JP2006266797A - Apparatus for optical heterodyne interference - Google Patents

Apparatus for optical heterodyne interference Download PDF

Info

Publication number
JP2006266797A
JP2006266797A JP2005083693A JP2005083693A JP2006266797A JP 2006266797 A JP2006266797 A JP 2006266797A JP 2005083693 A JP2005083693 A JP 2005083693A JP 2005083693 A JP2005083693 A JP 2005083693A JP 2006266797 A JP2006266797 A JP 2006266797A
Authority
JP
Japan
Prior art keywords
light
optical
frequency
path
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005083693A
Other languages
Japanese (ja)
Inventor
Koji Kawakita
浩二 川北
Hiroshi Shimotahira
寛 下田平
Takao Tanimoto
隆生 谷本
Akihito Otani
昭仁 大谷
Kensuke Ogawa
憲介 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Bussan Nanotech Research Institute Inc
Original Assignee
Anritsu Corp
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Bussan Nanotech Research Institute Inc filed Critical Anritsu Corp
Priority to JP2005083693A priority Critical patent/JP2006266797A/en
Publication of JP2006266797A publication Critical patent/JP2006266797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for optical heterodyne interference capable of improving precision in measuring optical frequencies and phase characteristics by improving the correspondence between phase signals acquired by phase detection and the frequency of measuring light. <P>SOLUTION: This apparatus for optical heterodyne interference is provided with a Mach-Zehnder interferometer 20 having both a light branching means 4 for branching frequency-variable measuring light, incident light, into two and emitting two beams of light having different frequencies and an optical coupler 6 for emitting interference light by combining the two beams of light entering through different optical paths; a light receiver 8 for performing heterodyne detection on interference light; an RF lock-in amplifier 11 for detecting the phase of its detection signals; and a processing means 16 for processing data on phase signals from the RF lock-in amplifier 11 and determining optical frequencies and phase characteristics of objects to be measured. The processing means 16 receives regular optical frequency interval triggers c generated at prescribed regular optical frequency intervals correspondingly to variations of the frequency of the measuring light and processes data the phase signals on the basis of the regular optical frequency interval triggers c. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、干渉計から出射される干渉光の位相から例えば被測定物の位相特性を測定する光ヘテロダイン干渉装置に関し、特にマッハツェンダ型干渉計内に音響光学周波数シフタ(AOFS: Acousto-Optic Frequency Shifter )を配置して、分岐した2つの光にヘテロダイン検波のための周波数差を与えるようにした光ヘテロダイン干渉装置に関する。   The present invention relates to an optical heterodyne interferometer that measures, for example, the phase characteristics of an object to be measured from the phase of interference light emitted from an interferometer, and more particularly to an acousto-optic frequency shifter (AOFS) in a Mach-Zehnder interferometer. ) To provide a frequency difference for heterodyne detection between the two branched lights.

従来、マッハツェンダ型干渉計内にAOFSを配置して、分岐した2つの光にヘテロダイン検波のための周波数差を与えるようにした光ヘテロダイン干渉装置として、マッハツェンダ型干渉計がその光路に光ファイバを用いて構成される光ファイバ干渉計で、被測定物の位相特性から波長分散を測定するものがあった。(例えば、非特許文献1参照)   Conventionally, as an optical heterodyne interferometer in which an AOFS is arranged in a Mach-Zehnder interferometer and a frequency difference for heterodyne detection is given to two branched lights, the Mach-Zehnder interferometer uses an optical fiber in its optical path. There are some optical fiber interferometers configured to measure the chromatic dispersion from the phase characteristics of the object to be measured. (For example, see Non-Patent Document 1)

この種の光ヘテロダイン干渉装置の概略構成を図14に示す。波長可変光源1は、例えば波長可変レーザであり、制御手段13から入力される制御信号aに基づいて、所定の周波数範囲を可変した測定光を発生して光カプラ3へ出射する。例えば、196.5THz(1525.66nm)〜185.0THz(1620.5nm)の周波数(波長)範囲を1000ポイントに分割されて1secで可変される。また、光源2は、例えばレーザであり、波長可変光源1の発振周波数とは異なる固定周波数、例えば波長で1625nmの参照光を発振して光カプラ3へ出射する。光カプラ3は、上記測定光及び参照光を合波して波長多重し、その波長多重光をAOFS4bへ出射する。   A schematic configuration of this type of optical heterodyne interferometer is shown in FIG. The wavelength tunable light source 1 is, for example, a wavelength tunable laser, and generates measurement light having a predetermined frequency range variable based on a control signal a input from the control unit 13 and emits the measurement light to the optical coupler 3. For example, the frequency (wavelength) range of 196.5 THz (1525.26 nm) to 185.0 THz (1620.5 nm) is divided into 1000 points and can be varied in 1 sec. The light source 2 is a laser, for example, and oscillates a reference light having a fixed frequency different from the oscillation frequency of the wavelength variable light source 1, for example, a wavelength of 1625 nm, and emits it to the optical coupler 3. The optical coupler 3 combines the measurement light and the reference light and multiplexes them, and emits the WDM light to the AOFS 4b.

AOFS4bは、超音波発生器4aから入力される周波数fの超音波によって駆動され、光カプラ3から入射される波長多重光を2つの光に分岐するとともに、その分岐した2つの光にヘテロダイン検波のための周波数差(ビート信号の周波数となる)を与えて、一方は0次の回折に基づく第1経路の光として被測定物10を介して光カプラ6へ出射し、また他方は超音波の周波数f分だけ周波数シフトした+1次の回折に基づく第2経路の光として遅延器5へ出射する。周波数関係を具体的に示すと、入射される波長多重光の周波数をν(波長可変光源1の発振周波数)及びν(参照光の固定周波数)とすると、第1経路の光の周波数はν及びν、第2経路の光の周波数はν+f及びν+fとなる。そして、それらが光カプラ6で合波された後にヘテロダイン検波されるとビート信号の周波数fの電気信号が出力される。 AOFS4b is driven by the ultrasonic frequency f 1 input from the ultrasonic generator 4a, with branches the wavelength-multiplexed light incident from the optical coupler 3 into two light, heterodyne detection to the branched two optical Is given to the optical coupler 6 via the DUT 10 as light of the first path based on the 0th order diffraction, and the other is ultrasonic waves. The light is emitted to the delay device 5 as the light of the second path based on the + 1st order diffraction shifted by the frequency f1. Specifically, when the frequency relationship of incident wavelength multiplexed light is ν (the oscillation frequency of the wavelength tunable light source 1) and ν 0 (the fixed frequency of the reference light), the frequency of the light in the first path is ν. And ν 0 , the frequencies of light in the second path are ν + f 1 and ν 0 + f 1 . When they are combined by the optical coupler 6 and then subjected to heterodyne detection, an electrical signal having the frequency f 1 of the beat signal is output.

遅延器5は、例えば光ファイバ遅延線で構成され、マッハツェンダ型干渉計の2つのアームで光路長をできる限り合わせるために、第2経路の光を、第1経路の光が被測定物10によって遅延される時間にほぼ等しい時間分遅延させて光カプラ6へ出射する。光カプラ6は、被測定物10を介して入射される第1経路の光と遅延器5を介して入射される第2経路の光とを合波して、測定光に基づく干渉光と参照光に基づく干渉光とを光分波器7へ出射する。   The delay device 5 is constituted by, for example, an optical fiber delay line, and in order to match the optical path length as much as possible with the two arms of the Mach-Zehnder interferometer, the light of the second path is changed by the object 10 to be measured. The light is output to the optical coupler 6 with a delay approximately equal to the delay time. The optical coupler 6 multiplexes the light of the first path incident through the device under test 10 and the light of the second path incident through the delay device 5 to reference the interference light based on the measurement light and the reference light. The interference light based on the light is emitted to the optical demultiplexer 7.

なお、超音波発生器4a及びAOFS4bは光分岐手段4を構成し、そしてこの光分岐手段4、被測定物10、遅延器5及び光カプラ6はマッハツェンダ型干渉計20を構成している。したがって、光分岐手段4は、入射光を2つに分岐して別々の光路を通してから結合(干渉)させるマッハツェンダ型干渉計における、入射光を2つに分岐する手段であり、また光カプラ6は、別々の光路を通してから結合(干渉)させる手段である。マッハツェンダ型干渉計20は、自身がその光路に光ファイバを含んで構成される光ファイバ干渉計であったり、又はその光路長を合わせる遅延器5が光ファイバ遅延線であったりする場合、温度変化や振動などに起因した光ファイバの揺らぎによる位相変動を生じやすい。それを改善するために、測定光と参照光とを波長多重して同時にマッハツェンダ型干渉計20へ入射して、位相検出時に測定光における位相変動を参照光における位相変動で相殺している。   The ultrasonic generator 4a and the AOFS 4b constitute the optical branching means 4, and the optical branching means 4, the DUT 10, the delay device 5 and the optical coupler 6 constitute a Mach-Zehnder interferometer 20. Therefore, the light branching means 4 is a means for branching the incident light into two in a Mach-Zehnder interferometer for branching the incident light into two and coupling (interfering) after passing through separate optical paths. , Means for coupling (interference) through separate optical paths. When the Mach-Zehnder interferometer 20 is an optical fiber interferometer that includes an optical fiber in its optical path, or when the delay unit 5 that matches the optical path length is an optical fiber delay line, the temperature changes. It is likely to cause phase fluctuations due to fluctuations in the optical fiber due to vibration and vibration. In order to improve this, the measurement light and the reference light are wavelength-multiplexed and simultaneously incident on the Mach-Zehnder interferometer 20, and the phase fluctuation in the measurement light is canceled by the phase fluctuation in the reference light at the time of phase detection.

光分波器7は、光カプラ6から入射される測定光と参照光とが波長多重してなる波長多重光の干渉光を受けて、それぞれの周波数(波長)に分波し、測定光の干渉光を受光器(PD)8に、参照光の干渉光を受光器(PD)9に出射する。受光器8は、光分波器7から入射される測定光の干渉光を受けてヘテロダイン検波し上述の第1経路の光のうちの周波数νの光及び第2経路の光のうちの周波数ν+fの光との周波数差(f)のビート信号を第1の電気信号に変換する。また、受光器9も、同様に、光分波器7から入射される参照光の干渉光を受けてヘテロダイン検波し周波数差(f)のビート信号を第2の電気信号に変換する。同期検波器であるRFロックインアンプ11は、上記第2の電気信号を同期信号bとして受け、この同期信号bに基づいて上記第1の電気信号の位相検出を行う。処理手段12は、AD変換器12a及び演算手段12bで構成される。AD変換器12aは、制御手段13から入力される制御信号aに基づいて、RFロックインアンプ11から入力される位相信号をディジタル値に変換して演算手段12bに出力する。演算手段12bは、この位相信号のディジタル値を演算処理し、被測定物の光周波数−位相特性から波長分散を求める。制御手段13は、測定光の周波数を可変するための制御信号aを発生して波長可変光源1及び処理手段12に出力する。 The optical demultiplexer 7 receives the interference light of the wavelength multiplexed light formed by wavelength multiplexing of the measurement light and the reference light incident from the optical coupler 6, demultiplexes them to the respective frequencies (wavelengths), and The interference light is emitted to the light receiver (PD) 8 and the interference light of the reference light is emitted to the light receiver (PD) 9. The light receiver 8 receives the interference light of the measurement light incident from the optical demultiplexer 7 and performs heterodyne detection, and performs the light of the frequency ν in the light of the first path and the frequency ν + f of the light of the second path. converting the frequency difference between the first optical beat signals of (f 1) to a first electrical signal. Similarly, the light receiver 9 receives the interference light of the reference light incident from the optical demultiplexer 7 and performs heterodyne detection to convert the beat signal having the frequency difference (f 1 ) into the second electric signal. The RF lock-in amplifier 11, which is a synchronous detector, receives the second electric signal as a synchronizing signal b, and detects the phase of the first electric signal based on the synchronizing signal b. The processing unit 12 includes an AD converter 12a and a calculation unit 12b. The AD converter 12a converts the phase signal input from the RF lock-in amplifier 11 into a digital value based on the control signal a input from the control means 13, and outputs the digital value to the arithmetic means 12b. The computing means 12b computes the digital value of this phase signal and obtains chromatic dispersion from the optical frequency-phase characteristics of the device under test. The control means 13 generates a control signal a for changing the frequency of the measurement light and outputs it to the wavelength variable light source 1 and the processing means 12.

第51回応物連合会「二波長ヘテロダインファイバー干渉計による波長分散評価」28p-R-12(2004.3):小川憲介、ティ ティ レイ(DNRI)51th Japan Federation of Reciprocal Products “Evaluation of Chromatic Dispersion Using a Two-Wavelength Heterodyne Fiber Interferometer” 28p-R-12 (2004.3): Kensuke Ogawa, Titi Ray (DNRI)

一般に、このような光ヘテロダイン干渉装置において、測定光の周波数を可変し、光ヘテロダイン干渉光の位相から被測定物の光周波数−位相特性を求める場合、同期検波器から出力される各位相データと測定光の周波数との対応付け、すなわち各位相データ取得時の周波数の精度は、被測定物の位相特性の光周波数特性を正確に求める上で重要である。   In general, in such an optical heterodyne interferometer, when the frequency of the measurement light is varied and the optical frequency-phase characteristic of the device under test is obtained from the phase of the optical heterodyne interference light, each phase data output from the synchronous detector and Correspondence with the frequency of the measurement light, that is, the accuracy of the frequency at the time of acquiring each phase data is important in accurately obtaining the optical frequency characteristic of the phase characteristic of the object to be measured.

上述の従来の光ヘテロダイン干渉装置では、RFロックインアンプ11(同期検波器)から出力される各位相データ(位相信号)と測定光の周波数との対応付けは、この位相信号をAD変換器12aでディジタル値に変換するときに、測定光の周波数を可変している制御信号aに基づいて(同期させて)AD変換することによって行っている。すなわち、制御信号が可変の開始時間と終了時間を決め、その間の時間を均等分割する信号である場合、この信号を用いてAD変換することにより、等時間間隔で各位相データが取得される。あるいは、AD変換器12aの内部クロックを用い、可変の開始時間から等時間間隔でAD変換することにより等時間間隔で各位相データが取得される。これにより、測定光の可変開始の周波数と可変終了の周波数との間の周波数変化が、時間的に線形であるとして各位相データが取得される。具体的には、例えば測定光が上述のように、196.5〜185.0THzの周波数範囲を1000ポイントに分割されて1secで可変されるとすると、各位相データの取得は、可変開始の周波数196.5THzから1ms毎に11.5GHzずつ周波数が変化しているものとして可変終了の周波数185.0THzまで1001ポイント行われる。   In the above-described conventional optical heterodyne interferometer, each phase data (phase signal) output from the RF lock-in amplifier 11 (synchronous detector) is associated with the frequency of the measurement light by using this phase signal as an AD converter 12a. Is converted into a digital value by AD conversion (synchronized) based on a control signal a that varies the frequency of the measurement light. That is, when the control signal is a signal that determines a variable start time and end time and equally divides the time between them, each phase data is acquired at equal time intervals by performing AD conversion using this signal. Alternatively, each phase data is acquired at equal time intervals by performing AD conversion at equal time intervals from a variable start time using the internal clock of the AD converter 12a. Thereby, each phase data is acquired on the assumption that the frequency change between the variable start frequency and the variable end frequency of the measurement light is linear in time. Specifically, for example, as described above, if the measurement light is divided into 1000 points and the frequency range of 196.5 to 185.0 THz is variable in 1 sec, each phase data is acquired at a variable start frequency. Assuming that the frequency changes from 196.5 THz by 11.5 GHz every 1 ms, 1001 points are performed from the variable end frequency of 185.0 THz.

しかしながら、このように、測定光の可変開始からの経過時間と周波数の関係が線形であるとして、等時間間隔で各位相データを取得する方法には、次のような問題があった。すなわち、可変する周波数範囲が広く、しかも可変が速い(可変時間が短い)場合、波長可変光源における周波数可変時の非線形性が無視できなくなり、図5に示すように、等時間間隔で各位相データに対応付けた測定光の周波数と各位相データの測定に実際に用いられる周波数とが異なってしまう。この結果、被測定物の光周波数−位相特性を正確に求めることが出来ない。なお、波長計を用いて各位相データの取得毎に測定光の周波数を測定する方法も考えられるが、1ポイント当たりの周波数の測定時間が約数secと長く、上述のように1000ポイントもあるような場合には、1回の可変分のデータ取得時間が非常に長くなってしまう。また、このために周波数の可変時間が短い波長可変光源には対応できない。   However, the method for acquiring each phase data at equal time intervals on the assumption that the relationship between the elapsed time from the variable start of the measurement light and the frequency is linear has the following problems. That is, when the variable frequency range is wide and the variable is fast (variable time is short), the nonlinearity at the time of variable frequency in the wavelength tunable light source cannot be ignored. As shown in FIG. The frequency of the measurement light associated with the frequency differs from the frequency actually used for measuring each phase data. As a result, the optical frequency-phase characteristic of the object to be measured cannot be obtained accurately. Although a method of measuring the frequency of the measurement light every time the phase data is acquired using a wavelength meter is also conceivable, the frequency measurement time per point is as long as several seconds, and there are 1000 points as described above. In such a case, the data acquisition time for one variable becomes very long. For this reason, it cannot cope with a wavelength variable light source having a short frequency variable time.

本発明は、これらの課題を解決し、光周波数−位相特性の測定精度向上を図った光ヘテロダイン干渉装置を提供することを目的としている。   An object of the present invention is to solve these problems and to provide an optical heterodyne interference device that improves the measurement accuracy of optical frequency-phase characteristics.

