JP2007057251A - Optical interferometer type phase detection apparatus - Google Patents

Optical interferometer type phase detection apparatus Download PDF

Info

Publication number
JP2007057251A
JP2007057251A JP2005239874A JP2005239874A JP2007057251A JP 2007057251 A JP2007057251 A JP 2007057251A JP 2005239874 A JP2005239874 A JP 2005239874A JP 2005239874 A JP2005239874 A JP 2005239874A JP 2007057251 A JP2007057251 A JP 2007057251A
Authority
JP
Japan
Prior art keywords
light
measurement
phase
optical
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005239874A
Other languages
Japanese (ja)
Inventor
Takao Tanimoto
隆生 谷本
Koji Kawakita
浩二 川北
Hiroshi Shimotahira
寛 下田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005239874A priority Critical patent/JP2007057251A/en
Publication of JP2007057251A publication Critical patent/JP2007057251A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical interferometer type phase detection apparatus capable of highly accurate phase detection with phase noise reduced and detecting the phase of an optical BPF etc. of an extremely narrow band which allows no reference light to pass. <P>SOLUTION: The optical interferometer type phase detection apparatus includes a photoreceiver 8 for outputting measurement interference signals; a photodetector 9 for outputting first reference interference signals; a photoreceiver 18 for outputting second reference interference signals; a phase detection means 11 for detecting the phase (measurement phase) of the measurement interference signals to the second reference interference signals; a phase detection means 12 for detecting the phase (reference phase) of the first reference interference signals to the second reference interference signals; and a signal processing means 13 for receiving a measurement mode specification signal for specifying first mode for determining phase characteristics of an object to be measured on the basis of both measuring light and reference light after their passage through the object to be measured or second mode for determining phase characteristics of the object to be measured only on the basis of the measuring light after its passage through the object to be measured, determining phase characteristics by subtracting a reference phase from a measurement phase in the first mode, and determining phase characteristics on the basis of a measurement phase in the second mode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マッハツェンダ型干渉計から出力される干渉光の位相から例えば被測定物の位相特性を測定する光干渉計型位相検出装置に関し、特に測定光の波長とは異なる波長の参照光を用いて、干渉計の2つの光路間(被測定物が接続されている光路と接続されていない光路)の相対的な光路長変動に起因して生じる位相ノイズを低減するようにした光干渉計型位相検出装置に関する。本発明の光干渉計型位相検出装置は、光部品の位相、群遅延(GD:Group Delay)、微分群遅延(DGD:Differential Group Delay)、波長分散、振幅、挿入損失、反射減衰量、偏波依存損失等の評価を行うための光部品評価装置、光ネットワークアナライザ等に利用できる。   The present invention relates to an optical interferometer-type phase detector that measures, for example, the phase characteristics of an object to be measured from the phase of interference light output from a Mach-Zehnder interferometer, and particularly uses reference light having a wavelength different from the wavelength of the measurement light. An optical interferometer type that reduces phase noise caused by relative optical path length variation between two optical paths of the interferometer (optical path to which the object to be measured is connected and optical path that is not connected) The present invention relates to a phase detection device. The optical interferometer type phase detector of the present invention includes optical component phase, group delay (GD), differential group delay (DGD), chromatic dispersion, amplitude, insertion loss, return loss, polarization It can be used for an optical component evaluation apparatus, an optical network analyzer, and the like for evaluating wave-dependent loss.

マッハツェンダ型干渉計の2つの光路間(被測定物が接続されている光路と接続されていない光路)の相対的な光路長変動は、干渉計を構成する光カプラやファイバ等の、温度、振動等の外的要因による伸縮によって発生し、位相検出の測定誤差(位相ノイズ)となる。このような位相ノイズを低減するために、従来、測定光の他に、測定光の波長とは異なる波長の参照光を用いるようにした光干渉計型位相検出装置があった。(例えば、非特許文献1参照)   The relative optical path length variation between the two optical paths of the Mach-Zehnder interferometer (the optical path to which the object to be measured is connected and the optical path that is not connected) depends on the temperature and vibration of the optical coupler, fiber, etc. constituting the interferometer. It occurs due to expansion and contraction due to external factors such as, and becomes a measurement error (phase noise) of phase detection. In order to reduce such phase noise, there has heretofore been an optical interferometer type phase detector that uses reference light having a wavelength different from the wavelength of the measurement light in addition to the measurement light. (For example, see Non-Patent Document 1)

この種の光干渉計型位相検出装置の概略構成を図16に示す。波長可変光源1は、所定の波長範囲の測定光(周波数νs)を光カプラ3に出力する。光源2は、波長可変光源1の波長とは異なる波長の参照光(周波数νr)を光カプラ3に出力する。光カプラ3は、測定光及び参照光を合波し、それによって得られた波長多重光を音響光学周波数シフタ(AOFS)4aに出力する。 A schematic configuration of this type of optical interferometer type phase detector is shown in FIG. The wavelength variable light source 1 outputs measurement light (frequency ν s ) in a predetermined wavelength range to the optical coupler 3. The light source 2 outputs reference light (frequency ν r ) having a wavelength different from that of the wavelength tunable light source 1 to the optical coupler 3. The optical coupler 3 combines the measurement light and the reference light, and outputs the wavelength multiplexed light obtained thereby to an acousto-optic frequency shifter (AOFS) 4a.

AOFS4aは、超音波発生器4bから入力される周波数f1の超音波(駆動信号)によって駆動され、光カプラ3からの波長多重光を2つの光に分波して、一方の光を被測定物10が接続されている第1の光路に、また他方の光を光遅延器5が接続されている第2の光路にそれぞれ出力する。このとき、第1の光路に出力される光すなわち測定光及び参照光のそれぞれの波長(周波数)は周波数シフトされないが、第2の光路に出力される光すなわち測定光及び参照光のそれぞれの波長は超音波の周波数f1分シフトされる。したがって、AOFS4a及び超音波発生器4bで構成される光分波手段4から2つの光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差はf1となり、これは後述するヘテロダイン検波のビート周波数f1となる。 AOFS4a is driven by the ultrasonic (drive signal) of a frequency f 1 input from the ultrasonic generator 4b, and demultiplexes the wavelength-multiplexed light from the optical coupler 3 into two light, the measured one of the light The other light is output to the first optical path to which the object 10 is connected and to the second optical path to which the optical delay device 5 is connected. At this time, the wavelengths (frequency) of the light output to the first optical path, that is, the measurement light and the reference light are not frequency-shifted, but the light output to the second optical path, that is, the wavelengths of the measurement light and the reference light, respectively. Is shifted by the ultrasonic frequency f 1 . Therefore, the frequency difference between the measurement light and the reference light output from the optical demultiplexing means 4 composed of the AOFS 4a and the ultrasonic generator 4b to the two optical paths is f 1 , which is a heterodyne detection described later. The beat frequency f 1 is obtained.

光カプラ6は、被測定物10を通った第1の光路の光と、光遅延器5を通った第2の光路の光とを合波し、それによって得られた干渉光、すなわちそれぞれ2つの光路を通った、測定光同士の干渉光(測定干渉光という)及び参照光同士の干渉光(参照干渉光という)を波長分波器7に出力する。なお、上記光分波手段4、被測定物10、光遅延器5及び光カプラ6は、光ヘテロダイン干渉方式のマッハツェンダ型干渉計20を構成している。光遅延器5は、このマッハツェンダ型干渉計20の2つの光路の光路長を合わせている。   The optical coupler 6 multiplexes the light in the first optical path that has passed through the DUT 10 and the light in the second optical path that has passed through the optical delay device 5, and the interference light thus obtained, that is, 2 respectively. The interference light between the measurement lights (referred to as measurement interference light) and the interference light between the reference lights (referred to as reference interference light) that have passed through the two optical paths are output to the wavelength demultiplexer 7. The optical demultiplexing means 4, the device under test 10, the optical delay device 5 and the optical coupler 6 constitute a Mach-Zehnder interferometer 20 of an optical heterodyne interference system. The optical delay unit 5 matches the optical path lengths of the two optical paths of the Mach-Zehnder interferometer 20.

波長分波器7は、光カプラ6から出力される干渉光(測定干渉光及び参照干渉光)を受けて、測定光及び参照光の各波長成分に分波しそれぞれ受光器(PD)8及び受光器(PD)9に出力する。受光器8は、波長分波器7からの測定干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数f1の測定干渉信号を出力する。また、受光器9も、同様に、波長分波器7からの参照干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数f1の参照干渉信号を出力する。位相検出手段11は、参照干渉信号に対する測定干渉信号の位相を検出する。 The wavelength demultiplexer 7 receives the interference light (measurement interference light and reference interference light) output from the optical coupler 6, demultiplexes it into each wavelength component of the measurement light and reference light, and receives the light receiver (PD) 8 and Output to a light receiver (PD) 9. The light receiver 8 receives the measurement interference light from the wavelength demultiplexer 7, performs photoelectric conversion (heterodyne detection), and outputs a measurement interference signal having a beat frequency f 1 . Similarly, the light receiver 9 receives the reference interference light from the wavelength demultiplexer 7 and photoelectrically converts it (heterodyne detection), and outputs a reference interference signal having a beat frequency f 1 . The phase detection means 11 detects the phase of the measurement interference signal with respect to the reference interference signal.

このように構成された従来の光干渉計型位相検出装置においては、測定光と、測定光の波長とは異なる波長の参照光とを同時にマッハツェンダ型干渉計に入力し、それぞれがマッハツェンダ型干渉計の2つの同じ光路を通るようにして、参照干渉光(参照干渉信号)に対する測定干渉光(測定干渉信号)の位相を検出するようにしたので、マッハツェンダ型干渉計の2つの光路間(被測定物を含む光路と含まない光路)の相対的な光路長変動に起因して生じる位相検出の測定誤差(位相ノイズ)を少なくすることができる。   In the conventional optical interferometer type phase detector configured as described above, the measurement light and the reference light having a wavelength different from the wavelength of the measurement light are simultaneously input to the Mach-Zehnder interferometer, and each of them is a Mach-Zehnder-type interferometer. The phase of the measurement interference light (measurement interference signal) with respect to the reference interference light (reference interference signal) is detected so that it passes through the same two optical paths of the Mach-Zehnder interferometer. It is possible to reduce phase detection measurement errors (phase noise) caused by relative optical path length fluctuations between an optical path including an object and an optical path not including an object.

第51回応物連合会「二波長ヘテロダインファイバー干渉計による波長分散評価」28p-R-12(2004.3):小川憲介、ティ ティ レイ(DNRI)51th Japan Federation of Reciprocal Products “Evaluation of Chromatic Dispersion Using a Two-Wavelength Heterodyne Fiber Interferometer” 28p-R-12 (2004.3): Kensuke Ogawa, Titi Ray (DNRI)

しかしながら、このような従来の光干渉計型位相検出装置では、被測定物が非常に狭帯域の光バンドパスフィルタ(光BPF)であるような場合、測定光のみが被測定物を通り、測定光と波長の異なる参照光は通らないという状態が起きる。この結果、マッハツェンダ型干渉計からは測定干渉光のみが出力されて、参照干渉光が出力されないために、位相検出手段において参照干渉信号に対する測定干渉信号の位相検出ができない、すなわち被測定物の位相特性を求めることができないという問題を生じる。   However, in such a conventional optical interferometer type phase detector, when the object to be measured is an optical bandpass filter (optical BPF) having a very narrow band, only the measurement light passes through the object to be measured. A state occurs in which reference light having a wavelength different from that of light does not pass. As a result, since only the measurement interference light is output from the Mach-Zehnder interferometer and the reference interference light is not output, the phase detection unit cannot detect the phase of the measurement interference signal with respect to the reference interference signal, that is, the phase of the object to be measured. This causes a problem that characteristics cannot be obtained.

本発明は、被測定物を通った後の測定光と参照光とに基づいた位相ノイズが低減される測定、及び被測定物を通った後の測定光のみに基づいた位相ノイズが低減されない測定の2つの測定モードを切り替えられるようにすることによって、これらの課題を解決し、高精度の位相検出ができるとともに、参照光を通せない非常に狭帯域の光BPF等の被測定物の位相検出をも可能にした光干渉計型位相検出装置を提供することを目的としている。   The present invention is a measurement in which the phase noise based on the measurement light and the reference light after passing through the object to be measured is reduced, and the measurement in which the phase noise based on only the measurement light after passing through the object to be measured is not reduced By switching between these two measurement modes, these problems can be solved, phase detection with high accuracy can be performed, and phase detection of an object to be measured such as a very narrow-band optical BPF that does not allow passage of reference light It is an object of the present invention to provide an optical interferometer type phase detection device which can also be used.

