を上げた分だけ受光素子の数を増やす必要がある。つまり、広い波長計測範囲及び高分解能を同時に得ることが困難であった。
また、C&BFBGの設計を変更することはコスト等の関係から実用的ではない。
【0006】
そこで本発明は、受光素子の間隔変更や設計変更等の手段によらず、広い波長範囲にわたって高分解能で計測可能とした波長計測装置を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、測定光が入射される光ファイバに一以上のブラッグ回折格子が形成され、前記ブラッグ回折格子からの反射光の波長を検出して前記ブラッグ回折格子の位置における物理量を測定する物理量測定システムにおいて、
前記ブラッグ回折格子からの反射光をC&BFBGに入射させ、このC&BFBGにより分光された光を、その焦点位置に設置され、かつ波長に対する感度が異なる第1、第2の検出器アレイによって受光し、これらの第1、第2の検出器アレイのそれぞれの受光素子(フォトダイオード)による光電流の比の対数に基づいて前記反射光の波長を測定するものである。
ここで、「光電流の比の対数」を実現するに当たっては、二つの受光素子(フォトダイオード)の電流出力(I,I)から換算された二つの電圧出力(V,V)を対数増幅器にて対数出力(logV,logV)に換算した後、それらの差分出力(logV−logV)をとることにより、「光電流の比の対数」に相当するlog(V/V)の出力が得られる。
【0008】
請求項2記載の発明は、請求項1記載の波長計測装置において、
波長に対する感度が同じである検出器アレイの一方に光学フィルタを付加して第1の検出器アレイを形成し、他方の検出器アレイはそのまま第2の検出器アレイとして第1、第2の検出器アレイの波長に対する感度を異ならせるものである。
【0009】
請求項3記載の発明は、請求項1または2記載の波長計測装置において、
C&BFBGにより分光された光を、第1、第2の検出器アレイにより時分割的に受光するものである。
【0010】
請求項4記載の発明は、請求項1〜3の何れか1項に記載した波長計測装置において、
C&BFBGの温度検出信号に基づきペルチェ素子等の温度制御素子を動作させてC&BFBGの温度を一定に保つことにより、波長計測精度を向上させるものである。
【0011】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、本発明においては論文「Wavelength determination of semiconductor lasers: precise but inexpensive」(Jan Christian Braasch et.al, Optical Engineering 1995)に記載された波長の決定原理を利用する。
以下、この原理について説明する。
【0012】
上述した文献によれば、図4のグラフに示したような波長感度の異なる一対のフォトダイオード(電極A−C間に形成されるダイオードをダイオードAC、電極A−C間に形成されるダイオードをダイオードACとする)と高精度ログアンプからなるセンサに単色光を照射した場合、センサの出力Wは数式1によって表される。
【0013】
【数1】