上記課題を解決するために、本発明の請求項1の光ヘテロダイン干渉装置では、入射光である周波数可変の測定光を受けて2つに分岐するとともに、互いに周波数の異なる第1経路の光及び第2経路の光として出射する光分岐手段(4)並びに被測定物を介して入射される前記第1経路の光と前記被測定物を介さないで入射される前記第2経路の光とを合波して干渉光を出射する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、前記干渉光を受けてヘテロダイン検波し前記第1経路の光と前記第2経路の光の周波数差のビート信号を電気信号に変換する受光器(8)と、前記ビート信号の周波数とほぼ同じ周波数の同期信号に基づいて前記電気信号の位相検出を行う同期検波器(11)と、前記測定光の光周波数に対応した、該同期検波器から出力される位相信号を受け、該位相信号のデータ処理を行って前記被測定物の光周波数―位相特性を求める処理手段(16)とを備えた光ヘテロダイン干渉装置において、前記処理手段は、前記測定光の周波数の可変に対応して所定の等光周波数間隔で発生される等光周波数間隔トリガを受け、該等光周波数間隔トリガに基づいて前記位相信号のデータ処理を行っている。   In order to solve the above-described problem, in the optical heterodyne interferometer according to claim 1 of the present invention, the light having a variable frequency, which is incident light, is branched into two, and the light of the first path having different frequencies from each other and The light branching means (4) that emits light as the second path light and the light of the first path incident through the object to be measured and the light of the second path incident without passing through the object to be measured. A Mach-Zehnder interferometer (20) having optical coupling means (6) for combining and emitting interference light, and frequency of the light of the first path and the light of the second path after receiving the interference light and performing heterodyne detection. A photoreceiver (8) for converting the beat signal of the difference into an electrical signal, a synchronous detector (11) for detecting the phase of the electrical signal based on a synchronization signal having substantially the same frequency as the beat signal, and the measurement Corresponding to the optical frequency of light, In the optical heterodyne interference device comprising processing means (16) for receiving the phase signal output from the synchronous detector and processing the data of the phase signal to obtain the optical frequency-phase characteristic of the device under test. The means receives an equal optical frequency interval trigger generated at a predetermined equal optical frequency interval corresponding to the variable frequency of the measurement light, and performs data processing of the phase signal based on the equal optical frequency interval trigger. Yes.

また、本発明の請求項2の光ヘテロダイン干渉装置では、上述した請求項1の光ヘテロダイン干渉装置において、前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記光結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えている。   In the optical heterodyne interferometer according to claim 2 of the present invention, in the optical heterodyne interferometer according to claim 1 described above, the Mach-Zehnder interferometer is further provided between the optical branching unit and the optical coupling unit. The time until the light of the second path emitted from the light branching means reaches the optical coupling means, and the time until the light of the first path reaches the optical coupling means via the object to be measured. A delay device (5) is provided for delaying the light of the first path or the light of the second path so that the time is substantially equal.

また、本発明の請求項3の光ヘテロダイン干渉装置では、周波数可変の測定光と当該測定光の光周波数と異なる固定周波数の参照光とを波長多重してなる波長多重光を受けて、当該波長多重光を分岐するとともに、第1経路の光と第2経路の光とを出力する光分岐手段(4)であって、当該第1経路の光及び当該第2経路の光はそれぞれ測定光成分と参照光成分とからなり、前記第1経路の光に含まれる測定光成分の周波数と前記第2経路の光に含まれる測定光成分の周波数とが異なるとともに、前記第1経路の光に含まれる参照光成分の周波数と前記第2経路の光に含まれる参照光成分の周波数とが同じだけ異なる光分岐手段(4)並びに被測定物を経由する前記第1経路の光と前記被測定物を経由しない前記第2経路の光とを合波する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、前記測定光成分と前記参照光成分とを周波数分波する光分波器(7)と、該光分波器で分波された、前記第1経路の光の測定光成分と前記第2経路の光の測定光成分とからなる第1の干渉光を第1の電気信号に変換する第1の受光器(8)と、前記光分波器で分波された、前記第1経路の光の参照光成分と前記第2経路の光の参照光成分とからなる第2の干渉光を第2の電気信号に変換する第2の受光器(9)と、前記第2の電気信号を同期信号として前記第1の電気信号の位相検出を行う同期検波器(11)と、前記測定光の光周波数に対応した、前記同期検波器から出力される位相信号をデータ処理して、前記被測定物の光周波数―位相特性を求める処理手段(16)とを備えた光ヘテロダイン干渉装置において、前記処理手段は、前記測定光の周波数の可変に対応して所定の等光周波数間隔で発生される等光周波数間隔トリガを受け、該等光周波数間隔トリガに基づいて前記位相信号のデータ処理を行っている。   In the optical heterodyne interferometer according to claim 3 of the present invention, the wavelength-multiplexed light obtained by wavelength-multiplexing the frequency-variable measurement light and the reference light having a fixed frequency different from the optical frequency of the measurement light, An optical branching means (4) for branching the multiplexed light and outputting the light of the first path and the light of the second path, wherein the light of the first path and the light of the second path are measured light components, respectively. And the reference light component, the frequency of the measurement light component included in the light of the first path is different from the frequency of the measurement light component included in the light of the second path, and included in the light of the first path The light branching means (4) in which the frequency of the reference light component and the frequency of the reference light component included in the light of the second path are different from each other, and the light of the first path passing through the device under test and the device under test Light that combines the light of the second path that does not pass through A Mach-Zehnder interferometer (20) having a coupling means (6), an optical demultiplexer (7) for frequency demultiplexing the measurement light component and the reference light component, and demultiplexed by the optical demultiplexer A first light receiver (8) for converting a first interference light composed of a measurement light component of the light of the first path and a measurement light component of the light of the second path into a first electric signal; A second interfering light that is demultiplexed by the optical demultiplexer and composed of the reference light component of the light of the first path and the reference light component of the light of the second path is converted into a second electric signal. Receiver (9), a synchronous detector (11) for detecting the phase of the first electric signal using the second electric signal as a synchronous signal, and the synchronous detection corresponding to the optical frequency of the measurement light And processing means (16) for processing the phase signal output from the measuring device to obtain the optical frequency-phase characteristic of the object to be measured. In the optical heterodyne interferometer, the processing means receives an equal optical frequency interval trigger generated at a predetermined equal optical frequency interval corresponding to a change in the frequency of the measurement light, and based on the equal optical frequency interval trigger. Data processing of the phase signal is performed.

また、本発明の請求項4の光ヘテロダイン干渉装置では、上述した請求項3の光ヘテロダイン干渉装置において、前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記光結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えている。   Moreover, in the optical heterodyne interference device according to claim 4 of the present invention, in the optical heterodyne interference device according to claim 3 described above, the Mach-Zehnder interferometer is further provided between the optical branching unit and the optical coupling unit. The time until the light of the second path emitted from the light branching means reaches the optical coupling means, and the time until the light of the first path reaches the optical coupling means via the object to be measured. A delay device (5) is provided for delaying the light of the first path or the light of the second path so that the time is substantially equal.

また、本発明の請求項5の光ヘテロダイン干渉装置では、上述した請求項3又は4の光ヘテロダイン干渉装置において、前記マッハツェンダ型干渉計は、その光路中に光ファイバを含んで構成される光ファイバ干渉計であるようにしている。   The optical heterodyne interferometer according to claim 5 of the present invention is the optical heterodyne interferometer according to claim 3 or 4, wherein the Mach-Zehnder interferometer includes an optical fiber in its optical path. It is an interferometer.

また、本発明の請求項6の光ヘテロダイン干渉装置では、上述した請求項1又は2の光ヘテロダイン干渉装置において、更に、所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、前記波長可変光源から入射される前記測定光を2つに分岐し、一方を前記光分岐手段に前記入射光として出射する第1の光カプラ(14)と、該第1の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)とを備えている。   In the optical heterodyne interference device according to claim 6 of the present invention, in the optical heterodyne interference device according to claim 1 or 2, the wavelength tunable light source that sequentially oscillates the frequency-variable measurement light within a predetermined frequency range ( 1), a control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source, and the measurement light incident from the wavelength tunable light source is branched into two, Receiving the first optical coupler (14) that emits the incident light to the optical branching means as the incident light and the other measurement light emitted from the first optical coupler to cope with the variable frequency of the measurement light And an equal optical frequency interval trigger generating means (15) for generating an equal optical frequency interval trigger at a predetermined equal optical frequency interval and outputting it to the processing means.

また、本発明の請求項7の光ヘテロダイン干渉装置では、上述した請求項3〜5のいずれかの光ヘテロダイン干渉装置において、更に、所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、前記測定光の周波数とは異なる固定周波数の前記参照光を発振させる光源(2)と、前記波長可変光源から入射される前記測定光を2つに分岐して出射する第1の光カプラ(14)と、該第1の光カプラから出射される一方の前記測定光と前記光源から出射される前記参照光とを合波することによって波長多重し、得られた波長多重光を前記光分岐手段に前記入射光として出射する第2の光カプラ(3)と、前記第1の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)とを備えている。   Further, in the optical heterodyne interference device according to claim 7 of the present invention, in the optical heterodyne interference device according to any one of claims 3 to 5 described above, a wavelength for sequentially oscillating the measurement light whose frequency is variable within a predetermined frequency range. A variable light source (1), a control means (13) for outputting a control signal for changing the frequency of the measurement light from the wavelength variable light source, and the reference light having a fixed frequency different from the frequency of the measurement light is oscillated. A light source (2) to be emitted, a first optical coupler (14) that divides and emits the measurement light incident from the wavelength tunable light source, and one of the ones that is emitted from the first optical coupler. A second optical coupler (3) for wavelength-multiplexing the measurement light and the reference light emitted from the light source by combining them and emitting the obtained wavelength-multiplexed light as the incident light to the optical branching means; , The first optical power An equal optical frequency interval trigger generating means (15) which receives the other measurement light emitted from the laser and generates a predetermined equal optical frequency interval trigger corresponding to the change in the frequency of the measurement light and outputs it to the processing means. ).

また、本発明の請求項8の光ヘテロダイン干渉装置では、上述した請求項1又は2の光ヘテロダイン干渉装置において、前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガに基づいて前記位相信号のデータ処理を行っている。   Also, in the optical heterodyne interference device according to claim 8 of the present invention, in the optical heterodyne interference device according to claim 1 or 2, the processing means has a predetermined reference optical frequency corresponding to the variable frequency of the measurement light. In response to the reference optical frequency trigger generated in step (1), data processing of the phase signal is performed based on the reference optical frequency trigger.

また、本発明の請求項9の光ヘテロダイン干渉装置では、上述した請求項3〜5のいずれかの光ヘテロダイン干渉装置において、前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガに基づいて前記位相信号のデータ処理を行っている。   Moreover, in the optical heterodyne interference device according to claim 9 of the present invention, in the optical heterodyne interference device according to any one of claims 3 to 5, the processing means has a predetermined value corresponding to the variable frequency of the measurement light. In response to a reference optical frequency trigger generated at the reference optical frequency, data processing of the phase signal is performed based on the reference optical frequency trigger.

また、本発明の請求項10の光ヘテロダイン干渉装置では、上述した請求項1又は2の光ヘテロダイン干渉装置において、前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガと前記等光周波数間隔トリガとの相対的時間関係から当該等光周波数間隔トリガの絶対光周波数を補正している。   Also, in the optical heterodyne interference device according to claim 10 of the present invention, in the optical heterodyne interference device according to claim 1 or 2, the processing means has a predetermined reference optical frequency corresponding to the variable frequency of the measurement light. The absolute optical frequency of the equal optical frequency interval trigger is corrected from the relative time relationship between the reference optical frequency trigger and the equal optical frequency interval trigger.

また、本発明の請求項11の光ヘテロダイン干渉装置では、上述した請求項3〜5のいずれかの光ヘテロダイン干渉装置において、前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガと前記等光周波数間隔トリガとの相対的時間関係から当該等光周波数間隔トリガの絶対光周波数を補正している。   Further, in the optical heterodyne interference device according to claim 11 of the present invention, in the optical heterodyne interference device according to any one of claims 3 to 5, the processing means has a predetermined value corresponding to the variable frequency of the measurement light. In response to the reference optical frequency trigger generated at the reference optical frequency, the absolute optical frequency of the equal optical frequency interval trigger is corrected from the relative time relationship between the reference optical frequency trigger and the equal optical frequency interval trigger.

また、本発明の請求項12の光ヘテロダイン干渉装置では、上述した請求項8又は10の光ヘテロダイン干渉装置において、更に、所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、前記波長可変光源から入射される前記測定光を2つに分岐し、一方を前記光分岐手段に出射する第1の光カプラ(14)と、該第1の光カプラから入射される他方の前記の測定光を受けて2つに分岐して出射する第3の光カプラ(17)と、該第3の光カプラから出射される一方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)と、前記第3の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の基準光周波数の基準周波数トリガを発生し前記処理手段に出力する基準光周波数トリガ発生手段(18)とを備えている。   The optical heterodyne interference device according to claim 12 of the present invention is the same as the above-described optical heterodyne interference device according to claim 8 or 10, but further includes a wavelength tunable light source that sequentially oscillates frequency-variable measurement light within a predetermined frequency range. 1), a control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source, and the measurement light incident from the wavelength tunable light source is branched into two, A first optical coupler (14) that emits light to the optical branching means, and a third optical coupler that receives the other measurement light incident from the first optical coupler and branches and emits it into two (17) and receiving one of the measurement lights emitted from the third optical coupler, and generating an equal optical frequency interval trigger of a predetermined equal optical frequency interval corresponding to the variable frequency of the measurement light Isometric light output to the processing means A number interval trigger generating means (15) and the other measurement light emitted from the third optical coupler are received, and a reference frequency trigger of a predetermined reference optical frequency is generated corresponding to the variable frequency of the measurement light. Reference optical frequency trigger generation means (18) for generating and outputting to the processing means.

また、本発明の請求項13の光ヘテロダイン干渉装置では、上述した請求項9又は11の光ヘテロダイン干渉装置において、更に、所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、前記測定光の周波数とは異なる固定周波数の前記参照光を発振させる光源(2)と、前記波長可変光源から入射される前記測定光を2つに分岐して出射する第1の光カプラ(14)と、該第1の光カプラから出射される一方の前記測定光と前記光源から出射される前記参照光とを合波することによって波長多重し、得られた前記波長多重光を前記光分岐手段に前記入射光として出射する第2の光カプラ(3)と、前記第1の光カプラから出射される他方の前記測定光を受けて、2つに分岐して出射する第3の光カプラ(17)と、該第3の光カプラから出射される一方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)と、前記第3の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の基準光周波数の基準周波数トリガを発生し前記処理手段に出力する基準光周波数トリガ発生手段(18)とを備えている。   The optical heterodyne interference device according to claim 13 of the present invention is the same as the optical heterodyne interference device according to claim 9 or 11, further comprising a wavelength variable light source that sequentially oscillates frequency-variable measurement light within a predetermined frequency range. 1), a control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source, and a light source for oscillating the reference light having a fixed frequency different from the frequency of the measurement light ( 2), a first optical coupler (14) that splits and emits the measurement light incident from the wavelength tunable light source, and one of the measurement lights emitted from the first optical coupler; A second optical coupler (3) for wavelength-multiplexing the reference light emitted from the light source by multiplexing and emitting the obtained wavelength-multiplexed light as the incident light to the optical branching unit; First light A third optical coupler (17) that receives the other measurement light emitted from the optical fiber and diverges into two, and receives the one measurement light emitted from the third optical coupler. And an equal optical frequency interval trigger generating means (15) for generating a predetermined equal optical frequency interval trigger corresponding to the change in the frequency of the measurement light and outputting it to the processing means, and emitted from the third optical coupler. Reference light frequency trigger generating means (18) that receives the other measurement light, generates a reference frequency trigger of a predetermined reference light frequency corresponding to the change in the frequency of the measurement light, and outputs the reference frequency trigger to the processing means. ing.

また、本発明の請求項14の光ヘテロダイン干渉装置では、上述した請求項6、7、12及び13のいずれかの光ヘテロダイン干渉装置において、前記等光周波数間隔トリガ発生手段は、前記第1の光カプラ又は前記第3の光カプラから入射される前記測定光の周波数の可変に対応して所定の等光周波数間隔でその出力光強度が周期的に変化するトリガ用干渉光を発生する干渉光発生手段(15a)と、該干渉光発生手段から入射される前記トリガ用干渉光を受光して前記周期的に変化する第3の電気信号に変換する第3の受光器(15b)と、該第3の受光器から入力される前記周期的に変化する前記第3の電気信号のそれぞれの極大電圧・極小電圧を検出するとともに、該極大あるいは極小電圧、又はその両方を検出する毎に第1のパルスを発生し、該第1のパルスを前記等光周波数間隔トリガとして出力する第1のパルス発生手段(15c)とを備えている。   Further, in the optical heterodyne interference device according to claim 14 of the present invention, in the optical heterodyne interference device according to any of claims 6, 7, 12 and 13, the equal optical frequency interval trigger generating means includes the first optical frequency interval trigger generating means. Interfering light that generates triggering interference light whose output light intensity periodically changes at predetermined equal optical frequency intervals in response to variable frequency of the measuring light incident from the optical coupler or the third optical coupler A generating means (15a), a third light receiver (15b) for receiving the trigger interference light incident from the interference light generating means and converting it into the periodically changing third electric signal; Each time the local maximum voltage / minimum voltage of the periodically changing third electric signal input from the third light receiver is detected, and each time the local maximum voltage, the minimum voltage, or both are detected, the first is detected. Pal It was generated, and a first pulse generating means and (15c) for outputting a first pulse as said equal optical frequency interval trigger.