上記課題を解決するために、本発明の請求項1の光干渉計型位相検出装置では、所定の波長範囲の測定光を出力する波長可変光源(1)と、前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する第1の光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して第1の干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(30)と、前記第1の干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する第1の波長分波器(7)と、該第1の波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、前記第1の波長分波器から出力される前記参照光の波長成分に係わる第1の参照干渉光を受けて光電変換し前記所定のビート周波数の第1の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記第1の参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物を通る前の前記第1の光の一部を分波するための第2の光分波手段(14)と、前記マッハツェンダ型干渉計の前記第2の光路上に設けられ、前記第2の光の一部を分波するための第3の光分波手段(15)と、前記第2の光分波手段及び前記第3の光分波手段からそれぞれ出力される光を合波して第2の干渉光を出力する第3の光合波手段(16)と、前記第2の干渉光を受けて前記参照光の波長成分に係わる第2の参照干渉光を出力する第2の波長分波器(17)と、前記第2の参照干渉光を受けて光電変換し前記所定のビート周波数の第2の参照干渉信号を出力する第3の受光器(18)と、前記測定干渉信号と前記第2の参照干渉信号とを受けて、当該第2の参照干渉信号に対する前記測定干渉信号の位相を検出し測定位相として出力する第1の位相検出手段(11)と、前記第1の参照干渉信号と前記第2の参照干渉信号とを受けて、当該第2の参照干渉信号に対する前記第1の参照干渉信号の位相を検出し参照位相として出力する第2の位相検出手段(12)と、被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号を受け、該測定モード指定信号が第1のモードを指定している場合には、前記測定位相から前記参照位相を減算して被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記測定位相から被測定物の波長−位相特性を求める信号処理手段(13)とを備えた。   In order to solve the above-described problem, in the optical interferometer type phase detection device according to claim 1 of the present invention, the wavelength variable light source (1) that outputs measurement light in a predetermined wavelength range is different from the wavelength of the measurement light. A light source (2) that outputs a reference light having a wavelength, a first optical multiplexing means (3) that receives and multiplexes the measurement light and the reference light, and outputs wavelength-multiplexed light obtained thereby; Upon receiving the wavelength multiplexed light, the first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are demultiplexed. And the measurement light and the reference light included in the second light demultiplexed with the respective frequencies of the measurement light and the reference light included in the demultiplexed first light. The difference in frequency between the measurement beams and the difference in frequency between the reference beams are the same. First optical demultiplexing means (4) for shifting and outputting at least one of the first light and the second light by frequency shifters (4a to 4f) so as to obtain a predetermined beat frequency. ), And second optical multiplexing means (6) for combining the first light passing through the first optical path and the second light passing through the second optical path to output first interference light. And an optical heterodyne interferometer type Mach-Zehnder interferometer (30) and a first wavelength demultiplexer (7) that receives the first interference light and demultiplexes it into wavelength components of the measurement light and the reference light. ) And a first light receiver that receives the measurement interference light related to the wavelength component of the measurement light output from the first wavelength demultiplexer, photoelectrically converts it, and outputs a measurement interference signal of the predetermined beat frequency ( 8) and the wavelength component of the reference light output from the first wavelength demultiplexer. A second photoreceiver (9) that receives the first reference interference light and photoelectrically converts the first reference interference light and outputs the first reference interference signal having the predetermined beat frequency, and the measurement interference signal and the first reference In an optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the device under test based on an interference signal, the first device is provided on the first optical path of the Mach-Zehnder type interferometer and before passing through the device under test. A second optical demultiplexing means (14) for demultiplexing a part of the first light, and a second optical demultiplexing means provided on the second optical path of the Mach-Zehnder interferometer; A third optical demultiplexing means (15) for wave, the light output from the second optical demultiplexing means and the third optical demultiplexing means, respectively, to multiplex the second interference light Third optical multiplexing means (16) for outputting, and receiving the second interference light and relating to the wavelength component of the reference light. A second wavelength demultiplexer (17) for outputting the second reference interference light, and photoelectrically converting the second reference interference light to output a second reference interference signal having the predetermined beat frequency. Receiving a third light receiver (18), the measurement interference signal and the second reference interference signal, detecting a phase of the measurement interference signal with respect to the second reference interference signal and outputting the phase as a measurement phase; 1 phase detecting means (11), receiving the first reference interference signal and the second reference interference signal, and detecting the phase of the first reference interference signal with respect to the second reference interference signal. First phase detecting means (12) for outputting as a reference phase, a first mode for measuring phase characteristics of the object to be measured based on the measurement light after passing through the object to be measured and the reference light, and the object to be measured The phase of the object to be measured based only on the measurement light after passing through the object When a measurement mode designating signal designating one of the second modes for determining the characteristics is received and the measurement mode designating signal designates the first mode, the reference phase is subtracted from the measurement phase. Signal processing means for obtaining the wavelength-phase characteristic of the object to be measured from the measurement phase when the wavelength-phase characteristic of the object to be measured is obtained and the measurement mode designation signal designates the second mode. (13).

また、本発明の請求項2の光干渉計型位相検出装置では、所定の波長範囲の測定光を出力する波長可変光源(1)と、前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(20)と、前記干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する波長分波器(7)と、該波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、前記波長分波器から出力される前記参照光の波長成分に係わる参照干渉光を受けて光電変換し前記所定のビート周波数の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、前記周波数シフタの駆動信号に基づいて前記所定のビート周波数と同一の周波数を有する位相検出基準信号を発生させる位相検出基準信号発生手段(4b、4d、4f、19)と、前記測定干渉信号と前記位相検出基準信号とを受けて、当該位相検出基準信号に対する前記測定干渉信号の位相を検出し測定位相として出力する第1の位相検出手段(11)と、前記参照干渉信号と前記位相検出基準信号とを受けて、当該位相検出基準信号に対する前記参照干渉信号の位相を検出し参照位相として出力する第2の位相検出手段(12)と、被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号を受け、該測定モード指定信号が第1のモードを指定している場合には、前記測定位相から前記参照位相を減算して被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記測定位相から被測定物の波長−位相特性を求める信号処理手段(13)とを備えた。   In the optical interferometer type phase detector according to claim 2 of the present invention, the wavelength variable light source (1) for outputting the measurement light in a predetermined wavelength range and the reference light having a wavelength different from the wavelength of the measurement light are output. A light source (2) for receiving, the first optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light, and outputting the wavelength multiplexed light obtained thereby, and the wavelength multiplexed light The first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated and demultiplexed. Further, the respective frequencies of the measurement light and the reference light included in the first light and the respective frequencies of the measurement light and the reference light included in the demultiplexed second light. The frequency difference between the measurement lights and the frequency difference between the reference lights are respectively predetermined beat frequencies. The optical demultiplexing means (4) for frequency-shifting and outputting at least one of the first light and the second light by frequency shifters (4a to 4f), and the first optical path Optical heterodyne interference type Mach-Zehnder type interference having second optical multiplexing means (6) for outputting the interference light by combining the first light passing through and the second light passing through the second optical path A meter (20), a wavelength demultiplexer (7) that receives the interference light and demultiplexes it into wavelength components of the measurement light and the reference light, and a wavelength of the measurement light output from the wavelength demultiplexer A first light receiver (8) that receives measurement interference light related to the component and photoelectrically converts it to output a measurement interference signal of the predetermined beat frequency; and a wavelength component of the reference light output from the wavelength demultiplexer. Receiving the reference interference light and photoelectrically converting the predetermined beat frequency An optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the device under test based on the measurement interference signal and the reference interference signal, comprising: a second light receiver (9) for outputting an illumination interference signal; Phase detection reference signal generating means (4b, 4d, 4f, 19) for generating a phase detection reference signal having the same frequency as the predetermined beat frequency based on the drive signal of the frequency shifter, the measurement interference signal, and the First phase detection means (11) that receives the phase detection reference signal, detects the phase of the measurement interference signal with respect to the phase detection reference signal, and outputs it as the measurement phase; the reference interference signal; and the phase detection reference signal The second phase detection means (12) for detecting the phase of the reference interference signal with respect to the phase detection reference signal and outputting it as a reference phase; A first mode for obtaining the phase characteristic of the object to be measured based on the measurement light and the reference light, and a second mode for obtaining the phase characteristic of the object to be measured based only on the measurement light after passing through the object to be measured. When a measurement mode designation signal designating one of the modes is received and the measurement mode designation signal designates the first mode, the reference phase is subtracted from the measurement phase, and the wavelength of the object to be measured A signal processing means (13) for obtaining a phase characteristic and obtaining a wavelength-phase characteristic of an object to be measured from the measurement phase when the measurement mode designation signal designates the second mode; It was.

また、本発明の請求項3の光干渉計型位相検出装置では、所定の波長範囲の測定光を出力する波長可変光源(1)と、前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する第1の光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して第1の干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(30)と、前記第1の干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する第1の波長分波器(7)と、該第1の波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、前記第1の波長分波器から出力される前記参照光の波長成分に係わる第1の参照干渉光を受けて光電変換し前記所定のビート周波数の第1の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記第1の参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物を通る前の前記第1の光の一部を分波するための第2の光分波手段(14)と、前記マッハツェンダ型干渉計の前記第2の光路上に設けられ、前記第2の光の一部を分波するための第3の光分波手段(15)と、前記第2の光分波手段及び前記第3の光分波手段からそれぞれ出力される光を合波して第2の干渉光を出力する第3の光合波手段(16)と、前記第2の干渉光を受けて前記参照光の波長成分に係わる第2の参照干渉光を出力する第2の波長分波器(17)と、前記第2の参照干渉光を受けて光電変換し前記所定のビート周波数の第2の参照干渉信号を出力する第3の受光器(18)と、被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号、前記第1の参照干渉信号並びに前記第2の参照干渉信号を受け、該測定モード指定信号が第1のモードを指定している場合には前記第1の参照干渉信号を出力し、かつ、前記測定モード指定信号が第2のモードを指定している場合には前記第2の参照干渉信号を出力する切替器(22)と、該切替器から前記第1の参照干渉信号を受けたときは、当該第1の参照干渉信号に対する前記測定干渉信号の位相を検出し第1の測定位相として出力し、かつ、前記切替器から前記第2の参照干渉信号を受けたときは、当該第2の参照干渉信号に対する前記測定干渉信号の位相を検出し第2の測定位相として出力する位相検出手段(11)と、前記測定モード指定信号が第1のモードを指定している場合には、前記第1の測定位相から被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記第2の測定位相から被測定物の波長−位相特性を求める信号処理手段(23)とを備えた。   In the optical interferometer type phase detector according to claim 3 of the present invention, the wavelength variable light source (1) for outputting the measurement light in a predetermined wavelength range and the reference light having a wavelength different from the wavelength of the measurement light are output. A light source (2) for receiving, the first optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light, and outputting the wavelength multiplexed light obtained thereby, and the wavelength multiplexed light The first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated and demultiplexed. Further, the respective frequencies of the measurement light and the reference light included in the first light and the respective frequencies of the measurement light and the reference light included in the demultiplexed second light. The frequency difference between the measurement lights and the frequency difference between the reference lights are respectively predetermined beat frequencies. The first optical demultiplexing means (4) for frequency-shifting and outputting at least one of the first light and the second light by frequency shifters (4a to 4f) An optical heterodyne having second optical multiplexing means (6) for combining the first light passing through one optical path and the second light passing through the second optical path to output first interference light An interference type Mach-Zehnder interferometer (30), a first wavelength demultiplexer (7) that receives the first interference light and demultiplexes it into wavelength components of the measurement light and the reference light; A first light receiver (8) that receives measurement interference light related to a wavelength component of the measurement light output from one wavelength demultiplexer, photoelectrically converts the measurement interference light, and outputs a measurement interference signal of the predetermined beat frequency; First reference interference light related to the wavelength component of the reference light output from the first wavelength demultiplexer A second light receiver (9) that receives and photoelectrically converts and outputs a first reference interference signal having the predetermined beat frequency, and based on the measurement interference signal and the first reference interference signal, In an optical interferometer type phase detector for obtaining a wavelength-phase characteristic of an object, a part of the first light before passing through the object to be measured is provided on the first optical path of the Mach-Zehnder interferometer. Second light demultiplexing means (14) for wave and third light for demultiplexing a part of the second light provided on the second optical path of the Mach-Zehnder interferometer Demultiplexing means (15), and third optical multiplexing means for combining the light respectively output from the second optical demultiplexing means and the third optical demultiplexing means to output second interference light (16) and the second reference interference light related to the wavelength component of the reference light in response to the second interference light And a third optical receiver (18) that receives the second reference interference light and photoelectrically converts it to output a second reference interference signal having the predetermined beat frequency. ) And the first mode for obtaining the phase characteristic of the object to be measured based on the measurement light and the reference light after passing through the object to be measured, and only the measurement light after passing through the object to be measured Upon receiving a measurement mode designating signal for designating one of the second modes for obtaining the phase characteristics of the device under test, the first reference interference signal and the second reference interference signal, the measurement mode designating signal is the first mode. When the mode is designated, the first reference interference signal is output, and when the measurement mode designation signal designates the second mode, the second reference interference signal is output. And a first reference interference signal from the switch. When the phase of the measurement interference signal with respect to the first reference interference signal is detected and output as the first measurement phase, and when the second reference interference signal is received from the switch A phase detection means (11) for detecting a phase of the measurement interference signal with respect to the second reference interference signal and outputting it as a second measurement phase, and the measurement mode designating signal designating the first mode If the wavelength-phase characteristic of the object to be measured is obtained from the first measurement phase, and the measurement mode designation signal designates the second mode, the measurement object is obtained from the second measurement phase. And signal processing means (23) for obtaining the wavelength-phase characteristic of the measurement object.

また、本発明の請求項4の光干渉計型位相検出装置では、所定の波長範囲の測定光を出力する波長可変光源(1)と、前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(20)と、前記干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する波長分波器(7)と、該波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、前記波長分波器から出力される前記参照光の波長成分に係わる参照干渉光を受けて光電変換し前記所定のビート周波数の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、前記周波数シフタの駆動信号に基づいて前記所定のビート周波数と同一の周波数を有する位相検出基準信号を発生させる位相検出基準信号発生手段(4b、4d、4f、19)と、被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号、前記参照干渉信号並びに前記位相検出基準信号を受け、該測定モード指定信号が第1のモードを指定している場合には前記参照干渉信号を出力し、かつ、前記測定モード指定信号が第2のモードを指定している場合には前記位相検出基準信号を出力する切替器(22)と、該切替器から前記参照干渉信号を受けたときは、当該参照干渉信号に対する前記測定干渉信号の位相を検出し第1の測定位相として出力し、かつ、前記切替器から前記位相検出基準信号を受けたときは、当該位相検出基準信号に対する前記測定干渉信号の位相を検出し第2の測定位相として出力する位相検出手段(11)と、前記測定モード指定信号が第1のモードを指定している場合には、前記第1の測定位相から被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記第2の測定位相から被測定物の波長−位相特性を求める信号処理手段(23)とを備えた。   In the optical interferometer type phase detector according to claim 4 of the present invention, the wavelength variable light source (1) for outputting the measurement light in a predetermined wavelength range and the reference light having a wavelength different from the wavelength of the measurement light are output. A light source (2) for receiving, the first optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light, and outputting the wavelength multiplexed light obtained thereby, and the wavelength multiplexed light The first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated and demultiplexed. Further, the respective frequencies of the measurement light and the reference light included in the first light and the respective frequencies of the measurement light and the reference light included in the demultiplexed second light. The frequency difference between the measurement lights and the frequency difference between the reference lights are respectively predetermined beat frequencies. The optical demultiplexing means (4) for frequency-shifting and outputting at least one of the first light and the second light by frequency shifters (4a to 4f), and the first optical path Optical heterodyne interference type Mach-Zehnder type interference having second optical multiplexing means (6) for outputting the interference light by combining the first light passing through and the second light passing through the second optical path A meter (20), a wavelength demultiplexer (7) that receives the interference light and demultiplexes it into wavelength components of the measurement light and the reference light, and a wavelength of the measurement light output from the wavelength demultiplexer A first light receiver (8) that receives measurement interference light related to the component and photoelectrically converts it to output a measurement interference signal of the predetermined beat frequency; and a wavelength component of the reference light output from the wavelength demultiplexer. Receiving the reference interference light and photoelectrically converting the predetermined beat frequency An optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the device under test based on the measurement interference signal and the reference interference signal, comprising: a second light receiver (9) for outputting an illumination interference signal; Phase detection reference signal generation means (4b, 4d, 4f, 19) for generating a phase detection reference signal having the same frequency as the predetermined beat frequency based on the drive signal of the frequency shifter, and the object to be measured A first mode for obtaining the phase characteristic of the object to be measured based on the later measurement light and the reference light, and a first mode for obtaining the phase characteristic of the object to be measured based only on the measurement light after passing through the object to be measured. When receiving the measurement mode designating signal designating one of the two modes, the reference interference signal and the phase detection reference signal, and the measurement mode designating signal designates the first mode, the reference interference signal And a switch (22) for outputting the phase detection reference signal when the measurement mode specifying signal specifies the second mode, and receiving the reference interference signal from the switch. The phase of the measurement interference signal relative to the reference interference signal is detected and output as the first measurement phase, and when the phase detection reference signal is received from the switch, the phase detection reference signal Phase detection means (11) for detecting the phase of the measurement interference signal and outputting it as a second measurement phase; and when the measurement mode designation signal designates the first mode, the first measurement phase If the wavelength-phase characteristic of the object to be measured is obtained from the measurement mode and the measurement mode designation signal designates the second mode, the wavelength-phase characteristic of the object to be measured is obtained from the second measurement phase. Signal processing means (2 ) And with.