Figure 0003632825
【0014】
ここで、I,Iは各ダイオードAC,ACによる光電流、S(λ),S(λ)は各ダイオードAC,ACの波長依存感度、φ(λ)は照射光の波長依存強度分布、Δλは照射光波長のバンド幅である。
すなわち、φ(λ)の波長依存強度分布を持つ照射光がS(λ),S(λ)の波長依存感度を持つフォトダイオードAC,ACに入射した場合、光センサの出力Wは、各ダイオードAC,ACについての積φ(λ)S(λ),φ(λ)S(λ)をバンド幅Δλにわたって積分した値(つまり光電流I,I)の比のlogを取ることで求められる。
そして、照射光の出力が所定の範囲内では、照射光の波長ごとに、log(I/I)がほぼ一定になり、そのときの照射光波長は数式2で表されることが記載されている。
【0015】
【数2】
λ=alog(I/I)+a (a,aは定数〔nm〕)
【0016】
なお、図5は上記原理に基づく波長測定システムの構成図であり、31はレーザ光源、32は回転式偏光プリズム、33はビームスプリッタ、34は前述の一対のフォトダイオードAC,ACからなるダイオード装置、35は光出力測定器、36は上記数式1、数式2を演算する演算器である。
【0017】
更に、上記文献によれば、各ダイオードの波長感度がほぼ直線的であるような波長範囲(例えば、図4における約600〜約900〔nm〕間の300〔nm〕の範囲)では、0.1〔nm〕以下の間隔で波長測定が可能である。つまり、分解能としては1/3000となる。
【0018】
従って、本発明では、前述した数式1、数式2による波長測定原理を基本としたうえ、この測定原理を従来技術に適用して高分解能の波長計測装置を構成することとした。
【0019】
図1は本発明の実施形態を示す構成図であり、図1(a)は主要部の正面図、図1(b)は側面図を示す。
これらの図において、5は上面にV溝を有するファイバ固定Vブロックであり、上記V溝にはC&BFBG1を有する光ファイバ4が配置される。光ファイバ4が配置された固定Vブロック5の上面には、光ファイバ4と同一の屈折率を有するプリズム2が配置される。
【0020】
なお、図示されていないが、光ファイバ4の延長上にはセンサ用の複数のブラッグ回折格子が形成されており、本実施形態は、これらの複数のブラッグ回折格子からの反射光の波長を検出して各ブラッグ回折格子の位置における温度等の物理量を測定するシステムに適用可能である。
【0021】
プリズム2の上面において、C&BFBG1により分光され放射された光の焦点位置には、この光を受光できるように第1、第2の検出器アレイ3A,3Bが並置されている。また、検出器アレイ3A,3Bには演算部PCが接続されており、この演算部PCは光電流出力を用いて数式1、数式2の演算を行う。
ここで、両アレイ3A,3Bは、図2に示すように長さ方向に沿って(光ファイバ4に沿って)それぞれ多数の受光素子(フォトダイオード)31a,31bが配置された構造である。各アレイ3A,3Bの受光素子31a,31bは波長に対する感度が異なっており、図4に示したフォトダイオードAC,ACに相当している。
なお、図2の各アレイ3A,3Bの周辺に示した回路記号において、50a,50bは受光素子31a,31bの電流出力を電圧出力に換算するアンプ、51は受光素子31a,31bの光電流出力に基づき変換された二つの電圧出力の対数換算と差分出力を行う対数アンプであり、この回路図はこの対数比を出力する処理をイメージしたものである。
【0022】
この実施形態では、波長に対する感度が異なる各アレイ3A,3Bの受光素子31a,31bによりC&BFBG1からの光を同時に受光し、それぞれの光電流出力に数式1、数式2を適用して波長を測定する。
FWHM(半値幅)が0.2〔nm〕のFBGを使用して計測する場合、検出器アレイ3A,3Bをそれぞれ128個の受光素子により構成して各受光素子が2〔nm〕の幅の分解能となるように予め設計したとすると、この波長計測装置の測定波長範囲は2〔nm〕×128=256〔nm〕となり、受光素子31a,31bの組合せにより計測可能なそれぞれの2〔nm〕の範囲内では前述の数式1、数式2に基づき、高分解能で波長を測定することができる。
従って、本発明の課題である高分解能かつ広範囲の波長測定が可能となる。
【0023】
なお、請求項2に記載するように、検出器アレイ3A,3Bは、波長に対する感度が同じものを並置して一方の検出器アレイに光学フィルタを付加することにより、結果的に一方の検出器アレイと他方の検出器アレイとの波長感度を異ならせても良い。
【0024】
また、検出器アレイ3A,3Bをプリズム2の上面の所定位置に固定的に配置できない場合には、図3に示すごとく、水平に移動可能な駆動部材6に検出器アレイ3A,3Bを一体的に固定したうえ、駆動部材6を水平に往復動させ、各検出器アレイ3A,3Bの受光素子31a,31bに時分割的に受光させて光電流出力を得ることもできる。
この実施形態は、請求項3に記載した発明の実施形態に相当する。
【0025】
なお、以上の各実施形態において、請求項4に記載するように、C&BFBG1の温度を検出し、その温度検出信号に基づいてペルチェ素子等の温度制御素子を動作させることにより、C&BFBGの温度を一定に保って波長計測精度を向上させることができるのは言うまでもない。
【0026】
【発明の効果】
以上のように本発明によれば、従来技術のように受光素子の間隔やC&BFBGの設計変更等にとらわれることなく、高分解能かつ測定範囲が広い低コストの波長計測装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す主要部の構成図である。
【図2】図1における検出器アレイの説明図である。
【図3】本発明の他の実施形態を示す主要部の構成図である。
【図4】本発明における波長測定原理の説明図である。
【図5】公知の波長測定システムの構成図である。
【図6】従来技術の構成図である。
【図7】チャープ特性及びブレーズ特性の説明図である。
【符号の説明】
1 チャープドアンドブレーズドブラッグ回折格子(C&BFBG)
2 プリズム
3A,3B 検出器アレイ
31a,31b 受光素子
4 光ファイバ
5 ファイバ固定Vブロック
6 駆動部材
PC 演算部[0001]
BACKGROUND OF THE INVENTION
The present invention is a wavelength measurement device applicable to a physical quantity measurement system that measures physical quantities such as temperature and strain (pressure) by the wavelength of reflected light from a Bragg diffraction grating (hereinafter referred to as FBG) of an optical fiber. About.
[0002]
[Prior art]
FIG. 6 shows a wavelength measuring apparatus for measuring a spectrum of light transmitted on an optical fiber as a conventional technique.
In FIG. 6, 1 is a chirped and blazed Bragg diffraction grating (hereinafter referred to as C & BFBG) having both characteristics of chirp and blaze, which will be described later, 2 is a prism having the same refractive index as the optical fiber 4, and 3 is 256 light receiving elements. A detector array in which elements are arrayed.
[0003]
As is well known, the Bragg diffraction grating of an optical fiber has a refractive index of the core that periodically changes along the optical axis, and reflects light in a narrow band centered on a specific wavelength according to the refractive index.
In addition to this, there is a chirp characteristic (a characteristic in which the periodic interval of the refractive index change is gradually changed along the longitudinal direction of the fiber) and a blaze characteristic (the periodic interval of the refractive index change is inclined with respect to the fiber cross-sectional direction) C & BFBG can be formed.
Then, as shown in FIG. 7A, it is possible to obtain a function as a spectroscope in which light is emitted from the optical fiber 4 while the wavelength is gradually changed along the longitudinal direction of the optical fiber 4. At the same time, as shown in FIG. 7B, the reflection wavelength varies depending on the Bragg diffraction angle, depending on the position of the Bragg diffraction grating having the same periodic interval.
[0004]
As shown in FIG. 6, the power of a specific wavelength can be measured by installing the detector array 3 at a position where these reflected lights are focused. Since each light receiving element of the detector array 3 shows power of a specific wavelength, if drawing is performed along the array 3, a spectrum of incident light to the optical fiber 4 can be obtained. As a paper on this technology, “Fiber gratting optical spectrum analyzer Tap” (Jefferson L. Wagener et.al, ECOC '97, 22-25 September 1997, Conference Publication No. 448, etc.) is known.
In this technique, since 256 light receiving elements are used for the measurement range 14 [nm], the resolution is 0.05 [nm] at the maximum.
[0005]
[Problems to be solved by the invention]
In the above prior art, in order to increase the wavelength measurement resolution, it is conceivable to reduce the interval between the light receiving elements of the detector array 3 or to change the design of the C & BFBG.