また、本発明の請求項15の光ヘテロダイン干渉装置では、上述した請求項6、7、12及び13のいずれかの光ヘテロダイン干渉装置において、前記等光周波数間隔トリガ発生手段は、前記第1光カプラ又は前記第3の光カプラから入射される前記測定光の周波数の可変に対応して所定の等光周波数間隔でその出力光強度が相対的にそれぞれ所定の位相差で周期的に変化する複数のトリガ用干渉光を発生する干渉光発生手段と、該干渉光発生手段から入射される前記複数のトリガ用干渉光をそれぞれ受光して前記周期的に変化する複数の電気信号に変換する複数の受光器と、該複数の受光器から入力される、前記所定の位相差で周期的に変化する複数の電気信号を用いて、位相分割された第3のパルスを発生し、該第3のパルスを前記等光周波数間隔トリガとして出力する第3のパルス発生手段を備えている。   Also, in the optical heterodyne interference device according to claim 15 of the present invention, in the optical heterodyne interference device according to any one of claims 6, 7, 12 and 13, the equal optical frequency interval trigger generating means is the first light. A plurality of output light intensities relatively periodically with a predetermined phase difference at predetermined equal optical frequency intervals corresponding to a change in frequency of the measurement light incident from a coupler or the third optical coupler. Interference light generating means for generating the trigger interference light, and a plurality of trigger interference lights incident from the interference light generating means, respectively, and converting the plurality of trigger interference lights into the periodically changing electrical signals A third pulse that is phase-divided is generated by using a light receiver and a plurality of electrical signals that are input from the plurality of light receivers and periodically change with the predetermined phase difference, and the third pulse The isolight And a third pulse generating means for outputting a wave number interval trigger.

また、本発明の請求項16の光ヘテロダイン干渉装置では、上述した請求項12又は13の光ヘテロダイン干渉装置において、前記基準光周波数トリガ発生手段は、前記第3の光カプラから入射される前記測定光の周波数の可変に対応して所定の基準光周波数でその出力光強度が極大あるいは極小となる周波数基準光を発生する周波数基準光発生手段(18a)と、該周波数基準光発生手段から入射される前記周波数基準光を受光して第4の電気信号に変換する第4の受光器(18b)と、該第4の受光器から入力される前記第4の電気信号の極大又は極小電圧を検出するとともに、該極大又は極小電圧を検出する毎に第2のパルスを前記基準光周波数トリガとして出力する第2のパルス発生手段(18c)とを備えている。   In the optical heterodyne interference device according to claim 16 of the present invention, in the optical heterodyne interference device according to claim 12 or 13, the reference optical frequency trigger generation means is configured to receive the measurement incident from the third optical coupler. Frequency reference light generating means (18a) for generating frequency reference light whose output light intensity is maximized or minimized at a predetermined reference light frequency corresponding to the variation of the light frequency, and incident from the frequency reference light generating means A fourth light receiver (18b) that receives the frequency reference light and converts it into a fourth electric signal, and detects a maximum or minimum voltage of the fourth electric signal input from the fourth light receiver; And a second pulse generation means (18c) for outputting a second pulse as the reference optical frequency trigger each time the maximum or minimum voltage is detected.

上記課題を解決するために、本発明の請求項17の光ヘテロダイン干渉装置では、入射光である周波数可変の測定光を受けて2つに分岐するとともに、互いに周波数の異なる第1経路の光及び第2経路の光として出射する光分岐手段(4)並びに被測定物を介して入射される前記第1経路の光と前記被測定物を介さないで入射される前記第2経路の光とを合波して干渉光を出射する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、前記干渉光を受けてヘテロダイン検波し前記第1経路の光と前記第2経路の光の周波数差のビート信号を電気信号に変換する受光器(8)と、前記ビート信号の周波数とほぼ同じ周波数の同期信号に基づいて前記電気信号の位相検出を行う同期検波器(11)と、前記測定光の光周波数に対応した、該同期検波器から出力される位相信号を受け、該位相信号のデータ処理を行って前記被測定物の光周波数―位相特性を求める処理手段(19)とを備えた光ヘテロダイン干渉装置において、前記処理手段が、可変開始から終了までの可変経過時間と可変されて入射される前記測定光の周波数との関係を保持する光周波数テーブル(19c)を有している。   In order to solve the above-mentioned problem, in the optical heterodyne interference device according to claim 17 of the present invention, receiving the frequency-variable measurement light as the incident light and branching it into two, and the light of the first path having different frequencies and The light branching means (4) that emits light as the second path light and the light of the first path incident through the object to be measured and the light of the second path incident without passing through the object to be measured. A Mach-Zehnder interferometer (20) having optical coupling means (6) for combining and emitting interference light, and frequency of the light of the first path and the light of the second path after receiving the interference light and performing heterodyne detection. A photoreceiver (8) for converting the beat signal of the difference into an electrical signal, a synchronous detector (11) for detecting the phase of the electrical signal based on a synchronization signal having substantially the same frequency as the beat signal, and the measurement Corresponding to the optical frequency of light An optical heterodyne interferometer comprising processing means (19) for receiving a phase signal output from the synchronous detector and performing data processing on the phase signal to obtain an optical frequency-phase characteristic of the device under test. The processing means has an optical frequency table (19c) that holds the relationship between the variable elapsed time from the variable start to the end and the frequency of the measurement light incident in a variable manner.

また、本発明の請求項18の光ヘテロダイン干渉装置では、上述した請求項17の光ヘテロダイン干渉装置において、前記光周波数テーブルは、前記可変経過時間と前記測定光の周波数との関係を等光周波数間隔で保持している。   Further, in the optical heterodyne interference device according to claim 18 of the present invention, in the optical heterodyne interference device according to claim 17 described above, the optical frequency table indicates a relationship between the variable elapsed time and the frequency of the measurement light at an equal optical frequency. Hold at intervals.

また、本発明の請求項19の光ヘテロダイン干渉装置では、上述した請求項17又は18の光ヘテロダイン干渉装置において、前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えている。   The optical heterodyne interferometer according to claim 19 of the present invention is the optical heterodyne interferometer according to claim 17 or 18, wherein the Mach-Zehnder interferometer is further provided between the optical branching means and the optical coupling means. Furthermore, the time until the light of the second path emitted from the light branching means reaches the optical coupling means, and the time until the light of the first path reaches the coupling means via the object to be measured. And a delay device (5) for delaying the light of the first path or the light of the second path so that the time is substantially equal.

また、本発明の請求項20の光ヘテロダイン干渉装置では、周波数可変の測定光と当該測定光の光周波数と異なる固定周波数の参照光とを波長多重してなる波長多重光を受けて、当該波長多重光を分岐するとともに、第1経路の光と第2経路の光とを出力する光分岐手段(4)であって、当該第1経路の光及び当該第2経路の光はそれぞれ測定光成分と参照光成分とからなり、前記第1経路の光に含まれる測定光成分の周波数と前記第2経路の光に含まれる測定光成分の周波数とが異なるとともに、前記第1経路の光に含まれる参照光成分の周波数と前記第2経路の光に含まれる参照光成分の周波数とが同じだけ異なる光分岐手段(4)並びに被測定物を経由する前記第1経路の光と前記被測定物を経由しない前記第2経路の光とを合波する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、前記測定光成分と前記参照光成分とを周波数分波する光分波器(7)と、該光分波器で分波された、前記第1経路の光の測定光成分と前記第2経路の光の測定光成分とからなる第1の干渉光を第1の電気信号に変換する第1の受光器(8)と、前記光分波器で分波された、前記第1経路の光の参照光成分と前記第2経路の光の参照光成分とからなる第2の干渉光を第2の電気信号に変換する第2の受光器(9)と、前記第2の電気信号を同期信号として前記第1の電気信号の位相検出を行う同期検波器(11)と、前記測定光の光周波数に対応した、該同期検波器から出力される位相信号をデータ処理して、前記被測定物の光周波数―位相特性を求める処理手段(19)とを備えた光ヘテロダイン干渉装置において、前記処理手段が、可変開始から終了までの可変経過時間と可変されて入射される前記測定光の周波数との関係を保持する光周波数テーブル(19c)を有している。   In the optical heterodyne interferometer according to claim 20 of the present invention, the wavelength-multiplexed light obtained by wavelength-multiplexing the frequency-variable measurement light and the reference light having a fixed frequency different from the optical frequency of the measurement light, An optical branching means (4) for branching the multiplexed light and outputting the light of the first path and the light of the second path, wherein the light of the first path and the light of the second path are measured light components, respectively. And the reference light component, the frequency of the measurement light component included in the light of the first path is different from the frequency of the measurement light component included in the light of the second path, and included in the light of the first path The light branching means (4) in which the frequency of the reference light component and the frequency of the reference light component included in the light of the second path are different from each other, and the light of the first path passing through the device under test and the device under test Combines the light of the second path that does not pass through A Mach-Zehnder interferometer (20) having a coupling means (6), an optical demultiplexer (7) for demultiplexing the measurement light component and the reference light component, and demultiplexed by the optical demultiplexer A first light receiver (8) for converting a first interference light composed of a measurement light component of the light of the first path and a measurement light component of the light of the second path into a first electric signal; A second interfering light that is demultiplexed by the optical demultiplexer and composed of the reference light component of the light of the first path and the reference light component of the light of the second path is converted into a second electric signal. Receiver (9), a synchronous detector (11) for detecting the phase of the first electric signal using the second electric signal as a synchronous signal, and the synchronous detection corresponding to the optical frequency of the measurement light And processing means (19) for processing the phase signal output from the measuring device to obtain the optical frequency-phase characteristic of the object to be measured. In the optical heterodyne interferometer, the processing means has an optical frequency table (19c) that holds the relationship between the variable elapsed time from the variable start to the end and the frequency of the measurement light that is variably entered. .

また、本発明の請求項21の光ヘテロダイン干渉装置では、上述した請求項20の光ヘテロダイン干渉装置において、前記光周波数テーブルは、前記可変経過時間と前記光周波数との関係を等光周波数間隔で保持している。   Further, in the optical heterodyne interference device according to claim 21 of the present invention, in the optical heterodyne interference device according to claim 20, the optical frequency table indicates the relationship between the variable elapsed time and the optical frequency at equal optical frequency intervals. keeping.

また、本発明の請求項22の光ヘテロダイン干渉装置では、上述した請求項20又は21の光ヘテロダイン干渉装置において、前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記光結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えている。   The optical heterodyne interferometer according to claim 22 of the present invention is the optical heterodyne interferometer according to claim 20 or 21, wherein the Mach-Zehnder interferometer is further provided between the optical branching means and the optical coupling means. Furthermore, the time until the light of the second path emitted from the light branching means reaches the optical coupling means, and the light of the first path reaches the optical coupling means via the object to be measured. A delay device (5) for delaying the light of the first path or the light of the second path so that the time until the time becomes approximately equal.

また、本発明の請求項23の光ヘテロダイン干渉装置では、上述した請求項20〜22のいずれかの光ヘテロダイン干渉装置において、前記マッハツェンダ型干渉計は、その光路中に光ファイバを含んで構成される光ファイバ干渉計であるようにしている。   The optical heterodyne interferometer according to claim 23 of the present invention is the optical heterodyne interferometer according to any of claims 20 to 22, wherein the Mach-Zehnder interferometer includes an optical fiber in its optical path. An optical fiber interferometer.

また、本発明の請求項24の光ヘテロダイン干渉装置では、上述した請求項17〜19のいずれかの光ヘテロダイン干渉装置において、更に、所定の周波数範囲内で周波数可変の測定光を順次発振させ、前記光分岐手段へ前記入力光として出射する波長可変光源(1)と、該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)とを備えている。   Further, in the optical heterodyne interference device according to claim 24 of the present invention, in the optical heterodyne interference device according to any one of claims 17 to 19 described above, the measurement light variable in frequency within a predetermined frequency range is sequentially oscillated, A wavelength tunable light source (1) that is emitted as the input light to the light branching means, and a control means (13) that outputs a control signal for changing the frequency of the measurement light from the wavelength tunable light source.

また、本発明の請求項25の光ヘテロダイン干渉装置では、上述した請求項20〜23のいずれかの光ヘテロダイン干渉装置において、更に、所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、前記測定光の周波数とは異なる固定周波数の前記参照光を発振させる光源(2)と、前記波長可変光源から入射される前記測定光と前記光源から入射される前記参照光とを合波することによって波長多重し、得られた前記波長多重光を前記光分岐手段へ前記入射光として出射する第2の光カプラ(3)とを備えている。   In the optical heterodyne interferometer according to claim 25 of the present invention, in the optical heterodyne interferometer according to any one of claims 20 to 23 described above, a wavelength for sequentially oscillating the measurement light whose frequency is variable within a predetermined frequency range. A variable light source (1), a control means (13) for outputting a control signal for changing the frequency of the measurement light from the wavelength variable light source, and the reference light having a fixed frequency different from the frequency of the measurement light is oscillated. The light source (2) to be multiplexed, the measurement light incident from the wavelength tunable light source and the reference light incident from the light source are multiplexed to multiplex the wavelength-multiplexed light obtained by the optical branching And a second optical coupler (3) that emits the incident light to the means.

本発明の請求項1の光ヘテロダイン干渉装置では、測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガを発生し、この等光周波数間隔トリガに基づいて位相信号のデータ処理を行うようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが精度良くでき、光周波数−位相特性の測定精度向上が図れる。   In the optical heterodyne interferometer according to the first aspect of the present invention, an equal optical frequency interval trigger having a predetermined equal optical frequency interval is generated in response to a change in the frequency of the measurement light, and a phase signal is generated based on the equal optical frequency interval trigger. Therefore, the detected phase signal (each phase data) can be accurately associated with the frequency of the measurement light, and the measurement accuracy of the optical frequency-phase characteristic can be improved.

本発明の請求項2及び4の光ヘテロダイン干渉装置では、遅延器によってマッハツェンダ型干渉計の2つの光路長を合わせるようにしたので、位相測定精度を上げることができる。   In the optical heterodyne interferometers according to claims 2 and 4 of the present invention, the two optical path lengths of the Mach-Zehnder interferometer are matched by the delay unit, so that the phase measurement accuracy can be improved.

本発明の請求項3の光ヘテロダイン干渉装置では、測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガを発生し、この等光周波数間隔トリガに基づいて位相信号のデータ処理を行うようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが精度良くでき、光周波数−位相特性の測定精度向上が図れる。また、測定光と参照光とを波長多重して同時にマッハツェンダ型干渉計へ入射して、干渉計の不安定性により生じる測定光における位相変動を参照光における位相変動で相殺するようにしたので、例えマッハツェンダ型干渉計がその光路に光ファイバを含んで構成される光ファイバ干渉計であったとしても、その光ファイバの温度変化や振動などに起因して生じる揺らぎによる位相変動を改善することができる。   In the optical heterodyne interferometer according to the third aspect of the present invention, an equal optical frequency interval trigger having a predetermined equal optical frequency interval is generated in response to a change in the frequency of the measurement light, and a phase signal is generated based on the equal optical frequency interval trigger. Therefore, the detected phase signal (each phase data) can be accurately associated with the frequency of the measurement light, and the measurement accuracy of the optical frequency-phase characteristic can be improved. In addition, the measurement light and the reference light are wavelength-multiplexed and simultaneously incident on the Mach-Zehnder interferometer so that the phase fluctuation in the measurement light caused by the instability of the interferometer is canceled by the phase fluctuation in the reference light. Even if the Mach-Zehnder interferometer is an optical fiber interferometer configured to include an optical fiber in its optical path, it is possible to improve the phase fluctuation due to fluctuations caused by temperature change and vibration of the optical fiber. .

本発明の請求項5の光ヘテロダイン干渉装置では、マッハツェンダ型干渉計をその光路中に光ファイバを含んで構成される光ファイバ干渉計としたので、光路が空間で構成される干渉計を用いる場合に比べ装置の小型化、経済化が可能となる。   In the optical heterodyne interferometer according to claim 5 of the present invention, since the Mach-Zehnder interferometer is an optical fiber interferometer that includes an optical fiber in its optical path, an interferometer in which the optical path is a space is used. Compared to this, the apparatus can be made smaller and more economical.

本発明の請求項8及び9の光ヘテロダイン干渉装置では、測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受けて、この基準光周波数トリガに基づいて位相信号のデータ処理を行うようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが絶対光周波数に対して精度良くでき、光周波数−位相特性の測定精度向上が図れる。   In the optical heterodyne interference apparatus according to claims 8 and 9 of the present invention, a reference optical frequency trigger generated at a predetermined reference optical frequency corresponding to a change in the frequency of the measurement light is received, and based on the reference optical frequency trigger. Since phase signal data processing is performed, the detected phase signal (each phase data) and the frequency of the measurement light can be accurately associated with the absolute optical frequency, and the measurement accuracy of the optical frequency-phase characteristic is improved. Can be planned.

本発明の請求項10及び11の光ヘテロダイン干渉装置では、測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受けて、この基準光周波数トリガと等光周波数間隔トリガとの相対的時間関係から等光周波数間隔トリガの絶対光周波数を補正するようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが絶対光周波数に対して精度良くでき、光周波数−位相特性の測定精度向上が図れる。   In the optical heterodyne interference apparatus according to claims 10 and 11 of the present invention, a reference optical frequency trigger generated at a predetermined reference optical frequency corresponding to a change in the frequency of the measurement light is received, Since the absolute optical frequency of the equal optical frequency interval trigger is corrected from the relative time relationship with the frequency interval trigger, the correspondence between the detected phase signal (each phase data) and the frequency of the measurement light is the absolute optical frequency. On the other hand, the accuracy can be improved and the measurement accuracy of the optical frequency-phase characteristic can be improved.

本発明の請求項17及び18の光ヘテロダイン干渉装置では、制御信号によって指定される可変の開始から終了までの可変経過時間と可変されて入射される測定光の周波数との関係を保持する光周波数テーブルを有し、この光周波数テーブルに基づいて位相信号のデータ処理を行うようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが精度良くでき、光周波数−位相特性の測定精度向上が図れる。   In the optical heterodyne interference apparatus according to claims 17 and 18 of the present invention, the optical frequency that maintains the relationship between the variable elapsed time from the start to the end of the variable specified by the control signal and the frequency of the measurement light that is variably entered. Since the phase signal data processing is performed based on the optical frequency table, the correlation between the detected phase signal (each phase data) and the frequency of the measurement light can be made with high accuracy. The measurement accuracy of the phase characteristics can be improved.

本発明の請求項19及び22の光ヘテロダイン干渉装置では、遅延器によってマッハツェンダ型干渉計の2つの光路長を合わせるようにしたので、位相測定精度を上げることができる。   In the optical heterodyne interferometers according to claims 19 and 22 of the present invention, the two optical path lengths of the Mach-Zehnder interferometer are matched by the delay unit, so that the phase measurement accuracy can be increased.

