WO2020213353A1 - 気体圧縮機 - Google Patents

気体圧縮機 Download PDF

Info

Publication number
WO2020213353A1
WO2020213353A1 PCT/JP2020/013114 JP2020013114W WO2020213353A1 WO 2020213353 A1 WO2020213353 A1 WO 2020213353A1 JP 2020013114 W JP2020013114 W JP 2020013114W WO 2020213353 A1 WO2020213353 A1 WO 2020213353A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
gas
pressure
current value
gas compressor
Prior art date
Application number
PCT/JP2020/013114
Other languages
English (en)
French (fr)
Inventor
謙次 森田
正彦 高野
征和 長谷
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to US17/601,937 priority Critical patent/US11994138B2/en
Priority to CN202080027106.4A priority patent/CN113728163B/zh
Priority to JP2021514842A priority patent/JP7267407B2/ja
Publication of WO2020213353A1 publication Critical patent/WO2020213353A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/007Conjoint control of two or more different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/009Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0284Conjoint control of two or more different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/003Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a gas compressor and relates to a gas compressor that controls unload operation.
  • a gas compressor that generates a compressed gas by supplying a liquid such as oil or water to a compression chamber that compresses the suction gas is known.
  • a refueling type air compressor in which the gas to be compressed is air and the liquid to be supplied is oil will be described as an example.
  • the capacity control of the air compressor can be roughly divided into two types.
  • One is pressure fluctuation capacity control that detects the amount of air consumed by the amount of pressure fluctuation of the discharge line pressure and reduces the power consumption at the time of partial load.
  • the other is constant pressure capacity control that keeps the discharge line pressure constant and controls the compressor rotation speed according to the increase or decrease in the amount of air consumed.
  • the pressure fluctuation capacity control is used for an air compressor not equipped with an inverter, and the rotation speed of the compressor body is constant (hereinafter, may be referred to as a "constant speed machine").
  • the capacity control of the constant speed machine includes suction throttle control that adjusts the opening of the suction throttle valve placed on the intake side of the compressor body and air release control that opens and closes the air release valve placed on the discharge side of the compressor body. There is. Those using one or both of these are known.
  • variable speed machine In constant pressure capacity control, it is used for compressors equipped with an inverter in order to increase or decrease the rotation speed of the compressor body (hereinafter, it may be referred to as "variable speed machine").
  • the inverter operates at a high speed until the pressure set as a target is reached, and when the pressure exceeds the set pressure, the inverter performs a variable speed operation in which the rotation speed is reduced. For example, if the amount of compressed air used on the user side is large and the discharge pressure on the user side is lower than the target pressure, the vehicle operates at the rated maximum rotation speed, and eventually the amount used on the user side decreases and the discharge pressure on the user side becomes higher. When the target pressure is exceeded, the number of revolutions is reduced to save energy.
  • Patent Document 1 PID control operation is performed based on the target pressure (P0), but P0 is maintained as the amount of air used on the user side decreases and the discharge pressure on the user side increases toward P0. Control to reduce the number of revolutions.
  • P1 target pressure
  • P1 upper limit pressure
  • P1 upper limit pressure
  • the compressed air on the upstream side of the discharge port on the user side is released to the atmosphere while the rotation speed is at the lower limit rotation speed.
  • the pressure inside the oil separation tank is often used as the supply pressure of the lubricating oil.
  • the action of the oil supplied to the compression working chamber includes a cooling action of the compressed gas, a sealing action of preventing compression leakage inside the compression mechanism, and a lubrication action of reducing the internal friction of the compression mechanism.
  • the lubricating oil cools the compressed air, seals and lubricates the rotors or the bore surface of the rotor and the casing of the compressor body.
  • Inverter-controlled refueling air compressors usually perform variable speed control, but it is also possible to keep the output frequency from the inverter constant and use it in the same way as a constant speed compressor. is there. That is, it is possible to perform both variable speed control such as P, PI, and PID and constant speed control in which the rotation speed of the electric motor is constant with a refueling compressor equipped with an inverter. In such a case, the internal pressure of the oil separation tank in the unload control, that is, the control pressure may not be the same between the variable speed control and the constant speed control. In either case, the oil supplied to the compressor body is insufficient. There is also a risk of doing so. In a gas compressor, a technique capable of making the control pressure variable and ensuring an appropriate control pressure during unload control is desired.
  • the compressor main body that compresses the gas and discharges the compressed gas
  • the electric motor that supplies the driving force to the compressor body
  • the power conversion device that supplies the predetermined frequency power to the electric motor
  • the suction side of the compressor main body are arranged. It has at least one of the suction throttle valve and the air release valve that discharges the compressed gas of the discharge piping system to the atmospheric pressure environment, and a control device, and when the discharge pressure reaches a predetermined pressure, the suction throttle valve is closed or the air is released.
  • a gas compressor that performs unload operation to reduce the load on the compressor body by opening the valve, and detects a current value input to the power converter and outputs a current value detector to the control device.
  • the control device opens the suction throttle valve or closes the air release valve to obtain a predetermined upper limit current higher than the lower limit current value.
  • the suction throttle valve is closed or the air release valve is opened.
  • a compressor main body that compresses a gas and discharges a compressed gas
  • an electric motor that supplies a driving force to the compressor body
  • a power converter that supplies a predetermined frequency power to the electric motor
  • the compressor has at least one of a suction throttle valve arranged on the suction side of the main body and an air release valve that discharges the compressed gas of the discharge piping system to the atmospheric pressure environment, and a control device, and when the discharge pressure reaches a predetermined pressure, the suction throttle valve
  • a gas compressor that performs an unload operation that reduces the load on the compressor body by closing the valve or opening the air release valve. It detects the pressure of the gas discharged from the compressor body and outputs it to the control device.
  • the control device opens the suction throttle valve or closes the air release valve to obtain a predetermined pressure higher than the lower limit pressure.
  • the suction throttle valve is closed or the air release valve is opened.
  • a compressor main body that compresses the gas and discharges the compressed gas, an electric motor that supplies the driving force to the compressor body, a power conversion device that supplies a predetermined frequency power to the electric motor, and a discharge piping system. It has an air release valve that discharges the compressed gas into the atmospheric pressure environment and a control device, and closes the suction throttle valve or the air release when the discharge pressure reaches a predetermined pressure.
  • a gas compressor that performs an unload operation by opening a valve to reduce the load on the compressor body, has a plurality of the air release systems, and arranges the air release valves for each of the plurality of air exhaust systems. Further, a pressure regulating valve having different opening and closing pressures is provided on the downstream side of each of the air release valves, and the control device selects one of the air release valves to perform the unload operation. Is.
  • control pressure can be made variable and an appropriate control pressure can be secured.
  • Other problems, configurations, and effects of the present invention will be clarified from the following description.
  • FIG. 1 shows the structure of the refueling type air compressor according to Example 1 of this invention. It is a figure which shows the transition of the load / unload control by Example 1.
  • FIG. 2 shows the structure of the refueling type air compressor according to Example 2 of this invention. It is a figure which shows the transition of the load / unload control by Example 2.
  • Example 3 shows the structure of the refueling type compressor according to Example 3 of this invention.
  • FIG. 1 schematically shows the configuration of a conventional refueling type air compressor.
  • the refueling type air compressor 200 (hereinafter, may be referred to as “compressor 200”) has a suction throttle when the compressor body 3 is driven by an electric motor 4 supplied with electric power from an inverter 5 (power converter). Atmospheric air is sucked into the compressor body through the valve 2. The sucked atmospheric air is boosted by the compressive action of the compressor main body 3, and the compressed air of a predetermined pressure is discharged from the discharge port of the compressor main body 3.
  • lubricating oil is supplied to the compression chamber of the compressor main body 3 for cooling the compressed intake air, sealing for preventing air leakage, and lubricating the members, and compressed air mixed with gas and liquid is supplied from the compressor main body 3. It is supposed to be spit out.
  • the compressed air from the compressor body 3 flows into the oil separation tank 6 (liquid separation tank), and the compressed air and the lubricating oil are separated.
  • the compressed air separated in the oil separation tank 6 is cooled by the aftercooler 8 and then sent to the equipment used by the user.
  • the lubricating oil is transferred from the temperature control valve 12 to the compressor main body 3 via the oil filter 14. Refuel.
  • the oil temperature is higher than the threshold value, it flows from the temperature control valve 12 to the oil cooler 13 side, cools the lubricating oil so as to reach a predetermined temperature range, passes through the oil filter 14, and supplies the lubricating oil to the compressor main body 3. It is designed to do.
  • the pressure for circulating the oil separated in the oil separation tank 6 to the compressor body again is the discharge air pressure of the compressor body 3. That is, the lubricating oil is pumped by the internal pressure of the oil separation tank 6.
  • a branch pipe branching to the suction side of the compressor main body 3 is arranged downstream of the air system of the oil separation tank 6, and an air release valve 10 is provided on the pipe line.
