JP2008241580A - Optical heterodyne interference device - Google Patents

Optical heterodyne interference device Download PDF

Info

Publication number
JP2008241580A
JP2008241580A JP2007084870A JP2007084870A JP2008241580A JP 2008241580 A JP2008241580 A JP 2008241580A JP 2007084870 A JP2007084870 A JP 2007084870A JP 2007084870 A JP2007084870 A JP 2007084870A JP 2008241580 A JP2008241580 A JP 2008241580A
Authority
JP
Japan
Prior art keywords
light
component
optical path
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007084870A
Other languages
Japanese (ja)
Inventor
Koji Kawakita
浩二 川北
Shigeo Arai
茂雄 新井
Takao Tanimoto
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007084870A priority Critical patent/JP2008241580A/en
Publication of JP2008241580A publication Critical patent/JP2008241580A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable high-accuracy measurements without having to depend on polarization of light. <P>SOLUTION: An optical heterodyne interference device includes coupling emission light P of a wavelength variable light source 31 and reference light Pr with a first coupler 33 to be branched into two; being emitted to a first optical path L1, including an object to be measured 1 and a second optical path L2 without, including the object to be measured 1; giving a prescribed frequency difference between lights of both optical paths by a frequency difference giving means 35; dividing the lights through the optical paths L1, L2 by a second coupler 40 into a P polarizing component and an S polarizing component, respectively to be coupled; selecting a reference signal used in synchronous detection processing from a beat signal obtained by interference of a reference light component, obtained by a wavelength branched wave of each coupled component with a reference signal output means 55; performing synchronous detection processing on a measurement light component of P polarization and a measurement optical component of S polarization of the light passing through the first optical path L1 by two lock-in amplifiers 56, 57; and obtaining delay characteristics, or the like, of the object to be measured 1 of each polarization component, based on obtained signals (Xp, Yp) and (Xs, Ys). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光部品の群遅延特性や波長分散特性等を測定するための光ヘテロダイン干渉装置において、光の偏光状態に依存することなく、高精度な測定ができるようにするための技術に関する。   The present invention relates to a technique for enabling high-precision measurement in an optical heterodyne interferometer for measuring group delay characteristics, wavelength dispersion characteristics, and the like of optical components, without depending on the polarization state of light.

光部品の群遅延特性や波長分散特性等を測定するために、従来から図9に示す光ヘテロダイン干渉装置10が用いられていた。   Conventionally, an optical heterodyne interferometer 10 shown in FIG. 9 has been used to measure the group delay characteristics, chromatic dispersion characteristics, and the like of optical components.

この光ヘテロダイン干渉装置10は、波長可変光源11から出射された周波数fの測定光Pを光分波器12で2分岐して、その一方の光Paを被測定物1を含む第1光路L1へ出射し、他方の光Pbを被測定物1を含まない第2光路L2に出射する。   This optical heterodyne interferometer 10 divides a measurement light P having a frequency f emitted from a wavelength tunable light source 11 into two by an optical demultiplexer 12 and a first optical path L1 including the DUT 1 as one of the lights Pa. And the other light Pb is emitted to the second optical path L2 not including the DUT 1.

ここで、第2光路L2側には、信号発生器13からの周波数faの信号Eaを受けて入射光の光周波数をその信号周波数fa分シフトする音響光学素子等からなる周波数シフタ14が挿入されており、この周波数シフタ14で周波数faだけ周波数シフトした光Pdと、被測定物1を経由した光Pcとを光合波器15で合波し、その合波光Peを光電変換器16に入射して電気の信号Eeを得ている。そして、この信号Eeをロックインアンプ(同期検波器)17に与え、信号Eaを基準信号とする同期検波処理を行い、得られた直交信号成分X、Yを演算処理部18に入力する。   Here, on the second optical path L2 side, a frequency shifter 14 composed of an acousto-optic element or the like that receives the signal Ea of the frequency fa from the signal generator 13 and shifts the optical frequency of the incident light by the signal frequency fa is inserted. The light Pd shifted by the frequency fa by the frequency shifter 14 and the light Pc passing through the device under test 1 are combined by the optical multiplexer 15, and the combined light Pe enters the photoelectric converter 16. Thus, an electric signal Ee is obtained. Then, the signal Ee is supplied to a lock-in amplifier (synchronous detector) 17 to perform synchronous detection processing using the signal Ea as a reference signal, and the obtained orthogonal signal components X and Y are input to the arithmetic processing unit 18.

ここで、光電変換器16から出力される信号Eeには、直流分以外に、被測定物1を経由した光Pcと被測定物1を経由せずに周波数差faが付与された光Pdの干渉によって生じるビート信号成分が含まれている。このビート信号成分は、光Pc、光Pdの強度に対応した振幅と、光Pc、Pdの周波数差(この場合fa)に等しい周波数を有する正弦波となる。   Here, in the signal Ee output from the photoelectric converter 16, in addition to the direct current component, the light Pc that has passed through the DUT 1 and the light Pd to which the frequency difference fa has been given without passing through the DUT 1. A beat signal component caused by interference is included. This beat signal component is a sine wave having an amplitude corresponding to the intensity of the light Pc and the light Pd and a frequency equal to the frequency difference between the light Pc and Pd (in this case, fa).

波長可変光源11から出射される測定光Pの光周波数fを変化させると、被測定物1を経由した光Pcの振幅と位相が変化するため、ビート信号成分の振幅と位相も変化する。   When the optical frequency f of the measurement light P emitted from the wavelength tunable light source 11 is changed, the amplitude and phase of the light Pc that has passed through the DUT 1 change, so that the amplitude and phase of the beat signal component also change.

被測定物の群遅延時間tgを位相特性の各周波数微分と定義すれば、群遅延時間tgは、次式で表される。
tg=dθ(ω)/dω
If the group delay time tg of the device under test is defined as each frequency derivative of the phase characteristic, the group delay time tg is expressed by the following equation.
tg = dθ (ω) / dω

したがって、波長可変光源11の光周波数fを可変しながら位相変化を測定することで、群遅延時間を求めることができる。   Therefore, the group delay time can be obtained by measuring the phase change while varying the optical frequency f of the wavelength variable light source 11.

なお、上記構成の光ヘテロダイン干渉装置は、例えば次の特許文献1に開示されている。   The optical heterodyne interferometer having the above configuration is disclosed in, for example, the following Patent Document 1.

特開2006−266796号公報Japanese Patent Laid-Open No. 2006-266796

ところが、上記構成の光ヘテロダイン干渉装置では、被測定物1側の外乱の影響を大きく受けて、正確な測定が困難になる場合がある。   However, in the optical heterodyne interferometer having the above-described configuration, accurate measurement may be difficult due to the large influence of disturbance on the DUT 1 side.

これを解決するために、例えば図10に示す光ヘテロダイン干渉装置20のように、測定光とは別の基準光を用いることが考えられる。   In order to solve this, it is conceivable to use a reference light different from the measurement light, such as the optical heterodyne interferometer 20 shown in FIG.

即ち、基準光源21から出射された周波数frの固定波長の基準光Prと測定光Pとをカプラ22に入射して合波し、その合波光を2分岐して、その一方の光Pa′を被測定物1を含む第1光路L1に出射し、他方の光Pb′を被測定物1が含まれない第2光路L2に出射するとともに、光合波器15から出射された光Peを波長分波器23に与えて、測定光Pの成分で2つの光路L1、L2をそれぞれ経由して互いに周波数差faをもつ光からなる第1波長成分Pfと、基準光Pの成分で2つの光路L1、L2をそれぞれ経由して互いに周波数差faをもつ光からなる第2波長成分Pgとを分離抽出する。   That is, the reference light Pr having a fixed wavelength fr emitted from the reference light source 21 and the measurement light P are incident on the coupler 22 and combined, and the combined light is split into two, and one of the light Pa ′ is obtained. The first light path L1 including the DUT 1 is emitted, the other light Pb ′ is emitted to the second optical path L2 not including the DUT 1, and the light Pe emitted from the optical multiplexer 15 is separated by wavelength. A first wavelength component Pf composed of light having a frequency difference fa through the two light paths L1 and L2 by the component of the measurement light P and the two light paths L1 by the reference light P component. , L2, and the second wavelength component Pg made of light having a frequency difference fa from each other.