本発明の請求項20及び21の光ヘテロダイン干渉装置では、制御信号によって指定される可変の開始から終了までの可変経過時間と可変されて入射される測定光の周波数との関係を保持する光周波数テーブルを有し、この光周波数テーブルに基づいて位相信号のデータ処理を行うようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが精度良くでき、光周波数−位相特性の測定精度向上が図れる。また、測定光と参照光とを波長多重して同時にマッハツェンダ型干渉計へ入射して、干渉計の不安定性により生じる測定光における位相変動を参照光における位相変動で相殺するようにしたので、例えマッハツェンダ型干渉計がその光路に光ファイバを含んで構成される光ファイバ干渉計であったとしても、その光ファイバの温度変化や振動などに起因して生じる揺らぎによる位相変動を改善することができる。   In the optical heterodyne interferometers according to claims 20 and 21 of the present invention, the optical frequency that maintains the relationship between the variable elapsed time from the start to the end of the variable specified by the control signal and the frequency of the measurement light that is variably entered. Since the phase signal data processing is performed based on the optical frequency table, the correlation between the detected phase signal (each phase data) and the frequency of the measurement light can be made with high accuracy. The measurement accuracy of the phase characteristics can be improved. In addition, the measurement light and the reference light are wavelength-multiplexed and simultaneously incident on the Mach-Zehnder interferometer so that the phase fluctuation in the measurement light caused by the instability of the interferometer is canceled by the phase fluctuation in the reference light. Even if the Mach-Zehnder interferometer is an optical fiber interferometer configured to include an optical fiber in its optical path, it is possible to improve the phase fluctuation due to fluctuations caused by temperature change and vibration of the optical fiber. .

本発明の請求項23の光ヘテロダイン干渉装置では、マッハツェンダ型干渉計をその光路中に光ファイバを含んで構成される光ファイバ干渉計としたので、光路が空間で構成される干渉計を用いる場合に比べ装置の小型化、経済化が可能となる。   In the optical heterodyne interferometer according to claim 23 of the present invention, since the Mach-Zehnder interferometer is an optical fiber interferometer including an optical fiber in its optical path, an interferometer in which the optical path is a space is used. Compared to this, the apparatus can be made smaller and more economical.

以下に本発明の実施形態を記載する。   Embodiments of the present invention will be described below.

[第1実施形態]
本発明の第1実施形態の光ヘテロダイン干渉装置の構成を図1に示す。従来の光ヘテロダイン干渉装置と同一要素には同一符号を付し詳細説明は省略する。波長可変光源1は、例えば波長可変レーザであり、制御手段13から入力される制御信号aに基づいて、所定の光周波数範囲を可変した測定光(周波数ν)を発生して光カプラ14へ出射する。例えば、196.5THz(1525.66nm)〜185.0THz(1620.5nm)の周波数(波長)範囲を1000ポイントに分割されて1secで可変される。光カプラ14は、波長可変光源1からの測定光を2つに分岐して、一方は光カプラ3へ、他方は光カプラ17へ出射する。光カプラ17は、光カプラ14からの測定光を2つに分岐して、一方は等光周波数間隔トリガ発生手段15(後述する)へ、他方は基準光周波数トリガ発生手段18(後述する)へそれぞれ出射する。また、光源2は、例えばレーザであり、波長可変光源1の発振周波数とは異なる固定周波数、例えば波長で1625nmの参照光(周波数ν)を発振して光カプラ3へ出射する。光カプラ3は、上記測定光及び参照光を合波して波長多重し、その波長多重光をAOFS4bへ出射する。
[First Embodiment]
The configuration of the optical heterodyne interference apparatus according to the first embodiment of the present invention is shown in FIG. The same elements as those of the conventional optical heterodyne interference device are denoted by the same reference numerals, and detailed description thereof is omitted. The wavelength tunable light source 1 is, for example, a wavelength tunable laser, and generates measurement light (frequency ν) having a predetermined optical frequency range variable based on a control signal a input from the control unit 13 and emits it to the optical coupler 14. To do. For example, the frequency (wavelength) range of 196.5 THz (1525.26 nm) to 185.0 THz (1620.5 nm) is divided into 1000 points and can be varied in 1 sec. The optical coupler 14 divides the measurement light from the wavelength tunable light source 1 into two and outputs one to the optical coupler 3 and the other to the optical coupler 17. The optical coupler 17 branches the measurement light from the optical coupler 14 into two, one to the equal optical frequency interval trigger generating means 15 (described later) and the other to the reference optical frequency trigger generating means 18 (described later). Each is emitted. The light source 2 is, for example, a laser, and oscillates a fixed frequency different from the oscillation frequency of the wavelength tunable light source 1, for example, a reference light (frequency ν 0 ) having a wavelength of 1625 nm, and emits it to the optical coupler 3. The optical coupler 3 combines the measurement light and the reference light and multiplexes them, and emits the WDM light to the AOFS 4b.

AOFS4bは、超音波発生器4aから入力される周波数fの超音波によって駆動され、光カプラ3から入射される波長多重光を2つの光に分岐するとともに、その分岐した2つの光にヘテロダイン検波のための周波数差(ビート信号の周波数となる)を与えて、一方は0次の回折光の波長多重光を被測定物を介して第1の経路の光として光カプラ6へ出射し、他方は超音波の周波数f分だけ周波数シフトした+1次の回折光の波長多重光を遅延器5を介して第2の経路の光として光カプラ6へ出射する。なお、第1の経路の光および第2の経路の光は、それぞれ測定光からなる成分(測定光成分)と参照光からなる成分(参照光成分)とからなる。この第1実施形態では、第1経路の光のうちの測定光成分、参照光成分の周波数は、それぞれν、νであり、第2経路の光のうちの測定光成分、参照光成分の周波数はそれぞれν+f、ν+fである。そして、それらが光カプラ6で合波され、光分波器7にてそれぞれの周波数成分に分波された後にヘテロダイン検波されるとそれぞれ周波数fの電気信号が出力される。 AOFS4b is driven by the ultrasonic frequency f 1 input from the ultrasonic generator 4a, with branches the wavelength-multiplexed light incident from the optical coupler 3 into two light, heterodyne detection to the branched two optical For one of them, a wavelength-multiplexed light of 0th-order diffracted light is emitted to the optical coupler 6 as light of the first path through the object to be measured, and the other is Emits wavelength-multiplexed light of + 1st order diffracted light shifted by an ultrasonic frequency f by 1 to the optical coupler 6 through the delay device 5 as light of the second path. The light of the first path and the light of the second path are each composed of a component (measurement light component) composed of measurement light and a component (reference light component) composed of reference light. In the first embodiment, the frequencies of the measurement light component and the reference light component in the light of the first path are ν and ν 0 , respectively, and the measurement light component and the reference light component of the light of the second path are The frequencies are ν + f 1 and ν 0 + f 1 , respectively. Then, they are multiplexed by the optical coupler 6, demultiplexed into the respective frequency components by the optical demultiplexer 7, and then subjected to heterodyne detection, respectively, so that an electrical signal of frequency f 1 is output.

遅延器5は、例えば光ファイバ遅延線で構成され、マッハツェンダ型干渉計の光路長を合わせるために、第2経路の光を、第1経路の光が被測定物10によって遅延される時間に対応する時間分遅延させて光カプラ6へ出射する。なお、遅延器5はその遅延時間を可変できるものであってもよいし、また第1経路に設けてもよい。ただし、この遅延器5は、干渉計の光路長を合わせて位相測定精度をあげるのに有効であるが、必ずしも必須ではない。光カプラ6は、被測定物10を介して入射される第1経路の光(波長多重光)と遅延器5を介して入射される第2経路の光(波長多重光)とを合波して波長多重光の干渉光を光分波器7へ出射する。   The delay unit 5 is configured by, for example, an optical fiber delay line, and corresponds to the time when the light of the first path is delayed by the DUT 10 in order to match the optical path length of the Mach-Zehnder interferometer. The light is delayed by the time to be output to the optical coupler 6. Note that the delay unit 5 may be capable of varying the delay time, or may be provided in the first path. However, the delay unit 5 is effective in increasing the phase measurement accuracy by matching the optical path length of the interferometer, but is not necessarily essential. The optical coupler 6 multiplexes the first path light (wavelength multiplexed light) incident through the device under test 10 and the second path light (wavelength multiplexed light) incident through the delay device 5. Then, the interference light of the wavelength multiplexed light is emitted to the optical demultiplexer 7.

なお、超音波発生器4a及びAOFS4bは光分岐手段4を構成し、そしてこの光分岐手段4、被測定物10、遅延器5及び光カプラ6はマッハツェンダ型干渉計20を構成している。したがって、光分岐手段4は、入射光を2つに分岐して別々の光路を通してから結合(干渉)させるマッハツェンダ型干渉計における、入射光を2つに分岐する手段であり、また光カプラ6は、別々の光路を通してから結合(干渉)させる手段である。マッハツェンダ型干渉計20は、自身がその光路に光ファイバを含んで構成される光ファイバ干渉計であったり、又はその光路長を合わせる遅延器5が光ファイバ遅延線であったりする場合、温度変化や振動などに起因した光ファイバの揺らぎによる位相変動を生じやすい。それを改善するために、測定光と参照光とを波長多重して同時にマッハツェンダ型干渉計20へ入射して、位相検出時に干渉計の不安定性により生じるに測定光における位相変動を参照光における位相変動で相殺している。なお、被測定物10としては、光ファイバ、分散補償器等の光部品が対象である。   The ultrasonic generator 4a and the AOFS 4b constitute the optical branching means 4, and the optical branching means 4, the DUT 10, the delay device 5 and the optical coupler 6 constitute a Mach-Zehnder interferometer 20. Therefore, the light branching means 4 is a means for branching the incident light into two in a Mach-Zehnder interferometer for branching the incident light into two and coupling (interfering) after passing through separate optical paths. , Means for coupling (interference) through separate optical paths. When the Mach-Zehnder interferometer 20 is an optical fiber interferometer that includes an optical fiber in its optical path, or when the delay unit 5 that matches the optical path length is an optical fiber delay line, the temperature changes. It is likely to cause phase fluctuations due to fluctuations in the optical fiber due to vibration and vibration. In order to improve this, the measurement light and the reference light are wavelength-multiplexed and simultaneously incident on the Mach-Zehnder interferometer 20, and phase fluctuations in the measurement light caused by instability of the interferometer during phase detection are detected. It is offset by fluctuations. The device under test 10 is an optical component such as an optical fiber or a dispersion compensator.

光分波器7は、光カプラ6から入射される測定光成分同士の第1の干渉光と参照光成分同士の第2の干渉光とを受けて、それぞれの光周波数(波長)成分に分波し、測定光成分同士の干渉光を受光器(PD)8に、参照光成分同士の干渉光を受光器(PD)9に出射する。受光器8は、光分波器7から入射される測定光成分同士の干渉光を受けてヘテロダイン検波し、周波数ν+fの光及び周波数νの光の周波数差fのビート信号を第1の電気信号に変換する。また、受光器9も、同様に、光分波器7から入射される参照光成分同士の干渉光を受けてヘテロダイン検波し周波数差fのビート信号を第2の電気信号に変換する。同期検波器であるRFロックインアンプ11は、上記第2の電気信号を同期信号bとして受け、この同期信号bに基づいて上記第1の電気信号の位相検出を行って、その位相信号(可変された測定光の周波数変化にしたがって逐次検出した各位相データ)を処理手段16へ出力する。 The optical demultiplexer 7 receives the first interference light of the measurement light components incident from the optical coupler 6 and the second interference light of the reference light components, and separates them into respective optical frequency (wavelength) components. The interference light between the measurement light components is emitted to the light receiver (PD) 8, and the interference light between the reference light components is emitted to the light receiver (PD) 9. The light receiver 8 receives the interference light between the measurement light components incident from the optical demultiplexer 7 and performs heterodyne detection, and outputs a beat signal having a frequency difference f 1 between the light having the frequency ν + f 1 and the light having the frequency ν. 1 electrical signal. Similarly, the light receiver 9 receives the interference light between the reference light components incident from the optical demultiplexer 7 and performs heterodyne detection to convert the beat signal having the frequency difference f 1 into a second electric signal. The RF lock-in amplifier 11 that is a synchronous detector receives the second electric signal as the synchronizing signal b, detects the phase of the first electric signal based on the synchronizing signal b, and outputs the phase signal (variable). Each phase data detected sequentially according to the frequency change of the measured light) is output to the processing means 16.

等光周波数間隔トリガ発生手段15は、可変された測定光を光カプラ17から受けて、この測定光の周波数の可変に対応して、図6に示すように、所定の等光周波数間隔の等光周波数間隔トリガcを発生し処理手段16に出力する。この等光周波数間隔トリガcは、上述の各位相データを処理手段16でデータ処理して光周波数−位相特性を求める際、各位相データの取得を等光周波数間隔で行うために、又は各位相データを演算処理するときに用いられ、従来の等時間間隔でのデータ取得の問題点を解決するものである。等光周波数間隔トリガ発生手段15は、干渉光発生手段15a、受光器(PD)15b及びパルス発生手段15cで構成される。   The equal optical frequency interval trigger generating means 15 receives the variable measurement light from the optical coupler 17 and, as shown in FIG. An optical frequency interval trigger c is generated and output to the processing means 16. The equal optical frequency interval trigger c is used to obtain each phase data at equal optical frequency intervals when obtaining the optical frequency-phase characteristics by processing each phase data with the processing means 16 or each phase data. It is used when processing data and solves the conventional problem of data acquisition at regular time intervals. The equal optical frequency interval trigger generating means 15 includes an interference light generating means 15a, a light receiver (PD) 15b, and a pulse generating means 15c.

干渉光発生手段15aは、例えば非対称マッハツェンダ干渉計で構成され、入射される測定光の周波数の可変に対応して所定の等光周波数間隔Δνでその光強度が周期的に変化する干渉光を発生する。受光器15bは、この干渉光を受光して周期的に変化する電気信号に変換する。パルス発生手段15cは、この周期的に変化する電気信号のそれぞれの極大・極小となる電圧を検出するとともに、それぞれの極大あるいは極小電圧、またはその両方を検出する毎にパルス(等光周波数間隔トリガc)を発生して出力する。具体的には、干渉光の電気信号を微分し、その微分信号をトリガ入力としてパルス発生器を駆動する。または、干渉光の電気信号のそれぞれのピーク電圧がほぼ一定であるならば、その電気信号を直接トリガ入力としてパルス発生器を駆動する。なお、受光器15bからの電気信号を位相分割することにより、干渉光の周期より細かい間隔で等光周波数間隔トリガcを発生することも可能である。各部の波形を図7(a)、(b)、(c)、(d)に示す。図7(a)は干渉光、図7(b)は干渉光の電気信号、図7(c)はその電気信号の微分波形、図7(d)はパルス(等光周波数間隔トリガc)である。   The interference light generating means 15a is composed of, for example, an asymmetric Mach-Zehnder interferometer, and generates interference light whose light intensity periodically changes at a predetermined equal optical frequency interval Δν corresponding to the change in the frequency of incident measurement light. To do. The light receiver 15b receives the interference light and converts it into an electrical signal that changes periodically. The pulse generating means 15c detects the voltage that is the maximum or minimum of each of the periodically changing electric signals, and each time the respective maximum or minimum voltage or both are detected, a pulse (iso-optical frequency interval trigger) is detected. c) is generated and output. Specifically, the electric signal of the interference light is differentiated, and the pulse generator is driven using the differentiated signal as a trigger input. Alternatively, if the peak voltage of each electric signal of the interference light is substantially constant, the pulse generator is driven using the electric signal as a direct trigger input. It is also possible to generate the equal optical frequency interval trigger c at intervals smaller than the period of the interference light by phase-dividing the electrical signal from the light receiver 15b. The waveform of each part is shown to Fig.7 (a), (b), (c), (d). 7A shows the interference light, FIG. 7B shows the electrical signal of the interference light, FIG. 7C shows the differential waveform of the electrical signal, and FIG. 7D shows the pulse (iso-optical frequency interval trigger c). is there.

ここで、干渉光発生手段15aを構成する非対称マッハツェンダ干渉計について説明する。概略構成を図8(a)、出射される干渉光の光強度を図8(b)に示す。入射光を2つに分岐して干渉させるための2つの光路の光路差をΔLとすると、干渉計から出射される干渉光の光強度Iは(1)式で表わされ、入射光(可変された測定光)の周波数の変化に対して等光周波数間隔で周期的に変化し、その等光周波数間隔Δνは(2)式で与えられる。仮に、ΔL=2cm、n=1.5とした場合、出射される干渉光の光強度は10GHz周期で変化する。
I=A+B・cos(2πν・n・ΔL/c) (1)
Δν=c/(n・ΔL) (2)
ここで、νは光周波数、nは屈折率、cは真空中の光速、πは円周率、A及びBは入射光の強度やコヒーレンス度により決まる定数である。なお、上述の等光周波数間隔トリガcが出力される光周波数は、この(1)式の関係より決まる。
Here, an asymmetric Mach-Zehnder interferometer constituting the interference light generating means 15a will be described. FIG. 8A shows a schematic configuration, and FIG. 8B shows the light intensity of the emitted interference light. If the optical path difference between the two optical paths for splitting the incident light into two to cause interference is ΔL, the light intensity I of the interference light emitted from the interferometer is expressed by equation (1), and the incident light (variable) Is periodically changed at equal optical frequency intervals with respect to the change in the frequency of the measured measurement light), and the equal optical frequency interval Δν is given by equation (2). If ΔL = 2 cm and n = 1.5, the light intensity of the emitted interference light changes with a period of 10 GHz.
I = A + B · cos (2πν · n · ΔL / c) (1)
Δν = c / (n · ΔL) (2)
Here, ν is the optical frequency, n is the refractive index, c is the speed of light in vacuum, π is the circular ratio, and A and B are constants determined by the intensity of the incident light and the degree of coherence. Note that the optical frequency at which the above-mentioned equal optical frequency interval trigger c is output is determined by the relationship of the equation (1).