また、本発明の請求項5の光干渉計型位相検出装置では、上述した請求項1〜4のいずれかの光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路及び前記第2の光路のいずれか一方の光路上に当該2つの光路の光路長を合わせるための光遅延器(5)を備えた。   Further, in the optical interferometer type phase detection device according to claim 5 of the present invention, in the optical interferometer type phase detection device according to any one of claims 1 to 4, the first optical path of the Mach-Zehnder interferometer and An optical delay device (5) for adjusting the optical path lengths of the two optical paths is provided on either one of the second optical paths.

また、本発明の請求項6の光干渉計型位相検出装置では、上述した請求項1〜5のいずれかの光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物に入力される光の強度を検出するための第1の光強度検出手段(24、25)と、前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物から出力される光の強度を検出するための第2の光強度検出手段(26、27)とを備えた。   According to a sixth aspect of the present invention, there is provided the optical interferometer type phase detection device according to any one of the first to fifth aspects, wherein the Mach-Zehnder type interferometer is on the first optical path. Provided on the first optical path of the Mach-Zehnder interferometer, and first light intensity detecting means (24, 25) for detecting the intensity of light input to the object to be measured. Second light intensity detection means (26, 27) for detecting the intensity of light output from the measurement object is provided.

また、本発明の請求項7の光干渉計型位相検出装置では、上述した請求項1〜6のいずれかの光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に、被測定物に入力された光の当該被測定物による反射光の強度を検出するための第3の光強度検出手段(24、28)を備えた。   According to a seventh aspect of the present invention, in the optical interferometer type phase detection device according to any one of the first to sixth aspects, the first optical path of the Mach-Zehnder type interferometer is provided. In addition, third light intensity detection means (24, 28) for detecting the intensity of the reflected light from the object to be measured of the light input to the object to be measured is provided.

また、本発明の請求項8の光干渉計型位相検出装置では、上述した請求項6の光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に、被測定物に入力される光の偏波を変化させるための偏波制御器(29)を備えた。   According to an optical interferometer type phase detector of claim 8 of the present invention, in the optical interferometer type phase detector of claim 6 described above, an object to be measured is placed on the first optical path of the Mach-Zehnder interferometer. A polarization controller (29) for changing the polarization of the light input to.

また、本発明の請求項9の光干渉計型位相検出装置では、上述した請求項7の光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に、被測定物に入力される光の偏波を変化させるための偏波制御器(29)を備えた。   Further, in the optical interferometer type phase detector according to claim 9 of the present invention, in the optical interferometer type phase detector of claim 7 described above, an object to be measured is placed on the first optical path of the Mach-Zehnder interferometer. A polarization controller (29) for changing the polarization of the light input to.

また、本発明の請求項10の光干渉計型位相検出装置では、上述した請求項1〜6及び8のいずれかの光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に設けられた光サーキュレータ(31)を介して被測定物が該第1の光路に接続されているようにした。   The optical interferometer type phase detector according to claim 10 of the present invention is the optical interferometer type phase detector according to any one of claims 1 to 6 and 8, wherein the first interferometer of the Mach-Zehnder type interferometer is used. An object to be measured was connected to the first optical path via an optical circulator (31) provided on the optical path.

また、本発明の請求項11の光干渉計型位相検出装置では、上述した請求項1〜6及び8のいずれかの光干渉計型位相検出装置において、前記マッハツェンダ型干渉計の前記第1の光路上に設けられた光カプラ(32)を介して被測定物が該第1の光路に接続されているようにした。   Moreover, in the optical interferometer type phase detection device according to claim 11 of the present invention, in the optical interferometer type phase detection device according to any one of claims 1 to 6 and 8, the first of the Mach-Zehnder type interferometer is used. An object to be measured is connected to the first optical path via an optical coupler (32) provided on the optical path.

本発明の請求項1〜4の光干渉計型位相検出装置では、測定モード指定信号により、被測定物を通った後の測定光と参照光とに基づいて被測定物の位相特性を求める第1のモード、及び被測定物を通った後の測定光のみに基づいて被測定物の位相特性を求める第2のモードを切り替えて測定できるようにしたので、第1のモードでは位相ノイズを低減した高精度の位相検出ができ、第2のモードでは参照光を通せない非常に狭帯域の光BPF等の被測定物の位相検出ができる。   In the optical interferometer type phase detector according to claims 1 to 4 of the present invention, the phase characteristic of the object to be measured is obtained based on the measurement light after passing through the object to be measured and the reference light by the measurement mode designation signal. Since the first mode and the second mode for obtaining the phase characteristic of the object to be measured can be switched based on only the measurement light after passing through the object to be measured, the phase noise is reduced in the first mode. In the second mode, it is possible to detect the phase of an object to be measured such as a very narrow-band optical BPF that cannot pass the reference light in the second mode.

本発明の請求項5の光干渉計型位相検出装置では、光遅延器によってマッハツェンダ型干渉計の2つの光路の光路長を合わせるようにしたので、位相検出精度を上げることができる。   In the optical interferometer type phase detector according to claim 5 of the present invention, the optical path lengths of the two optical paths of the Mach-Zehnder interferometer are matched by the optical delay unit, so that the phase detection accuracy can be improved.

本発明の請求項6の光干渉計型位相検出装置では、被測定物の挿入損失測定ができる。   In the optical interferometer type phase detector according to claim 6 of the present invention, the insertion loss of the object to be measured can be measured.

本発明の請求項7の光干渉計型位相検出装置では、被測定物の反射減衰量測定ができる。   In the optical interferometer type phase detector according to claim 7 of the present invention, the return loss of the object to be measured can be measured.

本発明の請求項8の光干渉計型位相検出装置では、被測定物の偏波依存損失測定ができる。   In the optical interferometer type phase detector according to claim 8 of the present invention, it is possible to measure the polarization dependent loss of the object to be measured.

本発明の請求項9の光干渉計型位相検出装置では、被測定物の偏波依存反射減衰量測定ができる。   In the optical interferometer type phase detector according to the ninth aspect of the present invention, the polarization dependent return loss of the object to be measured can be measured.

本発明の請求項10及び11の光干渉計型位相検出装置では、被測定物から反射されて戻ってくる光(反射光)の位相特性が検出できる。例えば、入力光のうち特定波長の光だけを反射させるFBG(ファイバブラッググレーティング)のような被測定物の位相特性が検出できる。また、求めた振幅・位相データをフーリエ変換することにより、被測定物の反射減衰量分布の測定も可能となる。   In the optical interferometer type phase detection device according to the tenth and eleventh aspects of the present invention, the phase characteristic of the light (reflected light) reflected from the object to be measured and returned can be detected. For example, it is possible to detect the phase characteristic of an object to be measured such as an FBG (fiber Bragg grating) that reflects only light of a specific wavelength in the input light. Further, by performing Fourier transform on the obtained amplitude / phase data, the return loss distribution of the object to be measured can be measured.

以下に本発明の実施形態を記載する。   Embodiments of the present invention will be described below.

[第1実施形態]
本発明の第1実施形態の光干渉計型位相検出装置の構成を図1に示す。従来の光干渉計型位相検出装置と同一要素には同一符号を付し詳細説明は省略する。波長可変光源1は、例えば波長可変レーザであり、所定の波長範囲(例えば1530〜1560nm)の測定光(周波数νs)を光カプラ3に出力する。光源2は、例えばレーザであり、測定光の波長とは異なる波長(例えば1565nm)の参照光(周波数νr)を光カプラ3に出力する。光カプラ3は、測定光及び参照光を合波し、それによって得られた波長多重光を光分波手段4の光カプラ4gに出力する。
[First Embodiment]
The configuration of the optical interferometer type phase detector of the first embodiment of the present invention is shown in FIG. The same elements as those of the conventional optical interferometer type phase detector are denoted by the same reference numerals, and detailed description thereof is omitted. The wavelength tunable light source 1 is, for example, a wavelength tunable laser, and outputs measurement light (frequency ν s ) in a predetermined wavelength range (for example, 1530 to 1560 nm) to the optical coupler 3. The light source 2 is a laser, for example, and outputs a reference light (frequency ν r ) having a wavelength (for example, 1565 nm) different from the wavelength of the measurement light to the optical coupler 3. The optical coupler 3 combines the measurement light and the reference light, and outputs the wavelength multiplexed light obtained thereby to the optical coupler 4 g of the optical demultiplexing means 4.

光カプラ4gは、入力された波長多重光を2つの光に分波して、一方の光をAOFS4eに、また他方の光をAOFS4cにそれぞれ出力する。AOFS4eは、超音波発生器4fから入力される周波数f1の超音波(駆動信号)によって駆動され、上記一方の光すなわち測定光及び参照光のそれぞれの波長(周波数)を周波数f1分シフトして被測定物10が接続されている第1の光路に出力し、またAOFS4cは、超音波発生器4dから入力される周波数f2の超音波(駆動信号)によって駆動され、上記他方の光すなわち測定光及び参照光のそれぞれの波長(周波数)を周波数f2分シフトして、被測定物10が接続されていない第2の光路に出力する。したがって、光カプラ4g、AOFS4c、AOFS4e、超音波発生器4d及び超音波発生器4fで構成される光分波手段4から、2つの光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差はf1−f2となり、これは後述するヘテロダイン検波のビート周波数(f1−f2)となる。なお、この構成の光分波手段4では、AOFS4c、4eを並列に配列しているので、この2つのAOFSで生じる位相特性(波長分散)をキャンセルすることができる。 The optical coupler 4g demultiplexes the input wavelength multiplexed light into two lights, and outputs one light to the AOFS 4e and the other light to the AOFS 4c. AOFS4e is driven by the ultrasonic (drive signal) of a frequency f 1 input from the ultrasonic generator 4f, the one optical i.e. each wavelength of the measurement light and the reference light (frequency) is shifted 1 minute frequency f outputting a first optical path that is connected to the DUT 10, also AOFS4c is driven by the ultrasonic frequency f 2 inputted from the ultrasonic generator 4d (drive signals), the other light i.e. Te The wavelengths (frequency) of the measurement light and the reference light are shifted by the frequency f 2 and output to the second optical path to which the device under test 10 is not connected. Accordingly, each of the measurement light and the reference light respectively output to the two optical paths from the optical demultiplexing means 4 constituted by the optical coupler 4g, AOFS 4c, AOFS 4e, the ultrasonic generator 4d and the ultrasonic generator 4f. The frequency difference is f 1 −f 2 , which is the beat frequency (f 1 −f 2 ) of heterodyne detection described later. In the optical demultiplexing means 4 having this configuration, since the AOFSs 4c and 4e are arranged in parallel, the phase characteristics (wavelength dispersion) generated by these two AOFSs can be canceled.

光カプラ14は、第1の光路上に設けられており、AOFS4eから被測定物10に入力される光の一部を分波して光カプラ16に出力する。また、光カプラ15は、第2の光路上に設けられており、AOFS4cから光遅延器5に入力される光の一部を分波して光カプラ16に出力する。   The optical coupler 14 is provided on the first optical path and demultiplexes a part of the light input from the AOFS 4 e to the device under test 10 and outputs the demultiplexed light to the optical coupler 16. The optical coupler 15 is provided on the second optical path and demultiplexes part of the light input from the AOFS 4 c to the optical delay device 5 and outputs the demultiplexed light to the optical coupler 16.

光カプラ6は、被測定物10を通った第1の光路の光と、光遅延器5を通った第2の光路の光とを合波し、それによって得られた干渉光、すなわちそれぞれ2つの光路を通った、測定光同士の干渉光(測定干渉光という)及び参照光同士の干渉光(参照干渉光という)を波長分波器7に出力する。なお、上記光分波手段4、光カプラ14、被測定物10、光カプラ15、光遅延器5及び光カプラ6は、光ヘテロダイン干渉方式のマッハツェンダ型干渉計30を構成している。光遅延器5は、このマッハツェンダ型干渉計30の2つの光路の光路長を合わせている。   The optical coupler 6 multiplexes the light in the first optical path that has passed through the DUT 10 and the light in the second optical path that has passed through the optical delay device 5, and the interference light thus obtained, that is, 2 respectively. The interference light between the measurement lights (referred to as measurement interference light) and the interference light between the reference lights (referred to as reference interference light) that have passed through the two optical paths are output to the wavelength demultiplexer 7. The optical demultiplexing means 4, the optical coupler 14, the device under test 10, the optical coupler 15, the optical delay device 5, and the optical coupler 6 constitute a Mach-Zehnder interferometer 30 of an optical heterodyne interference system. The optical delay device 5 matches the optical path lengths of the two optical paths of the Mach-Zehnder interferometer 30.