そして、各波長成分Pf、Pgを光電変換器24、25でそれぞれ受光し、周波数fと周波数f+faの差によって生じる第1ビート信号Efと、周波数frと周波数fr+faの差によって生じる第2ビート信号Egとを得て、ロックインアンプ17において、第2ビート信号Egを基準信号として第1ビート信号Efを同期検波する。   The wavelength components Pf and Pg are received by the photoelectric converters 24 and 25, respectively, and the first beat signal Ef generated by the difference between the frequency f and the frequency f + fa, and the second beat signal Eg generated by the difference between the frequency fr and the frequency fr + fa. Then, the lock-in amplifier 17 synchronously detects the first beat signal Ef using the second beat signal Eg as a reference signal.

このように基準光Prを用いることで、被測定物1を経由する測定光成分に対する外乱の影響を基準光成分にも同等に与えて、外乱による同期検波出力の振幅や位相の変動を防ぐことが可能となる。   By using the reference light Pr in this way, the influence of the disturbance on the measurement light component passing through the DUT 1 is equally applied to the reference light component, and the fluctuation of the amplitude and phase of the synchronous detection output due to the disturbance is prevented. Is possible.

ところが、上記のように基準光を用いて外乱の影響を受けないようにした光ヘテロダイン干渉装置であっても、被測定物1から出射される光の偏波状態によって、干渉信号レベルが著しく低下して測定が困難になる場合がある。   However, even in the optical heterodyne interferometer that is not affected by disturbance using the reference light as described above, the interference signal level is significantly lowered depending on the polarization state of the light emitted from the DUT 1. Measurement may be difficult.

本発明は、この点を改善して、光の偏光状態に依存することなく、高精度な測定ができる光ヘテロダイン干渉装置を提供することを目的としている。   An object of the present invention is to provide an optical heterodyne interferometer that can improve this point and perform highly accurate measurement without depending on the polarization state of light.

前記目的を達成するために、本発明の請求項1の光ヘテロダイン干渉装置は、
波長可変の測定光(P)を出射する波長可変光源(31)と、
基準光(Pr)を出射する基準光源(32)と、
前記測定光と前記基準光とを合波し、該合波した光を被測定物を含む第1光路と前記被測定物を含まない第2光路へ分けて出射する第1カプラ(33)と、
前記第1光路を経た光と第2光路を経た光に所定周波数差を与える周波数差付与手段(35)と、
前記周波数差付与手段によって前記所定周波数差が与えられた光を合波し、前記第1光路を経た光のP偏光成分を含む第1の合波光と、前記第1光路を経た光のS偏光成分を含む第2の合波光とを出射する第2カプラ(40)と、
前記第2カプラから出射された第1の合波光から、前記測定光の成分で互いに前記所定周波数差をもつ第1の測定光成分と、前記基準光の成分で互いに前記所定周波数差をもつ第1の基準光成分を抽出する第1波長分波手段(45)と、
前記第2カプラから出射された第2の合波光から、前記測定光の成分で互いに前記所定周波数差をもつ第2の測定光成分と、前記基準光の成分で互いに前記所定周波数差をもつ第2の基準光成分を抽出する第2波長分波手段(46)と、
前記第1の測定光成分を受け、該第1の測定光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第1ビート信号を出力する第1光電変換器(51)と、
前記第1の基準光成分を受け、該第1の基準光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第2ビート信号を出力する第2光電変換器(52)と、
前記第2の測定光成分を受け、該第2の測定光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第3ビート信号を出力する第3光電変換器(53)と、
前記第2の基準光成分を受け、該第2の基準光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第4ビート信号を出力する第4光電変換器(54)と、
前記第2ビート信号と第4ビート信号とを含む前記所定周波数の信号のなかから選択した信号を基準信号として出力する基準信号出力手段(55)と、
前記基準信号で前記第1ビート信号を同期検波する第1ロックインアンプ(56)と、
前記基準信号で前記第3ビート信号を同期検波する第2ロックインアンプ(57)と、
前記第1ロックインアンプと第2ロックインアンプの出力信号に基づいて、前記被測定物の特性を求める演算処理部(60)とを備えている。
In order to achieve the above object, an optical heterodyne interferometer according to claim 1 of the present invention comprises:
A wavelength tunable light source (31) that emits wavelength tunable measurement light (P);
A reference light source (32) for emitting reference light (Pr);
A first coupler (33) for combining the measurement light and the reference light, and dividing the combined light into a first optical path including the object to be measured and a second optical path not including the object to be measured; ,
A frequency difference providing means (35) for giving a predetermined frequency difference between the light passing through the first optical path and the light passing through the second optical path;
The light having the predetermined frequency difference is combined by the frequency difference providing unit, and the first combined light including the P-polarized component of the light passing through the first optical path and the S-polarized light of the light passing through the first optical path. A second coupler (40) for emitting a second combined light including a component;
From the first combined light emitted from the second coupler, the first measurement light component having the predetermined frequency difference in the measurement light component and the first measurement light component having the predetermined frequency difference in the reference light component. First wavelength demultiplexing means (45) for extracting one reference light component;
From the second combined light emitted from the second coupler, the second measurement light component having the predetermined frequency difference in the measurement light component and the second measurement light component having the predetermined frequency difference in the reference light component. Second wavelength demultiplexing means (46) for extracting two reference light components;
A first photoelectric converter (51) that receives the first measurement light component and outputs a first beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the first measurement light component;
A second photoelectric converter (52) that receives the first reference light component and outputs a second beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the first reference light component;
A third photoelectric converter (53) that receives the second measurement light component and outputs a third beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the second measurement light component;
A fourth photoelectric converter (54) that receives the second reference light component and outputs a fourth beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the second reference light component;
A reference signal output means (55) for outputting, as a reference signal, a signal selected from the signals of the predetermined frequency including the second beat signal and the fourth beat signal;
A first lock-in amplifier (56) for synchronously detecting the first beat signal with the reference signal;
A second lock-in amplifier (57) for synchronously detecting the third beat signal with the reference signal;
An arithmetic processing unit (60) for obtaining characteristics of the device under test based on output signals of the first lock-in amplifier and the second lock-in amplifier.

また、本発明の請求項2の光ヘテロダイン干渉装置は、請求項1記載の光ヘテロダイン干渉装置において、
前記周波数差付与手段は、
信号発生器(36、36a、36b)と、
前記信号発生器の出力信号を受けて入射光の周波数を該信号の周波数分シフトする周波数シフタ(37、37a、37b)とを有していることを特徴とする。
An optical heterodyne interference device according to claim 2 of the present invention is the optical heterodyne interference device according to claim 1,
The frequency difference giving means is
A signal generator (36, 36a, 36b);
It has a frequency shifter (37, 37a, 37b) for receiving the output signal of the signal generator and shifting the frequency of the incident light by the frequency of the signal.