なお、非対称マッハツェンダ干渉計は、(a)ビームスプリッタやミラーなどの光学部品を用いて空間的に組んだ干渉計、(b)光ファイバと光ファイバカプラによる光ファイバ干渉計、(c)ガラス基板等の結晶基板上に光導波路を形成した干渉計、(d)複屈折結晶の結晶軸や偏波保持光ファイバの偏波軸を利用した干渉計、等で構成することができる。また、非対称マッハツェンダ干渉計は、干渉計全体を温度制御し、または固定周波数の光を可変された入射光と同時に入射してこの固定周波数の光による干渉信号の位相を一定とするように帰還制御をかけることにより、干渉光の等光周波数間隔Δνをより安定化することができる。   The asymmetric Mach-Zehnder interferometer includes (a) an interferometer spatially assembled using optical components such as a beam splitter and a mirror, (b) an optical fiber interferometer using an optical fiber and an optical fiber coupler, and (c) a glass substrate. And (d) an interferometer using a crystal axis of a birefringent crystal or a polarization axis of a polarization-maintaining optical fiber, or the like. The asymmetric Mach-Zehnder interferometer controls the temperature of the entire interferometer or feedback control so that the fixed-frequency light is incident simultaneously with the variable incident light and the phase of the interference signal due to the fixed-frequency light is constant. By applying, it is possible to further stabilize the equal optical frequency interval Δν of the interference light.

次に、基準光周波数トリガ発生手段18は、可変された測定光を光カプラ17から受けて、この測定光の周波数の可変に対応して、所定の基準光周波数の基準光周波数トリガdを発生し処理手段16に出力する。この基準光周波数トリガdは、上述の各位相データを処理手段16でデータ処理して光周波数−位相特性を求める際、各位相データと測定光の周波数との対応付けが絶対光周波数に対して精度良くできるように、各位相データを演算処理するときに上述の等光周波数間隔トリガcと併用して用いられ、または等光周波数間隔トリガcの絶対光周波数を補正(又は校正)するように用いられる。基準光周波数トリガ発生手段18は、周波数基準光発生手段18a、受光器(PD)18b及びパルス発生手段18cで構成される。   Next, the reference optical frequency trigger generation means 18 receives the changed measurement light from the optical coupler 17 and generates a reference optical frequency trigger d of a predetermined reference optical frequency corresponding to the change of the frequency of the measurement light. Output to the processing means 16. The reference optical frequency trigger d is configured such that when each phase data described above is processed by the processing means 16 to obtain an optical frequency-phase characteristic, the correspondence between each phase data and the frequency of the measurement light is relative to the absolute optical frequency. In order to improve the accuracy, each phase data is used in combination with the above-mentioned equal optical frequency interval trigger c when calculating the phase data, or the absolute optical frequency of the equal optical frequency interval trigger c is corrected (or calibrated). Used. The reference optical frequency trigger generating means 18 includes a frequency reference light generating means 18a, a light receiver (PD) 18b, and a pulse generating means 18c.

周波数基準光発生手段18aは、特定の周波数をもつ光に対して飽和吸収を起こす原子又は分子を封入して波長基準となる吸収セル、あるいはファブリペローエタロンを用いた波長フィルタで構成され、入射される測定光の周波数の可変に対応して所定の基準光周波数でその光強度が極大または極小となる周波数基準光を発生する。受光器18bは、この周波数基準光を受光して電気信号に変換する。パルス発生手段18cは、この電気信号の極大あるいは極小となる電圧を検出するとともに、その極大電圧あるいは極小電圧を検出する毎にパルス(基準光周波数トリガd)を発生して出力する。具体的には、周波数基準光の電気信号を微分し、その微分信号をトリガ入力としてパルス発生器を駆動する。または、周波数基準光の電気信号を直接トリガ入力としてパルス発生器を駆動する。各部の波形を図9(a)、(b)、(c)、(d)に示す。図9(a)は周波数基準光、図9(b)は周波数基準光の電気信号、図9(c)はその電気信号の微分波形、図9(d)はパルス(基準光周波数トリガd)である。   The frequency reference light generating means 18a is composed of an absorption cell serving as a wavelength reference by enclosing atoms or molecules that cause saturated absorption with respect to light having a specific frequency, or a wavelength filter using a Fabry-Perot etalon. Corresponding to the change in the frequency of the measurement light, frequency reference light having a maximum or minimum light intensity at a predetermined reference light frequency is generated. The light receiver 18b receives the frequency reference light and converts it into an electrical signal. The pulse generating means 18c detects a voltage at which the electric signal is maximized or minimized, and generates and outputs a pulse (reference optical frequency trigger d) each time the detected maximum voltage or minimum voltage is detected. Specifically, the electric signal of the frequency reference light is differentiated, and the pulse generator is driven using the differentiated signal as a trigger input. Alternatively, the pulse generator is driven using the electrical signal of the frequency reference light as a direct trigger input. The waveform of each part is shown to Fig.9 (a), (b), (c), (d). 9A is the frequency reference light, FIG. 9B is the electrical signal of the frequency reference light, FIG. 9C is the differential waveform of the electrical signal, and FIG. 9D is the pulse (reference optical frequency trigger d). It is.

処理手段16は、AD変換器16a及び演算手段16bで構成され、RFロックインアンプ11から入力される位相信号(可変された測定光の周波数の変化にしたがって逐次検出された各位相データ)を、制御手段13から入力される制御信号a、等光周波数間隔トリガ発生手段15から入力される等光周波数間隔トリガc及び基準光周波数トリガ発生手段18から入力される基準光周波数トリガdに関連付けてデータ処理(ディジタル値への変換、各種演算処理等)して、被測定物の光周波数−位相特性から伝播遅延時間、波長分散、温度などの物理量等を求める。なお、この場合、図10に示すように、制御信号a(可変の開始と終了時間、又は可変を複数のポイントに分割して行う場合の各ポイントの時間を指定する)、各位相データ、AD変換のタイミング、等光周波数間隔トリガc及び基準光周波数トリガdは、共通のクロック例えば可変の開始と終了時間を決める測定用クロックによって、それらの相対的時間関係が管理されて処理される。そして、制御手段13は、測定光の周波数を可変するための制御信号aを発生して波長可変光源1及び処理手段16に出力する。   The processing unit 16 includes an AD converter 16a and a calculation unit 16b, and receives a phase signal (each phase data sequentially detected according to a change in the frequency of the variable measurement light) input from the RF lock-in amplifier 11. Data associated with the control signal a input from the control unit 13, the equal optical frequency interval trigger c input from the equal optical frequency interval trigger generation unit 15, and the reference optical frequency trigger d input from the reference optical frequency trigger generation unit 18. Processing (conversion to digital values, various arithmetic processes, etc.) is performed, and physical quantities such as propagation delay time, chromatic dispersion, and temperature are obtained from the optical frequency-phase characteristics of the object to be measured. In this case, as shown in FIG. 10, the control signal a (specifies the variable start and end times, or the time of each point when variable is divided into a plurality of points), each phase data, AD The conversion timing, the equal optical frequency interval trigger c, and the reference optical frequency trigger d are processed with a common clock, for example, a measurement clock that determines variable start and end times, and their relative time relationships are managed. Then, the control means 13 generates a control signal a for changing the frequency of the measurement light and outputs it to the wavelength variable light source 1 and the processing means 16.

ここで、各位相データの取得(換言すればAD変換された各位相データ)と可変された測定光の周波数との対応付けについて説明する。先ず、等光周波数間隔トリガ発生手段15から出力された等光周波数間隔トリガcがAD変換器16aに入力されている場合(図1の実線)は、等光周波数間隔トリガcが入力される毎に位相データが等光周波数間隔で取得されるので、それらの位相データについては正確に対応付けできる。そして、トリガ間(周波数間)の位相データについては、等光周波数間隔トリガcと測定用クロックとの相対的時間関係に基づいて演算によって対応付けする。次に、等光周波数間隔トリガcが演算手段16bに入力されている場合(図1の破線)は、AD変換器16aにトリガとして入力される測定用クロック(又はそれに同期したクロック)のタイミングで位相データが取得されるので、測定用クロックと等光周波数間隔トリガcとの相対的時間関係に基づいて演算によって対応付けする。   Here, the correspondence between the acquisition of each phase data (in other words, each AD-converted phase data) and the variable frequency of the measurement light will be described. First, when the equal optical frequency interval trigger c output from the equal optical frequency interval trigger generating means 15 is input to the AD converter 16a (solid line in FIG. 1), every time the equal optical frequency interval trigger c is input. Since phase data is acquired at equal optical frequency intervals, the phase data can be accurately associated. Then, phase data between triggers (inter-frequency) are associated by calculation based on the relative time relationship between the equal optical frequency interval trigger c and the measurement clock. Next, when the iso-optical frequency interval trigger c is input to the arithmetic means 16b (broken line in FIG. 1), the timing of the measurement clock (or a clock synchronized with that) input as a trigger to the AD converter 16a Since the phase data is acquired, the phase data is correlated by calculation based on the relative time relationship between the measurement clock and the equal optical frequency interval trigger c.

また、基準光周波数トリガdを用いて、取得した各位相データを絶対光周波数に対応付ける場合、又は等光周波数間隔トリガcを絶対光周波数の確度に補正(又は校正)する場合は、基準光周波数トリガdと、測定用クロック及び(又は)等光周波数間隔トリガcとの相対的時間関係に基づいて演算によって対応付け又は補正をする。なお、等光周波数間隔トリガ発生手段15が安定であれば、等光周波数間隔トリガcに対する補正は、毎測定時に行う必要はない。   In addition, when using the reference optical frequency trigger d to associate each acquired phase data with the absolute optical frequency, or when correcting (or calibrating) the equal optical frequency interval trigger c to the accuracy of the absolute optical frequency, the reference optical frequency Correspondence or correction is performed by calculation based on the relative time relationship between the trigger d and the measurement clock and / or the equal optical frequency interval trigger c. If the equal optical frequency interval trigger generating means 15 is stable, the correction for the equal optical frequency interval trigger c does not need to be performed at every measurement.

このように構成された第1実施形態の光ヘテロダイン干渉装置においては、測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガcを等光周波数間隔トリガ発生手段15で発生し、この等光周波数間隔トリガcによって、RFロックインアンプ11から入力される位相信号をディジタル値に変換しこのディジタル値から被測定物の光周波数−位相特性を求め、又は測定用クロックによってディジタル値に変換した後に等光周波数間隔トリガcを用いて演算処理して被測定物の光周波数−位相特性を求めるようにしたので、検出した位相信号(各位相データ)と測定光の周波数との対応付けが精度良くでき、光周波数−位相特性が精度良く求められる。その結果、光周波数−位相特性に基づく伝播遅延時間、波長分散、温度などの物理量等も精度良く求められる。   In the optical heterodyne interferometer of the first embodiment configured as described above, the equal optical frequency interval trigger generating means 15 generates the equal optical frequency interval trigger c at a predetermined equal optical frequency interval corresponding to the change in the frequency of the measurement light. The phase signal input from the RF lock-in amplifier 11 is converted into a digital value by this equal optical frequency interval trigger c, and the optical frequency-phase characteristic of the device under test is obtained from the digital value, or the measurement clock Since the optical frequency-phase characteristic of the object to be measured is obtained by performing arithmetic processing using the equal optical frequency interval trigger c after being converted into a digital value by means of the optical signal, the detected phase signal (each phase data) and the frequency of the measuring light And the optical frequency-phase characteristics are required with high accuracy. As a result, physical quantities such as propagation delay time, chromatic dispersion, and temperature based on optical frequency-phase characteristics are also accurately obtained.

ここで、位相特性から群遅延時間の差を演算して波長分散を求める場合を例に、その精度が良くなることを説明する。RFロックインアンプ11からAD変換器16aに入力された位相信号が、n番目の等光周波数間隔トリガc(等光周波数間隔Δν毎に発生される)によって位相データφ(n)のディジタル値に変換されて、演算手段16bに入力されるものとする。測定光の可変開始の周波数をνとすると、周波数ν+nΔνにおける群遅延時間τ(n) は、[τ(n)=(φ(n+1)-φ(n))/(2πΔν)]で算出される。そして、波長分散は、群遅延時間τ(n)を波長で微分して求められる。したがって、この式のΔν(等光周波数間隔)が正確であるので、波長分散も精度良く求められる。 Here, the case where the chromatic dispersion is obtained by calculating the difference of the group delay time from the phase characteristic will be described as an example of the improvement in accuracy. The phase signal input from the RF lock-in amplifier 11 to the AD converter 16a is converted into a digital value of the phase data φ (n) by the nth equal optical frequency interval trigger c (generated every equal optical frequency interval Δν). It is assumed that the data is converted and input to the calculation means 16b. When the variable start frequency of the measurement light is ν 0 , the group delay time τ (n) at the frequency ν 0 + nΔν is [τ (n) = (φ (n + 1) −φ (n)) / (2πΔν)]. Calculated. The chromatic dispersion is obtained by differentiating the group delay time τ (n) with respect to the wavelength. Therefore, since Δν (equal optical frequency interval) in this equation is accurate, chromatic dispersion is also obtained with high accuracy.

[第2実施形態]
本発明の第2実施形態の光ヘテロダイン干渉装置の構成を図2に示す。第2実施形態は、マッハツェンダ型干渉計20が光ファイバ干渉計ではなく、また例え光ファイバ干渉計であったとしても光ファイバの揺らぎによる位相変動が無視でき、参照光を用いて測定光における位相変動を相殺しなくてもよい場合の構成である。第1実施形態の図1とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)参照光の発振、合波、分波及びヘテロダイン検波に係わる要素、つまり光源2、光カプラ3、光分波器7及び受光器9を備えていない。(2)超音波発生器4aから出力される周波数fの超音波が同期検波器としてのRFロックインアンプ11に同期信号bとして入力される。
[Second Embodiment]
The configuration of the optical heterodyne interference apparatus according to the second embodiment of the present invention is shown in FIG. In the second embodiment, even if the Mach-Zehnder interferometer 20 is not an optical fiber interferometer, and even if it is an optical fiber interferometer, phase fluctuations due to fluctuations in the optical fiber can be ignored, and the phase in the measurement light using the reference light can be ignored. This is a configuration when it is not necessary to cancel out the fluctuations. It differs from FIG. 1 of the first embodiment only in the following (1) and (2), and the others are the same. Therefore, detailed description is omitted. (1) Elements related to oscillation, multiplexing, demultiplexing, and heterodyne detection of the reference light, that is, the light source 2, the optical coupler 3, the optical demultiplexer 7, and the light receiver 9 are not provided. (2) ultrasound frequency f 1 output from the ultrasonic generator 4a is input as the synchronization signal b to the RF lock-in amplifier 11 as a synchronous detector.

なお、上述の第1、第2実施形態では、干渉光発生手段15aを非対称マッハツェンダ干渉計で構成する場合であったが、ファブリペロー干渉計、マイケルソン干渉計、直交2光束干渉計等であってもよい。以下にこれらの干渉計について説明する。なお、マイケルソン干渉計については、非対称マッハツェンダ干渉計とは構成が異なるが、干渉光の光強度Iの式及び等光周波数間隔Δνの式が同じであるので説明は省略する。   In the first and second embodiments described above, the interference light generating means 15a is configured by an asymmetric Mach-Zehnder interferometer. However, a Fabry-Perot interferometer, a Michelson interferometer, an orthogonal two-beam interferometer, or the like is used. May be. These interferometers will be described below. The Michelson interferometer has a different configuration from the asymmetric Mach-Zehnder interferometer, but the description of the optical intensity I of the interference light and the formula of the equal optical frequency interval Δν are omitted here.

先ず、ファブリペロー干渉計について説明する。概略構成を図11(a)、出射される干渉光の光強度を図11(b)に示す。部分反射鏡間隔をΔdとすると、仮に、2つの部分反射鏡の強度反射率が等しく、反射鏡等での損失がないとした場合、干渉計から出射される干渉光の光強度Iは(3)式で表わされ、入射光(可変された測定光)の周波数の変化に対して等光周波数間隔で周期的に変化し、その等光周波数間隔Δνは(4)式で与えられる。仮に、ΔL=2cm、n=1.5とした場合、出射される干渉光の光強度は5GHz周期で変化する。
I=A/(1+4R・sin(2πν・n・Δd/c)/(1−R))
(3)
Δν=c/(2・n・Δd) (4)
ここで、νは光周波数、nは屈折率、cは真空中の光速、πは円周率、Rは部分反射鏡の強度反射率、Aは入射光の光強度である。なお、上述の等光周波数間隔トリガcが出力される光周波数は、この(3)式の関係より決まる。この干渉光を用いての等光周波数間隔トリガcを発生させる場合、この干渉光の電気信号を直接トリガ入力としてパルス発生器を駆動する。また、ファブリペロー干渉計のフィネスが小さい場合は、干渉光の電気信号を微分し、その微分信号をトリガ入力としてパルス発生器を駆動してもよい。
First, the Fabry-Perot interferometer will be described. FIG. 11A shows the schematic configuration, and FIG. 11B shows the light intensity of the emitted interference light. Assuming that the interval between the partial reflectors is Δd, if the intensity reflectances of the two partial reflectors are equal and there is no loss in the reflectors, the light intensity I of the interference light emitted from the interferometer is (3 ) And periodically changes at equal optical frequency intervals with respect to changes in the frequency of incident light (variable measurement light), and the equal optical frequency interval Δν is given by equation (4). If ΔL = 2 cm and n = 1.5, the light intensity of the emitted interference light changes at a period of 5 GHz.
I = A / (1 + 4R · sin 2 (2πν · n · Δd / c) / (1-R) 2 )
(3)
Δν = c / (2 · n · Δd) (4)
Here, ν is the optical frequency, n is the refractive index, c is the speed of light in vacuum, π is the circumference, R is the intensity reflectance of the partial reflector, and A is the light intensity of the incident light. Note that the optical frequency at which the above-mentioned equal optical frequency interval trigger c is output is determined by the relationship of the equation (3). When generating the equal optical frequency interval trigger c using the interference light, the pulse generator is driven using the electrical signal of the interference light as a direct trigger input. When the finesse of the Fabry-Perot interferometer is small, the electric signal of the interference light may be differentiated and the pulse generator may be driven using the differentiated signal as a trigger input.