  • the air release valve 10 is a valve body that opens and closes in response to a command from the control device 15. When the air release valve 10 is open, the air inside the oil separation tank 6 (air on the upstream side of the check valve 7) is released to the suction side of the compressor main body 3. As a result, the load on the electric motor is reduced and energy saving is realized.
  • a pressure sensor 9 is arranged in the downstream piping of the aftercooler 8.
  • the pressure sensor 9 detects the discharge air pressure of the compressor 200 and outputs the result to the control device 15.
  • the control device 15 monitors the discharge air pressure value, outputs a frequency command value to the inverter 5, and performs overall control such as opening and closing of the air release valve 10.
  • FIG. 1 shows a variable speed machine equipped with an inverter 5, but the configuration of the constant speed machine is such that there is no inverter 5 in FIG. 1 and the control device supplies electric power for constant speed rotation to the motor 4. Except for the points, the configuration is almost the same.
  • Figure 2 shows the time-series change due to "unload control" during constant speed control.
  • the control device 15 closes the suction throttle valve 2 and opens the air release valve 10 to release the pressure in the oil separation tank 6 from the air release valve 10.
  • start air valve control Until the discharge line pressure drops to PL (lower limit pressure), the pressure in the oil separation tank 6 continues to be released, but the orifice (pressure adjustment valve) 11 closes, causing the oil separation tank internal pressure PTL (unload). Stable pressure).
  • the control device 15 opens the suction throttle valve 2 and closes the air release valve 10. As a result, the pressure in the oil separation tank 6 is increased, and the discharge line pressure is increased.
  • the rotation speed of the electric motor 4 is NF and is always constant.
  • FIG. 3 shows a time-series change due to "unload control” by variable speed control (PID control) of the conventional example.
  • the output frequency of the inverter 5 is changed by P, PI, and PID to increase or decrease the rotation speed of the electric motor 4 so that the pressure PC stabilizes (in FIG. 3). Illustrated as decelerating). Even if the rotation speed of the electric motor 4 drops to the lower limit rotation speed NV1, if the consumption of compressed air decreases, the discharge line pressure gradually increases and eventually reaches the pressure PU. When the pressure PU is reached, the internal pressure of the oil separation tank 6 is released from the air release valve 10 to reduce the pressure, as in the constant speed control.
  • Example 1 of the present invention will be described based on the above conventional examples.
  • FIG. 4 shows a refueling type air compressor 100 according to the first embodiment to which the present invention is applied (hereinafter, may be referred to as “compressor 100”).
  • compressor 100 The configuration of is shown.
  • the compressed gas is described as air and the liquid that supplies the compressed gas to the compression chamber is described as oil.
  • the compression medium may be another gas or compression.
  • the liquid supplied to the chamber may be another liquid such as water.
  • the compressor 100 is a package type compressor including a compressor main body 3, an electric motor 4, an inverter 5, an oil separation tank 6, an aftercooler 8, an oil cooler 13, and a control device 15, and stores these in a housing.
  • the compressor body 3 is a positive displacement screw compressor body that generates compressed air by meshing male and female screw rotors that rotate with each other.
  • other positive displacement compressors and rotary compressors can be applied to the present invention.
  • a single screw rotor type or a type using three or more screw rotors may be used, or a multi-stage compressor main body including a plurality of compressor main bodies may be used.
  • the inverter 5 receives electric power from the power source 17, converts it into a predetermined frequency according to a frequency command value from the control device 15, and supplies electric power to the electric motor 4.
  • Various types of electric motors can be applied to the electric motor 4.
  • the output shaft side of the electric motor 4 is directly connected to the screw rotor of the compressor main body 3 or indirectly via a gear, a belt, or the like to supply a driving force to the compressor main body 3.
  • the oil separation tank 6 is a separator that separates oil and water from the compressed air of the gas-liquid mixture (oil and air) discharged from the compressor main body 3 by collision separation, swirl separation, or both.
  • the separated compressed air flows to the discharge piping system and is allowed to flow from the oil separation tank 6 to the downstream side via a check valve 7 and an air-cooled or liquid-cooled aftercooler 8 on the user side (user) of the compressed air. It is designed to be supplied to the side).
  • the control device 15 constitutes various functional units by the cooperation of the arithmetic unit and the program, and controls the entire compressor 100.
  • the control device 15 may be partially or wholly composed of an analog control circuit.
  • the compressor 100 has an oil piping system that returns the oil separated in the oil separation tank 6 to the compressor main body 3.
  • the oil separated from the air in the oil separation tank 6 is returned to the compressor main body 3 by the internal pressure of the oil separation tank 6.
  • the oil piping system includes a temperature control valve 12, an oil cooler 13, and an oil filter 14.
  • the temperature control valve 12 is an electromagnetic three-way valve having a temperature detection function.
  • the outlet to the oil cooler 13 side is opened, and when the temperature is lower than the predetermined temperature, the oil cooler is opened.
  • the outlet on the side bypassing No. 13 the pipeline through which the oil flows is switched, and the oil temperature is controlled within a predetermined temperature range.
  • the compressor 100 includes a suction throttle valve 2 on the suction side of the compressor main body 3.
  • the suction throttle valve 2 is a mechanical or electromagnetic valve body that adjusts the amount of air flowing in from the intake passage of the compressor main body 3. For example, in the "unload control" described later, the suction throttle valve 2 is closed or its opening degree is reduced.
  • the suction throttle valve 2 is a mechanical type, the internal pressure of the oil separation tank 6 (upstream side of the check valve 7) is used as the control pressure. That is, the opening / closing control of the valve body is performed by internal pressure via a control pipe (not shown).
  • the compressor 100 includes a pressure sensor 9 in the discharge piping system on the downstream side of the oil separation tank 6.
  • the pressure sensor 9 is arranged on the downstream side of the check valve 7 to detect the pressure of the compressed air and output the detection result to the control device 15.
  • the control device 15 compares the input pressure from the pressure sensor 9 with the set pressure (selected by the user or held as an initial value), and determines the frequency command to be output to the inverter 5. In this embodiment, it is assumed that the compressor main body 3 is driven by PID control.
  • the compressor 100 is provided with an air release piping system on the downstream side of the oil separation tank 6, and is provided with an air release valve 10A on the air release piping system.
  • the air exhaust piping system communicates with the discharge piping system in terms of air flow and pressure, and the flow of compressed air to the outside is controlled by opening and closing the air exhaust valve 10A.
  • the air release valve 10A is arranged on the air discharge pipe arranged on the downstream side of the oil separation tank 6 and on the upstream side of the check valve 7.
  • the air exhaust piping system is a piping that connects the discharge piping side of the oil separation tank 6 and the suction side of the compressor body (more specifically, the downstream side of the suction filter 1).
  • the air release valve 10A opens and closes in response to a command from the control device 15 in the "unload control” described later, and sends compressed air on the upstream side of the check valve 7 to the atmosphere (primary side of the suction throttle valve 2). It is designed to be released.
  • the compressor 100 includes a current value detector 18 that detects a current value between the power supply 17 and the inverter 5.
  • the current value detector 18 detects the current value when managing the control pressure of the compressor main body in the “unload control” described later, and outputs this to the control device 15. Further, the control device 15 stores in advance correlation information indicating the relationship between the current value and the pressure.
  • the correlation information is information on the current value corresponding to the load applied to the compressor main body 3. For example, when the load (pressure) applied to the compressor body 3 is 0.3 MPh, the current value is IL2, when the pressure is 0.25 MPh, the current value is IL1, and so on.
  • the internal pressure of the oil separation tank 6 pressure on the upstream side of the check valve 7) can be determined from the input of the current value.
  • unload control means that the suction throttle valve 2 is operated when the detected pressure of the pressure sensor 9 reaches the upper limit pressure PU higher than the target pressure PC due to the decrease in the consumption of compressed air.
  • This is a control method in which the power consumption is reduced by closing (suction throttle control) and opening the air release valve 10A (air release control) to reduce the load on the compressor main body 3.
  • the rotation speed of the electric motor 4 is in the state of the minimum rotation speed.
  • the control pressure of the compressor 100 is managed in the "unload control" by monitoring the current value.
  • FIG. 5 shows the time-series change of "unload control” according to the first embodiment.
  • the uppermost stage shows the opening / closing transition of the suction throttle valve 2 and the opening / closing transition of the air release valve 10A
  • the second stage shows the transition of the discharge line pressure detected by the pressure sensor 9
  • the third stage shows the current.
  • the transition of the INV (inverter) input current detected by the value detector 18 is shown
  • the fourth stage shows the rotation speed of the electric motor 4 (corresponding to the output frequency of the inverter 5).
  • the pressure PC indicates the target pressure (set pressure)
  • the pressure PU indicates the upper limit pressure at which "unload control” is started
  • the pressure PL returns from the unload control to "load control”. Indicates the lower limit pressure to be applied.
  • the control device 15 After starting the compressor, the control device 15 outputs a command to the inverter 5 and operates the electric motor 4 at the rated full speed rotation based on a predetermined acceleration rate. As a result, the discharge pressure of the compressor body 3 starts to increase toward the target pressure PC. At this time, the suction throttle valve 2 is open, the air release valve 10A is closed, and the INV input current value is ITC.