However, according to the method of reducing the interval between the light receiving elements, the wavelength measurement range is narrowed. To compensate for this, it is necessary to increase the number of light receiving elements by an amount corresponding to the increased resolution. That is, it was difficult to obtain a wide wavelength measurement range and high resolution at the same time.
In addition, changing the design of the C & BFBG is not practical because of the cost.
[0006]
Therefore, the present invention intends to provide a wavelength measuring apparatus capable of measuring with high resolution over a wide wavelength range without depending on means such as a change in the interval of light receiving elements or a change in design.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that one or more Bragg diffraction gratings are formed in an optical fiber into which measurement light is incident, and the wavelength of the reflected light from the Bragg diffraction grating is detected to detect the Bragg In the physical quantity measurement system that measures the physical quantity at the position of the diffraction grating,
The reflected light from the Bragg diffraction grating is made incident on the C & BFBG, and the light dispersed by the C & BFBG is received by the first and second detector arrays installed at the focal position and having different sensitivity to the wavelength. The wavelength of the reflected light is measured based on the logarithm of the ratio of the photocurrents by the respective light receiving elements (photodiodes) of the first and second detector arrays.
Here, in realizing the “logarithm of the ratio of photocurrents”, two voltage outputs (V 1 , V 2 ) converted from the current outputs (I 1 , I 2 ) of the two light receiving elements (photodiodes). Is converted into a logarithmic output (logV 1 , logV 2 ) by a logarithmic amplifier, and then the difference output (logV 1 -logV 2 ) is taken to obtain log (V 1) corresponding to the “logarithm of the ratio of photocurrents”. / V 2 ) is obtained.
[0008]
The invention according to claim 2 is the wavelength measuring device according to claim 1,
An optical filter is added to one of the detector arrays having the same sensitivity to the wavelength to form the first detector array, and the other detector array is used as the second detector array as it is as the first and second detection arrays. The sensitivity to the wavelength of the array is different.
[0009]
The invention according to claim 3 is the wavelength measuring device according to claim 1 or 2,
The light separated by the C & BFBG is received in a time division manner by the first and second detector arrays.
[0010]
The invention according to claim 4 is the wavelength measuring device according to any one of claims 1 to 3,
Wavelength measurement accuracy is improved by operating a temperature control element such as a Peltier element based on the temperature detection signal of the C & BFBG to keep the temperature of the C & BFBG constant.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, in the present invention, it is described in a paper “Wavelength determination of semiconductor lasers: precision but inexpensive” (Jan Christian Brasch et al., Optical Engineering 1995).
Hereinafter, this principle will be described.
[0012]
According to the above-mentioned literature, a pair of photodiodes having different wavelength sensitivities as shown in the graph of FIG. 4 (a diode formed between electrodes A 1 -C is formed between diode A 1 C and electrodes A 2 -C). When a single-color light is irradiated to a sensor composed of a diode A 2 C) and a high-precision log amplifier, the output W of the sensor is expressed by Equation 1.
[0013]
[Expression 1]
Figure 0003632825
[0014]
Here, I 1 and I 2 are photocurrents from the diodes A 1 C and A 2 C, S 1 (λ) and S 2 (λ) are wavelength-dependent sensitivities of the diodes A 1 C and A 2 C, and φ ( λ) is the wavelength-dependent intensity distribution of the irradiation light, and Δλ is the bandwidth of the irradiation light wavelength.
That is, when irradiation light having a wavelength-dependent intensity distribution of φ (λ) is incident on photodiodes A 1 C and A 2 C having wavelength-dependent sensitivities of S 1 (λ) and S 2 (λ), The output W is a value obtained by integrating the products φ (λ) S 1 (λ) and φ (λ) S 2 (λ) for the diodes A 1 C and A 2 C over the bandwidth Δλ (that is, the photocurrents I 1 , It is obtained by taking a log of the ratio of I 2 ).
When the output of the irradiation light is within a predetermined range, the log (I 1 / I 2 ) is substantially constant for each wavelength of the irradiation light, and the irradiation light wavelength at that time is expressed by Equation 2. Has been.
[0015]
[Expression 2]
λ = a 0 log (I 1 / I 2 ) + a 1 (a 0 and a 1 are constants [nm])
[0016]
FIG. 5 is a block diagram of a wavelength measurement system based on the above principle, in which 31 is a laser light source, 32 is a rotary polarizing prism, 33 is a beam splitter, and 34 is a pair of the photodiodes A 1 C and A 2 C described above. A diode device 35, a light output measuring device 35, and a computing unit 36 for calculating the above-described equations 1 and 2.
[0017]
Further, according to the above document, in a wavelength range in which the wavelength sensitivity of each diode is almost linear (for example, a range of 300 [nm] between about 600 to about 900 [nm] in FIG. 4), 0. Wavelength measurement is possible at intervals of 1 [nm] or less. That is, the resolution is 1/3000.
[0018]
Accordingly, in the present invention, the wavelength measurement principle based on the above-described Equations 1 and 2 is used as a basis, and a high-resolution wavelength measurement device is configured by applying this measurement principle to the prior art.