波長分波器7は、光カプラ6から出力される干渉光(測定干渉光及び参照干渉光)を受けて、測定光及び参照光の各波長成分に分波しそれぞれ受光器(PD)8及び受光器(PD)9に出力する。受光器8は、波長分波器7からの測定干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数(f1−f2)の測定干渉信号を出力する。また、受光器9も、同様に、波長分波器7からの参照干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数(f1−f2)の第1の参照干渉信号を出力する。 The wavelength demultiplexer 7 receives the interference light (measurement interference light and reference interference light) output from the optical coupler 6, demultiplexes it into each wavelength component of the measurement light and reference light, and receives the light receiver (PD) 8 and Output to a light receiver (PD) 9. The light receiver 8 receives the measurement interference light from the wavelength demultiplexer 7, performs photoelectric conversion (heterodyne detection), and outputs a measurement interference signal having a beat frequency (f 1 −f 2 ). Similarly, the light receiver 9 receives the reference interference light from the wavelength demultiplexer 7 and photoelectrically converts (heterodyne detection), and outputs a first reference interference signal having a beat frequency (f 1 −f 2 ). .

光カプラ16は、光カプラ14から出力される第1の光路の光の一部と、光カプラ15から出力される第2の光路の光の一部とを合波し、それによって得られた干渉光(測定干渉光及び参照干渉光)を波長分波器17に出力する。波長分波器17は、光カプラ16からの干渉光を受けて参照干渉光のみを分波し受光器(PD)18に出力する。受光器18は、波長分波器17からの参照干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数(f1−f2)の第2の参照干渉信号を出力する。 The optical coupler 16 combines a part of the light of the first optical path output from the optical coupler 14 and a part of the light of the second optical path output from the optical coupler 15, and is thus obtained. The interference light (measurement interference light and reference interference light) is output to the wavelength demultiplexer 17. The wavelength demultiplexer 17 receives the interference light from the optical coupler 16 and demultiplexes only the reference interference light and outputs it to the light receiver (PD) 18. The light receiver 18 receives the reference interference light from the wavelength demultiplexer 17, performs photoelectric conversion (heterodyne detection), and outputs a second reference interference signal having a beat frequency (f 1 −f 2 ).

位相検出手段11は、受光器8から出力される測定干渉信号及び受光器18から出力される第2の参照干渉信号を受けて、この第2の参照干渉信号に対する測定干渉信号の位相を検出し測定位相として信号処理手段13に出力する。また、位相検出手段12は、受光器9から出力される第1の参照干渉信号及び受光器18から出力される第2の参照干渉信号を受けて、この第2の参照干渉信号に対する第1の参照干渉信号の位相を検出し参照位相として信号処理手段13に出力する。   The phase detector 11 receives the measurement interference signal output from the light receiver 8 and the second reference interference signal output from the light receiver 18 and detects the phase of the measurement interference signal with respect to the second reference interference signal. It outputs to the signal processing means 13 as a measurement phase. The phase detector 12 receives the first reference interference signal output from the light receiver 9 and the second reference interference signal output from the light receiver 18, and receives a first reference interference signal from the first reference interference signal. The phase of the reference interference signal is detected and output to the signal processing means 13 as a reference phase.

信号処理手段13は、上記測定位相及び参照位相を受けるとともに、操作部(図示しない)から出力される測定モード指定信号(被測定物10を通った後の測定光と参照光とに基づいて被測定物10の位相特性を求める第1のモード又は被測定物10を通った後の測定光のみに基づいて被測定物10の位相特性を求める第2のモードを指定する)を受け、測定モード指定信号が第1のモードを指定している場合には、測定位相から参照位相を減算して被測定物10の波長−位相特性を求め、また、測定モード指定信号が第2のモードを指定している場合には、測定位相から被測定物10の波長−位相特性を求める。   The signal processing means 13 receives the measurement phase and the reference phase, and outputs a measurement mode designation signal (measured light and reference light after passing through the object to be measured 10) output from an operation unit (not shown). A first mode for determining the phase characteristics of the object to be measured 10 or a second mode for determining the phase characteristics of the object to be measured 10 based only on the measurement light after passing through the object to be measured 10). When the designation signal designates the first mode, the reference phase is subtracted from the measurement phase to obtain the wavelength-phase characteristic of the DUT 10, and the measurement mode designation signal designates the second mode. If it is, the wavelength-phase characteristic of the DUT 10 is obtained from the measurement phase.

このように構成された第1実施形態の光干渉計型位相検出装置では、被測定物10を通る前の第1の光路の光の一部と第2の光路の光の一部とを合波して得られる干渉光から第2の参照干渉信号を発生させ、これを位相検出の基準にして、マッハツェンダ型干渉計30から出力される測定干渉光(測定干渉信号)及び参照干渉光(第1の参照干渉信号)のそれぞれの位相を検出し測定位相及び参照位相とするとともに、測定モード指定信号により、被測定物10を通った後の測定光と参照光とに基づいて被測定物10の位相特性を求める第1のモード、又は被測定物10を通った後の測定光のみに基づいて被測定物10の位相特性を求める第2のモードを指定するようにしたので、第1のモードでは、測定位相から参照位相を減算することによって位相ノイズを低減した高精度の位相検出ができ、また第2のモードでは、測定位相のみを用いることによって参照光を通せない非常に狭帯域の光BPF等の被測定物10の位相検出ができる。   In the optical interferometer type phase detector of the first embodiment configured as described above, a part of the light in the first optical path and the part of the light in the second optical path before passing through the DUT 10 are combined. A second reference interference signal is generated from the interference light obtained by the wave, and this is used as a reference for phase detection. The measurement interference light (measurement interference signal) and the reference interference light (first interference signal) output from the Mach-Zehnder interferometer 30 are used. 1 of the reference interference signal (1 reference interference signal) to detect and set the measurement phase and the reference phase, and the measurement object 10 based on the measurement light and the reference light after passing through the measurement object 10 by the measurement mode designation signal Since the first mode for obtaining the phase characteristic of the measurement object or the second mode for obtaining the phase characteristic of the object to be measured 10 based only on the measurement light after passing through the object to be measured 10 is designated. Mode subtracts the reference phase from the measurement phase. In the second mode, the phase detection of the object 10 to be measured such as a very narrow-band optical BPF that cannot pass the reference light by using only the measurement phase is possible. Can do.

なお、図1において、波長可変光源1から出力される測定光と光源2から出力される参照光を合波して波長多重する光カプラ3と、この光カプラ3から出力される波長多重光を受けて2つの光に分波する光カプラ4gとを、機能的に区別してそれぞれを別の光カプラで構成しているが、1つの光カプラでも構成できることは自明である。また、光遅延器5は、第2の光路の代わりに被測定物10が接続されている第1の光路に備えるようにしてもよい。ただし、この光遅延器5は、マッハツェンダ型干渉計30の2つの光路の光路長を合わせて位相検出精度を上げるのに有効であるが、必ずしも必須ではない。   In FIG. 1, an optical coupler 3 that combines the measurement light output from the wavelength variable light source 1 and the reference light output from the light source 2 to multiplex the wavelength, and the wavelength multiplexed light output from the optical coupler 3 The optical coupler 4g that receives the light and splits it into two lights is functionally distinguished from each other and is constituted by different optical couplers. However, it is obvious that the optical coupler 4g can also be constituted by one optical coupler. Further, the optical delay device 5 may be provided in the first optical path to which the DUT 10 is connected instead of the second optical path. However, this optical delay device 5 is effective in increasing the phase detection accuracy by combining the optical path lengths of the two optical paths of the Mach-Zehnder interferometer 30, but it is not always essential.

[第2実施形態]
本発明の第2実施形態の光干渉計型位相検出装置の構成を図2に示す。図1に示した第1実施形態では、2つの位相検出手段11、12の位相検出の基準を、被測定物10を通る前の第1の光路の光の一部と第2の光路の光の一部とを合波して得られる干渉光から発生させた第2の参照干渉信号にしたが、第2実施形態では、周波数シフタの駆動信号に基づいて発生させた位相検出基準信号にしている。第1実施形態の図1とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)第2の参照干渉信号を発生させる要素、つまり光カプラ14、光カプラ15、光カプラ16、波長分波器17及び受光器18を備えていない。(2)超音波発生器4fから出力される周波数f1の超音波(駆動信号)と超音波発生器4dから出力される周波数f2の超音波(駆動信号)とを受けて混合し、これら2つの駆動信号の差周波数(f1−f2)の信号を発生して位相検出基準信号として位相検出手段11、12に出力するミキサ(MIX)19とローパスフィルタ(LPF)33を備えている。なお、ローパスフィルタ33の代わりにバンドパスフィルタ(BPF)を用いてもよい。
[Second Embodiment]
The configuration of the optical interferometer type phase detector of the second embodiment of the present invention is shown in FIG. In the first embodiment shown in FIG. 1, the phase detection reference of the two phase detection means 11 and 12 is obtained by using a part of the light in the first optical path before passing through the DUT 10 and the light in the second optical path. In the second embodiment, the second reference interference signal is generated based on the frequency shifter drive signal. Yes. It differs from FIG. 1 of 1st Embodiment only in following (1) and (2), and others are the same. Therefore, detailed description is omitted. (1) The element that generates the second reference interference signal, that is, the optical coupler 14, the optical coupler 15, the optical coupler 16, the wavelength demultiplexer 17, and the light receiver 18 are not provided. (2) Receive and mix the ultrasonic wave (driving signal) having the frequency f 1 output from the ultrasonic generator 4f and the ultrasonic wave (driving signal) having the frequency f 2 output from the ultrasonic generator 4d. A mixer (MIX) 19 and a low-pass filter (LPF) 33 that generate a signal having a difference frequency (f 1 -f 2 ) between the two drive signals and output it as a phase detection reference signal to the phase detection means 11, 12 are provided. . A band pass filter (BPF) may be used instead of the low pass filter 33.

[第3実施形態]
本発明の第3実施形態の光干渉計型位相検出装置の構成を図3に示す。図1に示した第1実施形態では、測定物10を通った後の測定光と参照光とに基づく位相ノイズを低減した高精度の位相検出を、第2の参照干渉信号を位相検出の基準にした2つの位相検出手段11、12からそれぞれ出力される測定位相、参照位相を受けた信号処理手段13が測定位相から参照位相を減算することによって行ったが、第3実施形態では、測定位相を検出する位相検出手段11の位相検出の基準を第2の参照干渉信号から第1の参照干渉信号に切り替えることによって行っている。
[Third Embodiment]
The configuration of the optical interferometer type phase detector according to the third embodiment of the present invention is shown in FIG. In the first embodiment shown in FIG. 1, high-accuracy phase detection with reduced phase noise based on the measurement light and the reference light after passing through the measurement object 10 is performed, and the second reference interference signal is used as a reference for phase detection. The signal processing means 13 receiving the measurement phase and the reference phase output from the two phase detection means 11 and 12 respectively subtracted the reference phase from the measurement phase, but in the third embodiment, the measurement phase This is performed by switching the phase detection standard of the phase detection means 11 for detecting the second reference interference signal to the first reference interference signal.

第1実施形態の図1とは、下記の(1)、(2)のみ異なり他は同一である。(1)参照位相を検出する位相検出手段12、測定位相から参照位相を減算する信号処理手段13を備えていない。(2)切替器22及び信号処理手段23を備えている。したがって、主に、切替器22、信号処理手段23並びに切替器22から第1の参照干渉信号及び第2の参照干渉信号が入力される位相検出手段11について説明する。   It differs from FIG. 1 of 1st Embodiment only in following (1) and (2), and others are the same. (1) The phase detection unit 12 for detecting the reference phase and the signal processing unit 13 for subtracting the reference phase from the measurement phase are not provided. (2) The switch 22 and the signal processing means 23 are provided. Therefore, mainly the phase detector 11 to which the first reference interference signal and the second reference interference signal are input from the switch 22, the signal processing unit 23, and the switch 22 will be described.

切替器22は、受光器9から出力される第1の参照干渉信号及び受光器18から出力される第2の参照干渉信号をそれぞれ受けるとともに、操作部(図示しない)から出力される測定モード指定信号(被測定物10を通った後の測定光と参照光とに基づいて被測定物10の位相特性を求める第1のモード又は被測定物10を通った後の測定光のみに基づいて被測定物10の位相特性を求める第2のモードを指定する)を受け、測定モード指定信号が第1のモードを指定している場合には、第1の参照干渉信号を位相検出手段11に出力し、また、測定モード指定信号が第2のモードを指定している場合には、第2の参照干渉信号を位相検出手段11に出力する。   The switch 22 receives the first reference interference signal output from the light receiver 9 and the second reference interference signal output from the light receiver 18, and specifies the measurement mode output from the operation unit (not shown). A signal (first mode in which the phase characteristic of the device under test 10 is obtained based on the measurement light and the reference light after passing through the device under test 10 or the measurement light after passing through the device under test 10 only. When the measurement mode designation signal designates the first mode, the first reference interference signal is output to the phase detector 11. If the measurement mode designation signal designates the second mode, the second reference interference signal is output to the phase detection means 11.

位相検出手段11は、切替器22から第1の参照干渉信号を受けたときは、第1の参照干渉信号に対する測定干渉信号の位相を検出し第1の測定位相として信号処理手段23に出力し、また、切替器22から第2の参照干渉信号を受けたときは、第2の参照干渉信号に対する測定干渉信号の位相を検出し第2の測定位相として信号処理手段23に出力する。信号処理手段23は、測定モード指定信号が第1のモードを指定している場合には、位相検出手段11から出力される第1の測定位相から被測定物10の波長−位相特性を求め、また、測定モード指定信号が第2のモードを指定している場合には、位相検出手段11から出力される第2の測定位相から被測定物の波長−位相特性を求める。   When the phase detection means 11 receives the first reference interference signal from the switch 22, the phase detection means 11 detects the phase of the measurement interference signal with respect to the first reference interference signal, and outputs it to the signal processing means 23 as the first measurement phase. When the second reference interference signal is received from the switcher 22, the phase of the measurement interference signal with respect to the second reference interference signal is detected and output to the signal processing means 23 as the second measurement phase. When the measurement mode designation signal designates the first mode, the signal processing means 23 obtains the wavelength-phase characteristic of the DUT 10 from the first measurement phase output from the phase detection means 11, Further, when the measurement mode designation signal designates the second mode, the wavelength-phase characteristic of the device under test is obtained from the second measurement phase output from the phase detection means 11.