また、本発明の請求項3の光ヘテロダイン干渉装置は、請求項1または請求項2記載の光ヘテロダイン干渉装置において、
前記周波数差付与手段は、
第1の周波数(fa)の信号を出力する第1の信号発生器(36a)と、
前記第1光路と第2光路の一方に挿入され、前記第1の周波数の信号を受けて入射光の周波数を該信号の周波数分シフトする第1の周波数シフタ(37a)と、
前記第1の周波数と異なる第2の周波数(fa′)の信号を出力する第2の信号発生器(36b)と、
前記第1光路と第2光路の一方に挿入され、前記第2の周波数の信号を受けて入射光の周波数を該信号の周波数分シフトする第2の周波数シフタ(37b)とにより構成され、
前記第1光路の光と第2光路の光の間に、前記第1の周波数と第2の周波数の差分の周波数差を付与することを特徴とする。
An optical heterodyne interference device according to claim 3 of the present invention is the optical heterodyne interference device according to claim 1 or 2,
The frequency difference giving means is
A first signal generator (36a) for outputting a signal of a first frequency (fa);
A first frequency shifter (37a) that is inserted into one of the first optical path and the second optical path, receives the signal of the first frequency, and shifts the frequency of the incident light by the frequency of the signal;
A second signal generator (36b) for outputting a signal having a second frequency (fa ′) different from the first frequency;
A second frequency shifter (37b) that is inserted into one of the first optical path and the second optical path, receives the signal of the second frequency, and shifts the frequency of the incident light by the frequency of the signal;
A difference in frequency between the first frequency and the second optical path is provided between the light in the first optical path and the light in the second optical path.

また、本発明の請求項4の光ヘテロダイン干渉装置は、請求項1〜3のいずれかに記載の光ヘテロダイン干渉装置において、
前記基準信号出力手段は、前記第2ビート信号と第4ビート信号のうち、レベルの大きい方を前記基準信号として出力することを特徴とする。
An optical heterodyne interference device according to claim 4 of the present invention is the optical heterodyne interference device according to any one of claims 1 to 3,
The reference signal output means outputs the higher one of the second beat signal and the fourth beat signal as the reference signal.

また、本発明の請求項5の光ヘテロダイン干渉装置は、請求項1〜4のいずれかに記載の光ヘテロダイン干渉装置において、
前記第2カプラは、
前記第1光路を経た光と第2光路を経た光とを受けて、それぞれ分けて出射するビームスプリッタ(41)と、
前記ビームスプリッタから出射された光のP偏光成分を選択的に通過させる第1の偏光子(42)と、
前記ビームスプリッタから出射された光のS偏光成分を選択的に通過させる第2の偏光子(43)とを含んでいることを特徴とする。
An optical heterodyne interference device according to claim 5 of the present invention is the optical heterodyne interference device according to any one of claims 1 to 4,
The second coupler is
A beam splitter (41) for receiving the light having passed through the first optical path and the light having passed through the second optical path and emitting the light separately;
A first polarizer (42) that selectively passes a P-polarized component of the light emitted from the beam splitter;
And a second polarizer (43) that selectively allows the S-polarized light component of the light emitted from the beam splitter to pass therethrough.

また、本発明の請求項6の光ヘテロダイン干渉装置は、請求項1〜4のいずれかに記載の光ヘテロダイン干渉装置において、
前記第2カプラは、
前記第1光路を経た光と第2光路を経た光とを受けて、それぞれP偏光成分とS偏光成分に分けて出射する偏光ビームスプリッタ(41′)と、
前記偏光ビームスプリッタから出射された光のうち、前記第1光路を経た光のP偏光成分と前記第2光路を経たS偏光成分とを受けて同一偏光成分を選択的に通過させる透過軸がP偏光に対して45゜をなす第1の偏光子(42′)と、
前記偏光ビームスプリッタから出射された光のうち、前記第1光路を経た光のS偏光成分と前記第2光路を経たP偏光成分とを受けて同一偏光成分を選択的に通過させる透過軸がP偏光に対して45゜をなす第2の偏光子(43′)とを含んでいることを特徴とする。
An optical heterodyne interference device according to claim 6 of the present invention is the optical heterodyne interference device according to any one of claims 1 to 4,
The second coupler is
A polarization beam splitter (41 ′) that receives the light that has passed through the first optical path and the light that has passed through the second optical path, and divides the light into a P-polarized component and an S-polarized component, respectively;
Of the light emitted from the polarization beam splitter, the transmission axis for selectively passing the same polarization component upon receiving the P polarization component of the light passing through the first optical path and the S polarization component passing through the second optical path is P A first polarizer (42 ') that makes an angle of 45 with respect to the polarized light;
Of the light emitted from the polarization beam splitter, the transmission axis for selectively passing the same polarization component upon receiving the S polarization component of the light passing through the first optical path and the P polarization component passing through the second optical path is P And a second polarizer (43 ') having an angle of 45 with respect to the polarized light.

また、本発明の請求項7の光ヘテロダイン干渉装置は、請求項1〜6のいずれかに記載の光ヘテロダイン干渉装置において、
前記第2光路が偏波保持ファイバを用いて構成されていることを特徴とする。
An optical heterodyne interference device according to claim 7 of the present invention is the optical heterodyne interference device according to any one of claims 1 to 6,
The second optical path is configured using a polarization maintaining fiber.

また、本発明の請求項8の光ヘテロダイン干渉装置は、請求項7記載の光ヘテロダイン干渉装置において、
前記偏波保持ファイバの主軸が前記第1光路を経た光のP偏光成分に対して45゜をなすように構成されていることを特徴とする。
An optical heterodyne interference device according to claim 8 of the present invention is the optical heterodyne interference device according to claim 7,
The main axis of the polarization-maintaining fiber is configured to form 45 ° with respect to the P-polarized component of the light passing through the first optical path.

また、本発明の請求項9の光ヘテロダイン干渉装置は、請求項1〜8のいずれかに記載の光ヘテロダイン干渉装置において、
前記演算処理部は、
前記第1ロックインアンプの出力信号に基づいて前記第1光路を経た光のP偏光についての群遅延を求め、前記第2ロックインアンプの出力信号に基づいて前記第1光路を経た光のS偏光についての群遅延を求めることを特徴とする。
An optical heterodyne interference device according to claim 9 of the present invention is the optical heterodyne interference device according to any one of claims 1 to 8,
The arithmetic processing unit includes:
Based on the output signal of the first lock-in amplifier, a group delay is obtained for the P-polarized light of the light passing through the first optical path, and S of the light passing through the first optical path is determined based on the output signal of the second lock-in amplifier. It is characterized in that a group delay with respect to polarization is obtained.

また、本発明の請求項10の光ヘテロダイン干渉装置は、請求項9記載の光ヘテロダイン干渉装置において、
前記演算処理部は、
前記P偏光についての群遅延とS偏光についての群遅延の平均化演算を行い、平均群遅延を求めることを特徴とする。
An optical heterodyne interference device according to claim 10 of the present invention is the optical heterodyne interference device according to claim 9,
The arithmetic processing unit includes:
A group delay for the P-polarized light and a group delay for the S-polarized light are averaged to obtain an average group delay.

このように本発明の光ヘテロダイン干渉装置は、基準光を用いるとともに、2つの光路を経た光をそれぞれP偏光成分とS偏光成分に分けて合波し、各合波成分の波長分波で得られた基準光成分の干渉によって得られるビート信号のうち、同期検波処理の基準信号として好ましい方の信号を選択し、合波成分の波長分波で得られた測定光成分の被測定物を含む第1光路を経た光のP偏光成分と被測定物を含む第1光路を経た光のS偏光成分に対する同期検波処理を行って、それによって得られた信号に基づいて偏光成分毎の被測定物の特性を求めるようにしている。   As described above, the optical heterodyne interferometer of the present invention uses the reference light and multiplexes the light that has passed through the two optical paths into the P-polarized component and the S-polarized component, respectively, and obtains it by wavelength demultiplexing of each combined component. Among the beat signals obtained by interference of the obtained reference light components, a signal that is preferable as a reference signal for synchronous detection processing is selected, and the measurement light component measured object obtained by wavelength demultiplexing of the combined component is included. Synchronous detection processing is performed on the P-polarized light component of the light passing through the first optical path and the S-polarized light component of the light passing through the first optical path including the device under test, and the device under test for each polarization component based on the signal obtained thereby. I want to find the characteristics.

したがって、外乱による測定誤差を防止しつつ、偏光成分毎の被測定物の特性を高精度に求めることができ、その平均化処理等により、偏光の影響を受けない測定結果を得ることが可能となる。   Therefore, it is possible to obtain the measurement object characteristics for each polarization component with high accuracy while preventing measurement errors due to disturbances, and to obtain measurement results that are not affected by polarization by averaging processing etc. Become.

また、干渉計の参照光路である被測定物を含まない経路を偏波保存ファイバを用いて構成し、測定光成分と基準光成分を偏波保存ファイバの主軸に合わせて導波させ、第2カプラにおいてその主軸をP偏光軸およびS偏光軸に対して45゜傾けることで、被測定物を含む経路を経た光のP偏光成分とS偏光成分それぞれと合波される測定光成分と基準光成分は、それぞれ強度がほぼ等しく、位相が同期しているので、偏光成分毎の被測定物の特性が安定且つ正確に測定可能となる。   Further, a path that does not include the object to be measured, which is a reference optical path of the interferometer, is configured using a polarization maintaining fiber, and the measurement light component and the reference light component are guided along the main axis of the polarization maintaining fiber, and the second By measuring the principal axis of the coupler 45 ° with respect to the P-polarization axis and the S-polarization axis, the measurement light component and the reference light combined with the P-polarization component and the S-polarization component of the light passing through the path including the object to be measured, respectively. Since the components have almost the same intensity and the phases are synchronized, the characteristics of the object to be measured for each polarization component can be measured stably and accurately.

(第1の実施形態)
以下、図面に基づいて本発明の第1実施形態を説明する。
図1は、本発明を適用した光ヘテロダイン干渉装置30の構成を示している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an optical heterodyne interference device 30 to which the present invention is applied.

この光ヘテロダイン干渉装置30は、前記した光ヘテロダイン干渉装置20と同様に、波長可変光源31から出射された光周波数fの測定光Pと、基準光源32から出射された固定の光周波数frの基準光Prとを、偏波保存型の第1カプラ33に入射して両光を合波し、その合波した光を2分岐し、その一方の光Pa′を被測定物1を含む第1光路L1に出射し、他方の光Pb′を被測定物1を含まない第2光路L2へ出射する。なお、ここで、測定光Pと基準光Prは直線偏光とする。   This optical heterodyne interferometer 30 is similar to the optical heterodyne interferometer 20 described above. The measurement light P having the optical frequency f emitted from the wavelength variable light source 31 and the reference of the fixed optical frequency fr emitted from the reference light source 32 are used. The light Pr is incident on the polarization-maintaining first coupler 33 to combine both lights, the combined light is split into two, and one of the lights Pa ′ is the first including the DUT 1. The light Pb ′ is emitted to the optical path L1, and the other light Pb ′ is emitted to the second optical path L2 that does not include the DUT 1. Here, the measurement light P and the reference light Pr are linearly polarized light.

周波数差付与手段35は、第1光路L1を経た光と第2光路L2を経た光に所定周波数差fb(この場合fb=fa)を与えるためのものであり、この実施形態では、周波数faの信号Eaを出力する信号発生器36と、第2光路L2に挿入され、信号Eaを受けて入射光の光周波数を周波数fa分高く(あるいは低く)シフトして出射する音響光学結晶素子などからなる周波数シフタ37とにより構成されている。   The frequency difference giving means 35 is for giving a predetermined frequency difference fb (in this case, fb = fa) to the light passing through the first optical path L1 and the light passing through the second optical path L2. In this embodiment, the frequency difference giving means 35 A signal generator 36 that outputs a signal Ea, an acousto-optic crystal element that is inserted into the second optical path L2, receives the signal Ea, and shifts the optical frequency of incident light higher (or lower) by the frequency fa and emits it. The frequency shifter 37 is used.

被測定物1および遅延手段38を経由して第1光路L1から出射される光Pcと、周波数シフタ37を経由して第2光路L2から出射される光Pdは、第2カプラ40に入射される。   The light Pc emitted from the first optical path L1 via the DUT 1 and the delay means 38 and the light Pd emitted from the second optical path L2 via the frequency shifter 37 are incident on the second coupler 40. The

なお、遅延手段38は、光路L1、L2の光路長差を調整するために配置されており、この光路長差が大きいと光周波数の変化に対して位相変化が大きくなる。   The delay means 38 is arranged to adjust the optical path length difference between the optical paths L1 and L2. When the optical path length difference is large, the phase change increases with respect to the change in optical frequency.

第2カプラ40は、例えば図2に示しているように、無偏光型のビームスプリッタ41、0゜偏光子42、90゜偏光子43を含み、第1光路L1から入射する光Pcについては、ビームスプリッタ41で2分し、その一方の光のP偏光成分Pcpを0°偏光子42を介して選択的に出射し、他方の光のS偏光成分Pcsを90°偏光子43を介して選択的に出射する。   As shown in FIG. 2, for example, the second coupler 40 includes a non-polarization type beam splitter 41, a 0 ° polarizer 42, and a 90 ° polarizer 43, and the light Pc incident from the first optical path L1 is as follows. The beam is split by the beam splitter 41, the P-polarized component Pcp of one light is selectively emitted through the 0 ° polarizer 42, and the S-polarized component Pcs of the other light is selected through the 90 ° polarizer 43. The light is emitted.

また、第2光路L2から入射する直線偏光の光Pdについては、その偏光軸がP偏光軸およびS偏光軸に対して45゜傾いた状態でビームスプリッタ41に入射させて2分し、その一方の光のP偏光成分Pdpを0°偏光子42を介して選択的に出射し、他方の光のS偏光成分Pdsを90°偏光子43を介して選択的に出射する。   Further, the linearly polarized light Pd incident from the second optical path L2 is incident on the beam splitter 41 in a state where its polarization axis is inclined by 45 ° with respect to the P polarization axis and the S polarization axis. The P-polarized component Pdp of the second light is selectively emitted through the 0 ° polarizer 42, and the S-polarized component Pds of the other light is selectively emitted through the 90 ° polarizer 43.

このとき、P偏光成分PdpとS偏光成分Pdsに含まれる測定光成分と基準光成分は、それぞれ強度がほぼ等しく、位相が同期している。   At this time, the measurement light component and the reference light component included in the P-polarized component Pdp and the S-polarized component Pds are almost equal in intensity and synchronized in phase.

上記した第2カプラ40では、無偏光型のビームスプリッタ41、0°偏光子42、90゜偏光子43を用いて、第1光路L1を経た光のP偏光成分Pcpと第2光路L2を経た光のP偏光成分Pdpと含む光を第1の合波光Ppとし、第1光路L1を経た光のS偏光成分Pcsと第2光路L2を経た光のS偏光成分Pdsとを含む光を第2の合波光Psとして出射しているが、第2カプラ40を図3に示すように、偏光ビームスプリッタ41′と、そのP偏光軸およびS偏光軸に対して透過軸が45゜傾いた2つの偏光子42′、43′を用いて構成することもできる。   In the second coupler 40 described above, the non-polarization type beam splitter 41, the 0 ° polarizer 42, and the 90 ° polarizer 43 are used to pass the P polarization component Pcp of the light passing through the first optical path L1 and the second optical path L2. The light including the P-polarized component Pdp of the light is the first combined light Pp, and the light including the S-polarized component Pcs of the light passing through the first optical path L1 and the S-polarized component Pds of the light passing through the second optical path L2 is second. As shown in FIG. 3, the second coupler 40 has a polarization beam splitter 41 'and two transmission axes whose transmission axes are inclined by 45 ° with respect to the P polarization axis and the S polarization axis. It can also be configured using polarizers 42 'and 43'.

この場合、第1光路L1を経た光のP偏光成分Pcpと第2光路L2を経た光のS偏光成分Pdsとを含む光が第1の合波光Ppとして出射され、第1光路L1を経た光のS偏光成分Pcsと第2光路L2を経た光のP偏光成分Pdpとを含む光が第2の合波光Psとして出射される。   In this case, the light including the P-polarized component Pcp of the light passing through the first optical path L1 and the S-polarized component Pds of the light passing through the second optical path L2 is emitted as the first combined light Pp, and the light passing through the first optical path L1 Light including the S-polarized light component Pcs and the P-polarized light component Pdp of the light passing through the second optical path L2 is emitted as the second combined light Ps.

この場合であっても、第1光路L1を経た光のP偏光成分PcpとS偏光成分Pcsのそれぞれと合波される第2光路L2を経た光の測定光成分と基準光成分は、それぞれ強度がほぼ等しく、位相が同期する。   Even in this case, the measurement light component and the reference light component of the light passing through the second optical path L2 combined with each of the P-polarization component Pcp and the S-polarization component Pcs of the light passing through the first optical path L1 are intensities, respectively. Are almost equal and the phase is synchronized.

なお、上記の第2カプラ40の0゜偏光子42、90゜偏光子43の透過軸あるいは偏光ビームスプリッタ41′のP偏光軸、S偏光軸に対して、光Pdをその偏光が安定に45゜傾いた状態で入射させるために、図4のように第2光路L2を偏波保存ファイバ34で構成し、その主軸x、yが光ビームスプリッタ41′のP偏光軸、S偏光軸に対して45゜傾いた状態にしている。   The polarization of light Pd is stable 45 with respect to the transmission axis of the 0 ° polarizer 42 and the 90 ° polarizer 43 of the second coupler 40 or the P polarization axis and the S polarization axis of the polarization beam splitter 41 ′. In order to make the light incident at an angle of °, the second optical path L2 is composed of the polarization maintaining fiber 34 as shown in FIG. 4, and its principal axes x and y are relative to the P polarization axis and S polarization axis of the light beam splitter 41 '. It is inclined 45 degrees.

第2カプラ40から出射された第1の合波光Ppは第1波長分波器45に入射され、第2の合波光Psは第2波長分波器46に入射される。   The first combined light Pp emitted from the second coupler 40 is incident on the first wavelength demultiplexer 45, and the second combined light Ps is incident on the second wavelength demultiplexer 46.

第1波長分波器45は、入力された第1の合波光Ppを、測定光Pの成分で互いに所定周波数差fbをもつ光からなる第1の測定光成分Pp1と、基準光Prの成分で互いに所定周波数差fbをもつ光からなる第1の基準光成分Pp2とに分けて出射する。   The first wavelength demultiplexer 45 converts the input first combined light Pp into a first measurement light component Pp1 composed of light having a predetermined frequency difference fb as a component of the measurement light P and a component of the reference light Pr. And the first reference light component Pp2 made of light having a predetermined frequency difference fb.

同様に、第2波長分波器46は、入射された第2の合波光Psを、測定光Pの成分で互いに所定周波数差fbをもつ光からなる第2の測定光成分Ps1と、基準光Prの成分で互いに所定周波数差fbをもつ光からなる第2の基準光成分Ps2とを分けて出射する。   Similarly, the second wavelength demultiplexer 46 converts the incident second combined light Ps into a second measurement light component Ps1 made of light having a predetermined frequency difference fb as a component of the measurement light P, and a reference light. A second reference light component Ps2 made of light having a predetermined frequency difference fb from the Pr component is emitted separately.

第1の測定光成分Pp1を受けた第1光電変換器51は、第1の測定光成分Pp1に含まれ互いに所定周波数差fbをもつ測定光成分の干渉によって生じる周波数fbの第1ビート信号Ep1を出力し、第1の基準光成分Pp2を受けた第2光電変換器52は、第1の基準光成分Pp2に含まれ互いに所定周波数差fbをもつ基準光成分の干渉によって生じる周波数fbの第2ビート信号Ep2を出力する。   The first photoelectric converter 51 that has received the first measurement light component Pp1 includes the first beat signal Ep1 having the frequency fb that is generated by the interference of the measurement light components that are included in the first measurement light component Pp1 and have a predetermined frequency difference fb. The second photoelectric converter 52 that receives the first reference light component Pp2 outputs the first reference light component Pp2 having the frequency fb that is generated by the interference of the reference light components that are included in the first reference light component Pp2 and have a predetermined frequency difference fb. A 2-beat signal Ep2 is output.

同様に、第2の測定光成分Ps1を受けた第3光電変換器53は、第2の測定光成分Ps1に含まれ互いに所定周波数差fbをもつ測定光成分の干渉によって生じる周波数fbの第3ビート信号Es1を出力し、第2の基準光成分Ps2を受けた第4光電変換器54は、第2の基準光成分Ps2に含まれ互いに所定周波数差fbをもつ基準光成分の干渉によって生じる周波数fbの第4ビート信号Es2を出力する。   Similarly, the third photoelectric converter 53 that has received the second measurement light component Ps1 has the third frequency fb generated by the interference of the measurement light components included in the second measurement light component Ps1 and having a predetermined frequency difference fb. The fourth photoelectric converter 54, which outputs the beat signal Es1 and receives the second reference light component Ps2, generates a frequency caused by interference of reference light components included in the second reference light component Ps2 and having a predetermined frequency difference fb. The fourth beat signal Es2 of fb is output.

第2ビート信号Ep2と第4ビート信号Es2は、基準信号出力手段55に入力される。基準信号出力手段55は、入力されたビート信号Ep2、Es2から選択した信号を所定周波数fbの基準信号Erとして出力するためのものであり、例えば、入力するビート信号のうちレベルが大きい方を選択し、第1ロックインアンプ56、第2ロックインアンプ57に基準信号Erとして入力する。   The second beat signal Ep2 and the fourth beat signal Es2 are input to the reference signal output means 55. The reference signal output means 55 is for outputting a signal selected from the input beat signals Ep2 and Es2 as a reference signal Er of a predetermined frequency fb. For example, the higher one of the input beat signals is selected. Then, it is input to the first lock-in amplifier 56 and the second lock-in amplifier 57 as the reference signal Er.

第1ロックインアンプ56は、第1ビート信号Ep1を基準信号Erで同期検波し、第2ロックインアンプ57は、第3ビート信号Es1を基準信号Erで同期検波する。   The first lock-in amplifier 56 synchronously detects the first beat signal Ep1 with the reference signal Er, and the second lock-in amplifier 57 synchronously detects the third beat signal Es1 with the reference signal Er.

演算処理部60は、例えば波長可変光源31が出射する測定光Pの周波数fをΔfステップで可変し、周波数毎の第1ロックインアンプ56の出力信号Xp、Ypと第2ロックインアンプ57の出力信号Xs、Ysとに基づいて、P偏光とS偏光についての被測定物1の特性を求める。   For example, the arithmetic processing unit 60 varies the frequency f of the measurement light P emitted from the wavelength tunable light source 31 by Δf steps, and outputs the output signals Xp and Yp of the first lock-in amplifier 56 and the second lock-in amplifier 57 for each frequency. Based on the output signals Xs and Ys, the characteristics of the DUT 1 for P-polarized light and S-polarized light are obtained.

例えば、周波数f毎の位相値φp、φsを、次の演算、
φp=tan−1(Yp/Xp)
φs=tan−1(Ys/Xs)
で求め、次の演算により、偏光毎の群遅延τp、τsを求める。
For example, the phase values φp and φs for each frequency f are calculated as follows:
φp = tan −1 (Yp / Xp)
φs = tan −1 (Ys / Xs)
And group delays τp and τs for each polarized light are obtained by the following calculation.

τp(n)=dφp/dω
=[φp(n)−φp(n−1)]/(2πΔf)
τs(n)=dφs/dω
=[φs(n)−φs(n−1)]/(2πΔf)
τp (n) = dφp / dω
= [Φp (n) −φp (n−1)] / (2πΔf)
τs (n) = dφs / dω
= [Φs (n) −φs (n−1)] / (2πΔf)

なお、偏光毎の振幅Ap、Asは、
Ap=(Xp+Yp1/2
As=(Xs+Ys1/2
の演算で求めることができる。
The amplitudes Ap and As for each polarization are
Ap = (Xp 2 + Yp 2 ) 1/2
As = (Xs 2 + Ys 2 ) 1/2
Can be obtained by the following calculation.

このようにして得られた偏光毎の群遅延は、例えば演算処理部60によって、図示しない表示器の画面上に例えば図5のように周波数軸上にグラフ表示される。   The group delay for each polarization obtained in this way is displayed as a graph on the frequency axis as shown in FIG. 5, for example, on a display screen (not shown) by the arithmetic processing unit 60, for example.

また、演算処理部60が、各周波数における2つの偏光の群遅延τp(n)、τs(n)の平均値演算を行い、平均群遅延値τa(n)=[τp(n)+τs(n)]/2を求めて、例えば図6のように周波数軸上にグラフ表示してもよい。   In addition, the arithmetic processing unit 60 calculates an average value of the group delays τp (n) and τs (n) of the two polarizations at each frequency, and the average group delay value τa (n) = [τp (n) + τs (n )] / 2 may be obtained and displayed in a graph on the frequency axis as shown in FIG. 6, for example.

このように、実施形態の光ヘテロダイン干渉装置30は、基準光Prを用いるとともに、2つの光路L1、L2を経た光をそれぞれP偏光成分とS偏光成分に分けて合波し、各合波成分の波長分波で得られた基準光成分の干渉によって得られるビート信号のうち、同期検波処理の基準信号として好ましい方の信号を選択し、合波成分の波長分波で得られた測定光成分のP偏光成分とS偏光成分に対する同期検波処理を行って、それによって得られた信号に基づいて偏光成分毎の被測定物の特性を求めるようにしている。   As described above, the optical heterodyne interferometer 30 according to the embodiment uses the reference light Pr and multiplexes the light that has passed through the two optical paths L1 and L2 into the P-polarized component and the S-polarized component, respectively. Measurement signal component obtained by selecting the preferred signal as the reference signal for synchronous detection processing from the beat signals obtained by interference of the reference light component obtained by wavelength demultiplexing of The synchronous detection processing is performed on the P-polarized component and the S-polarized component, and the characteristic of the object to be measured for each polarized component is obtained based on the signal obtained thereby.

したがって、外乱による測定誤差を防止しつつ、偏光成分毎の被測定物の特性を高精度に求めることができ、その平均化処理等により、偏光の影響を受けない測定結果を得ることが可能となる。   Therefore, it is possible to obtain the measurement object characteristics for each polarization component with high accuracy while preventing measurement errors due to disturbances, and to obtain measurement results that are not affected by polarization by averaging processing etc. Become.

なお、ここでは被測定物1が基準光Prの成分を通過させる場合について説明したが、被測定物1が基準光Prを通過させないような場合には、同期検波処理の基準信号の候補としての第2ビート信号Ep2、第4ビート信号Es2が得られなくなるので、その場合には、図1で点線で示しているように、信号Eaを信号発生器36から基準信号出力手段55へ直接出力して、所定周波数差fbに等しい周波数の信号Eaを基準信号Erとして選択できるように構成すればよい。   Here, the case where the DUT 1 passes the component of the reference light Pr has been described. However, when the DUT 1 does not pass the reference light Pr, the reference signal candidate for the synchronous detection processing is used as a candidate. Since the second beat signal Ep2 and the fourth beat signal Es2 cannot be obtained, in this case, the signal Ea is directly output from the signal generator 36 to the reference signal output means 55 as shown by the dotted line in FIG. Thus, the signal Ea having a frequency equal to the predetermined frequency difference fb may be selected as the reference signal Er.

また、前記実施形態では、周波数差付与手段35の周波数シフタ37が、第2光路L2側に挿入されていたが、第1光路L1側(被測定物1の前段でも後段でもよい)に挿入してもよい。   In the above embodiment, the frequency shifter 37 of the frequency difference providing unit 35 is inserted on the second optical path L2 side. However, the frequency shifter 37 is inserted on the first optical path L1 side (which may be the front stage or the rear stage of the DUT 1). May be.

(第2の実施形態)
また、図7のように、信号発生器36aから出力される周波数faの信号Eaを受ける周波数シフタ37aを第2光路L2に挿入し、信号発生器36bから出力される周波数fa′の信号Ea′を受ける周波数シフタ37bを第1光路L1(被測定物1の前段でも後段でもよい)に挿入して、第2カプラ40に入射される光の間に所定周波数差fb=fa−fa′を付与してもよい。
(Second Embodiment)
Further, as shown in FIG. 7, a frequency shifter 37a that receives the signal Ea of the frequency fa output from the signal generator 36a is inserted into the second optical path L2, and the signal Ea ′ of the frequency fa ′ output from the signal generator 36b. Is inserted into the first optical path L1 (which may be the front stage or the rear stage of the DUT 1), and a predetermined frequency difference fb = fa−fa ′ is given to the light incident on the second coupler 40. May be.

また、図8のように、2つの周波数シフタ37a、37bを、2つの光路L1、L2のいずれか一方側に挿入しても、上記周波数差fb=fa−fa′を付与することができる。ただし、この場合2つの周波数シフタ37a、37bのシフト方向を反対にする。   Further, as shown in FIG. 8, even if the two frequency shifters 37a and 37b are inserted into one of the two optical paths L1 and L2, the frequency difference fb = fa−fa ′ can be given. In this case, however, the shift directions of the two frequency shifters 37a and 37b are reversed.

このように構成した場合、各ビート信号Ep1、Ep2、Es1、Es2の周波数を格段に低くすることができ、低域のロックインアンプで位相検波できる。   When configured in this way, the frequency of each beat signal Ep1, Ep2, Es1, Es2 can be remarkably lowered, and phase detection can be performed with a low-frequency lock-in amplifier.

また、この場合も基準光Prを通過させない被測定物1を測定する事態を考慮し、点線で示すように、信号Ea、Ea′をミキサ61で混合してその差周波数fbのビート信号Ebを生成し、基準信号Erとして選択できるように構成してもよい。   Also in this case, considering the situation in which the DUT 1 that does not pass the reference light Pr is taken into account, as shown by the dotted lines, the signals Ea and Ea ′ are mixed by the mixer 61 and the beat signal Eb having the difference frequency fb is obtained. It may be configured so that it can be generated and selected as the reference signal Er.

本発明の第1の実施形態の構成を示す図The figure which shows the structure of the 1st Embodiment of this invention. 実施形態の要部の構成例を示す図The figure which shows the structural example of the principal part of embodiment. 実施形態の要部の他の構成例を示す図The figure which shows the other structural example of the principal part of embodiment. 第2光路側に偏波保存ファイバを用いた場合の軸の関係を示す図The figure which shows the relationship of the axis | shaft at the time of using a polarization maintaining fiber in the 2nd optical path side 各偏光についての測定結果の表示例を示す図The figure which shows the example of a display of the measurement result about each polarization 偏光の平均化により得られた測定結果の表示例を示す図The figure which shows the example of a display of the measurement result obtained by the average of polarization ビート周波数を低くすることができる実施形態の構成を一部を示す図The figure which shows a part of structure of embodiment which can make beat frequency low. ビート周波数を低くすることができる実施形態の構成を一部を示す図The figure which shows a part of structure of embodiment which can make beat frequency low. 従来装置の構成図Configuration diagram of conventional equipment 基準光を用いた構成を示す図Diagram showing configuration using reference light

符号の説明Explanation of symbols

1……被測定物、30……光ヘテロダイン干渉装置、31……波長可変光源、32……基準光源、33……第1カプラ、35……周波数差付与手段、36、36a、36b……信号発生器、37、37a、37b……周波数シフタ、38……遅延器、40……第2カプラ、41……ビームスプリッタ、41′……偏光ビームスプリッタ、42……0°偏光子、42′……45゜偏光子、43……90°偏光子、43′……45゜偏光子、45……第1波長分波器、46……第2波長分波器、51……第1光電変換器、52……第2光電変換器、53……第3光電変換器、54……第4光電変換器、55……基準信号出力手段、56……第1ロックインアンプ、57……第2ロックインアンプ、60……演算処理部、61……ミキサ   DESCRIPTION OF SYMBOLS 1 ... Object to be measured, 30 ... Optical heterodyne interference device, 31 ... Wavelength variable light source, 32 ... Reference light source, 33 ... First coupler, 35 ... Frequency difference imparting means, 36, 36a, 36b ... Signal generator, 37, 37a, 37b ... frequency shifter, 38 ... delay, 40 ... second coupler, 41 ... beam splitter, 41 '... polarizing beam splitter, 42 ... 0 degree polarizer, 42 ′ …… 45 ° polarizer, 43 …… 90 ° polarizer, 43 ′ …… 45 ° polarizer, 45 …… first wavelength demultiplexer, 46 …… second wavelength demultiplexer, 51 …… first Photoelectric converter, 52... Second photoelectric converter, 53... Third photoelectric converter, 54... Fourth photoelectric converter, 55... Reference signal output means, 56. ... second lock-in amplifier, 60 ... arithmetic processing unit, 61 ... mixer

Claims (10)

波長可変の測定光(P)を出射する波長可変光源(31)と、
基準光(Pr)を出射する基準光源(32)と、
前記測定光と前記基準光とを合波し、該合波した光を被測定物を含む第1光路と前記被測定物を含まない第2光路へ分けて出射する第1カプラ(33)と、
前記第1光路を経た光と第2光路を経た光に所定周波数差を与える周波数差付与手段(35)と、
前記周波数差付与手段によって前記所定周波数差が与えられた光を合波し、前記第1光路を経た光のP偏光成分を含む第1の合波光と、前記第1光路を経た光のS偏光成分を含む第2の合波光とを出射する第2カプラ(40)と、
前記第2カプラから出射された第1の合波光から、前記測定光の成分で互いに前記所定周波数差をもつ第1の測定光成分と、前記基準光の成分で互いに前記所定周波数差をもつ第1の基準光成分を抽出する第1波長分波手段(45)と、
前記第2カプラから出射された第2の合波光から、前記測定光の成分で互いに前記所定周波数差をもつ第2の測定光成分と、前記基準光の成分で互いに前記所定周波数差をもつ第2の基準光成分を抽出する第2波長分波手段(46)と、
前記第1の測定光成分を受け、該第1の測定光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第1ビート信号を出力する第1光電変換器(51)と、
前記第1の基準光成分を受け、該第1の基準光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第2ビート信号を出力する第2光電変換器(52)と、
前記第2の測定光成分を受け、該第2の測定光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第3ビート信号を出力する第3光電変換器(53)と、
前記第2の基準光成分を受け、該第2の基準光成分に含まれる光の干渉によって生じる前記所定周波数差に等しい周波数の第4ビート信号を出力する第4光電変換器(54)と、
前記第2ビート信号と第4ビート信号とを含む前記所定周波数の信号のなかから選択した信号を基準信号として出力する基準信号出力手段(55)と、
前記基準信号で前記第1ビート信号を同期検波する第1ロックインアンプ(56)と、
前記基準信号で前記第3ビート信号を同期検波する第2ロックインアンプ(57)と、
前記第1ロックインアンプと第2ロックインアンプの出力信号に基づいて、前記被測定物の特性を求める演算処理部(60)とを備えた光ヘテロダイン干渉装置。
A wavelength tunable light source (31) that emits wavelength tunable measurement light (P);
A reference light source (32) for emitting reference light (Pr);
A first coupler (33) for combining the measurement light and the reference light, and dividing the combined light into a first optical path including the object to be measured and a second optical path not including the object to be measured; ,
A frequency difference providing means (35) for giving a predetermined frequency difference between the light passing through the first optical path and the light passing through the second optical path;
The light having the predetermined frequency difference is combined by the frequency difference providing unit, and the first combined light including the P-polarized component of the light passing through the first optical path and the S-polarized light of the light passing through the first optical path. A second coupler (40) for emitting a second combined light including a component;
From the first combined light emitted from the second coupler, the first measurement light component having the predetermined frequency difference in the measurement light component and the first measurement light component having the predetermined frequency difference in the reference light component. First wavelength demultiplexing means (45) for extracting one reference light component;
From the second combined light emitted from the second coupler, the second measurement light component having the predetermined frequency difference in the measurement light component and the second measurement light component having the predetermined frequency difference in the reference light component. Second wavelength demultiplexing means (46) for extracting two reference light components;
A first photoelectric converter (51) that receives the first measurement light component and outputs a first beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the first measurement light component;
A second photoelectric converter (52) that receives the first reference light component and outputs a second beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the first reference light component;
A third photoelectric converter (53) that receives the second measurement light component and outputs a third beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the second measurement light component;
A fourth photoelectric converter (54) that receives the second reference light component and outputs a fourth beat signal having a frequency equal to the predetermined frequency difference caused by interference of light included in the second reference light component;
A reference signal output means (55) for outputting, as a reference signal, a signal selected from the signals of the predetermined frequency including the second beat signal and the fourth beat signal;
A first lock-in amplifier (56) for synchronously detecting the first beat signal with the reference signal;
A second lock-in amplifier (57) for synchronously detecting the third beat signal with the reference signal;
An optical heterodyne interference device comprising: an arithmetic processing unit (60) for obtaining characteristics of the device under test based on output signals of the first lock-in amplifier and the second lock-in amplifier.
前記周波数差付与手段は、
信号発生器(36、36a、36b)と、
前記信号発生器の出力信号を受けて入射光の周波数を該信号の周波数分シフトする周波数シフタ(37、37a、37b)とを有していることを特徴とする請求項1記載の光ヘテロダイン干渉装置。
The frequency difference giving means is
A signal generator (36, 36a, 36b);
The optical heterodyne interference according to claim 1, further comprising frequency shifters (37, 37a, 37b) for receiving the output signal of the signal generator and shifting the frequency of incident light by the frequency of the signal. apparatus.
前記周波数差付与手段は、
第1の周波数(fa)の信号を出力する第1の信号発生器(36a)と、
前記第1光路と第2光路の一方に挿入され、前記第1の周波数の信号を受けて入射光の周波数を該信号の周波数分シフトする第1の周波数シフタ(37a)と、
前記第1の周波数と異なる第2の周波数(fa′)の信号を出力する第2の信号発生器(36b)と、
前記第1光路と第2光路の一方に挿入され、前記第2の周波数の信号を受けて入射光の周波数を該信号の周波数分シフトする第2の周波数シフタ(37b)とにより構成され、
前記第1光路の光と第2光路の光の間に、前記第1の周波数と第2の周波数の差分の周波数差を付与することを特徴とする請求項1または請求項2記載の光ヘテロダイン干渉装置。
The frequency difference giving means is
A first signal generator (36a) for outputting a signal of a first frequency (fa);
A first frequency shifter (37a) that is inserted into one of the first optical path and the second optical path, receives the signal of the first frequency, and shifts the frequency of the incident light by the frequency of the signal;
A second signal generator (36b) for outputting a signal having a second frequency (fa ′) different from the first frequency;
A second frequency shifter (37b) that is inserted into one of the first optical path and the second optical path, receives the signal of the second frequency, and shifts the frequency of the incident light by the frequency of the signal;
3. The optical heterodyne according to claim 1, wherein a frequency difference of a difference between the first frequency and the second frequency is provided between the light on the first optical path and the light on the second optical path. Interfering device.
前記基準信号出力手段は、前記第2ビート信号と第4ビート信号のうち、レベルの大きい方を前記基準信号として出力することを特徴とする請求項1〜3のいずれかに記載の光ヘテロダイン干渉装置。   The optical heterodyne interference according to any one of claims 1 to 3, wherein the reference signal output means outputs the higher one of the second beat signal and the fourth beat signal as the reference signal. apparatus. 前記第2カプラは、
前記第1光路を経た光と第2光路を経た光とを受けて、それぞれ分けて出射するビームスプリッタ(41)と、
前記ビームスプリッタから出射された光のP偏光成分を選択的に通過させる第1の偏光子(42)と、
前記ビームスプリッタから出射された光のS偏光成分を選択的に通過させる第2の偏光子(43)とを含んでいることを特徴とする請求項1〜4のいずれかに記載の光ヘテロダイン干渉装置。
The second coupler is
A beam splitter (41) for receiving the light having passed through the first optical path and the light having passed through the second optical path and emitting the light separately;
A first polarizer (42) that selectively passes a P-polarized component of the light emitted from the beam splitter;
The optical heterodyne interference according to any one of claims 1 to 4, further comprising a second polarizer (43) that selectively passes an S-polarized component of the light emitted from the beam splitter. apparatus.
前記第2カプラは、
前記第1光路を経た光と第2光路を経た光とを受けて、それぞれP偏光成分とS偏光成分に分けて出射する偏光ビームスプリッタ(41′)と、
前記偏光ビームスプリッタから出射された光のうち、前記第1光路を経た光のP偏光成分と前記第2光路を経たS偏光成分とを受けて同一偏光成分を選択的に通過させる透過軸がP偏光に対して45゜をなす第1の偏光子(42′)と、
前記偏光ビームスプリッタから出射された光のうち、前記第1光路を経た光のS偏光成分と前記第2光路を経たP偏光成分とを受けて同一偏光成分を選択的に通過させる透過軸がP偏光に対して45゜をなす第2の偏光子(43′)とを含んでいることを特徴とする請求項1〜4のいずれかに記載の光ヘテロダイン干渉装置。
The second coupler is
A polarization beam splitter (41 ′) that receives the light that has passed through the first optical path and the light that has passed through the second optical path, and divides the light into a P-polarized component and an S-polarized component, respectively;
Of the light emitted from the polarization beam splitter, the transmission axis for selectively passing the same polarization component upon receiving the P polarization component of the light passing through the first optical path and the S polarization component passing through the second optical path is P A first polarizer (42 ') that makes an angle of 45 with respect to the polarized light;
Of the light emitted from the polarization beam splitter, the transmission axis for selectively passing the same polarization component upon receiving the S polarization component of the light passing through the first optical path and the P polarization component passing through the second optical path is P The optical heterodyne interferometer according to any one of claims 1 to 4, further comprising a second polarizer (43 ') having an angle of 45 with respect to the polarized light.
前記第2光路が偏波保持ファイバを用いて構成されていることを特徴とする請求項1〜6のいずれかに記載の光ヘテロダイン干渉装置。   The optical heterodyne interference device according to claim 1, wherein the second optical path is configured using a polarization maintaining fiber. 前記偏波保持ファイバの主軸が前記第1光路を経た光のP偏光成分に対して45゜をなすように構成されていることを特徴とする請求項7記載の光ヘテロダイン干渉装置。   8. The optical heterodyne interference device according to claim 7, wherein the main axis of the polarization maintaining fiber is configured to form 45 [deg.] With respect to the P-polarized component of the light passing through the first optical path. 前記演算処理部は、
前記第1ロックインアンプの出力信号に基づいて前記第1光路を経た光のP偏光についての群遅延を求め、前記第2ロックインアンプの出力信号に基づいて前記第1光路を経た光のS偏光についての群遅延を求めることを特徴とする請求項1〜8のいずれかに記載の光ヘテロダイン干渉装置。
The arithmetic processing unit includes:
Based on the output signal of the first lock-in amplifier, a group delay is obtained for the P-polarized light of the light passing through the first optical path, and S of the light passing through the first optical path is determined based on the output signal of the second lock-in amplifier. 9. The optical heterodyne interference device according to claim 1, wherein a group delay with respect to polarized light is obtained.
前記演算処理部は、
前記P偏光についての群遅延とS偏光についての群遅延の平均化演算を行い、平均群遅延を求めることを特徴とする請求項9記載の光ヘテロダイン干渉装置。
The arithmetic processing unit includes:
10. The optical heterodyne interferometer according to claim 9, wherein the group delay for the P-polarized light and the group delay for the S-polarized light are averaged to obtain an average group delay.
JP2007084870A 2007-03-28 2007-03-28 Optical heterodyne interference device Pending JP2008241580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084870A JP2008241580A (en) 2007-03-28 2007-03-28 Optical heterodyne interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084870A JP2008241580A (en) 2007-03-28 2007-03-28 Optical heterodyne interference device

Publications (1)

Publication Number Publication Date
JP2008241580A true JP2008241580A (en) 2008-10-09

Family

ID=39913102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084870A Pending JP2008241580A (en) 2007-03-28 2007-03-28 Optical heterodyne interference device

Country Status (1)

Country Link
JP (1) JP2008241580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190917A (en) * 2014-03-28 2015-11-02 アンリツ株式会社 Optical frequency domain reflection measuring method, optical frequency domain reflection measuring device, and apparatus for measuring position or shape using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310805A (en) * 2001-01-11 2002-10-23 Agilent Technol Inc Optical spectrum analyzing method and optical spectrum analyzing system
JP2006266696A (en) * 2005-03-22 2006-10-05 Bussan Nanotech Research Institute Inc Wavelength dispersion measuring apparatus
JP2006308531A (en) * 2005-05-02 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion measuring method and device
JP2007057251A (en) * 2005-08-22 2007-03-08 Anritsu Corp Optical interferometer type phase detection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310805A (en) * 2001-01-11 2002-10-23 Agilent Technol Inc Optical spectrum analyzing method and optical spectrum analyzing system
JP2006266696A (en) * 2005-03-22 2006-10-05 Bussan Nanotech Research Institute Inc Wavelength dispersion measuring apparatus
JP2006308531A (en) * 2005-05-02 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength dispersion measuring method and device
JP2007057251A (en) * 2005-08-22 2007-03-08 Anritsu Corp Optical interferometer type phase detection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子情報通信学会技術研究報告, vol. 105, no. 120, JPN6008022053, 10 June 2005 (2005-06-10), pages 13 - 16, ISSN: 0001807189 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190917A (en) * 2014-03-28 2015-11-02 アンリツ株式会社 Optical frequency domain reflection measuring method, optical frequency domain reflection measuring device, and apparatus for measuring position or shape using the same

Similar Documents

Publication Publication Date Title
CN106482780B (en) Device and method for spatially resolved measurement of temperature and/or strain
JP4801194B2 (en) Low frequency signal light transmission system and low frequency signal light transmission method
EP2220794B1 (en) Photonic based cross-correlation homodyne detection with low phase noise
US8582977B2 (en) Optical transmission system and optical transmission method
JP2005221500A (en) Heterodyne optical network analysis using signal modulation
AU2019352739B2 (en) Distributed sensing apparatus
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
JP2009021943A (en) Optical signal quality monitoring device
JP5301026B2 (en) Optical downconverter calibration
KR101097396B1 (en) Optical current transformer and signal processing method thereof
JP2010107470A (en) Dispersion interferometer, and method of measuring physical quantity of measuring object
JP5042701B2 (en) Optical sampling apparatus and optical sampling method
JP2008241580A (en) Optical heterodyne interference device
JP2006350332A (en) Active control and detection of two beams of nearly orthogonal polarized light within fiber for heterodyne interference method
JP2007057251A (en) Optical interferometer type phase detection apparatus
JP2014052272A (en) Electromagnetic wave detection system and electromagnetic wave detection method
JP2006308531A (en) Wavelength dispersion measuring method and device
JP2006332999A (en) System and method for reference signal light transmission
JP2006266796A (en) Apparatus for optical heterodyne interference
JP2001066250A (en) Gas detection apparatus
US20140111804A1 (en) Heterodyne Optical Spectrum Analyzer
JP5380324B2 (en) Polarization mode dispersion measuring apparatus and polarization mode dispersion measuring method
JP4613110B2 (en) Optical interference type phase detector
JP2008209188A (en) Polarization mode dispersion measuring device
JP2005283466A (en) Vibration measuring apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807