[0019]
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 1 (a) is a front view of a main part, and FIG. 1 (b) is a side view.
In these drawings, reference numeral 5 denotes a fiber fixing V block having a V groove on the upper surface, and an optical fiber 4 having C & BFBG1 is arranged in the V groove. A prism 2 having the same refractive index as that of the optical fiber 4 is disposed on the upper surface of the fixed V block 5 on which the optical fiber 4 is disposed.
[0020]
Although not shown in the drawing, a plurality of Bragg diffraction gratings for sensors are formed on the extension of the optical fiber 4, and in this embodiment, the wavelength of reflected light from the plurality of Bragg diffraction gratings is detected. Thus, the present invention can be applied to a system for measuring a physical quantity such as a temperature at the position of each Bragg diffraction grating.
[0021]
On the upper surface of the prism 2, first and second detector arrays 3 </ b> A and 3 </ b> B are juxtaposed at the focal position of the light split and emitted by the C & BFBG 1 so that the light can be received. Further, a calculation unit PC is connected to the detector arrays 3A and 3B, and the calculation unit PC performs calculations of Formulas 1 and 2 using the photocurrent output.
Here, as shown in FIG. 2, both arrays 3A and 3B have a structure in which a large number of light receiving elements (photodiodes) 31a and 31b are arranged along the length direction (along the optical fiber 4). The light receiving elements 31a and 31b of the arrays 3A and 3B have different sensitivities with respect to wavelengths, and correspond to the photodiodes A 1 C and A 2 C shown in FIG.
2, 50a and 50b are amplifiers for converting the current output of the light receiving elements 31a and 31b into voltage outputs, and 51 is the photocurrent output of the light receiving elements 31a and 31b. 2 is a logarithmic amplifier that performs logarithmic conversion and differential output of two voltage outputs converted based on the above, and this circuit diagram is an image of the process of outputting this logarithmic ratio.
[0022]
In this embodiment, light from the C & BFBG1 is simultaneously received by the light receiving elements 31a and 31b of the arrays 3A and 3B having different sensitivities with respect to the wavelengths, and the wavelengths are measured by applying the formulas 1 and 2 to the respective photocurrent outputs. .
When measurement is performed using an FBG having a FWHM (half-value width) of 0.2 [nm], the detector arrays 3A and 3B are each composed of 128 light receiving elements, and each light receiving element has a width of 2 [nm]. Assuming that the resolution is designed in advance, the measurement wavelength range of this wavelength measuring device is 2 [nm] × 128 = 256 [nm], and each 2 [nm] that can be measured by the combination of the light receiving elements 31a and 31b. Within the range, the wavelength can be measured with high resolution based on the above-described Equations 1 and 2.
Therefore, it is possible to measure a wide range of wavelengths with high resolution, which is the subject of the present invention.
[0023]
In addition, as described in claim 2, the detector arrays 3A and 3B have the same sensitivity to the wavelength and are juxtaposed to each other, and an optical filter is added to one of the detector arrays. The wavelength sensitivity of the array and the other detector array may be different.
[0024]
If the detector arrays 3A and 3B cannot be fixedly arranged at predetermined positions on the upper surface of the prism 2, the detector arrays 3A and 3B are integrated with the horizontally movable drive member 6 as shown in FIG. In addition, the drive member 6 can be reciprocated horizontally, and the light receiving elements 31a and 31b of the detector arrays 3A and 3B can receive light in a time division manner to obtain a photocurrent output.
This embodiment corresponds to an embodiment of the invention described in claim 3.
[0025]
In each of the above embodiments, as described in claim 4, the temperature of the C & BFBG 1 is fixed by detecting the temperature of the C & BFBG 1 and operating a temperature control element such as a Peltier element based on the temperature detection signal. Needless to say, it is possible to improve the wavelength measurement accuracy while maintaining the above.
[0026]
【The invention's effect】
As described above, according to the present invention, a low-cost wavelength measuring device with high resolution and a wide measurement range can be realized without being limited by the interval between the light receiving elements and the design change of the C & BFBG as in the prior art.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a main part showing an embodiment of the present invention.
2 is an explanatory diagram of the detector array in FIG. 1. FIG.
FIG. 3 is a configuration diagram of a main part showing another embodiment of the present invention.
FIG. 4 is an explanatory diagram of a wavelength measurement principle in the present invention.
FIG. 5 is a configuration diagram of a known wavelength measurement system.
FIG. 6 is a configuration diagram of a conventional technique.
FIG. 7 is an explanatory diagram of a chirp characteristic and a blaze characteristic.
[Explanation of symbols]
1 Chirped and blazed Bragg diffraction grating (C & BFBG)
2 Prism 3A, 3B Detector array 31a, 31b Light receiving element 4 Optical fiber 5 Fiber fixed V block 6 Drive member PC Calculation unit