この結果、第1のモードでは、第1の参照干渉信号に対する測定干渉信号の位相(第1の測定位相)を検出することによって、位相ノイズを低減した高精度の位相検出ができ、また第2のモードでは、第2の参照干渉信号に対する測定干渉信号の位相(第2の測定位相)を検出することによって、参照光を通せない非常に狭帯域の光BPF等の被測定物10の位相検出ができる。   As a result, in the first mode, by detecting the phase of the measurement interference signal (first measurement phase) with respect to the first reference interference signal, highly accurate phase detection with reduced phase noise can be performed. In this mode, by detecting the phase of the measurement interference signal (second measurement phase) with respect to the second reference interference signal, the phase detection of the object 10 to be measured such as a very narrow-band optical BPF that cannot pass the reference light Can do.

[第4実施形態]
本発明の第4実施形態の光干渉計型位相検出装置の構成を図4に示す。図2に示した第2実施形態では、測定物10を通った後の測定光と参照光とに基づく位相ノイズを低減した高精度の位相検出を、位相検出基準信号を位相検出の基準にした2つの位相検出手段11、12からそれぞれ出力される測定位相、参照位相を受けた信号処理手段13が測定位相から参照位相を減算することによって行ったが、第4実施形態では、測定位相を検出する位相検出手段11の位相検出の基準を位相検出基準信号から参照干渉信号(受光器9から出力される)に切り替えることによって行っている。
[Fourth Embodiment]
The configuration of the optical interferometer type phase detector of the fourth embodiment of the present invention is shown in FIG. In the second embodiment shown in FIG. 2, high-accuracy phase detection based on the measurement light after passing through the measurement object 10 and the reference light with reduced phase noise is used as the phase detection reference signal. The signal processing means 13 that has received the measurement phase and the reference phase respectively output from the two phase detection means 11 and 12 subtracts the reference phase from the measurement phase. In the fourth embodiment, the measurement phase is detected. This is done by switching the phase detection reference of the phase detection means 11 to the reference interference signal (output from the light receiver 9) from the phase detection reference signal.

第2実施形態の図2とは、下記の(1)、(2)のみ異なり他は同一である。(1)参照位相を検出する位相検出手段12、測定位相から参照位相を減算する信号処理手段13を備えていない。(2)切替器22及び信号処理手段23を備えている。したがって、主に、切替器22、信号処理手段23並びに切替器22から参照干渉信号及び位相検出基準信号が入力される位相検出手段11について説明する。   It differs from FIG. 2 of 2nd Embodiment only in following (1) and (2), and others are the same. (1) The phase detection unit 12 for detecting the reference phase and the signal processing unit 13 for subtracting the reference phase from the measurement phase are not provided. (2) The switch 22 and the signal processing means 23 are provided. Therefore, the phase detector 11 to which the reference interference signal and the phase detection reference signal are input from the switch 22, the signal processor 23, and the switch 22 will be mainly described.

切替器22は、受光器9から出力される参照干渉信号及びローパスフィルタ33から出力される位相検出基準信号をそれぞれ受けるとともに、操作部(図示しない)から出力される測定モード指定信号(被測定物10を通った後の測定光と参照光とに基づいて被測定物10の位相特性を求める第1のモード又は被測定物10を通った後の測定光のみに基づいて被測定物10の位相特性を求める第2のモードを指定する)を受け、測定モード指定信号が第1のモードを指定している場合には、参照干渉信号を位相検出手段11に出力し、また、測定モード指定信号が第2のモードを指定している場合には、位相検出基準信号を位相検出手段11に出力する。   The switch 22 receives the reference interference signal output from the light receiver 9 and the phase detection reference signal output from the low-pass filter 33, and also outputs a measurement mode designation signal (object to be measured) output from an operation unit (not shown). The first mode in which the phase characteristic of the device under test 10 is obtained based on the measurement light after passing through 10 and the reference light, or the phase of the device under test 10 based only on the measurement light after passing through the device under test 10. When the measurement mode designation signal designates the first mode, the reference interference signal is output to the phase detection means 11 and the measurement mode designation signal is designated. Outputs the phase detection reference signal to the phase detection means 11 when the second mode is designated.

位相検出手段11は、切替器22から参照干渉信号を受けたときは、参照干渉信号に対する測定干渉信号の位相を検出し第1の測定位相として信号処理手段23に出力し、また、切替器22から位相検出基準信号を受けたときは、位相検出基準信号に対する測定干渉信号の位相を検出し第2の測定位相として信号処理手段23に出力する。信号処理手段23は、測定モード指定信号が第1のモードを指定している場合には、位相検出手段11から出力される第1の測定位相から被測定物10の波長−位相特性を求め、また、測定モード指定信号が第2のモードを指定している場合には、位相検出手段11から出力される第2の測定位相から被測定物の波長−位相特性を求める。   When receiving the reference interference signal from the switch 22, the phase detection unit 11 detects the phase of the measurement interference signal with respect to the reference interference signal and outputs it to the signal processing unit 23 as the first measurement phase. When the phase detection reference signal is received from, the phase of the measurement interference signal with respect to the phase detection reference signal is detected and output to the signal processing means 23 as the second measurement phase. When the measurement mode designation signal designates the first mode, the signal processing means 23 obtains the wavelength-phase characteristic of the DUT 10 from the first measurement phase output from the phase detection means 11, Further, when the measurement mode designation signal designates the second mode, the wavelength-phase characteristic of the device under test is obtained from the second measurement phase output from the phase detection means 11.

この結果、第1のモードでは、参照干渉信号に対する測定干渉信号の位相(第1の測定位相)を検出することによって、位相ノイズを低減した高精度の位相検出ができ、また第2のモードでは、位相検出基準信号に対する測定干渉信号の位相(第2の測定位相)を検出することによって、参照光を通せない非常に狭帯域の光BPF等の被測定物10の位相検出ができる。   As a result, in the first mode, by detecting the phase of the measurement interference signal (first measurement phase) with respect to the reference interference signal, it is possible to perform highly accurate phase detection with reduced phase noise, and in the second mode, By detecting the phase of the measurement interference signal (second measurement phase) with respect to the phase detection reference signal, the phase of the DUT 10 such as a very narrow-band optical BPF that cannot pass the reference light can be detected.

[第5実施形態]
本発明の第5実施形態の光干渉計型位相検出装置の構成を図5に示す。図1に示した第1実施形態では、被測定物10の波長−位相特性を求める構成であったが、第5実施形態では、被測定物10の挿入損失測定及び反射減衰量測定もできる構成にしている。第1実施形態の図1とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)マッハツェンダ型干渉計30の第1の光路上の光カプラ14と被測定物10との間に、被測定物10に入力される光の強度を検出するための光カプラ24及び受光器(PD)25を備え、また被測定物10と光カプラ6との間に、被測定物10から出力される光の強度を検出するための光カプラ26及び受光器(PD)27を備えた。これによって、被測定物10の挿入損失測定ができる。(2)マッハツェンダ型干渉計30の第1の光路上の光カプラ14と被測定物10との間に、被測定物10に入力された光のこの被測定物10による反射されて戻ってくる光(反射光)の強度を検出するための光カプラ24及び受光器(PD)28を備えた。これによって、被測定物10の反射減衰量測定ができる。なお、この第5実施形態では、第1実施形態の場合を例にして、被測定物10の挿入損失測定及び反射減衰量測定を行う構成を示したが、この構成は第2〜第4実施形態の場合にも適用できることは言うまでもない。
[Fifth Embodiment]
The configuration of the optical interferometer type phase detector of the fifth embodiment of the present invention is shown in FIG. In the first embodiment shown in FIG. 1, the wavelength-phase characteristic of the device under test 10 is obtained. However, in the fifth embodiment, the insertion loss measurement and the return loss measurement of the device under test 10 can be performed. I have to. It differs from FIG. 1 of 1st Embodiment only in following (1) and (2), and others are the same. Therefore, detailed description is omitted. (1) An optical coupler 24 and a light receiver for detecting the intensity of light input to the device under test 10 between the optical coupler 14 on the first optical path of the Mach-Zehnder interferometer 30 and the device under test 10. (PD) 25 and an optical coupler 26 and a light receiver (PD) 27 for detecting the intensity of light output from the device under test 10 are provided between the device under test 10 and the optical coupler 6. . Thereby, the insertion loss of the DUT 10 can be measured. (2) Light input to the device under test 10 is reflected by the device under test 10 between the optical coupler 14 on the first optical path of the Mach-Zehnder interferometer 30 and the device under test 10 and returned. An optical coupler 24 and a light receiver (PD) 28 for detecting the intensity of light (reflected light) are provided. Thereby, the return loss of the DUT 10 can be measured. In the fifth embodiment, the configuration for measuring the insertion loss and the return loss of the DUT 10 is shown by taking the case of the first embodiment as an example. This configuration is the second to fourth embodiments. Needless to say, the present invention can also be applied to the form.

[第6実施形態]
本発明の第6実施形態の光干渉計型位相検出装置の構成を図6に示す。図5に示した第5実施形態では、被測定物10の挿入損失測定及び反射減衰量測定ができる構成であったが、第6実施形態では、被測定物10の偏波依存損失測定ができる構成にしている。第5実施形態の図5とは、マッハツェンダ型干渉計30の第1の光路上の光カプラ24と被測定物10との間に、被測定物10に入力される光の偏波を変化させるための偏波制御器29を備えた点のみ異なり他は同一である。したがって詳細説明は省略する。なお、偏波制御器29は光カプラ14と光カプラ24との間に備えるようにしてもよい。
[Sixth Embodiment]
The configuration of the optical interferometer type phase detector according to the sixth embodiment of the present invention is shown in FIG. In the fifth embodiment shown in FIG. 5, the insertion loss measurement and the return loss measurement of the device under test 10 can be performed. However, in the sixth embodiment, the polarization dependent loss of the device under test 10 can be measured. It has a configuration. 5 of the fifth embodiment, the polarization of light input to the device under test 10 is changed between the optical coupler 24 on the first optical path of the Mach-Zehnder interferometer 30 and the device under test 10. The only difference is that a polarization controller 29 is provided. Therefore, detailed description is omitted. Note that the polarization controller 29 may be provided between the optical coupler 14 and the optical coupler 24.

[第7実施形態]
本発明の第7実施形態の光干渉計型位相検出装置の構成を図7に示す。図1に示した第1実施形態では、被測定物10を透過する光(透過光)の波長−位相特性を求める構成であったが、第7実施形態では、被測定物10から反射されて戻ってくる光(反射光)の波長−位相特性を求める構成にしている。第1実施形態の図1とは、マッハツェンダ型干渉計30の第1の光路上に設けられた光サーキュレータ31を介して被測定物10が第1の光路に接続されるようにしている点のみ異なり他は同一である。したがって詳細説明は省略する。なお、この第7実施形態では、第1実施形態の場合を例にして、被測定物10からの反射光の波長−位相特性を求める構成を示したが、この構成は第2〜第4実施形態の場合にも適用できることは言うまでもない。また、図7における光サーキュレータ31の代わりに、図8に示すように、光カプラ32を用いても同様の構成にて実現可能である。
[Seventh Embodiment]
The configuration of the optical interferometer type phase detector of the seventh embodiment of the present invention is shown in FIG. In the first embodiment shown in FIG. 1, the wavelength-phase characteristic of the light (transmitted light) transmitted through the device under test 10 is obtained. In the seventh embodiment, the light is reflected from the device under test 10. The wavelength-phase characteristics of the returning light (reflected light) are obtained. FIG. 1 of the first embodiment is different from FIG. 1 only in that the DUT 10 is connected to the first optical path via the optical circulator 31 provided on the first optical path of the Mach-Zehnder interferometer 30. The others are the same. Therefore, detailed description is omitted. In the seventh embodiment, the configuration for obtaining the wavelength-phase characteristic of the reflected light from the DUT 10 is shown by taking the case of the first embodiment as an example, but this configuration is the second to fourth embodiments. Needless to say, the present invention can also be applied to the form. Further, in place of the optical circulator 31 in FIG. 7, as shown in FIG.

[第8実施形態]
本発明の第8実施形態の光干渉計型位相検出装置の構成を図9に示す。図7に示した第7実施形態では、被測定物10の反射光の波長−位相特性を求める構成であったが、第8実施形態では、被測定物10の反射減衰量測定もできる構成にしている。第7実施形態の図7とは、下記の点のみ異なり他は同一である。したがって詳細説明は省略する。すなわち、マッハツェンダ型干渉計30の第1の光路上の光カプラ14と光サーキュレータ31との間に、被測定物10に入力される光の強度を検出するための光カプラ24及び受光器(PD)25を備え、また光サーキュレータ31と光カプラ6との間に、被測定物10からの反射光の強度を検出するための光カプラ26及び受光器(PD)27を備えた。これによって、被測定物10の反射減衰量測定ができる。
[Eighth Embodiment]
FIG. 9 shows the configuration of an optical interferometer type phase detector according to an eighth embodiment of the present invention. In the seventh embodiment shown in FIG. 7, the wavelength-phase characteristic of the reflected light of the device under test 10 is obtained. However, in the eighth embodiment, the return loss of the device under test 10 can be measured. ing. This embodiment is the same as FIG. 7 of the seventh embodiment except for the following points. Therefore, detailed description is omitted. That is, between the optical coupler 14 and the optical circulator 31 on the first optical path of the Mach-Zehnder interferometer 30, an optical coupler 24 and a light receiver (PD) for detecting the intensity of light input to the device under test 10. ) 25, and between the optical circulator 31 and the optical coupler 6, an optical coupler 26 and a light receiver (PD) 27 for detecting the intensity of reflected light from the DUT 10. Thereby, the return loss of the DUT 10 can be measured.

[第9実施形態]
本発明の第9実施形態の光干渉計型位相検出装置の構成を図10に示す。図9に示した第8実施形態では、被測定物10の反射減衰量測定ができる構成であったが、第9実施形態では、被測定物10の偏波依存反射減衰量測定ができる構成にしている。第8実施形態の図9とは、マッハツェンダ型干渉計30の第1の光路上の光カプラ24と光サーキュレータ31との間に、被測定物10に入力される光の偏波を変化させるための偏波制御器29を備えた点のみ異なり他は同一である。したがって詳細説明は省略する。なお、偏波制御器29は光カプラ14と光カプラ24との間に備えるようにしてもよい。
[Ninth Embodiment]
The configuration of the optical interferometer type phase detector of the ninth embodiment of the present invention is shown in FIG. In the eighth embodiment shown in FIG. 9, the configuration is such that the return loss of the device under test 10 can be measured. However, in the ninth embodiment, the configuration is such that the polarization dependent return loss of the device under test 10 can be measured. ing. FIG. 9 of the eighth embodiment is for changing the polarization of light input to the device under test 10 between the optical coupler 24 and the optical circulator 31 on the first optical path of the Mach-Zehnder interferometer 30. The only difference is that the polarization controller 29 is provided. Therefore, detailed description is omitted. Note that the polarization controller 29 may be provided between the optical coupler 14 and the optical coupler 24.

[第10実施形態]
本発明の第10実施形態の光干渉計型位相検出装置の構成を図11に示す。図1に示した第1実施形態では、光分波手段4は2つの周波数シフタを用いて、第1の光路及び第2の光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差をf1−f2とする構成であったが、第10実施形態では、光分波手段4は1つの周波数シフタを用いて、第1の光路及び第2の光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差をf1とする構成にしている。第1実施形態の図1とは、マッハツェンダ型干渉計30の光分波手段4の構成のみ異なり他は同一である。したがって、図1と同一部分の説明は省略して、光分波手段4について説明する。
[Tenth embodiment]
FIG. 11 shows the configuration of an optical interferometer type phase detector according to the tenth embodiment of the present invention. In the first embodiment shown in FIG. 1, the optical demultiplexing means 4 uses two frequency shifters, and the respective frequencies of the measurement light and the reference light that are output to the first optical path and the second optical path, respectively. Although the difference was configured to f 1 -f 2, in the tenth embodiment, the light dividing means 4 using one frequency shifter, is output to the first optical path and second optical path of the measurement The frequency difference between the lights and the reference lights is set to f 1 . It differs from FIG. 1 of 1st Embodiment only in the structure of the optical demultiplexing means 4 of the Mach-Zehnder interferometer 30, and others are the same. Therefore, description of the same part as FIG. 1 is omitted, and the optical demultiplexing means 4 will be described.

光分波手段4は、光カプラ4g、AOFS4e及び超音波発生器4fで構成される。光カプラ4gは、光カプラ3から入力さる波長多重光(測定光及び参照光)を2つの光に分波して、一方の光を第1の光路上の光カプラ14に出力し、また他方の光をAOFS4eにそれぞれ出力する。AOFS4eは、超音波発生器4fから入力される周波数f1の超音波(駆動信号)によって駆動され、上記他方の光すなわち測定光及び参照光のそれぞれの波長(周波数)を周波数f1分シフトして第2の光路上の光カプラ15に出力する。したがって、光分波手段4から2つの光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差はf1となる。なお、この第10実施形態の光分波手段4としては、図11に示したものの他に、従来例の図16に示した光分波手段4であってもよい。 The optical demultiplexing unit 4 includes an optical coupler 4g, an AOFS 4e, and an ultrasonic generator 4f. The optical coupler 4g demultiplexes the wavelength multiplexed light (measurement light and reference light) input from the optical coupler 3 into two lights, outputs one light to the optical coupler 14 on the first optical path, and the other Are output to the AOFS 4e. The AOFS 4e is driven by the ultrasonic wave (driving signal) having the frequency f 1 input from the ultrasonic generator 4f, and shifts the wavelength (frequency) of the other light, that is, the measurement light and the reference light by the frequency f 1. To the optical coupler 15 on the second optical path. Therefore, the respective frequency differences between the measurement beams and the reference beams output from the optical demultiplexing unit 4 to the two optical paths are f 1 . The optical demultiplexing means 4 of the tenth embodiment may be the optical demultiplexing means 4 shown in FIG. 16 of the conventional example in addition to the one shown in FIG.

[第11実施形態]
本発明の第11実施形態の光干渉計型位相検出装置の構成を図12に示す。図2に示した第2実施形態では、光分波手段4は2つの周波数シフタを用いて、第1の光路及び第2の光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差をf1−f2とする構成であったが、第11実施形態では、光分波手段4は1つの周波数シフタを用いて、第1の光路及び第2の光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差をf1とする構成にしている。第2実施形態の図2とは、下記の(1)、(2)のみ異なり他は同一である。(1)ミキサ19を備えていない。(2)マッハツェンダ型干渉計20の光分波手段4の構成が異なる。したがって、図2と同一部分の説明は省略して、主に光分波手段4について説明する。
[Eleventh embodiment]
The configuration of the optical interferometer type phase detector of the eleventh embodiment of the present invention is shown in FIG. In the second embodiment shown in FIG. 2, the optical demultiplexing means 4 uses two frequency shifters, and the respective frequencies of the measurement light and the reference light that are output to the first optical path and the second optical path, respectively. Although the difference is set to f 1 −f 2 , in the eleventh embodiment, the optical demultiplexing unit 4 uses a single frequency shifter, and the measurement is output to each of the first optical path and the second optical path. The frequency difference between the lights and the reference lights is set to f 1 . It differs from FIG. 2 of 2nd Embodiment only in following (1) and (2), and others are the same. (1) The mixer 19 is not provided. (2) The configuration of the optical demultiplexing means 4 of the Mach-Zehnder interferometer 20 is different. Therefore, description of the same part as FIG. 2 is omitted, and the optical demultiplexing means 4 will be mainly described.

光分波手段4は、光カプラ4g、AOFS4e及び超音波発生器4fで構成される。光カプラ4gは、光カプラ3から入力さる波長多重光(測定光及び参照光)を2つの光に分波して、一方の光を第1の光路上の被測定物10に出力し、また他方の光をAOFS4eにそれぞれ出力する。AOFS4eは、超音波発生器4fから入力される周波数f1の超音波(駆動信号)によって駆動され、上記他方の光すなわち測定光及び参照光のそれぞれの波長(周波数)を周波数f1分シフトして第2の光路上の光遅延器5に出力する。したがって、光分波手段4から2つの光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差はf1となる。そして、超音波発生器4fは、周波数f1の超音波(駆動信号)を位相検出基準信号として位相検出手段11及び位相検出手段12に出力する。なお、この第11実施形態の光分波手段4としては、図12に示したものの他に、従来例の図16に示した光分波手段4であってもよい。 The optical demultiplexing unit 4 includes an optical coupler 4g, an AOFS 4e, and an ultrasonic generator 4f. The optical coupler 4g splits the wavelength multiplexed light (measurement light and reference light) input from the optical coupler 3 into two lights, and outputs one light to the device under test 10 on the first optical path. The other light is output to the AOFS 4e. The AOFS 4e is driven by the ultrasonic wave (driving signal) having the frequency f 1 input from the ultrasonic generator 4f, and shifts the wavelength (frequency) of the other light, that is, the measurement light and the reference light by the frequency f 1. To the optical delay device 5 on the second optical path. Therefore, the respective frequency differences between the measurement beams and the reference beams output from the optical demultiplexing unit 4 to the two optical paths are f 1 . The ultrasonic generator 4f outputs to the phase detector 11 and the phase detector 12 ultrasonic frequency f 1 (driving signal) as the phase detection reference signal. The optical demultiplexing means 4 of the eleventh embodiment may be the optical demultiplexing means 4 shown in FIG. 16 of the conventional example in addition to the one shown in FIG.

[第12実施形態]
本発明の第12実施形態の光干渉計型位相検出装置の構成を図13に示す。図3に示した第3実施形態では、光分波手段4は2つの周波数シフタを用いて、第1の光路及び第2の光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差をf1−f2とする構成であったが、第12実施形態では、光分波手段4は1つの周波数シフタを用いて、第1の光路及び第2の光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差をf1とする構成にしている。第3実施形態の図3とは、マッハツェンダ型干渉計30の光分波手段4の構成のみ異なり他は同一である。ところで、この光分波手段4は、第10実施形態の図11で説明した内容と同一であるので、その説明は省略する。
[Twelfth embodiment]
The configuration of the optical interferometer type phase detector of the twelfth embodiment of the present invention is shown in FIG. In the third embodiment shown in FIG. 3, the optical demultiplexing means 4 uses two frequency shifters, and the respective frequencies of the measurement light and the reference light output to the first optical path and the second optical path, respectively. Although the difference is f 1 −f 2 , in the twelfth embodiment, the optical demultiplexing unit 4 uses a single frequency shifter to perform measurement output to the first optical path and the second optical path, respectively. The frequency difference between the lights and the reference lights is set to f 1 . This embodiment is the same as FIG. 3 of the third embodiment except for the configuration of the optical demultiplexing means 4 of the Mach-Zehnder interferometer 30. By the way, since this optical demultiplexing means 4 is the same as the content demonstrated in FIG. 11 of 10th Embodiment, the description is abbreviate | omitted.

なお、上述の第1〜第9実施形態の光分波手段4としては、図1〜図10に示したものの他に図14及び図15に示すものでもよい。なお、図14及び図15に示す周波数は、波長多重光に含まれている測定光の周波数νsについて示している。 The optical demultiplexing means 4 of the first to ninth embodiments described above may be those shown in FIGS. 14 and 15 in addition to those shown in FIGS. 14 and 15 indicate the frequency ν s of the measurement light included in the wavelength multiplexed light.

すなわち、図14においては、AOFS4a及びAOFS4cが直列に配列されている。まず、AOFS4aは、入力された波長多重光(測定光及び参照光)を2つの光に分波して、一方の光を第1の光として第1の光路に出力し、また他方の光を超音波発生器4bから入力される超音波の周波数f1分シフト(+1次の回折を与える)してAOFS4cに出力する。次に、AOFS4cは、AOFS4aからの光を超音波発生器4dから入力される超音波の周波数f2分シフト(−1次の回折を与える)して第2の光として第2の光路に出力する。したがって、光分波手段4から2つの光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差はf1−f2となる。 That is, in FIG. 14, AOFS 4a and AOFS 4c are arranged in series. First, the AOFS 4a demultiplexes the input wavelength multiplexed light (measurement light and reference light) into two lights, outputs one light as the first light to the first optical path, and outputs the other light. The ultrasonic wave input from the ultrasonic generator 4b is shifted by the frequency f1 (giving + 1st order diffraction) and output to the AOFS 4c. Next, the AOFS 4c shifts the light from the AOFS 4a by the frequency f 2 of the ultrasonic wave input from the ultrasonic generator 4d (gives −1st order diffraction) and outputs it as the second light to the second optical path. To do. Therefore, the respective frequency differences between the measurement beams and the reference beams output from the optical demultiplexing unit 4 to the two optical paths are f 1 −f 2 .

図15においては、図14と同様、AOFS4a及びAOFS4cが直列に配列されている。まず、AOFS4aは、入力された波長多重光(測定光及び参照光)を2つの光に分波して、一方の光をAOFS4cに、また他方の光を超音波発生器4bから入力される超音波の周波数f1分シフトして第1の光として第1の光路に出力する。次に、AOFS4cは、AOFS4aからの光を超音波発生器4dから入力される超音波の周波数f2分シフトして第2の光として第2の光路に出力する。したがって、光分波手段4から2つの光路にそれぞれ出力される測定光同士及び参照光同士のそれぞれの周波数差はf1−f2となる。 In FIG. 15, similarly to FIG. 14, AOFS 4a and AOFS 4c are arranged in series. First, the AOFS 4a demultiplexes the input wavelength multiplexed light (measurement light and reference light) into two lights, one of which is input to the AOFS 4c and the other of which is input from the ultrasonic generator 4b. The sound wave is shifted by the frequency f 1 and outputted as the first light to the first optical path. Next, the AOFS 4c shifts the light from the AOFS 4a by the frequency f 2 of the ultrasonic wave input from the ultrasonic generator 4d, and outputs it as the second light to the second optical path. Therefore, the respective frequency differences between the measurement beams and the reference beams output from the optical demultiplexing unit 4 to the two optical paths are f 1 −f 2 .

本発明の第1実施形態の構成を示す図The figure which shows the structure of 1st Embodiment of this invention. 本発明の第2実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment of this invention. 本発明の第3実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment of this invention. 本発明の第4実施形態の構成を示す図The figure which shows the structure of 4th Embodiment of this invention. 本発明の第5実施形態の構成を示す図The figure which shows the structure of 5th Embodiment of this invention. 本発明の第6実施形態の構成を示す図The figure which shows the structure of 6th Embodiment of this invention. 本発明の第7実施形態の構成を示す図The figure which shows the structure of 7th Embodiment of this invention. 本発明の第7実施形態の別の構成を示す図The figure which shows another structure of 7th Embodiment of this invention. 本発明の第8実施形態の構成を示す図The figure which shows the structure of 8th Embodiment of this invention. 本発明の第9実施形態の構成を示す図The figure which shows the structure of 9th Embodiment of this invention. 本発明の第10実施形態の構成を示す図The figure which shows the structure of 10th Embodiment of this invention. 本発明の第11実施形態の構成を示す図The figure which shows the structure of 11th Embodiment of this invention. 本発明の第12実施形態の構成を示す図The figure which shows the structure of 12th Embodiment of this invention. 光分波手段の別の構成を示す図The figure which shows another structure of an optical demultiplexing means 光分波手段の別の構成を示す図The figure which shows another structure of an optical demultiplexing means 従来例の概略構成を示す図The figure which shows schematic structure of a prior art example

符号の説明Explanation of symbols

1・・・波長可変光源、2・・・光源、3,4g,6,14,15,16,24,26,32・・・光カプラ、4・・・光分波手段、4a,4c,4e・・・音響光学周波数シフタ(AOFS)、4b,4d,4f・・・超音波発生器、5・・・光遅延器、7,17・・・波長分波器、8,9,18,25,27,28・・・受光器(PD)、10・・・被測定物、11,12・・・位相検出手段、13,23・・・信号処理手段、19・・・ミキサ(MIX)、20,30・・・マッハツェンダ型干渉計、22・・・切替器、29・・・偏波制御器、31・・・光サーキュレータ、33・・・ローパスフィルタ(LPF)。
DESCRIPTION OF SYMBOLS 1 ... Variable wavelength light source, 2 ... Light source, 3, 4g, 6, 14, 15, 16, 24, 26, 32 ... Optical coupler, 4 ... Optical demultiplexing means, 4a, 4c, 4e, acousto-optic frequency shifter (AOFS), 4b, 4d, 4f, ultrasonic generator, 5 ... optical delay, 7, 17 ... wavelength demultiplexer, 8, 9, 18, 25, 27, 28 ... light receiver (PD), 10 ... object to be measured, 11, 12 ... phase detection means, 13, 23 ... signal processing means, 19 ... mixer (MIX) 20, 30 ... Mach-Zehnder interferometers, 22 ... switches, 29 ... polarization controllers, 31 ... optical circulators, 33 ... low pass filters (LPF).

Claims (11)

所定の波長範囲の測定光を出力する波長可変光源(1)と、
前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、
前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、
前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する第1の光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して第1の干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(30)と、
前記第1の干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する第1の波長分波器(7)と、
該第1の波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、
前記第1の波長分波器から出力される前記参照光の波長成分に係わる第1の参照干渉光を受けて光電変換し前記所定のビート周波数の第1の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記第1の参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、
前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物を通る前の前記第1の光の一部を分波するための第2の光分波手段(14)と、
前記マッハツェンダ型干渉計の前記第2の光路上に設けられ、前記第2の光の一部を分波するための第3の光分波手段(15)と、
前記第2の光分波手段及び前記第3の光分波手段からそれぞれ出力される光を合波して第2の干渉光を出力する第3の光合波手段(16)と、
前記第2の干渉光を受けて前記参照光の波長成分に係わる第2の参照干渉光を出力する第2の波長分波器(17)と、
前記第2の参照干渉光を受けて光電変換し前記所定のビート周波数の第2の参照干渉信号を出力する第3の受光器(18)と、
前記測定干渉信号と前記第2の参照干渉信号とを受けて、当該第2の参照干渉信号に対する前記測定干渉信号の位相を検出し測定位相として出力する第1の位相検出手段(11)と、
前記第1の参照干渉信号と前記第2の参照干渉信号とを受けて、当該第2の参照干渉信号に対する前記第1の参照干渉信号の位相を検出し参照位相として出力する第2の位相検出手段(12)と、
被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号を受け、該測定モード指定信号が第1のモードを指定している場合には、前記測定位相から前記参照位相を減算して被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記測定位相から被測定物の波長−位相特性を求める信号処理手段(13)とを備えたことを特徴とする光干渉計型位相検出装置。
A wavelength tunable light source (1) that outputs measurement light in a predetermined wavelength range;
A light source (2) that outputs reference light having a wavelength different from the wavelength of the measurement light;
First optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light and outputting the wavelength multiplexed light obtained thereby;
Upon receiving the wavelength-multiplexed light, the first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated. The measurement light and the reference included in the second light demultiplexed with the respective frequencies of the measurement light and the reference light included in the demultiplexed first light. The frequency of at least one of the first light and the second light is set so that the frequency difference between the measurement lights and the frequency difference between the reference lights with respect to the respective frequencies of the light each have a predetermined beat frequency. The first optical demultiplexing means (4) that outputs the frequency shifted by the shifters (4a to 4f), and the first light that passes through the first optical path and the second light that passes through the second optical path And a second optical multiplexing means (6) for outputting the first interference light. That the Mach-Zehnder interferometer optical heterodyne interferometry (30),
A first wavelength demultiplexer (7) that receives the first interference light and demultiplexes it into each wavelength component of the measurement light and the reference light;
A first light receiver (8) that receives measurement interference light related to the wavelength component of the measurement light output from the first wavelength demultiplexer, photoelectrically converts the measurement interference light, and outputs a measurement interference signal of the predetermined beat frequency; ,
Receiving a first reference interference light related to a wavelength component of the reference light output from the first wavelength demultiplexer, photoelectrically converting the second reference interference light and outputting a first reference interference signal having the predetermined beat frequency; An optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the object to be measured based on the measurement interference signal and the first reference interference signal;
Second optical demultiplexing means (14) provided on the first optical path of the Mach-Zehnder interferometer, for demultiplexing a part of the first light before passing through the object to be measured;
Third optical demultiplexing means (15) provided on the second optical path of the Mach-Zehnder interferometer, for demultiplexing a part of the second light;
A third optical multiplexing means (16) for combining the light respectively output from the second optical demultiplexing means and the third optical demultiplexing means to output a second interference light;
A second wavelength demultiplexer (17) that receives the second interference light and outputs a second reference interference light related to a wavelength component of the reference light;
A third light receiver (18) that receives and photoelectrically converts the second reference interference light and outputs a second reference interference signal of the predetermined beat frequency;
First phase detection means (11) for receiving the measurement interference signal and the second reference interference signal, detecting a phase of the measurement interference signal with respect to the second reference interference signal, and outputting the phase as a measurement phase;
Second phase detection that receives the first reference interference signal and the second reference interference signal, detects the phase of the first reference interference signal with respect to the second reference interference signal, and outputs it as a reference phase Means (12);
A first mode for obtaining a phase characteristic of the measurement object based on the measurement light and the reference light after passing through the measurement object, and the measurement object based only on the measurement light after passing through the measurement object When a measurement mode designating signal designating any one of the second modes for obtaining the phase characteristics of the signal is received and the measurement mode designating signal designates the first mode, the reference phase is calculated from the measurement phase. A signal for obtaining the wavelength-phase characteristic of the object to be measured from the measurement phase when the wavelength-phase characteristic of the object to be measured is obtained by subtraction, and the measurement mode designation signal designates the second mode. An optical interferometer type phase detector comprising a processing means (13).
所定の波長範囲の測定光を出力する波長可変光源(1)と、
前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、
前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、
前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(20)と、
前記干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する波長分波器(7)と、
該波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、
前記波長分波器から出力される前記参照光の波長成分に係わる参照干渉光を受けて光電変換し前記所定のビート周波数の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、
前記周波数シフタの駆動信号に基づいて前記所定のビート周波数と同一の周波数を有する位相検出基準信号を発生させる位相検出基準信号発生手段(4b、4d、4f、19)と、
前記測定干渉信号と前記位相検出基準信号とを受けて、当該位相検出基準信号に対する前記測定干渉信号の位相を検出し測定位相として出力する第1の位相検出手段(11)と、
前記参照干渉信号と前記位相検出基準信号とを受けて、当該位相検出基準信号に対する前記参照干渉信号の位相を検出し参照位相として出力する第2の位相検出手段(12)と、
被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号を受け、該測定モード指定信号が第1のモードを指定している場合には、前記測定位相から前記参照位相を減算して被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記測定位相から被測定物の波長−位相特性を求める信号処理手段(13)とを備えたことを特徴とする光干渉計型位相検出装置。
A wavelength tunable light source (1) that outputs measurement light in a predetermined wavelength range;
A light source (2) that outputs reference light having a wavelength different from the wavelength of the measurement light;
First optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light and outputting the wavelength multiplexed light obtained thereby;
Upon receiving the wavelength-multiplexed light, the first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated. The measurement light and the reference included in the second light demultiplexed with the respective frequencies of the measurement light and the reference light included in the demultiplexed first light. The frequency of at least one of the first light and the second light is set so that the frequency difference between the measurement lights and the frequency difference between the reference lights with respect to the respective frequencies of the light each have a predetermined beat frequency. The optical demultiplexing means (4) that outputs the frequency shifted by the shifters (4a to 4f), and the first light that passes through the first optical path and the second light that passes through the second optical path are combined. Optical heterogeneity having second optical multiplexing means (6) for outputting interference light by wave generation Mach-Zehnder interferometer in-interference system (20),
A wavelength demultiplexer (7) that receives the interference light and demultiplexes it into each wavelength component of the measurement light and the reference light;
A first light receiver (8) that receives measurement interference light related to the wavelength component of the measurement light output from the wavelength demultiplexer, photoelectrically converts the measurement interference light, and outputs a measurement interference signal of the predetermined beat frequency;
A second light receiver (9) that receives reference interference light related to the wavelength component of the reference light output from the wavelength demultiplexer, photoelectrically converts the reference interference light, and outputs a reference interference signal having the predetermined beat frequency; In an optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the device under test based on the measurement interference signal and the reference interference signal,
Phase detection reference signal generating means (4b, 4d, 4f, 19) for generating a phase detection reference signal having the same frequency as the predetermined beat frequency based on the drive signal of the frequency shifter;
First phase detection means (11) for receiving the measurement interference signal and the phase detection reference signal, detecting a phase of the measurement interference signal with respect to the phase detection reference signal, and outputting the phase as a measurement phase;
Second phase detection means (12) that receives the reference interference signal and the phase detection reference signal, detects a phase of the reference interference signal with respect to the phase detection reference signal, and outputs it as a reference phase;
A first mode for obtaining a phase characteristic of the measurement object based on the measurement light and the reference light after passing through the measurement object, and the measurement object based only on the measurement light after passing through the measurement object When a measurement mode designating signal designating any one of the second modes for obtaining the phase characteristics of the signal is received and the measurement mode designating signal designates the first mode, the reference phase is calculated from the measurement phase. A signal for obtaining the wavelength-phase characteristic of the object to be measured from the measurement phase when the wavelength-phase characteristic of the object to be measured is obtained by subtraction, and the measurement mode designation signal designates the second mode. An optical interferometer type phase detector comprising a processing means (13).
所定の波長範囲の測定光を出力する波長可変光源(1)と、
前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、
前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、
前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する第1の光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して第1の干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(30)と、
前記第1の干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する第1の波長分波器(7)と、
該第1の波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、
前記第1の波長分波器から出力される前記参照光の波長成分に係わる第1の参照干渉光を受けて光電変換し前記所定のビート周波数の第1の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記第1の参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、
前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物を通る前の前記第1の光の一部を分波するための第2の光分波手段(14)と、
前記マッハツェンダ型干渉計の前記第2の光路上に設けられ、前記第2の光の一部を分波するための第3の光分波手段(15)と、
前記第2の光分波手段及び前記第3の光分波手段からそれぞれ出力される光を合波して第2の干渉光を出力する第3の光合波手段(16)と、
前記第2の干渉光を受けて前記参照光の波長成分に係わる第2の参照干渉光を出力する第2の波長分波器(17)と、
前記第2の参照干渉光を受けて光電変換し前記所定のビート周波数の第2の参照干渉信号を出力する第3の受光器(18)と、
被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号、前記第1の参照干渉信号並びに前記第2の参照干渉信号を受け、該測定モード指定信号が第1のモードを指定している場合には前記第1の参照干渉信号を出力し、かつ、前記測定モード指定信号が第2のモードを指定している場合には前記第2の参照干渉信号を出力する切替器(22)と、
該切替器から前記第1の参照干渉信号を受けたときは、当該第1の参照干渉信号に対する前記測定干渉信号の位相を検出し第1の測定位相として出力し、かつ、前記切替器から前記第2の参照干渉信号を受けたときは、当該第2の参照干渉信号に対する前記測定干渉信号の位相を検出し第2の測定位相として出力する位相検出手段(11)と、
前記測定モード指定信号が第1のモードを指定している場合には、前記第1の測定位相から被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記第2の測定位相から被測定物の波長−位相特性を求める信号処理手段(23)とを備えたことを特徴とする光干渉計型位相検出装置。
A wavelength tunable light source (1) that outputs measurement light in a predetermined wavelength range;
A light source (2) that outputs reference light having a wavelength different from the wavelength of the measurement light;
First optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light and outputting the wavelength multiplexed light obtained thereby;
Upon receiving the wavelength-multiplexed light, the first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated. The measurement light and the reference included in the second light demultiplexed with the respective frequencies of the measurement light and the reference light included in the demultiplexed first light. The frequency of at least one of the first light and the second light is set so that the frequency difference between the measurement lights and the frequency difference between the reference lights with respect to the respective frequencies of the light each have a predetermined beat frequency. The first optical demultiplexing means (4) that outputs the frequency shifted by the shifters (4a to 4f), and the first light that passes through the first optical path and the second light that passes through the second optical path And a second optical multiplexing means (6) for outputting the first interference light. That the Mach-Zehnder interferometer optical heterodyne interferometry (30),
A first wavelength demultiplexer (7) that receives the first interference light and demultiplexes it into each wavelength component of the measurement light and the reference light;
A first light receiver (8) that receives measurement interference light related to the wavelength component of the measurement light output from the first wavelength demultiplexer, photoelectrically converts the measurement interference light, and outputs a measurement interference signal of the predetermined beat frequency; ,
Receiving a first reference interference light related to a wavelength component of the reference light output from the first wavelength demultiplexer, photoelectrically converting the second reference interference light and outputting a first reference interference signal having the predetermined beat frequency; An optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the object to be measured based on the measurement interference signal and the first reference interference signal;
Second optical demultiplexing means (14) provided on the first optical path of the Mach-Zehnder interferometer, for demultiplexing a part of the first light before passing through the object to be measured;
Third optical demultiplexing means (15) provided on the second optical path of the Mach-Zehnder interferometer, for demultiplexing a part of the second light;
A third optical multiplexing means (16) for combining the light respectively output from the second optical demultiplexing means and the third optical demultiplexing means to output a second interference light;
A second wavelength demultiplexer (17) that receives the second interference light and outputs a second reference interference light related to a wavelength component of the reference light;
A third light receiver (18) that receives and photoelectrically converts the second reference interference light and outputs a second reference interference signal of the predetermined beat frequency;
A first mode for obtaining a phase characteristic of the measurement object based on the measurement light and the reference light after passing through the measurement object, and the measurement object based only on the measurement light after passing through the measurement object Receiving a measurement mode designating signal for designating any one of the second modes for obtaining the phase characteristics of the signal, the first reference interference signal, and the second reference interference signal, and the measurement mode designating signal determines the first mode. A switch that outputs the first reference interference signal when designated, and outputs the second reference interference signal when the measurement mode designation signal designates the second mode. (22)
When the first reference interference signal is received from the switch, the phase of the measurement interference signal with respect to the first reference interference signal is detected and output as a first measurement phase, and the switch Phase detection means (11) for detecting a phase of the measurement interference signal with respect to the second reference interference signal and outputting it as a second measurement phase when receiving the second reference interference signal;
When the measurement mode designation signal designates the first mode, the wavelength-phase characteristic of the object to be measured is obtained from the first measurement phase, and the measurement mode designation signal indicates the second mode. An optical interferometer type phase detection device comprising signal processing means (23) for obtaining the wavelength-phase characteristic of the object to be measured from the second measurement phase when specified.
所定の波長範囲の測定光を出力する波長可変光源(1)と、
前記測定光の波長とは異なる波長の参照光を出力する光源(2)と、
前記測定光及び前記参照光を受けて合波し、それによって得られた波長多重光を出力する第1の光合波手段(3)と、
前記波長多重光を受けて、被測定物(10)が接続されている第1の光路を通る第1の光と被測定物が接続されていない第2の光路を通る第2の光に分波するとともに、分波された該第1の光に含まれている前記測定光及び前記参照光のそれぞれの周波数と分波された該第2の光に含まれている前記測定光及び前記参照光のそれぞれの周波数とにおける前記測定光同士の周波数差及び前記参照光同士の周波数差がそれぞれ所定のビート周波数となるように、当該第1の光及び第2の光の少なくとも一方の光を周波数シフタ(4a〜4f)によって周波数シフトして出力する光分波手段(4)、並びに前記第1の光路を通った第1の光と前記第2の光路を通った第2の光とを合波して干渉光を出力する第2の光合波手段(6)を有する光ヘテロダイン干渉方式のマッハツェンダ型干渉計(20)と、
前記干渉光を受けて前記測定光及び前記参照光の各波長成分に分波する波長分波器(7)と、
該波長分波器から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し前記所定のビート周波数の測定干渉信号を出力する第1の受光器(8)と、
前記波長分波器から出力される前記参照光の波長成分に係わる参照干渉光を受けて光電変換し前記所定のビート周波数の参照干渉信号を出力する第2の受光器(9)とを備え、前記測定干渉信号及び前記参照干渉信号に基づいて前記被測定物の波長−位相特性を求める光干渉計型位相検出装置において、
前記周波数シフタの駆動信号に基づいて前記所定のビート周波数と同一の周波数を有する位相検出基準信号を発生させる位相検出基準信号発生手段(4b、4d、4f、19)と、
被測定物を通った後の前記測定光と前記参照光とに基づいて被測定物の位相特性を求める第1のモード及び被測定物を通った後の前記測定光のみに基づいて被測定物の位相特性を求める第2のモードのいずれか一方を指定する測定モード指定信号、前記参照干渉信号並びに前記位相検出基準信号を受け、該測定モード指定信号が第1のモードを指定している場合には前記参照干渉信号を出力し、かつ、前記測定モード指定信号が第2のモードを指定している場合には前記位相検出基準信号を出力する切替器(22)と、
該切替器から前記参照干渉信号を受けたときは、当該参照干渉信号に対する前記測定干渉信号の位相を検出し第1の測定位相として出力し、かつ、前記切替器から前記位相検出基準信号を受けたときは、当該位相検出基準信号に対する前記測定干渉信号の位相を検出し第2の測定位相として出力する位相検出手段(11)と、
前記測定モード指定信号が第1のモードを指定している場合には、前記第1の測定位相から被測定物の波長−位相特性を求め、かつ、前記測定モード指定信号が第2のモードを指定している場合には、前記第2の測定位相から被測定物の波長−位相特性を求める信号処理手段(23)とを備えたことを特徴とする光干渉計型位相検出装置。
A wavelength tunable light source (1) that outputs measurement light in a predetermined wavelength range;
A light source (2) that outputs reference light having a wavelength different from the wavelength of the measurement light;
First optical multiplexing means (3) for receiving and multiplexing the measurement light and the reference light and outputting the wavelength multiplexed light obtained thereby;
Upon receiving the wavelength-multiplexed light, the first light passing through the first optical path to which the device under test (10) is connected and the second light passing through the second optical path to which the device under test is not connected are separated. The measurement light and the reference included in the second light demultiplexed with the respective frequencies of the measurement light and the reference light included in the demultiplexed first light. The frequency of at least one of the first light and the second light is set so that the frequency difference between the measurement lights and the frequency difference between the reference lights with respect to the respective frequencies of the light each have a predetermined beat frequency. The optical demultiplexing means (4) that outputs the frequency shifted by the shifters (4a to 4f), and the first light that passes through the first optical path and the second light that passes through the second optical path are combined. Optical heterogeneity having second optical multiplexing means (6) for outputting interference light by wave generation Mach-Zehnder interferometer in-interference system (20),
A wavelength demultiplexer (7) that receives the interference light and demultiplexes it into each wavelength component of the measurement light and the reference light;
A first light receiver (8) that receives measurement interference light related to the wavelength component of the measurement light output from the wavelength demultiplexer, photoelectrically converts the measurement interference light, and outputs a measurement interference signal of the predetermined beat frequency;
A second light receiver (9) that receives reference interference light related to the wavelength component of the reference light output from the wavelength demultiplexer, photoelectrically converts the reference interference light, and outputs a reference interference signal having the predetermined beat frequency; In an optical interferometer type phase detector for obtaining a wavelength-phase characteristic of the device under test based on the measurement interference signal and the reference interference signal,
Phase detection reference signal generating means (4b, 4d, 4f, 19) for generating a phase detection reference signal having the same frequency as the predetermined beat frequency based on the drive signal of the frequency shifter;
A first mode for obtaining a phase characteristic of the measurement object based on the measurement light and the reference light after passing through the measurement object, and the measurement object based only on the measurement light after passing through the measurement object Receiving a measurement mode designating signal designating one of the second modes for obtaining the phase characteristic of the signal, the reference interference signal and the phase detection reference signal, and the measurement mode designating signal designating the first mode A switch (22) that outputs the reference interference signal and outputs the phase detection reference signal when the measurement mode designation signal designates the second mode;
When the reference interference signal is received from the switch, the phase of the measurement interference signal with respect to the reference interference signal is detected and output as a first measurement phase, and the phase detection reference signal is received from the switch. A phase detection means (11) for detecting the phase of the measurement interference signal with respect to the phase detection reference signal and outputting it as a second measurement phase;
When the measurement mode designation signal designates the first mode, the wavelength-phase characteristic of the object to be measured is obtained from the first measurement phase, and the measurement mode designation signal indicates the second mode. An optical interferometer type phase detection device comprising signal processing means (23) for obtaining the wavelength-phase characteristic of the object to be measured from the second measurement phase when specified.
前記マッハツェンダ型干渉計の前記第1の光路及び前記第2の光路のいずれか一方の光路上に当該2つの光路の光路長を合わせるための光遅延器(5)を備えたことを特徴とする請求項1〜4のいずれかに記載の光干渉計型位相検出装置。   An optical delay device (5) for adjusting an optical path length of the two optical paths is provided on one of the first optical path and the second optical path of the Mach-Zehnder interferometer. The optical interferometer type phase detector according to any one of claims 1 to 4. 前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物に入力される光の強度を検出するための第1の光強度検出手段(24、25)と、
前記マッハツェンダ型干渉計の前記第1の光路上に設けられ、被測定物から出力される光の強度を検出するための第2の光強度検出手段(26、27)とを備えたことを特徴とする請求項1〜5のいずれかに記載の光干渉計型位相検出装置。
First light intensity detection means (24, 25) provided on the first optical path of the Mach-Zehnder interferometer for detecting the intensity of light input to the object to be measured;
And a second light intensity detecting means (26, 27) provided on the first optical path of the Mach-Zehnder interferometer for detecting the intensity of light output from the object to be measured. An optical interferometer type phase detector according to any one of claims 1 to 5.
前記マッハツェンダ型干渉計の前記第1の光路上に、被測定物に入力された光の当該被測定物による反射光の強度を検出するための第3の光強度検出手段(24、28)を備えたことを特徴とする請求項1〜6のいずれかに記載の光干渉計型位相検出装置。   Third light intensity detection means (24, 28) for detecting the intensity of light reflected by the object to be measured on the first optical path of the Mach-Zehnder interferometer. An optical interferometer type phase detector according to any one of claims 1 to 6, further comprising: 前記マッハツェンダ型干渉計の前記第1の光路上に、被測定物に入力される光の偏波を変化させるための偏波制御器(29)を備えたことを特徴とする請求項6に記載の光干渉計型位相検出装置。   The polarization controller (29) for changing the polarization of light input to the object to be measured is provided on the first optical path of the Mach-Zehnder interferometer. Optical interferometer type phase detector. 前記マッハツェンダ型干渉計の前記第1の光路上に、被測定物に入力される光の偏波を変化させるための偏波制御器(29)を備えたことを特徴とする請求項7に記載の光干渉計型位相検出装置。   The polarization controller (29) for changing the polarization of the light input to the object to be measured is provided on the first optical path of the Mach-Zehnder interferometer. Optical interferometer type phase detector. 前記マッハツェンダ型干渉計の前記第1の光路上に設けられた光サーキュレータ(31)を介して被測定物が該第1の光路に接続されていることを特徴とする請求項1〜6及び8のいずれかに記載の光干渉計型位相検出装置。   The object to be measured is connected to the first optical path via an optical circulator (31) provided on the first optical path of the Mach-Zehnder interferometer. The optical interferometer type phase detector according to any one of the above. 前記マッハツェンダ型干渉計の前記第1の光路上に設けられた光カプラ(32)を介して被測定物が該第1の光路に接続されていることを特徴とする請求項1〜6及び8のいずれかに記載の光干渉計型位相検出装置。

r 28c;Courier New;Wingdings;
The object to be measured is connected to the first optical path via an optical coupler (32) provided on the first optical path of the Mach-Zehnder interferometer. The optical interferometer type phase detector according to any one of the above.

r 2 c 8 c; Courier New; Wingdings;
JP2005239874A 2005-08-22 2005-08-22 Optical interferometer type phase detection apparatus Pending JP2007057251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239874A JP2007057251A (en) 2005-08-22 2005-08-22 Optical interferometer type phase detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239874A JP2007057251A (en) 2005-08-22 2005-08-22 Optical interferometer type phase detection apparatus

Publications (1)

Publication Number Publication Date
JP2007057251A true JP2007057251A (en) 2007-03-08

Family

ID=37920887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239874A Pending JP2007057251A (en) 2005-08-22 2005-08-22 Optical interferometer type phase detection apparatus

Country Status (1)

Country Link
JP (1) JP2007057251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224393A (en) * 2007-03-12 2008-09-25 Anritsu Corp Optical heterodyne ofdr device
JP2008241580A (en) * 2007-03-28 2008-10-09 Anritsu Corp Optical heterodyne interference device
JP2010008150A (en) * 2008-06-25 2010-01-14 Kobe Steel Ltd Shape measuring apparatus
JP2011002302A (en) * 2009-06-17 2011-01-06 Sokkia Topcon Co Ltd Light wave range finder
CN113804283A (en) * 2021-09-15 2021-12-17 中国人民解放军国防科技大学 System and method for testing phase noise of interference type optical fiber hydrophone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224393A (en) * 2007-03-12 2008-09-25 Anritsu Corp Optical heterodyne ofdr device
JP2008241580A (en) * 2007-03-28 2008-10-09 Anritsu Corp Optical heterodyne interference device
JP2010008150A (en) * 2008-06-25 2010-01-14 Kobe Steel Ltd Shape measuring apparatus
JP2011002302A (en) * 2009-06-17 2011-01-06 Sokkia Topcon Co Ltd Light wave range finder
CN113804283A (en) * 2021-09-15 2021-12-17 中国人民解放军国防科技大学 System and method for testing phase noise of interference type optical fiber hydrophone
CN113804283B (en) * 2021-09-15 2023-10-20 中国人民解放军国防科技大学 Interference type optical fiber hydrophone phase noise testing system and method

Similar Documents

Publication Publication Date Title
JP6921236B2 (en) Distributed acoustic sensing
JP6705353B2 (en) Optical fiber strain and temperature measuring device
JP6486971B2 (en) Dual laser frequency swept interferometry system and method
JP4801194B2 (en) Low frequency signal light transmission system and low frequency signal light transmission method
JP2017523403A5 (en)
JP2006266797A (en) Apparatus for optical heterodyne interference
JP3631025B2 (en) Chromatic dispersion measurement apparatus and polarization dispersion measurement apparatus
JP6308184B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
CN109556527B (en) Optical fiber strain measuring device and optical fiber strain measuring method
CN113218518A (en) Sine-cosine optical frequency detection device based on integrated optical path and application of sine-cosine optical frequency detection device in optical sensing
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
JP6290798B2 (en) OFDR device
JP2007057251A (en) Optical interferometer type phase detection apparatus
CN111397851A (en) OFDR multi-path optical fiber sensing system and method based on optical frequency comb technology
WO2017033491A1 (en) Optical fiber distortion measuring apparatus and optical fiber distortion measuring method
US6766115B1 (en) Multiport optical component testing using a single optical receiver
JP2006308531A (en) Wavelength dispersion measuring method and device
JP2006266796A (en) Apparatus for optical heterodyne interference
US7253906B2 (en) Polarization state frequency multiplexing
JP4613110B2 (en) Optical interference type phase detector
JP2002350236A (en) Light spectrum analysis system and light spectrum analysis method
JP4678236B2 (en) Optical property measuring device
JP4916347B2 (en) Optical heterodyne OFDR device
JP4766885B2 (en) Wavelength fluctuation measuring device
JP4725778B2 (en) Optical property measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014