なお、ファブリペロー干渉計は、(a)個別の部分反射鏡などの光学部品を用いて空間的に組んだ干渉計、(b)バルク型の光学結晶を用いて必要に応じて両端に反射膜を形成した干渉計、(c)光ファイバを用いて必要に応じて両端に反射膜を形成した干渉計、(d)ガラス基板等の結晶基板上に光導波路を形成して必要に応じて光導波路の両端に反射膜を形成した干渉計、等で構成することができる。また、ファブリペロー干渉計は、干渉計全体を温度制御し、または固定周波数の光を可変された入射光と同時に入射してこの固定周波数の光による干渉信号の位相を一定とするように帰還制御をかけることにより、干渉光の等光周波数間隔Δνをより安定化することができる。   The Fabry-Perot interferometer includes (a) an interferometer that is spatially assembled using optical components such as individual partial reflectors, and (b) a reflective film on both ends as necessary using a bulk type optical crystal. (C) an interferometer in which a reflection film is formed at both ends using an optical fiber, if necessary. (D) an optical waveguide is formed on a crystal substrate such as a glass substrate, and light is transmitted as necessary. An interferometer or the like in which a reflection film is formed at both ends of the waveguide can be used. The Fabry-Perot interferometer controls the temperature of the entire interferometer, or feedback control so that the fixed-frequency light is incident simultaneously with the variable incident light and the phase of the interference signal due to the fixed-frequency light is constant. By applying, it is possible to further stabilize the equal optical frequency interval Δν of the interference light.

次に、直交2光束干渉計について説明する。概略構成を図12(a)、出射される干渉光の光強度を図12(b)に示す。入射光を振動面が直交する2つの直線偏光に分け、光路差を与えて合波し干渉させ、入射光の周波数の変化に対して光強度が周期的に変化しかつその光強度の変化位相が異なる複数の光を出射する直交2光束干渉計用いて、入射光の周波数の変化に対して光強度の位相変化が90度異なる2つの干渉光を得るように構成すると、干渉計から出射される干渉光の光強度I、Iは(5)、(6)式で表わされ、入射光(可変された測定光)の周波数の変化に対して等光周波数間隔で周期的に変化し、その等光周波数間隔Δνは(7)式で与えられる。仮に、ΔL=2cm、n=1.5とした場合、出射される干渉光の光強度は10GHz周期で変化する。
=A+B・cos(2πν・n・ΔL/c)
(5)
=A’+B’・cos(2πν・n・ΔL/c+π/2)
=A’+B’・sin(2πν・n・ΔL/c) (6)
Δν=c/(n・ΔL) (7)
ここで、νは光周波数、nは屈折率、cは真空中の光速、πは円周率、ΔLはλ/4板の低屈折率軸を通過する偏光における干渉計の光路差、A、B、A’及びB’は入射光の強度やコヒーレンス度により決まる定数である。また、Iはλ/4板の低屈折率軸を通過する偏光による干渉光強度、Iはλ/4板の高屈折率軸を通過する偏光による干渉光強度である。
Next, the orthogonal two-beam interferometer will be described. FIG. 12A shows a schematic configuration, and FIG. 12B shows the light intensity of emitted interference light. The incident light is divided into two linearly polarized beams whose vibration planes are orthogonal to each other, combined with an optical path difference to cause interference, the light intensity periodically changes with the change in the frequency of the incident light, and the change phase of the light intensity If an orthogonal two-beam interferometer that emits a plurality of light beams having different wavelengths is used to obtain two interference light beams whose phase change in light intensity is 90 degrees different from the change in the frequency of incident light, the interferometer emits light. The light intensities I 1 and I 2 of the interference light are expressed by equations (5) and (6), and periodically change at equal optical frequency intervals with respect to the change in the frequency of the incident light (variable measurement light). The equal optical frequency interval Δν is given by equation (7). If ΔL = 2 cm and n = 1.5, the light intensity of the emitted interference light changes with a period of 10 GHz.
I 1 = A + B · cos (2πν · n · ΔL / c)
(5)
I 2 = A ′ + B ′ · cos (2πν · n · ΔL / c + π / 2)
= A ′ + B ′ · sin (2πν · n · ΔL / c) (6)
Δν = c / (n · ΔL) (7)
Where ν is the optical frequency, n is the refractive index, c is the speed of light in vacuum, π is the circular index, ΔL is the optical path difference of the interferometer in the polarized light passing through the low refractive index axis of the λ / 4 plate, A, B, A ′ and B ′ are constants determined by the intensity of the incident light and the degree of coherence. I 1 is the interference light intensity due to the polarization passing through the low refractive index axis of the λ / 4 plate, and I 2 is the interference light intensity due to the polarization passing through the high refractive index axis of the λ / 4 plate.

なお、上述の等光周波数間隔トリガcが出力される光周波数は、この(5)及び(6)式の関係より決まる。これら2つの干渉光を用いて等光周波数間隔トリガcを発生させる場合、これらの干渉光を電気信号に変換して位相変化が90度異なる2つの電気信号を得る。そして、これら2つの電気信号を用いて、インターポレータにより数10〜数100の位相分割された信号を得ることで、干渉計より得られる出射光の強度変化の周期より短い繰り返し間隔の等光周波数間隔トリガcを発生させることができる。また、直交2光束干渉計を用いると、インターポレータの利用により小さい光路差で、細かい等光周波数間隔トリガcを得ることができ、光学系を小さくできる利点もある。また、位相変化が90度異なる2つの電気信号が得られるため、光周波数の増減の方向も知ることができる。また、図12(c)、(d)に示すように、干渉光I、Iに対し、位相が180度異なる干渉光I、Iを出力するように直交2光束干渉計を構成することで、光周波数の変化に伴い入射光の強度が変化する場合でも、正確に等周波数間隔トリガcを得ることができる。 Note that the optical frequency at which the above-mentioned equal optical frequency interval trigger c is output is determined by the relationship of the equations (5) and (6). When the equal optical frequency interval trigger c is generated using these two interference lights, these interference lights are converted into electrical signals to obtain two electrical signals having a phase change of 90 degrees. Then, by using these two electrical signals to obtain a signal that has been phase-divided by several tens to several hundreds by an interpolator, iso-light having a repetition interval shorter than the period of intensity change of the emitted light obtained from the interferometer A frequency interval trigger c can be generated. Further, when the orthogonal two-beam interferometer is used, a fine equal optical frequency interval trigger c can be obtained with a smaller optical path difference for use of the interpolator, and there is an advantage that the optical system can be made small. In addition, since two electrical signals having a phase change of 90 degrees are obtained, the direction of increase or decrease of the optical frequency can also be known. Also, as shown in FIGS. 12C and 12D, an orthogonal two-beam interferometer is configured to output interference lights I 3 and I 4 that are 180 degrees out of phase with respect to the interference lights I 1 and I 2. Thus, even when the intensity of the incident light changes as the optical frequency changes, the equal frequency interval trigger c can be obtained accurately.

[第3実施形態]
本発明の第3実施形態の光ヘテロダイン干渉装置の構成を図3に示す。第3実施形態は、図14に示した従来の光ヘテロダイン干渉装置とは、下記の点のみが異なりその他は同一である。すなわち、処理手段19(図14の処理手段12に相当)に、制御信号aによって指定される可変の開始から終了までの可変経過時間と可変されて入射される測定光の周波数との関係を保持する光周波数テーブル19cを設け、RFロックインアンプ11から入力される位相信号(各位相データ)をデータ処理して光周波数−位相特性を求める際に、この光周波数テーブル19cの可変経過時間と測定光の周波数との関係を用いて演算処理を行い、検出された各位相データと測定光の周波数との対応付けを精度良くし、光周波数−位相特性の測定精度の向上を図った点である。したがって、図14と同一部分の説明は省略して、主に光周波数テーブル19cについて説明する。
[Third Embodiment]
The configuration of the optical heterodyne interferometer according to the third embodiment of the present invention is shown in FIG. The third embodiment is the same as the conventional optical heterodyne interferometer shown in FIG. 14 except for the following points. That is, the processing means 19 (corresponding to the processing means 12 in FIG. 14) maintains the relationship between the variable elapsed time from the start to the end of the variable designated by the control signal a and the frequency of the measurement light that is variably entered. When the optical frequency table 19c is provided and the phase signal (each phase data) input from the RF lock-in amplifier 11 is processed to obtain the optical frequency-phase characteristic, the variable elapsed time and measurement of the optical frequency table 19c are measured. The calculation processing is performed using the relationship with the light frequency, the correspondence between each detected phase data and the frequency of the measurement light is improved, and the measurement accuracy of the optical frequency-phase characteristic is improved. . Therefore, the description of the same part as FIG. 14 is omitted, and the optical frequency table 19c will be mainly described.

光周波数テーブル19cには、測定に先立って予め、制御信号aの可変経過時間とそれに伴って波長可変光源1から逐次出射される測定光の周波数との関係を図13(a)に示すように記憶しておく。この際、可変経過時間と測定光の周波数との関係は、図13(c)に示すように等時間間隔で記憶しておいてもよいし、又は図13(d)に示すように等光周波数間隔で記憶しておいてもよい。なお、この場合、測定光の周波数の測定、確認は、波長計、上述の吸収セル、ファブリペローエタロン等を用いて行うことができる。そして、測定の際には、図13(b)に示すような可変経過時間に対応して検出した各位相データとこの光周波数テーブル19c(図13(a))とを可変経過時間で対応させ、各位相データにおける測定光の周波数を求める。なお、各位相データが光周波数テーブル19c(図13(a))の可変経過時間の間隔より細かく検出されているときは、その間を補間法により求める。   In the optical frequency table 19c, the relationship between the variable elapsed time of the control signal a and the frequency of the measurement light sequentially emitted from the wavelength tunable light source 1 as shown in FIG. Remember. At this time, the relationship between the variable elapsed time and the frequency of the measurement light may be stored at equal time intervals as shown in FIG. 13 (c), or the same light as shown in FIG. 13 (d). It may be stored at frequency intervals. In this case, measurement and confirmation of the frequency of the measurement light can be performed using a wavelength meter, the above-described absorption cell, a Fabry-Perot etalon, or the like. At the time of measurement, each phase data detected corresponding to the variable elapsed time as shown in FIG. 13B is associated with the optical frequency table 19c (FIG. 13A) with the variable elapsed time. Then, the frequency of the measurement light in each phase data is obtained. When each phase data is detected more finely than the interval of the variable elapsed time in the optical frequency table 19c (FIG. 13A), the interval is obtained by an interpolation method.

[第4実施形態]
本発明の第4実施形態の光ヘテロダイン干渉装置の構成を図4に示す。第4実施形態は、マッハツェンダ型干渉計20が光ファイバ干渉計ではなく、また例え光ファイバ干渉計であったとしても光ファイバの揺らぎによる位相変動が無視でき、参照光を用いて測定光における位相変動を相殺しなくてもよい場合の構成である。第3実施形態の図3とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)参照光の発振、合波、分波及びヘテロダイン検波に係わる要素、つまり光源2、光カプラ3、光分波器7及び受光器9を備えていない。(2)超音波発生器4aから出力される周波数fの超音波が同期検波器としてのRFロックインアンプ11に同期信号bとして入力される。
[Fourth Embodiment]
FIG. 4 shows the configuration of the optical heterodyne interferometer according to the fourth embodiment of the present invention. In the fourth embodiment, even if the Mach-Zehnder interferometer 20 is not an optical fiber interferometer, and even if it is an optical fiber interferometer, phase fluctuations due to fluctuations in the optical fiber can be ignored, and the phase in the measurement light using the reference light can be ignored. This is a configuration when it is not necessary to cancel out the fluctuations. It differs from FIG. 3 of 3rd Embodiment only in following (1) and (2), and others are the same. Therefore, detailed description is omitted. (1) Elements related to oscillation, multiplexing, demultiplexing, and heterodyne detection of the reference light, that is, the light source 2, the optical coupler 3, the optical demultiplexer 7, and the light receiver 9 are not provided. (2) ultrasound frequency f 1 output from the ultrasonic generator 4a is input as the synchronization signal b to the RF lock-in amplifier 11 as a synchronous detector.

なお、上記第1〜第4実施形態では、超音波発生器4a及びAOFS4b各1台にて光分岐手段4を構成したが、光カプラと各1台以上の超音波発生器及びAOFSを用いる構成としても良い。また、周波数がわずかに異なる2台の超音波発生器を用いてマッハツェンダ型干渉計のそれぞれの経路に配置されたAOFSを駆動する構成とすれば、ヘテロダイン検波時のビート周波数を小さくすることができる。   In the first to fourth embodiments, the optical branching unit 4 is configured by one ultrasonic generator 4a and one AOFS 4b. However, the optical coupler and one or more ultrasonic generators and AOFS are used. It is also good. Further, if the AOFS disposed in each path of the Mach-Zehnder interferometer is driven using two ultrasonic generators having slightly different frequencies, the beat frequency at the time of heterodyne detection can be reduced. .

本発明の第1実施形態の構成を示す図The figure which shows the structure of 1st Embodiment of this invention. 本発明の第2実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment of this invention. 本発明の第3実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment of this invention. 本発明の第4実施形態の構成を示す図The figure which shows the structure of 4th Embodiment of this invention. 波長可変光源の周波数可変時の非線形性を説明するための図Diagram for explaining nonlinearity of variable wavelength light source when frequency is variable 本発明の等光周波数間隔を説明するための図The figure for demonstrating the equal optical frequency space | interval of this invention 本発明の等光周波数間隔トリガ発生手段の動作を説明するための図The figure for demonstrating operation | movement of the equal optical frequency space | interval trigger generation means of this invention 非対称マッハツェンダ干渉計を説明するための図Diagram for explaining an asymmetric Mach-Zehnder interferometer 本発明の基準光周波数トリガ発生手段の動作を説明するための図The figure for demonstrating operation | movement of the reference | standard optical frequency trigger generation means of this invention 本発明の処理手段の動作を説明するための図The figure for demonstrating operation | movement of the processing means of this invention ファブリペロー干渉計を説明するための図Diagram for explaining Fabry-Perot interferometer 直交2光束干渉計を説明するための図Diagram for explaining orthogonal two-beam interferometer 本発明の光周波数テーブルを説明するための図The figure for demonstrating the optical frequency table of this invention 従来例の概略構成を示す図The figure which shows schematic structure of a prior art example

符号の説明Explanation of symbols

1・・・波長可変光源、2・・・光源、3,6,14,17・・・光カプラ、4・・・光分岐手段、4a・・・超音波発生器、4b・・・音響光学周波数シフタ(AOFS)、5・・・遅延器、7・・・光分波器、8,9,15b,18b・・・受光器(PD)、10・・・被測定物、11・・・RFロックインアンプ、12,16,19・・・処理手段、12a,16a,19a・・・AD変換器(A/D)、12b,16b,19b・・・演算手段、19c・・・光周波数テーブル、13・・・制御手段、15・・・等光周波数間隔トリガ発生手段、15a・・・干渉光発生手段、15c,18c・・・パルス発生手段、18・・・基準光周波数トリガ発生手段、18a・・・周波数基準光発生手段、20・・・マッハツェンダ型干渉計。 DESCRIPTION OF SYMBOLS 1 ... Variable wavelength light source, 2 ... Light source, 3, 6, 14, 17 ... Optical coupler, 4 ... Optical branching means, 4a ... Ultrasonic generator, 4b ... Acoustooptic Frequency shifter (AOFS), 5 ... delay device, 7 ... optical demultiplexer, 8, 9, 15b, 18b ... light receiver (PD), 10 ... device under test, 11 ... RF lock-in amplifier, 12, 16, 19 ... processing means, 12a, 16a, 19a ... AD converter (A / D), 12b, 16b, 19b ... computing means, 19c ... optical frequency Table, 13... Control means, 15... Optical frequency interval trigger generation means, 15 a... Interference light generation means, 15 c and 18 c. 18a ... frequency reference light generating means, 20 ... Mach-Zehnder interferometer

Claims (25)

入射光である周波数可変の測定光を受けて2つに分岐するとともに、互いに周波数の異なる第1経路の光及び第2経路の光として出射する光分岐手段(4)並びに被測定物を介して入射される前記第1経路の光と前記被測定物を介さないで入射される前記第2経路の光とを合波して干渉光を出射する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、
前記干渉光を受けてヘテロダイン検波し前記第1経路の光と前記第2経路の光の周波数差のビート信号を電気信号に変換する受光器(8)と、
前記ビート信号の周波数とほぼ同じ周波数の同期信号に基づいて前記電気信号の位相検出を行う同期検波器(11)と、
前記測定光の光周波数に対応した、該同期検波器から出力される位相信号を受け、該位相信号のデータ処理を行って前記被測定物の光周波数―位相特性を求める処理手段(16)とを備えた光ヘテロダイン干渉装置において、
前記処理手段は、前記測定光の周波数の可変に対応して所定の等光周波数間隔で発生される等光周波数間隔トリガを受け、該等光周波数間隔トリガに基づいて前記位相信号のデータ処理を行うことを特徴とする光ヘテロダイン干渉装置。
Receives the variable frequency measurement light, which is incident light, and splits it into two, and also passes through the light branching means (4) that emits the light of the first path and the light of the second path having different frequencies, and the device under test. A Mach-Zehnder interferometer having optical coupling means (6) for combining the incident light of the first path and the incident light of the second path without passing through the device under test to emit interference light. (20) and
A light receiver (8) that receives the interference light and performs heterodyne detection to convert a beat signal of a frequency difference between the light of the first path and the light of the second path into an electrical signal;
A synchronous detector (11) for detecting the phase of the electrical signal based on a synchronous signal having a frequency substantially the same as the frequency of the beat signal;
Processing means (16) for receiving a phase signal output from the synchronous detector corresponding to the optical frequency of the measurement light and performing data processing on the phase signal to obtain an optical frequency-phase characteristic of the object to be measured; In an optical heterodyne interferometer comprising:
The processing means receives an equal optical frequency interval trigger generated at a predetermined equal optical frequency interval corresponding to the variable frequency of the measurement light, and performs data processing of the phase signal based on the equal optical frequency interval trigger. An optical heterodyne interferometer characterized in that:
前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記光結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えたことを特徴とする請求項1に記載の光ヘテロダイン干渉装置。   The Mach-Zehnder interferometer further includes a time until the light of the second path emitted from the optical branching unit reaches the optical coupling unit between the optical branching unit and the optical coupling unit. A delay device (5) for delaying the light of the first path or the light of the second path so that the time until the light of the first path reaches the optical coupling means via the object to be measured is substantially equal. The optical heterodyne interference device according to claim 1, further comprising: 周波数可変の測定光と当該測定光の光周波数と異なる固定周波数の参照光とを波長多重してなる波長多重光を受けて、当該波長多重光を分岐するとともに、第1経路の光と第2経路の光とを出力する光分岐手段(4)であって、当該第1経路の光及び当該第2経路の光はそれぞれ測定光成分と参照光成分とからなり、前記第1経路の光に含まれる測定光成分の周波数と前記第2経路の光に含まれる測定光成分の周波数とが異なるとともに、前記第1経路の光に含まれる参照光成分の周波数と前記第2経路の光に含まれる参照光成分の周波数とが同じだけ異なる光分岐手段(4)並びに被測定物を経由する前記第1経路の光と前記被測定物を経由しない前記第2経路の光とを合波する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、
前記測定光成分と前記参照光成分とを周波数分波する光分波器(7)と、
該光分波器で分波された、前記第1経路の光の測定光成分と前記第2経路の光の測定光成分とからなる第1の干渉光を第1の電気信号に変換する第1の受光器(8)と、
前記光分波器で分波された、前記第1経路の光の参照光成分と前記第2経路の光の参照光成分とからなる第2の干渉光を第2の電気信号に変換する第2の受光器(9)と、
前記第2の電気信号を同期信号として前記第1の電気信号の位相検出を行う同期検波器(11)と、
前記測定光の光周波数に対応した、前記同期検波器から出力される位相信号をデータ処理して、前記被測定物の光周波数―位相特性を求める処理手段(16)とを備えた光ヘテロダイン干渉装置において、
前記処理手段は、前記測定光の周波数の可変に対応して所定の等光周波数間隔で発生される等光周波数間隔トリガを受け、該等光周波数間隔トリガに基づいて前記位相信号のデータ処理を行うことを特徴とする光ヘテロダイン干渉装置。
The wavelength-multiplexed light obtained by wavelength-multiplexing the frequency-variable measurement light and the reference light having a fixed frequency different from the optical frequency of the measurement light is received, and the wavelength-division multiplexed light is branched. A light branching means (4) for outputting the light of the path, wherein the light of the first path and the light of the second path are each composed of a measurement light component and a reference light component; The frequency of the measurement light component included is different from the frequency of the measurement light component included in the light of the second path, and is included in the frequency of the reference light component included in the light of the first path and the light of the second path The light branching means (4) having the same frequency as the frequency of the reference light component and the light that combines the light of the first path that passes through the device under test and the light of the second path that does not pass through the device under test Mach-Zehnder interferometer (20) having coupling means (6) ,
An optical demultiplexer (7) for demultiplexing the measurement light component and the reference light component;
A first interference light that is demultiplexed by the optical demultiplexer and composed of the measurement light component of the light of the first path and the measurement light component of the light of the second path is converted into a first electric signal. 1 receiver (8),
A second interference light that is demultiplexed by the optical demultiplexer and composed of the reference light component of the light of the first path and the reference light component of the light of the second path is converted into a second electrical signal. Two receivers (9);
A synchronous detector (11) for performing phase detection of the first electrical signal using the second electrical signal as a synchronization signal;
Optical heterodyne interference comprising processing means (16) for processing the phase signal output from the synchronous detector corresponding to the optical frequency of the measurement light to obtain the optical frequency-phase characteristic of the object to be measured In the device
The processing means receives an equal optical frequency interval trigger generated at a predetermined equal optical frequency interval corresponding to the variable frequency of the measurement light, and performs data processing of the phase signal based on the equal optical frequency interval trigger. An optical heterodyne interferometer characterized in that:
前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記光結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えたことを特徴とする請求項3に記載の光ヘテロダイン干渉装置。   The Mach-Zehnder interferometer further includes a time until the light of the second path emitted from the optical branching unit reaches the optical coupling unit between the optical branching unit and the optical coupling unit. A delay device (5) for delaying the light of the first path or the light of the second path so that the time until the light of the first path reaches the optical coupling means via the object to be measured is substantially equal. The optical heterodyne interference device according to claim 3. 前記マッハツェンダ型干渉計は、その光路中に光ファイバを含んで構成される光ファイバ干渉計であることを特徴とする請求項3又は4に記載の光ヘテロダイン干渉装置。   5. The optical heterodyne interferometer according to claim 3, wherein the Mach-Zehnder interferometer is an optical fiber interferometer configured to include an optical fiber in an optical path thereof. 所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、
該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、
前記波長可変光源から入射される前記測定光を2つに分岐し、一方を前記光分岐手段に前記入射光として出射する第1の光カプラ(14)と、
該第1の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)とを更に備えたことを特徴とする請求項1又は2に記載の光ヘテロダイン干渉装置。
A wavelength tunable light source (1) that sequentially oscillates measurement light having a variable frequency within a predetermined frequency range;
Control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source;
A first optical coupler (14) for branching the measurement light incident from the wavelength tunable light source into two and emitting one of the measurement light to the optical branching means as the incident light;
Upon receipt of the other measurement light emitted from the first optical coupler, an equal optical frequency interval trigger having a predetermined equal optical frequency interval is generated in response to a change in the frequency of the measurement light and output to the processing means. The optical heterodyne interference device according to claim 1, further comprising: an equal optical frequency interval trigger generating means (15) that performs the same.
所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、
該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、
前記測定光の周波数とは異なる固定周波数の前記参照光を発振させる光源(2)と、
前記波長可変光源から入射される前記測定光を2つに分岐して出射する第1の光カプラ(14)と、
該第1の光カプラから出射される一方の前記測定光と前記光源から出射される前記参照光とを合波することによって波長多重し、得られた波長多重光を前記光分岐手段に前記入射光として出射する第2の光カプラ(3)と、
前記第1の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)とを更に備えたことを特徴とする請求項3〜5のいずれかに記載の光ヘテロダイン干渉装置。
A wavelength tunable light source (1) that sequentially oscillates measurement light having a variable frequency within a predetermined frequency range;
Control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source;
A light source (2) for oscillating the reference light having a fixed frequency different from the frequency of the measurement light;
A first optical coupler (14) for branching and emitting the measurement light incident from the wavelength tunable light source;
One of the measurement light emitted from the first optical coupler and the reference light emitted from the light source are wavelength-multiplexed by multiplexing, and the obtained wavelength-multiplexed light is input to the optical branching unit. A second optical coupler (3) that emits as incident light;
An equal optical frequency interval which receives the other measurement light emitted from the first optical coupler, generates a predetermined equal optical frequency interval trigger corresponding to a change in the frequency of the measurement light, and outputs it to the processing means 6. The optical heterodyne interference device according to claim 3, further comprising trigger generation means (15).
前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガに基づいて前記位相信号のデータ処理を行うことを特徴とする請求項1又は2に記載の光ヘテロダイン干渉装置。   The processing means receives a reference optical frequency trigger generated at a predetermined reference optical frequency corresponding to a change in the frequency of the measurement light, and performs data processing of the phase signal based on the reference optical frequency trigger. The optical heterodyne interferometer according to claim 1 or 2. 前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガに基づいて前記位相信号のデータ処理を行うことを特徴とする請求項3〜5のいずれかに記載の光ヘテロダイン干渉装置。   The processing means receives a reference optical frequency trigger generated at a predetermined reference optical frequency corresponding to a change in the frequency of the measurement light, and performs data processing of the phase signal based on the reference optical frequency trigger. 6. The optical heterodyne interference device according to claim 3, wherein 前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガと前記等光周波数間隔トリガとの相対的時間関係から当該等光周波数間隔トリガの絶対光周波数を補正することを特徴とする請求項1又は2に記載の光ヘテロダイン干渉装置。   The processing means receives a reference optical frequency trigger generated at a predetermined reference optical frequency corresponding to a change in the frequency of the measurement light, and a relative time relationship between the reference optical frequency trigger and the equal optical frequency interval trigger The optical heterodyne interference device according to claim 1, wherein the absolute optical frequency of the equal optical frequency interval trigger is corrected. 前記処理手段は、前記測定光の周波数の可変に対応して所定の基準光周波数で発生される基準光周波数トリガを受け、該基準光周波数トリガと前記等光周波数間隔トリガとの相対的時間関係から当該等光周波数間隔トリガの絶対光周波数を補正することを特徴とする請求項3〜5のいずれかに記載の光ヘテロダイン干渉装置。   The processing means receives a reference optical frequency trigger generated at a predetermined reference optical frequency corresponding to a change in the frequency of the measurement light, and a relative time relationship between the reference optical frequency trigger and the equal optical frequency interval trigger The optical heterodyne interference device according to claim 3, wherein the absolute optical frequency of the equal optical frequency interval trigger is corrected. 所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、
該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、
前記波長可変光源から入射される前記測定光を2つに分岐し、一方を前記光分岐手段に出射する第1の光カプラ(14)と、
該第1の光カプラから入射される他方の前記の測定光を受けて2つに分岐して出射する第3の光カプラ(17)と、
該第3の光カプラから出射される一方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)と、
前記第3の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の基準光周波数の基準周波数トリガを発生し前記処理手段に出力する基準光周波数トリガ発生手段(18)とを更に備えたことを特徴とする請求項8又は10に記載の光ヘテロダイン干渉装置。
A wavelength tunable light source (1) that sequentially oscillates measurement light having a variable frequency within a predetermined frequency range;
Control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source;
A first optical coupler (14) for branching the measurement light incident from the wavelength tunable light source into two and emitting one to the optical branching means;
A third optical coupler (17) that receives the other measurement light incident from the first optical coupler, diverges it into two, and emits it;
Upon receipt of one of the measurement lights emitted from the third optical coupler, an equal optical frequency interval trigger having a predetermined equal optical frequency interval is generated corresponding to the change in the frequency of the measurement light and output to the processing means. An equal optical frequency interval trigger generating means (15),
A reference light that receives the other measurement light emitted from the third optical coupler, generates a reference frequency trigger of a predetermined reference light frequency corresponding to a change in the frequency of the measurement light, and outputs the reference frequency trigger to the processing means 11. The optical heterodyne interference device according to claim 8, further comprising frequency trigger generation means (18).
所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、
該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、
前記測定光の周波数とは異なる固定周波数の前記参照光を発振させる光源(2)と、
前記波長可変光源から入射される前記測定光を2つに分岐して出射する第1の光カプラ(14)と、
該第1の光カプラから出射される一方の前記測定光と前記光源から出射される前記参照光とを合波することによって波長多重し、得られた前記波長多重光を前記光分岐手段に前記入射光として出射する第2の光カプラ(3)と、
前記第1の光カプラから出射される他方の前記測定光を受けて、2つに分岐して出射する第3の光カプラ(17)と、
該第3の光カプラから出射される一方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の等光周波数間隔トリガを発生し前記処理手段に出力する等光周波数間隔トリガ発生手段(15)と、
前記第3の光カプラから出射される他方の前記測定光を受けて、当該測定光の周波数の可変に対応して所定の基準光周波数の基準周波数トリガを発生し前記処理手段に出力する基準光周波数トリガ発生手段(18)とを更に備えたことを特徴とする請求項9又は11に記載の光ヘテロダイン干渉装置。
A wavelength tunable light source (1) that sequentially oscillates measurement light having a variable frequency within a predetermined frequency range;
Control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source;
A light source (2) for oscillating the reference light having a fixed frequency different from the frequency of the measurement light;
A first optical coupler (14) for branching and emitting the measurement light incident from the wavelength tunable light source;
One of the measurement light emitted from the first optical coupler and the reference light emitted from the light source are wavelength-multiplexed by multiplexing, and the obtained wavelength-multiplexed light is transmitted to the optical branching unit before A second optical coupler (3) that emits light as incident light;
A third optical coupler (17) that receives the other measurement light emitted from the first optical coupler, diverges into two, and emits;
An equal optical frequency interval that receives one of the measurement lights emitted from the third optical coupler, generates a predetermined equal optical frequency interval trigger corresponding to a change in the frequency of the measurement light, and outputs it to the processing means Trigger generating means (15);
A reference light that receives the other measurement light emitted from the third optical coupler, generates a reference frequency trigger of a predetermined reference light frequency corresponding to a change in the frequency of the measurement light, and outputs the reference frequency trigger to the processing means The optical heterodyne interference device according to claim 9 or 11, further comprising frequency trigger generation means (18).
前記等光周波数間隔トリガ発生手段は、
前記第1の光カプラ又は前記第3の光カプラから入射される前記測定光の周波数の可変に対応して所定の等光周波数間隔でその出力光強度が周期的に変化するトリガ用干渉光を発生する干渉光発生手段(15a)と、
該干渉光発生手段から入射される前記トリガ用干渉光を受光して前記周期的に変化する第3の電気信号に変換する第3の受光器(15b)と、
該第3の受光器から入力される前記周期的に変化する前記第3の電気信号のそれぞれの極大電圧・極小電圧を検出するとともに、該極大あるいは極小電圧、又はその両方を検出する毎に第1のパルスを発生し、該第1のパルスを前記等光周波数間隔トリガとして出力する第1のパルス発生手段(15c)とを備えたことを特徴とする請求項6、7、12及び13のいずれかに記載の光ヘテロダイン干渉装置。
The iso-optical frequency interval trigger generating means is
Trigger interference light whose output light intensity periodically changes at a predetermined equal optical frequency interval corresponding to the variable frequency of the measurement light incident from the first optical coupler or the third optical coupler. Generating interference light generating means (15a);
A third light receiver (15b) that receives the trigger interference light incident from the interference light generating means and converts the trigger interference light into the periodically changing third electrical signal;
Each time the local maximum voltage / minimum voltage of the periodically changing third electric signal input from the third light receiver is detected, and each time the local maximum voltage, the minimum voltage, or both are detected, the second electric signal is detected. 14. The first pulse generating means (15c) for generating one pulse and outputting the first pulse as the equal optical frequency interval trigger, wherein the first pulse generating means (15c) is provided. The optical heterodyne interference apparatus according to any one of the above.
前記等光周波数間隔トリガ発生手段は、
前記第1光カプラ又は前記第3の光カプラから入射される前記測定光の周波数の可変に対応して所定の等光周波数間隔でその出力光強度が相対的にそれぞれ所定の位相差で周期的に変化する複数のトリガ用干渉光を発生する干渉光発生手段と、
該干渉光発生手段から入射される前記複数のトリガ用干渉光をそれぞれ受光して前記周期的に変化する複数の電気信号に変換する複数の受光器と、
該複数の受光器から入力される、前記所定の位相差で周期的に変化する複数の電気信号を用いて、位相分割された第3のパルスを発生し、該第3のパルスを前記等光周波数間隔トリガとして出力する第3のパルス発生手段を備えたことを特徴とする請求項6、7、12及び13のいずれかに記載の光ヘテロダイン干渉装置。
The iso-optical frequency interval trigger generating means is
Corresponding to the variable frequency of the measurement light incident from the first optical coupler or the third optical coupler, the output light intensity is relatively periodic with a predetermined phase difference at predetermined equal optical frequency intervals. Interference light generating means for generating a plurality of trigger interference lights that change into
A plurality of light receivers that respectively receive the plurality of trigger interference lights incident from the interference light generating means and convert them into the plurality of periodically changing electrical signals;
A plurality of electrical signals periodically inputted with the predetermined phase difference input from the plurality of light receivers are used to generate a phase-divided third pulse, and the third pulse is converted into the iso-light. 14. The optical heterodyne interference device according to claim 6, further comprising third pulse generation means for outputting as a frequency interval trigger.
前記基準光周波数トリガ発生手段は、
前記第3の光カプラから入射される前記測定光の周波数の可変に対応して所定の基準光周波数でその出力光強度が極大あるいは極小となる周波数基準光を発生する周波数基準光発生手段(18a)と、
該周波数基準光発生手段から入射される前記周波数基準光を受光して第4の電気信号に変換する第4の受光器(18b)と、
該第4の受光器から入力される前記第4の電気信号の極大又は極小電圧を検出するとともに、該極大又は極小電圧を検出する毎に第2のパルスを前記基準光周波数トリガとして出力する第2のパルス発生手段(18c)とを備えたことを特徴とする請求項12又は13に記載の光ヘテロダイン干渉装置。
The reference optical frequency trigger generating means includes
Frequency reference light generating means (18a) for generating frequency reference light whose output light intensity is maximized or minimized at a predetermined reference light frequency corresponding to the change of the frequency of the measurement light incident from the third optical coupler. )When,
A fourth light receiver (18b) for receiving the frequency reference light incident from the frequency reference light generating means and converting it into a fourth electrical signal;
A maximum or minimum voltage of the fourth electric signal input from the fourth light receiver is detected, and a second pulse is output as the reference optical frequency trigger each time the maximum or minimum voltage is detected. 14. The optical heterodyne interference device according to claim 12, further comprising two pulse generating means (18c).
入射光である周波数可変の測定光を受けて2つに分岐するとともに、互いに周波数の異なる第1経路の光及び第2経路の光として出射する光分岐手段(4)並びに被測定物を介して入射される前記第1経路の光と前記被測定物を介さないで入射される前記第2経路の光とを合波して干渉光を出射する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、
前記干渉光を受けてヘテロダイン検波し前記第1経路の光と前記第2経路の光の周波数差のビート信号を電気信号に変換する受光器(8)と、
前記ビート信号の周波数とほぼ同じ周波数の同期信号に基づいて前記電気信号の位相検出を行う同期検波器(11)と、
前記測定光の光周波数に対応した、該同期検波器から出力される位相信号を受け、該位相信号のデータ処理を行って前記被測定物の光周波数―位相特性を求める処理手段(19)とを備えた光ヘテロダイン干渉装置において、
前記処理手段が、可変開始から終了までの可変経過時間と可変されて入射される前記測定光の周波数との関係を保持する光周波数テーブル(19c)を有することを特徴とする光ヘテロダイン干渉装置。
Receives the variable frequency measurement light, which is incident light, and splits it into two, and also passes through the light branching means (4) that emits the light of the first path and the light of the second path having different frequencies, and the device under test. A Mach-Zehnder interferometer having optical coupling means (6) for combining the incident light of the first path and the incident light of the second path without passing through the device under test to emit interference light. (20) and
A light receiver (8) that receives the interference light and performs heterodyne detection to convert a beat signal of a frequency difference between the light of the first path and the light of the second path into an electrical signal;
A synchronous detector (11) for detecting the phase of the electrical signal based on a synchronous signal having a frequency substantially the same as the frequency of the beat signal;
Processing means (19) for receiving a phase signal output from the synchronous detector corresponding to the optical frequency of the measurement light and performing data processing on the phase signal to obtain an optical frequency-phase characteristic of the object to be measured; In an optical heterodyne interferometer comprising:
The optical heterodyne interferometer characterized in that the processing means has an optical frequency table (19c) that holds a relationship between a variable elapsed time from a variable start to an end and a frequency of the measurement light incident in a variable manner.
前記光周波数テーブルは、前記可変経過時間と前記測定光の周波数との関係を等光周波数間隔で保持していることを特徴とする請求項17に記載の光ヘテロダイン干渉装置。   18. The optical heterodyne interference device according to claim 17, wherein the optical frequency table holds a relationship between the variable elapsed time and the frequency of the measurement light at equal optical frequency intervals. 前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えたことを特徴とする請求項17又は18に記載の光ヘテロダイン干渉装置。   The Mach-Zehnder interferometer further includes a time until the light of the second path emitted from the optical branching unit reaches the optical coupling unit between the optical branching unit and the optical coupling unit. A delay device (5) for delaying the light of the first path or the light of the second path so that the time until the light of the first path reaches the coupling means via the device under test is substantially equal. The optical heterodyne interferometer according to claim 17 or 18, further comprising: 周波数可変の測定光と当該測定光の光周波数と異なる固定周波数の参照光とを波長多重してなる波長多重光を受けて、当該波長多重光を分岐するとともに、第1経路の光と第2経路の光とを出力する光分岐手段(4)であって、当該第1経路の光及び当該第2経路の光はそれぞれ測定光成分と参照光成分とからなり、前記第1経路の光に含まれる測定光成分の周波数と前記第2経路の光に含まれる測定光成分の周波数とが異なるとともに、前記第1経路の光に含まれる参照光成分の周波数と前記第2経路の光に含まれる参照光成分の周波数とが同じだけ異なる光分岐手段(4)並びに被測定物を経由する前記第1経路の光と前記被測定物を経由しない前記第2経路の光とを合波する光結合手段(6)を有するマッハツェンダ型干渉計(20)と、
前記測定光成分と前記参照光成分とを周波数分波する光分波器(7)と、
該光分波器で分波された、前記第1経路の光の測定光成分と前記第2経路の光の測定光成分とからなる第1の干渉光を第1の電気信号に変換する第1の受光器(8)と、
前記光分波器で分波された、前記第1経路の光の参照光成分と前記第2経路の光の参照光成分とからなる第2の干渉光を第2の電気信号に変換する第2の受光器(9)と、
前記第2の電気信号を同期信号として前記第1の電気信号の位相検出を行う同期検波器(11)と、
前記測定光の光周波数に対応した、該同期検波器から出力される位相信号をデータ処理して、前記被測定物の光周波数―位相特性を求める処理手段(19)とを備えた光ヘテロダイン干渉装置において、
前記処理手段が、可変開始から終了までの可変経過時間と可変されて入射される前記測定光の周波数との関係を保持する光周波数テーブル(19c)を有することを特徴とする光ヘテロダイン干渉装置。
The wavelength-multiplexed light obtained by wavelength-multiplexing the frequency-variable measurement light and the reference light having a fixed frequency different from the optical frequency of the measurement light is received, and the wavelength-division multiplexed light is branched. A light branching means (4) for outputting the light of the path, wherein the light of the first path and the light of the second path are each composed of a measurement light component and a reference light component; The frequency of the measurement light component included is different from the frequency of the measurement light component included in the light of the second path, and is included in the frequency of the reference light component included in the light of the first path and the light of the second path The light branching means (4) having the same frequency as the frequency of the reference light component and the light that combines the light of the first path that passes through the device under test and the light of the second path that does not pass through the device under test Mach-Zehnder interferometer (20) having coupling means (6) ,
An optical demultiplexer (7) for demultiplexing the measurement light component and the reference light component;
A first interference light that is demultiplexed by the optical demultiplexer and composed of the measurement light component of the light of the first path and the measurement light component of the light of the second path is converted into a first electric signal. 1 receiver (8),
A second interference light that is demultiplexed by the optical demultiplexer and composed of the reference light component of the light of the first path and the reference light component of the light of the second path is converted into a second electrical signal. Two receivers (9);
A synchronous detector (11) for performing phase detection of the first electrical signal using the second electrical signal as a synchronization signal;
Optical heterodyne interference comprising processing means (19) for processing the phase signal output from the synchronous detector corresponding to the optical frequency of the measurement light to obtain the optical frequency-phase characteristic of the object to be measured In the device
The optical heterodyne interferometer characterized in that the processing means has an optical frequency table (19c) that holds a relationship between a variable elapsed time from a variable start to an end and a frequency of the measurement light incident in a variable manner.
前記光周波数テーブルは、前記可変経過時間と前記光周波数との関係を等光周波数間隔で保持していることを特徴とする請求項20に記載の光ヘテロダイン干渉装置。   21. The optical heterodyne interferometer according to claim 20, wherein the optical frequency table holds a relationship between the variable elapsed time and the optical frequency at equal optical frequency intervals. 前記マッハツェンダ型干渉計は、更に、前記光分岐手段と前記光結合手段との間に、該光分岐手段から出射された前記第2経路の光が前記光結合手段に到達するまでの時間と、前記第1経路の光が前記被測定物を介して前記光結合手段に到達するまでの時間とがほぼ等しくなるように前記第1経路の光又は第2経路の光を遅延させる遅延器(5)を備えたことを特徴とする請求項20又は21に記載の光ヘテロダイン干渉装置。   The Mach-Zehnder interferometer further includes a time until the light of the second path emitted from the optical branching unit reaches the optical coupling unit between the optical branching unit and the optical coupling unit. A delay device (5) for delaying the light of the first path or the light of the second path so that the time until the light of the first path reaches the optical coupling means via the object to be measured is substantially equal. The optical heterodyne interference device according to claim 20 or 21, further comprising: 前記マッハツェンダ型干渉計は、その光路中に光ファイバを含んで構成される光ファイバ干渉計であることを特徴とする請求項20〜22のいずれかに記載の光ヘテロダイン干渉装置。   The optical heterodyne interferometer according to any one of claims 20 to 22, wherein the Mach-Zehnder interferometer is an optical fiber interferometer configured to include an optical fiber in its optical path. 所定の周波数範囲内で周波数可変の測定光を順次発振させ、前記光分岐手段へ前記入力光として出射する波長可変光源(1)と、
該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)とを更に備えたことを特徴とする請求項17〜19のいずれかに記載の光ヘテロダイン干渉装置。
A wavelength tunable light source (1) that sequentially oscillates measurement light having a variable frequency within a predetermined frequency range and emits the input light to the optical branching unit;
20. The optical heterodyne interference device according to claim 17, further comprising control means (13) for outputting a control signal for changing the frequency of the measurement light from the wavelength tunable light source. .
所定の周波数範囲内で周波数可変の測定光を順次発振させる波長可変光源(1)と、
該波長可変光源からの測定光の周波数を可変するための制御信号を出力する制御手段(13)と、
前記測定光の周波数とは異なる固定周波数の前記参照光を発振させる光源(2)と、
前記波長可変光源から入射される前記測定光と前記光源から入射される前記参照光とを合波することによって波長多重し、得られた前記波長多重光を前記光分岐手段へ前記入射光として出射する第2の光カプラ(3)とを更に備えたことを特徴とする請求項20〜23のいずれかに記載の光ヘテロダイン干渉装置。
A wavelength tunable light source (1) that sequentially oscillates measurement light having a variable frequency within a predetermined frequency range;
Control means (13) for outputting a control signal for varying the frequency of the measurement light from the wavelength tunable light source;
A light source (2) for oscillating the reference light having a fixed frequency different from the frequency of the measurement light;
Wavelength multiplexing is performed by combining the measurement light incident from the wavelength tunable light source and the reference light incident from the light source, and the obtained wavelength multiplexed light is emitted as the incident light to the optical branching unit. The optical heterodyne interference device according to any one of claims 20 to 23, further comprising a second optical coupler (3).
JP2005083693A 2005-03-23 2005-03-23 Apparatus for optical heterodyne interference Pending JP2006266797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083693A JP2006266797A (en) 2005-03-23 2005-03-23 Apparatus for optical heterodyne interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083693A JP2006266797A (en) 2005-03-23 2005-03-23 Apparatus for optical heterodyne interference

Publications (1)

Publication Number Publication Date
JP2006266797A true JP2006266797A (en) 2006-10-05

Family

ID=37202945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083693A Pending JP2006266797A (en) 2005-03-23 2005-03-23 Apparatus for optical heterodyne interference

Country Status (1)

Country Link
JP (1) JP2006266797A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128710A (en) * 2006-11-17 2008-06-05 Fujifilm Corp Tomographic image processing method, tomographic image processing device, program and optical tomographic imaging system using it
JP2010533301A (en) * 2007-07-12 2010-10-21 ヴォルカノ コーポレイション Apparatus and method for uniform frequency sampling clock control
CN103322904A (en) * 2013-06-09 2013-09-25 中国科学院长春光学精密机械与物理研究所 Optical heterodyne interference method for eliminating non-linear errors based on resonant filtering method and inner product method
CN103322905A (en) * 2013-06-09 2013-09-25 中国科学院长春光学精密机械与物理研究所 Optical heterodyne interference method for eliminating non-linear errors based on two-stage or multi-stage resonant filters
CN103322903A (en) * 2013-06-09 2013-09-25 中国科学院长春光学精密机械与物理研究所 Optical heterodyne interference method for removing non-linear error based on capacitance timing and multi-stage filtering
JP2014228444A (en) * 2013-05-23 2014-12-08 日本電信電話株式会社 Distance measuring apparatus and method for optical axis adjustment
JP2014235154A (en) * 2013-06-05 2014-12-15 日本電信電話株式会社 Optical axis adjustment device and process therefor
JP2015504167A (en) * 2012-01-17 2015-02-05 フェムトレーザース プロドゥクシオンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for optical inspection of samples
JP2015178981A (en) * 2014-03-19 2015-10-08 アイシン精機株式会社 Distance metering device and distance metering method
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
JP2017526911A (en) * 2014-07-25 2017-09-14 ディーエスシージー ソルーションズ,インコーポレイテッド Laser phase estimation and correction
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
CN114414522A (en) * 2021-12-27 2022-04-29 中国科学院上海微系统与信息技术研究所 Device and method for representing optical frequency comb coherent spectrum by adopting terahertz optical self-detection
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215903A (en) * 1985-03-22 1986-09-25 Yamazaki Mazak Corp Laser length measuring machine
JPH11271179A (en) * 1998-03-25 1999-10-05 Anritsu Corp Measuring device of wavelength dispersion of optical fiber
JP2002350236A (en) * 2001-05-11 2002-12-04 Agilent Technol Inc Light spectrum analysis system and light spectrum analysis method
JP2002365142A (en) * 2001-04-12 2002-12-18 Agilent Technol Inc Instrument for measuring wavelength, instrument for measuring optical characteristic, method of measuring the wavelength, and software article
JP2003028753A (en) * 2001-05-08 2003-01-29 Agilent Technol Inc System and method for measuring group delay based on zero-crossing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215903A (en) * 1985-03-22 1986-09-25 Yamazaki Mazak Corp Laser length measuring machine
JPH11271179A (en) * 1998-03-25 1999-10-05 Anritsu Corp Measuring device of wavelength dispersion of optical fiber
JP2002365142A (en) * 2001-04-12 2002-12-18 Agilent Technol Inc Instrument for measuring wavelength, instrument for measuring optical characteristic, method of measuring the wavelength, and software article
JP2003028753A (en) * 2001-05-08 2003-01-29 Agilent Technol Inc System and method for measuring group delay based on zero-crossing
JP2002350236A (en) * 2001-05-11 2002-12-04 Agilent Technol Inc Light spectrum analysis system and light spectrum analysis method

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
JP2008128710A (en) * 2006-11-17 2008-06-05 Fujifilm Corp Tomographic image processing method, tomographic image processing device, program and optical tomographic imaging system using it
JP2010533301A (en) * 2007-07-12 2010-10-21 ヴォルカノ コーポレイション Apparatus and method for uniform frequency sampling clock control
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US11350906B2 (en) 2007-07-12 2022-06-07 Philips Image Guided Therapy Corporation OCT-IVUS catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
JP2015504167A (en) * 2012-01-17 2015-02-05 フェムトレーザース プロドゥクシオンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for optical inspection of samples
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US11890117B2 (en) 2012-10-05 2024-02-06 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US11510632B2 (en) 2012-10-05 2022-11-29 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US11864870B2 (en) 2012-10-05 2024-01-09 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11141131B2 (en) 2012-12-20 2021-10-12 Philips Image Guided Therapy Corporation Smooth transition catheters
US11892289B2 (en) 2012-12-20 2024-02-06 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US11786213B2 (en) 2012-12-21 2023-10-17 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US11253225B2 (en) 2012-12-21 2022-02-22 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
JP2014228444A (en) * 2013-05-23 2014-12-08 日本電信電話株式会社 Distance measuring apparatus and method for optical axis adjustment
JP2014235154A (en) * 2013-06-05 2014-12-15 日本電信電話株式会社 Optical axis adjustment device and process therefor
CN103322903A (en) * 2013-06-09 2013-09-25 中国科学院长春光学精密机械与物理研究所 Optical heterodyne interference method for removing non-linear error based on capacitance timing and multi-stage filtering
CN103322905B (en) * 2013-06-09 2016-03-02 中国科学院长春光学精密机械与物理研究所 The optical heterodyne interference method of nonlinearity erron is eliminated based on two-stage or multistage resonant filtering
CN103322905A (en) * 2013-06-09 2013-09-25 中国科学院长春光学精密机械与物理研究所 Optical heterodyne interference method for eliminating non-linear errors based on two-stage or multi-stage resonant filters
CN103322904A (en) * 2013-06-09 2013-09-25 中国科学院长春光学精密机械与物理研究所 Optical heterodyne interference method for eliminating non-linear errors based on resonant filtering method and inner product method
JP2015178981A (en) * 2014-03-19 2015-10-08 アイシン精機株式会社 Distance metering device and distance metering method
US10739448B2 (en) 2014-07-25 2020-08-11 DSCB Solutions, Inc. Laser phase estimation and correction
JP2017526911A (en) * 2014-07-25 2017-09-14 ディーエスシージー ソルーションズ,インコーポレイテッド Laser phase estimation and correction
CN114414522A (en) * 2021-12-27 2022-04-29 中国科学院上海微系统与信息技术研究所 Device and method for representing optical frequency comb coherent spectrum by adopting terahertz optical self-detection
CN114414522B (en) * 2021-12-27 2024-06-11 中国科学院上海微系统与信息技术研究所 Device and method for representing optical frequency comb coherent spectrum by adopting terahertz optical self-detection

Similar Documents

Publication Publication Date Title
JP2006266797A (en) Apparatus for optical heterodyne interference
US8923349B2 (en) Fourier domain mode locking: method and apparatus for control and improved performance
US8699013B2 (en) Chromatic dispersion measurement device and chromatic dispersion measurement method for measuring the dispersion of light pulses
US8345238B2 (en) Measuring optical spectral property of light based on polarization analysis
US8363226B2 (en) Optical interference measuring apparatus
JP3394902B2 (en) Chromatic dispersion measuring device and polarization dispersion measuring device
US6788410B1 (en) Delay time measurement apparatus for optical element
JPWO2003005002A1 (en) Propagation measurement device and propagation measurement method
JP5363231B2 (en) Vibration measuring apparatus and vibration measuring method
JP5421013B2 (en) Positioning device and positioning method
JP2011179918A (en) Wavelength dispersion measuring device and wavelength dispersion measuring method using the same
JP2012004426A (en) Unmodulated stabilization laser device
JP5557513B2 (en) Chromatic dispersion measuring apparatus and chromatic dispersion measuring method using the same
JP2002350236A (en) Light spectrum analysis system and light spectrum analysis method
JP2006266796A (en) Apparatus for optical heterodyne interference
JP2006308531A (en) Wavelength dispersion measuring method and device
JP2007057251A (en) Optical interferometer type phase detection apparatus
JPH067071B2 (en) Optical spectrum measuring device
JP4613110B2 (en) Optical interference type phase detector
JP2012211787A (en) Chromatic dispersion measuring device and method for measuring chromatic dispersion using the same
WO2024075266A1 (en) Optical measurement device
JP4600755B2 (en) Wavelength monitor
JP2007328044A (en) Optical frequency measuring system, and method for determining frequency component of optical frequency comb
JPH07103828A (en) Estimation unit for variable frequency characteristics
JPH11304656A (en) Wavelength dispersion measuring method and device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911