Claims (4)

測定光が入射される光ファイバに一以上のブラッグ回折格子が形成され、前記ブラッグ回折格子からの反射光の波長を検出して前記ブラッグ回折格子の位置における物理量を測定する物理量測定システムにおいて、
前記ブラッグ回折格子からの反射光を、チャープドアンドブレーズドブラッグ回折格子に入射させ、このチャープドアンドブレーズドブラッグ回折格子により分光された光を、その焦点位置に配置され、かつ波長に対する感度が異なる第1、第2の検出器アレイによって受光し、これらの第1、第2の検出器アレイのそれぞれの受光素子による光電流の比の対数に基づいて前記反射光の波長を測定することを特徴とする波長計測装置。
In the physical quantity measurement system in which one or more Bragg diffraction gratings are formed in the optical fiber into which the measurement light is incident, the wavelength of the reflected light from the Bragg diffraction grating is detected, and the physical quantity at the position of the Bragg diffraction grating is measured.
Reflected light from the Bragg diffraction grating is incident on a chirped and blazed Bragg diffraction grating, and the light dispersed by the chirped and blazed Bragg diffraction grating is disposed at the focal position and has sensitivity to wavelength. Receiving light by different first and second detector arrays, and measuring the wavelength of the reflected light based on the logarithm of the ratio of the photocurrents by the respective light receiving elements of the first and second detector arrays. A characteristic wavelength measuring device.
請求項1記載の波長計測装置において、
波長に対する感度が同じである検出器アレイの一方に光学フィルタを付加して第1の検出器アレイを形成し、他方の検出器アレイはそのまま第2の検出器アレイとして第1、第2の検出器アレイの波長に対する感度を異ならせることを特徴とする波長計測装置。
In the wavelength measuring device according to claim 1,
An optical filter is added to one of the detector arrays having the same sensitivity to the wavelength to form the first detector array, and the other detector array is used as the second detector array as it is as the first and second detection arrays. A wavelength measuring device characterized in that the sensitivity to the wavelength of the detector array is varied.
請求項1または2記載の波長計測装置において、
チャープドアンドブレーズドブラッグ回折格子により分光された光を、第1、第2の検出器アレイにより時分割的に受光することを特徴とする波長計測装置。
In the wavelength measuring device according to claim 1 or 2,
A wavelength measuring device, wherein light split by a chirped and blazed Bragg diffraction grating is received in a time-sharing manner by first and second detector arrays.
請求項1〜3の何れか1項に記載した波長計測装置において、
チャープドアンドブレーズドブラッグ回折格子の温度検出信号に基づき温度制御素子を動作させてチャープドアンドブレーズドブラッグ回折格子の温度を一定に保つことを特徴とする波長計測装置。
In the wavelength measuring device given in any 1 paragraph of Claims 1-3,
A wavelength measuring apparatus characterized in that a temperature control element is operated based on a temperature detection signal of a chirped and blazed Bragg diffraction grating to keep the temperature of the chirped and blazed Bragg diffraction grating constant.
JP09251999A 1999-03-31 1999-03-31 Wavelength measuring device Expired - Fee Related JP3632825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09251999A JP3632825B2 (en) 1999-03-31 1999-03-31 Wavelength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09251999A JP3632825B2 (en) 1999-03-31 1999-03-31 Wavelength measuring device