  • the control device 15 When the discharge line pressure reaches the PC at time T1, the control device 15 outputs a frequency command value to the inverter 5 so as to maintain the pressure PC by PID control based on the output value of the pressure sensor 9. As a result, the discharge line pressure is maintained based on the pressure PC.
  • the control device 15 starts the "unload” operation. That is, the suction throttle valve 2 is closed to limit the amount of suction air, and the air release valve 10A is opened to release the compressed air of the oil separation tank 6 (downstream from the check valve 7) to the atmospheric pressure environment. As a result, the internal pressure of the oil separation tank 6 is rapidly reduced, the load on the compressor main body 3 is reduced, and the power consumption can be reduced.
  • the pressure due to the compressed air discharged from the compressor main body 3 as described above is the control pressure of the compressor 100 (the power for returning the separated oil to the compressor main body 3 and the opening / closing power of the suction throttle valve 2). Etc.). Therefore, in order to secure a predetermined control pressure, in this embodiment, the limit of the suction amount and the release of the compressed air are controlled by whether or not the current value detected by the current value detector 18 is lower than the predetermined threshold value. It has become.
  • the control device 15 opens the suction throttle valve 2, closes the air release valve 10A, and raises the internal pressure of the oil separation tank. It is designed to maintain control pressure.
  • the suction throttle valve 2 is closed and the air release valve 10A is opened at time T5 to increase the internal pressure of the oil separation tank.
  • the suction throttle valve 2 is opened again, the air release valve 10A is closed, and the internal pressure of the oil separation tank is increased. That is, the compressor 100 secures the control pressure in the "unload control" by monitoring the INV input current value.
  • the control device 15 switches from "unload control” to "load control". That is, the suction throttle valve 2 is opened, the air release valve 10A is closed (when the pressure is lowered to the lower limit pressure PL when the pressure is already in that state, the current state is maintained), and the inverter 5 is operated at full speed at the rated speed. Outputs the frequency command value of. As a result, the discharge line pressure starts to increase toward the target pressure PC.
  • the internal pressure of the oil separation tank can be managed so as to secure the control pressure.
  • an arbitrary control pressure can be easily set according to various specifications and usage modes of the compressor 100. Also, the control pressure can be reliably secured.
  • the present embodiment uses a compressor with variable speed control by PID as an example
  • the present invention can be applied to a compressor with constant speed control using an inverter 5. That is, to explain using the constant speed control according to the conventional example of FIG. 2, the discharge line pressure becomes the upper limit pressure PU, the suction throttle valve 2 is closed, the air release valve 10A is opened, and "unload operation (motor rotation speed is constant)”. ) ”,
  • the INV input current value reaches the lower limit current value (IL1) corresponding to the predetermined control pressure
  • the suction throttle valve 2 is opened, the air release valve 10A is opened, and then the INV input is performed.
  • the current value detects IL2 the suction throttle valve 2 is closed and the air release valve 10A is opened.
  • a desired control pressure can be secured even with constant speed control.
  • both the suction throttle valve 2 and the air release valve 10A are operated (opened / closed), but only one of the suction throttle valve 2 and the air release valve 10A is opened / closed.
  • the effect of the present invention can be obtained.
  • the upper limit current value and the lower limit current value of the INV input current value are described in the same manner, but constant speed control is possible. It is also possible to set the upper limit current value and the lower limit current value to different values in the shift control.
  • the control device 15 may be provided with a plurality of information indicating the correlation between the pressure and the INV input current, and one of the plurality of correlation information may be selected between the constant speed control and the variable speed control.
  • Example 2 of the present invention will be described.
  • the desired control pressure was secured based on the current value detected by the current value detector 18 in the “unload control”, but in the second embodiment, the internal pressure of the oil separation tank 6 (check valve) was secured.
  • the control pressure of "unload control” is secured by using the detection pressure of the pressure sensor that detects (upstream side of the valve 7).
  • FIG. 6 shows the configuration of the compressor 100 according to the second embodiment. It should be noted that the same reference numerals are used for the same elements as in the first embodiment, and detailed description may be omitted.
  • the compressor 100 includes a pressure sensor 19 on the discharge piping system of the oil separation tank 6 and at a position on the upstream side of the check valve 7.
  • the position of the pressure sensor 19 is not limited to this, and the present invention can be carried out at either the upstream side of the check valve 7 and the discharge side of the compressor main body 3.
  • control device 15 stores the lower limit pressure PTL1 and the upper limit pressure PTL2 higher than the lower limit pressure PTL1 as the pressure threshold value during the "unload control".
  • PTL1 and PTL2 are pressures lower than the discharge line pressure PU, the target pressure PC, and the lower limit pressure PL.
  • FIG. 7 shows the time-series change of "unload control” according to the second embodiment. Similar to the first embodiment, when the discharge line pressure reaches the upper limit pressure PU at the time T3, the control device 15 starts the “unload” operation. The internal pressure of the oil separation tank 6 is rapidly reduced, and the load on the compressor body 3 is reduced.
  • control device 15 opens the suction throttle valve 2 and closes the air release valve 10A to increase the internal pressure of the oil separation tank and maintain the control pressure. ..
  • the suction throttle valve 2 is closed and the air release valve 10A is opened at time T5, the internal pressure of the oil separation tank is lowered again, and at time T6.
  • the suction throttle valve 2 is opened again, the air release valve 10A is closed, and the internal pressure of the oil separation tank is increased. That is, the compressor 100 secures the control pressure in the "unload control" by monitoring the internal pressure of the oil separation tank.
  • the internal pressure of the oil separation tank can be managed so as to secure the control pressure.
  • an arbitrary control pressure can be easily set for various specifications and usage modes of the compressor 100.
  • the control pressure can be reliably secured.
  • the present invention can be applied to a compressor by constant speed control using an inverter 5 as in the first embodiment. That is, to explain using the constant speed control according to the conventional example of FIG. 2, the discharge line pressure becomes the upper limit pressure PU, the suction throttle valve 2 is closed, the air release valve 10A is opened, and "unload operation (motor rotation speed is constant)”. ) ”, When the internal pressure of the oil separation tank reaches the lower limit pressure PTL1, the suction throttle valve 2 is opened, the air release valve 10A is closed, and then when the oil separation internal pressure PTL2 is detected, the suction throttle is throttled. The valve 2 is closed and the air release valve 10A is opened. As a result, a desired control pressure can be secured even with constant speed control.
  • the effect of the present invention can be obtained by opening and closing only one of the suction throttle valve 2 and the air release valve 10A.
  • the upper limit pressure and the lower limit pressure of the oil separation tank internal pressure are set to different values in the constant speed control and the variable speed control. It may be stored in the control device 15 and one of them may be selected.
  • Example 3 of the present invention will be described.
  • the control pressure during “unload control” was managed by monitoring the output values of the current value detector 18 and the pressure sensor 19, but in Example 3, the amount of air released was different.
  • the difference is that it is equipped with two or more air discharge valves and air discharge piping systems, and these can be selectively used.
  • the control using the inverter can be a constant speed or a variable speed (P, PI, PID).
  • the control pressure to be secured may not be the same.
  • the control pressure may be made variable even with the same constant speed or variable speed control. Therefore, in the third embodiment, one of the features is that it is possible to maintain different control pressures.
  • Example 3 will be described with reference to the drawings.
  • the same reference numerals are used for the same elements as in the above embodiment, and detailed description may be omitted.
  • FIG. 8 shows the configuration of the compressor 100 according to the third embodiment.
  • the compressor 100 includes two air exhaust piping systems on the downstream side of the oil separation tank 6, and the air exhaust valve 10A and the orifice (pressure adjusting valve) 11A, and the air exhaust valve 10B and the orifice (in each piping system).
  • a pressure regulating valve) 11B is provided.
  • the air release piping system provided with the air release valve 10A is the air release system for variable speed control
  • the air release piping system equipped with the air release valve 10B is the air release system for constant speed control.
  • the control device 15 opens and closes only the air release valve 10A in the "unload control" during variable speed control, and opens and closes only the air release valve 10B in the "unload control” during constant speed control.
  • Orifices 11A and 11B are mechanical on-off valves that use springs or the like, and are valve bodies that open at a predetermined pressure or higher and close at a predetermined pressure or lower.
  • the orifice 11A and the orifice 11B have different pressures to open (and close) (for example, the pressure at which the orifice 11A opens and closes is higher than that of the orifice 11B).
  • the desired control pressure can be maintained by closing the orifice 11A in the "unload control".
  • the suction throttle valve 2 and the air release valves 10A and 10B are provided, but the present invention can be applied to a compressor having only a suction throttle valve or an air release valve.
  • screw type is taken as an example of the compressor body
  • present invention can be applied to other positive displacement compressors (rotary type, reciprocating type, etc.) and centrifugal type compressors.
  • variable speed control (FIGS. 5, 7, etc.) of the above example, "unload control” is started when the discharge line pressure reaches the upper limit pressure PU, and then the lower limit pressure PL lower than the target pressure PC is applied.
  • the pressure of the lower limit pressure PL is arbitrary and may be set from the target pressure PC or more to less than the upper limit pressure PU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

アンロード運転中の制御圧力を可変とし、所望する制御圧力を確保する。 気体を圧縮して圧縮気体を吐き出す圧縮機本体と、駆動力を供給する電動機と、電動機に所定の周波数電力を供給する電力変換装置と、圧縮機本体の吸込み側に配置する吸込絞り弁及び吐出配管系統の圧縮気体を大気圧環境に放出する放気弁の少なくとも一方と、制御装置とを有し、吐出圧力が所定圧力に達すると吸込絞り弁を閉又は前記放気弁を開として圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、電力変換装置に入力される電流値を検出し、制御装置に出力する電流値検出器を備え、制御装置が、アンロード運転中に、電流値が所定の下限電流値になると、吸込絞り弁を開又は放気弁を閉とし、電流値が下限電流値より高い所定の上限電流値になると、吸込絞り弁を閉又は放気弁を開とするものである。

Description

気体圧縮機
 本発明は、気体圧縮機に係り、アンロード運転制御を行う気体圧縮機に関する。
 吸込み気体を圧縮する圧縮室に油や水といった液体を供給して圧縮気体を生成する気体圧縮機が知られている。以下、圧縮する気体を空気、供給する液体を油とした給油式の空気圧縮機を例として説明する。
 空気圧縮機の容量制御には、大きく二つの制御に分けることができる。一方は、吐出ライン圧力の圧力変動量により消費空気量を検出し、部分負荷時の消費動力を低減する圧力変動容量制御である。他方は、吐出ライン圧力を一定に保ち、消費空気量の増減に応じて圧縮機回転数を制御する定圧容量制御である。
 ここで、圧力変動容量制御はインバータを搭載しない空気圧縮機に用いられ、圧縮機本体の回転速度は一定である(以下、「一定速機」という場合がある。)。一定速機の容量制御には、圧縮機本体の吸気側に配置する吸込絞り弁の開度を調整する吸込絞り制御と、圧縮機本体の吐出側に配置する放気弁を開閉させる放気制御とがある。これらの一方或いは両方を用いるものが知られている。
 定圧容量制御では、圧縮機本体の回転数を増減させるため、インバータを搭載した圧縮機に用いられる(以下、「可変速機」という場合がある。)。この可変速機では、目標として設定された圧力に達するまでは、インバータによって高回転で運転し、当該設定圧力を上回ると、インバータによって回転数を低下させる可変速運転を行う制御となっている。例えば、ユーザ側の圧縮空気使用量が多く、ユーザ側吐出圧力が目標圧力より下回っていれば、定格上の最高回転数で運転し、やがてユーザ側の使用量が減少し、ユーザ側吐出圧力が目標圧力を上回ると、回転数を低下させて省エネを行うようになっている。回転数を変化させる制御としては、P、PI又はPID(Proportional、Integral、Differential)という吐出圧力に比例して回転数を変化させる制御方法が一般に知られている。そして、更に消費動力の低減を狙う手法として、このようなインバータによる回転数制御に加えて、吸込絞り弁制御や放気制御を併用する運転方法が知られている。
 例えば、特許文献1は、目標圧力(P0)を基調としてPID制御運転を行うが、ユーザ側の空気使用量が低下し、ユーザ側吐出圧力がP0に向かって昇圧するにつれて、P0を保つように回転数を低下させる制御を行う。このP0を保つ回転数から更にP0を超える上限圧(P1)にまで上昇すると、回転数が下限回転数の状態で、ユーザ側吐出口より上流側の圧縮空気を大気に放気する等して、圧縮機本体の負荷(電動機の負荷)を低下させ、動力をより低減させる運転方法を開示する。
 このように一定速機、可変速機の何れにおいても、油分離タンク内の圧縮空気の放気量を多くすれば、油分離タンク内部の圧力が低下するため、圧縮機本体に作用する負荷をより軽減することができる。
特開2001-342982号公報
 ところで、給油式空気圧縮機の場合、油分離タンク内部の圧力を潤滑油の供給圧力として利用するものが多い。給油式圧縮機において、圧縮作動室に供給される油の作用は、圧縮気体の冷却作用、圧縮機構内部の圧縮漏れを防止するシール作用及び圧縮機構の内部摩擦を低減する潤滑作用等がある。例えば、圧縮機構がスクリュー形式であれば、潤滑油は、圧縮空気の冷却、ロータ同士或いはロータと圧縮機本体ケーシングのボア面のシールや潤滑を行う。そして、上記吸込絞り弁制御や放気制御の実行中も、ロータ同士やロータとボア面間の潤滑の為に、一定以上の潤滑油が圧縮作動室に供給される必要がある。よって、吸込絞り弁制御や放気制御の間も、十分な油を供給し続ける必要から、油分離タンク内部圧力を所定圧力以上に確保しなければならないが、放気量が多ければ当該所定圧力を確保できない虞がある。
 この点、放気経路上に特定の圧力に応じて開閉するオリフィス等を配置し、放気制御中も油分離タンク内部の圧力(制御圧力)を一定以上確保することもできるが、かかる油分離タンク内部の圧力は圧縮機毎に異なるため、それらの仕様に合ったオリフィスを適宜用意しなければならないという課題がある。
 更に、油分離タンク内部の圧力を確保する他の方法としては、放気制御中に電動機の回転数を増加させることでもできるが、動力増加の要因にもなる。
 また、インバータ制御の給油式空気圧縮機は、多くの場合可変速制御を実行するのが通常であるが、インバータからの出力周波数を一定にし、一定速機と同様な使用をすることも可能である。即ちインバータを搭載する給油式圧縮機で、P、PI、PIDといった可変速制御と、電動機の回転速度一定とした一定速制御という両方の運用を行うことも可能である。このような場合、可変速制御時と一定速制御時で、上記アンロード制御における油分離タンク内部圧力即ち制御圧力が同一でないこともあり、いずれかの場合には圧縮機本体供給する油が不足する虞もある。
  気体圧縮機において、制御圧力を可変とすると共にアンロード制御時に適切な制御圧力を確保し得る技術が望まれる。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を適用する。即ち気体を圧縮して圧縮気体を吐き出す圧縮機本体と、これに駆動力を供給する電動機と、前記電動機に所定の周波数電力を供給する電力変換装置と、前記圧縮機本体の吸込み側に配置する吸込絞り弁及び吐出配管系統の圧縮気体を大気圧環境に放出する放気弁の少なくとも一方と、制御装置とを有し、吐出圧力が所定圧力に達すると前記吸込絞り弁を閉又は前記放気弁を開として前記圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、前記電力変換装置に入力される電流値を検出し、前記制御装置に出力する電流値検出器を備え、前記制御装置が、前記アンロード運転中に、前記電流値が所定の下限電流値になると前記吸込絞り弁を開又は前記放気弁を閉とし、前記下限電流値より高い所定の上限電流値になると、前記吸込絞り弁を閉又は前記放気弁を開とするものである。
 また、他の構成としては、気体を圧縮して圧縮気体を吐き出す圧縮機本体と、これに駆動力を供給する電動機と、前記電動機に所定の周波数電力を供給する電力変換装置と、前記圧縮機本体の吸込み側に配置する吸込絞り弁及び吐出配管系統の圧縮気体を大気圧環境に放出する放気弁の少なくとも一方と、制御装置とを有し、吐出圧力が所定圧力に達すると前記吸込絞り弁を閉又は前記放気弁を開として前記圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、前記圧縮機本体が吐き出す気体の圧力を検出し、前記制御装置に出力する圧力センサを備え、前記制御装置が、前記アンロード運転中に、前記圧力値が所定の下限圧力になると前記吸込絞り弁を開又は前記放気弁を閉とし、前記下限圧力より高い所定の上限圧力になると、前記吸込絞り弁を閉又は前記放気弁を開とするものである。
 更に、他の態様としては、気体を圧縮して圧縮気体を吐き出す圧縮機本体と、これに駆動力を供給する電動機と、前記電動機に所定の周波数電力を供給する電力変換装置と、吐出配管系統と連通する放気系統に配置して前記圧縮気体を大気圧環境に放出する放気弁と、制御装置とを有し、吐出圧力が所定圧力に達すると前記吸込絞り弁を閉又は前記放気弁を開として前記圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、複数の前記放気系統を有し、該複数の放気系統毎に前記放気弁を配置し且つそれぞれの前記放気弁の下流側に開閉圧力が互いに異なる圧力調整弁を備え、前記制御装置が、前記放気弁のうち1つの放気弁を選択して、前記アンロード運転を行うものである。
 本発明の一側面によれば、制御圧力を可変とすることができると共に適切な制御圧力を確保することができる。本発明の他の課題・構成・効果については以下の記載から明らかになる。
従来例の給油式空気圧縮機の構成を示す模式図である。 従来例の一定速制御によるロード・アンロード制御の遷移を示す図である。 従来例の可変速制御によるロード・アンロード制御の遷移を示す図である。 本発明の実施例1による給油式空気圧縮機の構成を示す模式図である。 実施例1によるロード・アンロード制御の遷移を示す図である。 本発明の実施例2による給油式空気圧縮機の構成を示す模式図である。 実施例2によるロード・アンロード制御の遷移を示す図である。 本発明の実施例3による給油式圧縮機の構成を示す模式図である。
 以下、図面を用いて本発明を実施するための形態について説明する。
 まず、従来例を説明し、その後、本発明の実施形態について説明する。図1に、従来の給油式空気圧縮機の構成を模式的に示す。給油式空気圧縮機200(以下、「圧縮機200」という場合がある。)は、インバータ5(電力変換装置)からの電力の供給を受けた電動機4によって圧縮機本体3が駆動すると、吸込絞り弁2を介して、大気空気が圧縮機本体に吸い込まれる。吸い込まれた大気空気は、圧縮機本体3の圧縮作用により昇圧され、圧縮機本体3の吐出口から所定圧力の圧縮空気が吐き出される。ここで、圧縮機本体3の圧縮室には、圧縮吸気の冷却、空気漏れ防止のシール及び部材同士の潤滑のために潤滑油が供給され、圧縮機本体3からは気液混合の圧縮空気が吐き出されるようになっている。
 圧縮機本体3からの圧縮空気は、油分離タンク6(液体分離タンク)へと流入し、圧縮空気と潤滑油が分離される。油分離タンク6で分離された圧縮空気は、アフタクーラ8で冷却された後、ユーザ使用設備へと送り込まれる。
 他方、油分離タンク6で分離された潤滑油は、その油温が温度調整弁12の閾値よりも低い場合は、温度調整弁12からオイルフィルタ14を経由し、圧縮機本体3へと潤滑油を給油する。油温が閾値よりも高い場合は、温度調整弁12からオイルクーラ13側に流れ、所定の温度範囲になるよう潤滑油を冷却し、オイルフィルタ14を経て、圧縮機本体3に潤滑油を給油するようになっている。油分離タンク6で分離された油を再度圧縮機本体に循環させる圧力は、圧縮機本体3の吐出空気圧力となる。即ち油分離タンク6の内部圧力によって、潤滑油が圧送されるようになっている。
 油分離タンク6の空気系統下流には、圧縮機本体3の吸込み側に分岐する分岐配管が配置し、その管路上に放気弁10を備える。放気弁10は制御装置15からの指令に応じて開閉を行う弁体である。放気弁10が開のとき、油分離タンク6内部の空気(逆止弁7よりも上流側の空気)が圧縮機本体3の吸込み側に放気されるようになっている。これによって電動機の負荷が軽減され省エネが実現される。
 アフタクーラ8の下流側配管には、圧力センサ9が配置する。圧力センサ9は圧縮機200の吐出空気圧力を検出し、その結果を制御装置15に出力する。制御装置15は、吐出空気圧力値を監視し、インバータ5に周波数指令値を出力したり、放気弁10の開閉等の全体制御を行う。
 なお、図1ではインバータ5を搭載した可変速機を示すが、一定速機の構成は、図1においてインバータ5が無い点及び制御装置が一定速回転の電力供給を電動機4に行うようにする点以外は、ほぼ同様の構成である。
 次いで、従来例の一定速制御、可変速制御による「アンロード制御」の遷移について説明する。
 図2に、一定速制御時の「アンロード制御」による時系列変化を示す。吐出ライン圧力がPU(上限圧力)に達すると、制御装置15は、吸込絞り弁2を閉、放気弁10を開として油分離タンク6内の圧力を放気弁10から放気させ、放気弁制御を開始する。吐出ライン圧力がPL(下限圧力)に低下するまでは、油分離タンク6内の圧力は放気を続けるが、オリフィス(圧力調整弁)11が閉塞することで、油分離タンク内圧PTL(アンロード安定圧力)で安定する。
 吐出ライン圧が圧力PL(下限圧力/ロード復帰圧力)まで低下すると、制御装置15は、吸込絞り弁2を開、放気弁10を閉とする。これにより油分離タンク6内の圧力が昇圧し、吐出ライン圧力が昇圧する。なお、電動機4の回転数はNFであり常に一定である。
 図3に、従来例の可変速制御(PID制御とする)による「アンロード制御」による時系列変化を示す。
 吐出ライン圧力が圧力PC(目標圧力)に到達すると、圧力PCで安定するように、P、PI、PIDによりインバータ5の出力周波数を変化させ電動機4の回転数を増減させる(図3中では、減速中として図示する)。電動機4の回転数が下限回転数NV1まで低下しても圧縮空気の消費量が減少すれば吐出ライン圧は徐々に増加し、やがて圧力PUに達する。圧力PUに到達すると、一定速制御と同様に、油分離タンク6内圧を放気弁10から放気して減圧させる。
 図2、図3に示すように、一定速制御と可変速制御では、電動機の回転数が異なるものの「アンロード制御」開始後に、油分離タンク6内圧を放気させる動作は同じである。
 以上の従来例を踏まえ、本発明の実施例1を説明する。
 図4に、本発明を適用した実施例1による給油式空気圧縮機100(以下、「圧縮機100」という場合がある。)。の構成を示す。なお、本実施例では、圧縮気体を空気、圧縮室に供給する液体を油として説明するが、本発明はこれに限定するものではなく、圧縮媒体が他の気体であってもよいし、圧縮室に供給する液体も水等の他の液体でもよい。
 圧縮機100は、圧縮機本体3、電動機4、インバータ5、油分離タンク6、アフタクーラ8、オイルクーラ13及び制御装置15を備え、これらを筐体内に格納するパッケージ型の圧縮機である。
 圧縮機本体3は、互いに回転する雄雌のスクリューロータの噛み合いによって圧縮空気を生成する容積型のスクリュー圧縮機本体である。なお、本発明は他の容積型圧縮機や回転型の圧縮機を適用することもできる。また、シングルスクリューロータ形式や3以上のスクリューロータを使用するものであってもよく又圧縮機本体が複数台からなる多段圧縮機本体であってもよい。
 インバータ5は、電源17から電力の供給を受け、これを制御装置15からの周波数指令値に応じて所定の周波数に変換した電力を電動機4に供給する。電動機4は種々の形式の電動機を適用することができる。電動機4の出力軸側は、圧縮機本体3のスクリューロータと直接的或いはギアやベルト等を介して間接的に接続し、圧縮機本体3に駆動力を供給する。
 油分離タンク6は、圧縮機本体3から吐き出された気液混合(油と空気)の圧縮空気から油と水を衝突分離、旋回分離或いはこれら両方によって分離する分離器である。分離された圧縮空気は、吐出配管系統に流れ、油分離タンク6から下流側への流れを許可する逆止弁7及び空冷式或いは液冷式のアフタクーラ8を介して圧縮空気の使用側(ユーザ側)に供給されるようになっている。
 制御装置15は、演算装置とプログラムの協働によって種々の機能部を構成し、圧縮機100の全体制御を行う。制御装置15は、一部又は全部がアナログ制御回路から構成するものであってもよい。圧縮機100は、油分離タンク6で分離された油を圧縮機本体3に還流する油配管系統を有する。油分離タンク6で空気と分離された油は、油分離タンク6の内部圧力によって圧縮機本体3に還流されるようになっている。油配管系統は、温度調整弁12、オイルクーラ13、オイルフィルタ14を備える。温度調整弁12は温度検出機能を有する電磁三方弁であり、油分離タンク6から流れる油の温度が所定温度以上の場合にオイルクーラ13側への出口を開、所定温度未満のときにオイルクーラ13をバイパスする側の出口を開とすることで油が流れる管路を切り替え、油温を所定温度範囲内に管理するようになっている。
 また、圧縮機100は、圧縮機本体3の吸込み側に吸込絞り弁2を備える。吸込絞り弁2は、圧縮機本体3の吸気路から流入する空気量を調節する機械式又は電磁式の弁体である。例えば、後述する「アンロード制御」において、吸込絞り弁2が閉又はその開度を小とするようになっている。吸込絞り弁2が機械式の場合には、油分離タンク6(逆止弁7の上流側)の内圧を制御圧力として利用する。即ち制御配管(不図示)を介して弁体の開閉制御を内圧によって行う。
 また、圧縮機100は、油分離タンク6の下流側の吐出配管系統に圧力センサ9を備える。圧力センサ9は、逆止弁7の下流側に配置して圧縮空気の圧力を検出し、検出結果を制御装置15に出力するようになっている。制御装置15は、圧力センサ9からの入力圧力と、(ユーザが選択或いは初期値として保持する)設定圧力とを比較し、インバータ5に出力する周波数指令を決定するようになっている。本実施例では、PID制御によって圧縮機本体3を駆動させるものとして説明する。
 また、圧縮機100は、油分離タンク6の下流側に放気配管系統を備え、放気配管系統上に放気弁10Aを備える。放気配管系統は、空気の流れや圧力面で吐出配管系統と連通するが、放気弁10Aの開閉によって外部への圧縮空気の流れを制御するようになっている。放気弁10Aは、油分離タンク6の下流側且つ逆止弁7よりも上流側に配置する放気配管上に配置する。放気配管系統は、油分離タンク6の吐出配管側と、圧縮機本体の吸込み側(より詳細には吸込フィルタ1の下流側)とを接続する配管である。放気弁10Aは、後述する「アンロード制御」において、制御装置15からの指令に応じて開閉し、逆止弁7よりも上流側の圧縮空気を大気(吸込絞り弁2の一次側)に解放するようになっている。
 そして、圧縮機100は、電源17とインバータ5の間の電流値を検出する電流値検出器18を備える。電流値検出器18は、後述する「アンロード制御」において、圧縮機本体の制御圧力を管理する際の電流値を検出し、これを制御装置15に出力するようになっている。また、制御装置15は、電流値と圧力と関係を示す相関情報を予め記憶する。相関情報とは、圧縮機本体3にかかる負荷に対応する電流値の情報である。例えば、圧縮機本体3にかかる負荷(圧力)が0.3MPhのときに電流値がIL2、圧力が0.25MPhのときに、電流値がそれよりも低いIL1といった具合に、制御装置15が、電流値の入力から、油分離タンク6の内圧(逆止弁7の上流側の圧力)を判定できるようになっている。
 以上の構成を有する圧縮機100の「アンロード制御」について説明する。本実施例において、「アンロード制御」とは圧力センサ9の検出圧力が、圧縮空気の消費量が減少することによって目標圧力PCよりも高い上限圧力PUに達した場合に、吸込絞り弁2を閉(吸込絞り制御)、放気弁10Aを開(放気制御)とし、圧縮機本体3の負荷を軽減することで消費動力を削減する制御方法である。なお、「アンロード制御」時には、電動機4の回転数は最低回転数の状態となる。
 また、本実施例の特徴の一つとして、「アンロード制御」時に、圧縮機本体3に係る負荷の変動状況を電流値検出器18が検出する電流値から管理する点が上げられる。即ち圧縮機本体3の負荷が増加すると入力電流量が上昇し、負荷が軽減されると下降する。本実施例では電流値を監視することで、「アンロード制御」において圧縮機100の制御圧力を管理するようになっている。
 図5に、実施例1による「アンロード制御」の時系列変化を示す。本図において、最上段は、吸込絞り弁2の開閉及び放気弁10Aの開閉遷移を示し、2段目は、圧力センサ9が検出する吐出ライン圧力の遷移を示し、3段目は、電流値検出器18が検出するINV(インバータ)入力電流の遷移を示し、4段目は、電動機4の回転数(インバータ5の出力周波数に相当)を示す。また、2段目の吐出ライン圧力において、圧力PCが目標圧力(設定圧力)、圧力PUが「アンロード制御」を開始する上限圧力を示し、圧力PLがアンロード制御から「ロード制御」に復帰する下限圧力を示す。
 圧縮機の起動後、制御装置15は、インバータ5に指令を出力し、電動機4を所定の増速レートに基づいて定格上の全速回転で運転させる。これにより圧縮機本体3の吐出圧力が目標圧力PCに向かって昇圧を開始する。このとき、吸込絞り弁2は開、放気弁10Aは閉、INV入力電流値はITCである。
 時間T1で、吐出ライン圧力がPCに達すると、制御装置15は、圧力センサ9の出力値に基づいてPID制御により圧力PCを維持するように、インバータ5に周波数指令値を出力する。これにより吐出ライン圧力は圧力PCを基調として維持される。
 時間T1からT2において、圧縮空気の消費量が徐々に減少することで、インバータ5が出力する周波数が低下し、電動機4の回転数が、例えば最低回転数であるNV1まで低下する。
 時間T2において、電動機4の回転数が下限回転数である最低回転数NV1のとき、更に、圧縮空気の消費量が減少すると、吐出ライン圧力は昇圧を開始する。この負荷の増加によりインバータ入力電流値は高くなり、ITUまで上昇する。
 時間T3において、吐出ライン圧力が上限圧力PUに達すると、制御装置15は「アンロード」運転を開始する。即ち吸込絞り弁2を閉として吸い込み空気量を制限し又放気弁10Aを開として油分離タンク6(逆止弁7より下流側)の圧縮空気を大気圧環境に放気する。これにより油分離タンク6の内部圧力が急速に降圧し、圧縮機本体3の負荷が軽減され、消費動力の軽減を図ることができる。
 ここで、上述のように圧縮機本体3から吐き出された圧縮空気による圧力は、圧縮機100の制御圧力(分離油を圧縮機本体3に還流するための動力や、吸込絞り弁2の開閉動力等)として機能する。そこで、所定の制御圧力を確保するため、本実施例では、吸込み量の制限や圧縮空気の放気を電流値検出器18が検出する電流値が所定の閾値を下回るか否かによって管理するようになっている。
 具体的には、時間T4で、INV入力電流値が電流閾値IL1まで低下すると、制御装置15は、吸込絞り弁2を開、放気弁10Aを閉とし、油分離タンク内部圧力を昇圧させ、制御圧力を維持するようになっている。
 その後、油分離タンク内部圧力が上昇し、INV入力電流値が電流閾値IL1より高いIL2まで上昇すると、時間T5で吸込絞り弁2を閉、放気弁10Aを開とし、油分離タンク内部圧力を再度降圧させ、時間T6でINV入力電流値が再度IL1に低下すると、再び吸込絞り弁2を開、放気弁10Aを閉とし、油分離タンク内部圧力を昇圧させる。即ち圧縮機100は、INV入力電流値を監視することで「アンロード制御」において、制御圧力を確保するようになっている。
 その後、時間T7で、吐出ライン圧力が下限圧力PLまで降圧すると、制御装置15は「アンロード制御」から「ロード制御」に切り替える。即ち吸込絞り弁2を開、放気弁10Aを閉の状態(既にその状態にあるときに下限圧力PLに降圧した場合には、現状維持の状態)とし、インバータ5に定格での全速運転での周波数指令値を出力する。これにより吐出ライン圧力は、目標圧力PCに向かって昇圧を開始する。
 このように、本実施例によれば、「アンロード制御」において、制御圧力を確保するように油分離タンク内圧を管理することができる。
 また、INV入力電流値の上限電流値IL2と、下限電流値IL1とを変更することで、圧縮機100の種々の仕様や使用態様に応じて、任意の制御圧力を容易に設定することができ、また確実に制御圧力を確保することができる。
 なお、本実施例では、PIDによる可変速制御による圧縮機を例としたが、インバータ5を使用した一定速制御による圧縮機であっても本発明を適用することができる。即ち図2の従来例による一定速制御を用いて説明すれば、吐出ライン圧力が上限圧力PUとなり、吸込絞り弁2を閉、放気弁10Aを開として「アンロード運転(電動機回転数は一定)」の実行中に、INV入力電流値が所定の制御圧力に対応する下限電流値(IL1)となった場合に、吸込絞り弁2を開、放気弁10Aを開とし、その後、INV入力電流値がIL2を検出したときに、吸込絞り弁2を閉、放気弁10Aを開とするように制御する。これにより一定速制御であっても所望の制御圧力を確保することができる。
 また、本実施例では、吸込絞り弁2と放気弁10Aの両方を作動(開閉)するようにしたが、吸込絞り弁2及び放気弁10Aのいずれか一方のみを開閉するようにすることでも本発明の効果を得ることができる。
 また、実施例では、圧縮機100が一定速制御又は可変速制御として選択的に使用する場合にもINV入力電流値の上限電流値と下限電流値を同様として説明したが、一定速制御と可変速制御で上限電流値と下限電流値を異なる値にすることも可能である。例えば、圧力とINV入力電流の相関を示す情報を制御装置15に複数備え、一定速制御時と、可変速制御時とで、複数の相関情報のいずれかを選択するようにすることもできる。
 次いで、本発明の実施例2について説明する。実施例1は、「アンロード制御」において、電流値検出器18が検出する電流値に基づいて、所望する制御圧力を確保したが、実施例2は、油分離タンク6の内部圧力(逆止弁7の上流側)を検出する圧力センサの検出圧力を用いて「アンロード制御」の制御圧力を確保する点を特徴の一つとする。
 図6に、実施例2による圧縮機100の構成を示す。なお、実施例1と同様の要素は同一符号を用いるものとし、詳細な説明を省略する場合がある。
 圧縮機100は、油分離タンク6の吐出配管系統上且つ逆止弁7の上流側の位置に圧力センサ19を備える。なお、圧力センサ19の位置はこれに限定するものではなく、逆止弁7の上流側且つ圧縮機本体3の吐出側のいずれかの位置であっても本発明を実施することはできる。
 また、制御装置15は、「アンロード制御」中の圧力閾値として下限圧力PTL1とそれよりも高い上限圧力PTL2を記憶する。PTL1及びPTL2は、吐出ライン圧力PU、目標圧力PC、下限圧力PLよりも低い圧力である。
 図7に、実施例2による「アンロード制御」の時系列変化を示す。実施例1と同様に、時間T3において、吐出ライン圧力が上限圧力PUに達すると、制御装置15は「アンロード」運転を開始する。油分離タンク6の内部圧力は急速に降圧し、圧縮機本体3の負荷が軽減される。
 時間T4で、油分離タンク内圧が下限圧力PTL1まで低下すると、制御装置15は、吸込絞り弁2を開、放気弁10Aを閉とし、油分離タンク内部圧力を昇圧させ、制御圧力を維持する。
 その後、油分離タンク内部圧力が上昇し、油分離タンクPTL2まで上昇すると、時間T5で吸込絞り弁2を閉、放気弁10Aを開とし、油分離タンク内部圧力を再度降圧させ、時間T6で油分離タンク内圧が再度PTL1に低下すると、再び吸込絞り弁2を開、放気弁10Aを閉とし、油分離タンク内部圧力を昇圧させる。即ち圧縮機100は、油分離タンク内圧を監視することで「アンロード制御」において、制御圧力を確保するようになっている。
 このように、本実施例によれば、「アンロード制御」において、制御圧力を確保するように油分離タンク内圧を管理することができる。
 また、INV入力電流値の上限圧力PTL2と、下限圧力PTL1とを変更することで、圧縮機100の種々の仕様や使用態様に対して、任意の制御圧力を容易に設定することができ、また確実に制御圧力を確保することができる。
 なお、本実施例では可変速制御による圧縮機を例としたが、実施例1と同様に、インバータ5を使用した一定速制御による圧縮機であっても本発明を適用することができる。即ち図2の従来例による一定速制御を用いて説明すれば、吐出ライン圧力が上限圧力PUとなり、吸込絞り弁2を閉、放気弁10Aを開として「アンロード運転(電動機回転数は一定)」の実行中に、油分離タンク内圧が下限圧力PTL1となった場合に、吸込絞り弁2を開、放気弁10Aを閉とし、その後、油分離内圧PTL2を検出したときに、吸込絞り弁2を閉、放気弁10Aを開とするように制御する。これにより一定速制御であっても所望の制御圧力を確保することができる。
 また、本実施例も実施例1と同様に、吸込絞り弁2及び放気弁10Aのいずれか一方のみを開閉するようにすることでも本発明の効果を得ることができる。
 また、本実施例も実施例1と同様に、一定速制御と可変速制御を切り替えて使用する際に、一定速制御と可変速制御で油分離タンク内圧の上限圧力と下限圧力を異なる値として制御装置15に記憶し、いずれかを選択するようにしてもよい。
 次いで、本発明の実施例3について説明する。実施例1及び2は、電流値検出器18や圧力センサ19の出力値を監視することで「アンロード制御」中の制御圧力の管理を行ったが、実施例3は、放気量の異なる2以上の放気弁及び放気配管系を備え、これを選択的に使用可能とする点が異なる。
 実施例1及び2でも述べたが、インバータを用いた制御は一定速も可変速(P,PI、PID)も可能である。これら両者の「アンロード制御」において、確保する制御圧力が同一とならない場合もある。或いは同じ一定速や可変速制御でも制御圧力を可変とする場合も考えられる。そこで、実施例3では、異なる制御圧力の維持を実現し得る点を特徴の一つとする。
 以下、図面を用いて実施例3を説明する。なお、上記実施例と同様の要素は同一符号を用いるものとし、詳細な説明を省略する場合がある。
 図8に、実施例3による圧縮機100の構成を示す。圧縮機100は、油分離タンク6の下流側にある放気配管系統を2つ備え、それぞれの配管系統に、放気弁10A及びオリフィス(圧力調整弁)11Aと、放気弁10Bとオリフィス(圧力調整弁)11Bとを備える。
 放気弁10Aを備える放気配管系統が可変速制御用の放気系統であり、放気弁10Bを備える放気配管系統が一定速制御用の放気系統である。制御装置15は、可変速制御時の「アンロード制御」では放気弁10Aのみの開閉を行い、一定速制御時の「アンロード制御」では放気弁10Bのみの開閉を行う。
 オリフィス11A及び11Bはバネ等を利用する機械式の開閉弁であり、所定圧力以上で開、所定圧力未満で閉となる弁体である。本例ではオリフィス11Aと、オリフィス11Bとで開(及び閉)となる圧力が異なる(例えば、オリフィス11Aが開閉する圧力がオリフィス11Bより高い)。例えば、可変速制御の場合、「アンロード制御」においてオリフィス11Aが閉となることで、所望する制御圧力を維持することができる。
 以上、本発明を実施するための実施例について説明したが、本発明は上記種々の例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変更や他の実施例の置換等が可能である。
 例えば、上記例では吸込絞り弁2と、放気弁10A・10Bを備える構成としたが、吸込絞り弁又は放気弁のみを備える圧縮機であっても本発明を適用できる。
 また、圧縮機本体としてスクリュー型を例としたが、他の容積型圧縮機(回転式や往復動式等)や遠心型圧縮機であっても本発明を適用できる。
 また、上記例の可変速制御(図5、図7等)では、吐出ライン圧力が上限圧力PUとなった時に「アンロード制御」を開始し、その後、目標圧力PCよりも低圧の下限圧力PLとなった時に「ロード制御」に切り替えるものとして説明したが、下限圧力PLの圧力は任意であり、目標圧力PC以上から上限圧力PU未満の設定としてもよい。
1…吸込フィルタ、2…吸込絞り弁、3…圧縮機本体、4…電動機、5…インバータ、6…油分離タンク、7…逆止弁、8…アフタクーラ、9…圧力センサ、10A・10B…放気弁、11・11A・11B…オリフィス、12…温度調整弁、13…オイルクーラ、14…オイルフィルタ、15…制御装置、17…電源、18…電流値検出器、19…圧力センサ、100・200…圧縮機(給油式空気圧縮機)

Claims (18)

  1.  気体を圧縮して圧縮気体を吐き出す圧縮機本体と、これに駆動力を供給する電動機と、前記電動機に所定の周波数電力を供給する電力変換装置と、前記圧縮機本体の吸込み側に配置する吸込絞り弁及び吐出配管系統の圧縮気体を大気圧環境に放出する放気弁の少なくとも一方と、制御装置とを有し、吐出圧力が所定圧力に達すると前記吸込絞り弁を閉又は前記放気弁を開として前記圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、
     前記電力変換装置に入力される電流値を検出し、前記制御装置に出力する電流値検出器を備え、
     前記制御装置が、前記アンロード運転中に、前記電流値が所定の下限電流値になると、前記吸込絞り弁を開又は前記放気弁を閉とし、
     前記電流値が前記下限電流値より高い所定の上限電流値になると、前記吸込絞り弁を閉又は前記放気弁を開とするものである気体圧縮機。
  2.  請求項1に記載の気体圧縮機であって、
     前記上限電流値及び前記下限電流値が、前記圧縮機本体の圧力負荷に相当する電流値である気体圧縮機。
  3.  請求項1に記載の気体圧縮機であって、
     前記制御装置が、前記圧縮機本体が吐き出す圧縮気体の圧力に応じて、前記電力変換装置にP、PI又はPIDのいずれかの可変速制御指令を出力するものである気体圧縮機。
  4.  請求項1に記載の気体圧縮機であって、
     前記制御装置が、前記電力変換装置に一定速制御指令を出力するものである気体圧縮機。
  5.  請求項1に記載の気体圧縮機であって、
     前記気体圧縮機が給液式の圧縮機であり、前記圧縮機本体が吐き出す気液混合の圧縮気体から圧縮気体と液体を分離するとともに、分離した前記液体を前記圧縮機本体に還流する液体分離タンクを備えるものである気体圧縮機。
  6.  請求項1に記載の気体圧縮機であって、
     前記圧縮機本体が、容積型又は遠心型である気体圧縮機。
  7.  請求項1に記載の気体圧縮機であって、
     前記気体が空気である気体圧縮機。
  8.  気体を圧縮して圧縮気体を吐き出す圧縮機本体と、これに駆動力を供給する電動機と、前記電動機に所定の周波数電力を供給する電力変換装置と、前記圧縮機本体の吸込み側に配置する吸込絞り弁及び吐出配管系統の圧縮気体を大気圧環境に放出する放気弁の少なくとも一方と、制御装置とを有し、吐出圧力が所定圧力に達すると前記吸込絞り弁を閉又は前記放気弁を開として前記圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、
     前記圧縮機本体が吐き出す気体の圧力値を検出し、前記制御装置に出力する圧力センサを備え、
     前記制御装置が、前記アンロード運転中に、前記圧力値が所定の下限圧力になると、前記吸込絞り弁を開又は前記放気弁を閉とし、
     前記圧力値が前記下限圧力より高い所定の上限圧力になると、前記吸込絞り弁を閉又は前記放気弁を開とするものである気体圧縮機。
  9.  請求項8に記載の気体圧縮機であって、
     前記制御装置が、前記圧縮機本体が吐き出す圧縮気体の圧力に応じて、前記電力変換装置にP、PI又はPIDの可変速制御指令を出力するものである気体圧縮機。
  10.  請求項8に記載の気体圧縮機であって、
     前記制御装置が、前記電力変換装置に一定速制御指令を出力するものである気体圧縮機。
  11.  請求項8に記載の気体圧縮機であって、
     前記気体圧縮機が給液式の圧縮機であり、前記圧縮機本体が吐き出す気液混合の圧縮気体から圧縮気体と液体を分離するとともに、分離した前記液体を前記圧縮機本体に還流する液体分離タンクを備え、
     前記圧力センサが前記液体分離タンクの下流側に配置するものである気体圧縮機。
  12.  請求項8に記載の気体圧縮機であって、
     前記圧縮機本体が、容積型又は遠心型である気体圧縮機。
  13.  請求項8に記載の気体圧縮機であって、
     前記気体が空気である気体圧縮機。
  14.  気体を圧縮して圧縮気体を吐き出す圧縮機本体と、これに駆動力を供給する電動機と、前記電動機に所定の周波数電力を供給する電力変換装置と、吐出配管系統と連通する放気系統に配置して前記圧縮気体を大気圧環境に放出する放気弁と、制御装置とを有し、吐出圧力が所定圧力に達すると前記放気弁を開として前記圧縮機本体の負荷を軽減させるアンロード運転を行う気体圧縮機であって、
     複数の前記放気系統を有し、該複数の放気系統毎に前記放気弁を配置し且つそれぞれの前記放気弁の下流側に開閉圧力が互いに異なる圧力調整弁を備え、
     前記制御装置が、前記放気弁のうち1つの放気弁を選択して、前記アンロード運転を行うものである気体圧縮機。
  15.  請求項14に記載の気体圧縮機であって、
     前記制御装置が、
     前記圧縮機本体が吐き出す圧縮気体の圧力に応じて、前記電力変換装置にP、PI又はPIDのいずれかの可変速制御指令及び一定速制御指令による両方の運転を選択的に可能とするものであり、
     前記アンロード運転中に制御する前記放気弁が、前記可変速制御指令の運転及び一定速制御指令の運転毎に異なるものである気体圧縮機。
  16.  請求項14に記載の気体圧縮機であって、
     前記気体圧縮機が給液式の圧縮機であり、前記圧縮機本体が吐き出す気液混合の圧縮気体から圧縮気体と液体を分離するとともに、分離した前記液体を前記圧縮機本体に還流する液体分離タンクを備えるものである気体圧縮機。
  17.  請求項14に記載の気体圧縮機であって、
     前記圧縮機本体が、容積型又は遠心型である気体圧縮機。
  18.  請求項14に記載の気体圧縮機であって、
     前記気体が空気である気体圧縮機。
PCT/JP2020/013114 2019-04-15 2020-03-24 気体圧縮機 WO2020213353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/601,937 US11994138B2 (en) 2019-04-15 2020-03-24 Gas compressor with a plurality of air realease systems each having an air release valve and an air regulating valve
CN202080027106.4A CN113728163B (zh) 2019-04-15 2020-03-24 气体压缩机
JP2021514842A JP7267407B2 (ja) 2019-04-15 2020-03-24 気体圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076771 2019-04-15
JP2019076771 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213353A1 true WO2020213353A1 (ja) 2020-10-22

Family

ID=72837269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013114 WO2020213353A1 (ja) 2019-04-15 2020-03-24 気体圧縮機

Country Status (4)

Country Link
US (1) US11994138B2 (ja)
JP (1) JP7267407B2 (ja)
CN (1) CN113728163B (ja)
WO (1) WO2020213353A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638904B (zh) * 2021-10-18 2022-04-26 亿昇(天津)科技有限公司 一种离心空压机的控制方法、装置及系统
CN116123123B (zh) * 2023-04-04 2023-08-01 亿昇(天津)科技有限公司 一种磁悬浮鼓风机系统的控制方法及磁悬浮鼓风机系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130303A1 (ja) * 2016-01-27 2017-08-03 株式会社日立産機システム 気体圧縮機及び気体圧縮機システム
WO2018179789A1 (ja) * 2017-03-31 2018-10-04 株式会社日立産機システム 気体圧縮機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582233A (en) * 1969-04-24 1971-06-01 Worthington Corp Rotary compressor control system
JPS56121888A (en) * 1980-02-29 1981-09-24 Tokico Ltd Oil-cooled compressor
JPS5725191U (ja) * 1980-07-19 1982-02-09
JPS6153581A (ja) * 1984-08-23 1986-03-17 Nippon Telegr & Teleph Corp <Ntt> 海底ケ−ブル等の位置監視装置
JPH0137191Y2 (ja) * 1984-09-11 1989-11-09
JP3262011B2 (ja) * 1996-02-19 2002-03-04 株式会社日立製作所 スクリュー圧縮機の運転方法及びスクリュー圧縮機
JP4248077B2 (ja) * 1999-04-14 2009-04-02 株式会社日立産機システム 圧縮機装置
JP4415340B2 (ja) 2000-06-02 2010-02-17 株式会社日立産機システム スクリュー圧縮装置とその運転制御方法
JP4532327B2 (ja) * 2005-03-31 2010-08-25 株式会社神戸製鋼所 圧縮機およびその運転制御方法
US20110194928A1 (en) * 2008-10-13 2011-08-11 Kturbo Inc. Blow-off system for multi-stage turbo compressor
JP5674586B2 (ja) 2011-08-01 2015-02-25 株式会社日立産機システム 油冷式スクリュー圧縮機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130303A1 (ja) * 2016-01-27 2017-08-03 株式会社日立産機システム 気体圧縮機及び気体圧縮機システム
WO2018179789A1 (ja) * 2017-03-31 2018-10-04 株式会社日立産機システム 気体圧縮機

Also Published As

Publication number Publication date
CN113728163B (zh) 2023-09-15
US20220136513A1 (en) 2022-05-05
JPWO2020213353A1 (ja) 2020-10-22
CN113728163A (zh) 2021-11-30
US11994138B2 (en) 2024-05-28
JP7267407B2 (ja) 2023-05-01

Similar Documents

Publication Publication Date Title
KR100345843B1 (ko) 스크류 압축장치와 그 운전 제어방법
US20170268498A1 (en) Multistage Compressor
JP3837278B2 (ja) 圧縮機の運転方法
US8241007B2 (en) Oil-injection screw compressor
WO2020213353A1 (ja) 気体圧縮機
US6881040B2 (en) Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
JP4532327B2 (ja) 圧縮機およびその運転制御方法
US11193489B2 (en) Method for controlling a rotary screw compressor
JP5506830B2 (ja) スクリュー圧縮機
JP2019138200A (ja) 圧縮機システム
US20230243352A1 (en) Oiling device and abnormality detection method of the same
JP6940686B2 (ja) 気体圧縮機
JP4659851B2 (ja) 無給油式スクリュー圧縮機
JP7107730B2 (ja) 油冷式スクリュ圧縮機の運転制御方法及び油冷式スクリュ圧縮機
JP2005069100A (ja) 無給油式スクリュー圧縮機
JP5422431B2 (ja) 流体圧縮機の制御方法及び流体圧縮機
EP2417357A1 (en) Screw compressor specially suitable to be connected in parallel in compression units
JP4608289B2 (ja) スクリュ圧縮機の運転制御方法
JPH03121291A (ja) 回転圧縮機の容量制御方法
JP4399655B2 (ja) 圧縮空気製造設備
JP2005083214A (ja) 圧縮機ユニット
CN116357609A (zh) 压缩机及冷水机组
JP2019120217A (ja) 流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791092

Country of ref document: EP

Kind code of ref document: A1