Publications (2)

Publication Number Publication Date
JP2000283845A JP2000283845A (en) 2000-10-13
JP3632825B2 true JP3632825B2 (en) 2005-03-23

Family

ID=14056590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09251999A Expired - Fee Related JP3632825B2 (en) 1999-03-31 1999-03-31 Wavelength measuring device

Country Status (1)

Country Link
JP (1) JP3632825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524748B2 (en) * 2004-09-28 2010-08-18 日立金属株式会社 Optical monitor and optical monitor array and optical system using the same

Also Published As

Publication number Publication date
JP2000283845A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
EP0875743B1 (en) A wavemeter and an arrangement for the adjustment of the wavelength of an optical source
US6525308B1 (en) Apparatus and method for wavelength detection with fiber bragg grating sensors
US6137565A (en) Bragg grating temperature/strain fiber sensor having combination interferometer/spectrometer output arrangement
JP2001525938A (en) Distributed detection system
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
US20060027737A1 (en) Array and method for monitoring the performance of DWDM multiwavelength systems
US5305077A (en) High-resolution spectroscopy system
US8049883B2 (en) Wavelength tracker for swept wavelength sensor interrogation system
JP3760649B2 (en) Physical quantity measurement system
US6563969B2 (en) Multiplexed fiber laser sensor system
RU2377497C1 (en) Facility for measuring deformations on base of quasi-distributed fibre-optical sencors on bragg grids
JP3669473B2 (en) Wavelength measuring device
US7280216B2 (en) Method and apparatus for determining the wavelength of an input light beam
JP3632825B2 (en) Wavelength measuring device
US20150362386A1 (en) Fiber optic sensor system and method
US7333210B2 (en) Method and apparatus for feedback control of tunable laser wavelength
JP4039217B2 (en) Wavelength measuring device
JPH0789084B2 (en) Spectroscopic measurement method
JP2002116087A (en) Wavelength-measuring apparatus
JP2000283843A (en) Wavelength measuring instrument
JP2004163154A (en) Wavelength-measuring apparatus
JP7238541B2 (en) Spectroscopic measurement device and spectroscopic measurement method
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
JP2002116092A (en) Wavelength measuring device
JP2001021415A (en) Optical wavelength detecting method and optical wavelength detecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees