WO2020213302A1 - レーザ溶接方法およびレーザ溶接装置 - Google Patents
レーザ溶接方法およびレーザ溶接装置 Download PDFInfo
- Publication number
- WO2020213302A1 WO2020213302A1 PCT/JP2020/010403 JP2020010403W WO2020213302A1 WO 2020213302 A1 WO2020213302 A1 WO 2020213302A1 JP 2020010403 W JP2020010403 W JP 2020010403W WO 2020213302 A1 WO2020213302 A1 WO 2020213302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal plate
- laser welding
- recess
- plate material
- laser
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/22—Spot welding
Definitions
- the present invention relates to a laser welding method and a laser welding apparatus.
- Laser welding technology may be used to join metal plates. Joining of metal plate materials by laser welding is performed by melting and solidifying a part of the metal plate material by irradiation with laser light. When metal plates are joined by laser welding, they have the advantages of higher welding speed and less heat effect than when joining by resistance welding. Further, when metal plates are joined to each other by laser welding, welding can be performed without contact with the metal plates, processing efficiency is high, and rigidity can be increased by continuous welding.
- Patent Document 1 discloses a technique of using laser welding for joining a bus bar and a tab terminal.
- a hemispherical overhang portion is formed in the joint region of the tab terminal by plastic working (overhanging, etc.), whereby the overhang formed on one main surface of the tab terminal by plastic working.
- a laser beam is irradiated toward the concave portion of the portion, and the top of the convex portion that is projected on the opposite main surface is joined to the bus bar.
- Patent Document 1 by performing plastic working as described above and then joining by laser light irradiation, the heat generated by the laser light irradiation can be trapped in the recess, and the joining strength is improved. It is said that it can be done.
- the present invention has been made to solve the above problems, and a laser capable of joining metal plates with high bonding strength even when there is a gap between the metal plates. It is an object of the present invention to provide a welding method and a laser welding apparatus.
- At least two superposed metal plates are irradiated with laser light on the outer main surface of the outer metal plate located at the outermost side of the superposition, and at least 2 of the above.
- a laser welding method for joining a sheet of metal plates wherein the at least two metal plates include an inner metal plate adjacent to the inside of the overlap with respect to the outer metal plate, and at least the said.
- the outer metal plate material a recess is formed in which the outer main surface is recessed in the plate thickness direction of the metal plate material in a predetermined region, and the inner main surface opposite to the outer main surface is recessed in the plate thickness direction.
- a convex portion formed to be convex is formed, and laser light is irradiated from the side of the outer main surface toward the inside of the concave portion to perform laser welding to melt the metal of the portion, and the convex portion has an appearance.
- the shape is a cone shape, the bottom surface portion which is the top surface facing the main surface of the inner metal plate material is flat, and in the execution of the laser welding, the bottom surface portion of the convex portion is the inner metal plate material.
- the laser beam is irradiated toward the inside of the recess, and at least a part of the recess is the laser.
- the spot of light is scanned so as to orbit around a predetermined location in the recess.
- FIG. 1 It is a schematic diagram which shows the schematic structure of the press machine among the structure of the laser welding apparatus which concerns on 1st Embodiment. It is a schematic cross-sectional view which shows the partial structure of the metal plate material which is overhanging by a press machine. It is a schematic diagram which shows the schematic structure of the laser welding machine among the structure of the laser welding apparatus which concerns on 1st Embodiment. It is a schematic plan view which shows the scanning mode of the spot of the laser beam in the laser welding machine which concerns on 1st Embodiment. It is a schematic cross-sectional view which shows the VV line cross section in FIG.
- FIG. 1 is a schematic view showing a schematic configuration of a press machine 10 among the configurations of the laser welding apparatus 1 according to the first embodiment
- FIG. 3 is a schematic diagram showing a schematic configuration of a laser welding machine 20.
- FIG. 2 is a schematic cross-sectional view showing a partial configuration of a metal plate material 501 that has been plastically worked (overhanging) by a press machine 10.
- the laser welding apparatus 1 includes a press machine (plastic working machine) 10 capable of performing overhanging and a laser welding machine 20 capable of performing laser welding. Be prepared.
- the press machine 10 is a processing machine that overhangs a predetermined area of a metal plate material (outer metal plate material) 501.
- the press machine 10 has a cylinder 11 for advancing and retreating the rod 12 in the Z direction, an upper die 13 attached to the tip of the rod 12, and a lower die 13 attached to the upper die 13 and a lower die arranged at a distance below the Z direction.
- a mold 14 and a drive circuit unit 15 for driving the cylinder 11 are provided.
- a convex portion 13a projecting in a conical trapezoidal shape is provided on the lower side of the upper mold 13 in the Z direction (the side facing the lower mold 14).
- the top surface portion 13b which is the lower surface of the convex portion 13a, is formed flat.
- a concave portion 14a having a similar shape to the convex portion 13a is provided on the upper portion of the lower mold 14 in the Z direction (the side facing the upper mold 13).
- the inner bottom surface portion 14b of the recess 14a is formed flat and is substantially parallel to the top surface portion 13b of the upper die 13.
- the upper mold 13 is provided with one convex portion 13a and the lower mold 14 is provided with one concave portion 14a, but the upper mold 13 is provided with a plurality of concave portions 14a.
- the convex portion 13a may be provided, and the lower mold 14 may also be provided with the concave portion 14a corresponding to the number of the convex portions 13a provided on the upper mold 13.
- a recess (embossed recess) 501b is formed in which a part of the upper surface (outer main surface) 501a of the metal plate material 501 is recessed downward in the Z direction, and protrudes downward in the Z direction on the lower surface (inner main surface) 501c.
- the raised convex portion (embossed convex portion) 501d is formed.
- the shape of the concave portion 501b is defined by the shape of the convex portion 13a of the upper mold 13, and the shape of the convex portion 501d is defined by the shape of the concave portion 14a of the lower mold 14.
- the recess 501b formed by using the press machine 10 according to the present embodiment has a truncated cone shape, and the inner bottom surface portion 501e is flat.
- the slope portion 501f is formed by a curved surface as a surface surrounding the space in the recess 501b (around the direction intersecting the Z direction).
- the recess 501b has a diameter of the inner bottom surface portion 501a of D 501e and a depth of the recess 501b in the Z direction of H 501b .
- the convex portion 501d has a truncated cone shape, and the bottom surface portion 501 g, which is the top surface of the truncated cone, is flat.
- a diameter of the bottom surface 501g of protrusion 501d is a D 501g, greater than the diameter D 501e in this embodiment. That is, in the present embodiment, the metal plate material 501 is overhanged so that the size (planar size) of the bottom surface portion 501g in the direction intersecting the Z direction is larger than the plane size of the inner bottom surface portion 501e. ..
- the configuration according to this embodiment can be suitably applied to a so-called thin plate having a plate thickness of about 0.5 mm to 3.2 mm.
- the laser welder 20 has a metal plate material 501 that has been overhanged in the form shown in FIG. 2 and a metal plate material that is superposed on the metal plate material 501. It is a welding machine that forms a laminated body 500 by laser welding (inner metal plate material) 502.
- the laser welder 20 includes a laser oscillator 21, an optical path 22, and a condensing unit (scanning unit) 23.
- the laser oscillator 21 oscillates the laser beam according to a command from the controller (control unit) 26 connected to the laser oscillator 21.
- the controller 26 includes a microprocessor composed of a CPU, ROM, RAM, and the like.
- the laser light oscillated by the laser oscillator 21 is propagated to the condensing unit 23 through the optical path 22.
- the propagated laser light is focused on the inner bottom surface portion 501e of the recess 501b in the metal plate material 501 of the laminated body 500 (spots are formed).
- the condensing unit 23 scans the spot of the laser beam on the surface of the metal plate material 501 according to the command from the controller 26.
- an optical fiber cable is used as an example of the optical path 22, but in addition to this, various optical paths capable of propagating the laser beam by a mirror or the like can be adopted.
- the laser welding machine 20 includes a welding robot 24 and a drive circuit unit 25 for driving the welding robot 24.
- a light collecting unit 23 is attached to the tip of the welding robot 24, and the light collecting unit 23 can be moved in three dimensions according to a command from a controller 26 connected to the drive circuit unit 25.
- the drive circuit unit 15 of the press machine 10 is also connected to the controller 26, and each position with respect to the overhanging portion.
- the configuration is such that information can be transmitted to the controller 26.
- the controller 26 sets the region for scanning the laser beam based on the input position information of the overhanging region.
- a gap G is provided between the bottom surface portion 501 g of the convex portion 501d formed by the overhanging process and the upper surface (main surface) 502a of the metal plate material 502. D is vacant, and the gap G is vacant in other parts.
- the overhanging process is performed so that the depth H 501b of the recess 501b is 0.4 to 0.6 times (specifically, for example, 0.5 times) the gap G. ..
- FIG. 4 is a schematic plan view showing a scanning mode of a spot of a laser beam in the laser welding machine 20.
- the spot of the laser beam is the laser beam in a state where the controller 26 issues a command to the laser oscillator 21 to oscillate the laser beam.
- the light collecting unit 23 is controlled so as to pass over the scanning locus LN LB.
- the laser beam scanning locus LN LB is a locus that orbits around a predetermined portion (circumferential center) Ax LB of the inner bottom surface portion 501e in the recess 501b of the metal plate material 501.
- the controller 26 controls the condensing unit 23 so that the spot of the laser light passes on the laser light scanning locus LN LB.
- the metal in the portion that is a substantially circular region in a plan view around the orbiting center Ax LB is melted and agitated.
- the shape of the laser light scanning locus LN LB around which the spot of the laser light circulates (the shape of a substantially circular shape in a plan view) is changed to the plane shape of the inner bottom surface portion 501e in the recess 501b. It is substantially the same as the planar shape (approximately circular shape in plan view) and the planar shape (approximately circular shape in plan view) of the bottom surface portion 501 g in the convex portion 501d.
- the plane size of the laser beam scanning locus LN LB (the size when viewed from the Z direction) is set to substantially the same size as the plane size of the inner bottom surface portion 501e in the concave portion 501b, and the bottom surface portion in the convex portion 501d.
- the size is smaller than the plane size of 501 g. That is, in this embodiment, the diameter D 501e of the inner bottom surface portion 501e (see FIG. 2.), Substantially the same city as the maximum diameter D LB of the laser beam scanning locus LN LB, the diameter D 501 g of the bottom portion 501 g, a laser
- the optical scanning locus LN LB is formed larger than the maximum diameter D LB.
- FIG. 5 is a schematic cross-sectional view showing a VV line cross section in FIG. 4
- FIG. 6 is a schematic cross-sectional view showing a form of a welded portion formed by the welding method according to a comparative example.
- the laser beam when the laser beam is irradiated into the recess 501b, it is melted and agitated by the heat of the laser beam irradiation, and then the metal solidifies to form a welded portion (nugget) on each portion. ) 100 is formed.
- the weld 100 is formed so as to fill the gap G D had free between the metal plate 501 and metal plate 502 prior to welding (see FIG.). Then, in the welded portion 100, the portion on the upper side in the Z direction, which is the irradiation side of the laser beam, is recessed downward.
- the gap G D through which the molten metal flows is smaller than the gap G in the other region, so that the amount of the molten metal flowing in is small. Less than when no overhanging process is applied. Therefore, it is possible to suppress the thinning of the wall thickness of the bridge portion B, which is the plate thickness of the slope portion 501f of the recess 501b, as compared with the case where the prior art is used, and a fragile structure is formed in the bridge portion B. It can be suppressed.
- the laser welding apparatus 1 irradiation of laser light is performed so that the spot orbits around the orbiting center Ax LB in at least a part of the recess 501b.
- the metal plates 501 and 502 are melted and stirred to join the metal plates 501 and 502 to each other. Therefore, there are gaps G and DD between the metal plates 501 and 502 before welding. even, it is possible to fill the gap G D between each other a metal plate 501, 502 by the molten metal. Therefore, in the present embodiment, even when there are gaps G and DD between the metal plates 501 and 502 in the state before welding, the metal plates 501 and 502 are made high with a high gap margin. Can be joined with strength.
- the upper surface 501a of a predetermined region is recessed by the press machine 10 and the lower surface 501c of the same region is projected before laser welding. Since the overhanging process is performed so as to be performed, the gap G D between the metal plates 501 and 502 at the laser welded portion can be made smaller than the gap G in the region where the overhanging process is not performed.
- a laser beam is irradiated to the recess 501b, thereby it is possible to suppress decrease the amount of molten metal flowing into the gap G D between the metal plate 501 and 502 to each other when the molten metal, thin bridge part B The formation of fragile tissue is suppressed in this part.
- the shapes of the region where the spot of the laser beam is circulated (the region to be welded) and the bottom surface portion 501 g of the convex portion 501d are substantially omitted.
- the heat input conditions in the circumferential direction of the spot can be made substantially uniform, and it is possible to suppress the residual strain residual stress from remaining in the welded portion 100.
- it becomes easy to identify the region (welded portion) to be welded and the teaching work of the welding robot 24 becomes easy.
- the laser welding apparatus 1 and a laser welding method using the same in a state before welding, a metal plate 501 and 502 so that a gap G D becomes vacant place at a portion formed by subjecting the overhang machining Since laser welding is performed in that state, the molten metal can be spread over the entire area to be welded by irradiation with laser light, which is suitable for joining with high strength.
- the gap G D is the other portion between the metal plate 501 and 502 between the part for welding (portion of projecting processing) Since the gap G is approximately half (0.4 to 0.6 times), when welding is performed without overhanging, that is, when metal plates 501 and 502 are welded together with the gap G remaining. compared to, it is possible to reduce the amount of molten metal flowing into the gap G D between between metal plate 501 and 502, due to the thickness of the bridge part B is thinner at the weld 100, in partial It is suitable for suppressing the formation of fragile tissues.
- FIG. 7A is a schematic plan view showing a mode of overhanging according to the present embodiment
- FIG. 7B is a schematic cross-sectional view showing a form of overhanging according to the present embodiment.
- FIG. 8A is a schematic plan view showing a welding form according to the present embodiment
- FIG. 8B is a schematic cross-sectional view showing a welding form according to the present embodiment.
- the two recesses 506b and 506h are shown in FIG. 7A, in reality, a plurality of pairs of recesses are formed in the portion to be welded.
- convex portions 506d and 506i having flat bottom portions 506g and 506j are formed as protrusions, respectively.
- each of the overhanging portions having the concave portions 506b and 506h and the convex portions 506d and 506i formed by the overhanging process are the same as those of the first embodiment.
- the overhanged metal plate material 506 is arranged to face the metal plate material (inner metal plate material) 507.
- the laminate 505 related to the combination of the metal plate material 506 and the metal plate material 507 is the target of laser welding.
- the laminated body 505 arranged as shown in FIG. 7B is irradiated with laser light from the side of the metal plate material 506 arranged on the upper side (outer side) of the overlap.
- a welded portion (nugget) 105 composed of a screw portion 106, a linear portion 107, and a screw portion 108 that are continuous with each other is formed, and the metal plate material 506 and the metal plate material 507 are joined.
- the controller 26 controls the condensing unit 23 so that the spot of the laser light passes on the laser light scanning locus that orbits the predetermined portion (circumferential center) in the recess 506b.
- the metal in the screw portion 106 (first screw portion) having a substantially circular shape in a plan view, which is substantially the same as the shape and size of the inner bottom surface portion of the concave portion 506b but smaller than the bottom surface portion 506 g of the convex portion 506d, is formed. It is melted and stirred.
- the controller 26 continuously moves the screw portion 106 from the outer edge portion on the right side in the X direction to the side of the recess 506h while the molten metal of the first screw portion 106 is not solidified (while the molten state is maintained).
- the condensing unit 23 is controlled so that the spots of the laser beam pass so as to be separated from each other.
- the metal in the linear portion 107 which is a region in the plane line of sight, melts around the linear laser beam scanning locus.
- a part of the molten metal melted and agitated by the screw portion 106 flows into the gap G between the metal plate material 506 and the metal plate material 507 in the linear portion 107.
- the lower surface of the metal plate material 507 of the screw portion 106 in the Z direction. May also have recesses. This is because a part of the molten metal of the screw portion 106 flows into the gap G in the linear portion 107.
- the controller 26 is continuously connected to the right end portion of the linear portion 107 in the X direction while the molten metal of the linear portion 107 is not solidified (while the molten state is maintained).
- the condensing unit 23 is controlled so that the spot of the laser beam passes on a trajectory that orbits around a predetermined location (circumferential center) in the recess 506h.
- the metal in the screw portion (second screw portion) 108 having a substantially circular shape in a plan view, which is substantially the same as the shape and size of the inner bottom surface portion of the concave portion 506h and smaller in size than the bottom surface portion 506j of the convex portion 506i, is formed. It is melted and stirred.
- the molten metal solidifies to form a welded portion (nugget) 105 composed of a screw portion 106, a linear portion 107, and a second screw portion 108 that are continuous with each other. ..
- the same effect as that of the first embodiment can be obtained.
- the molten metal in the screw portion 106 is agitated by orbiting the spot of the laser beam, and the metal in the linear portion 107 is melted in the state where the metal in the screw portion 106 is melted. Therefore, before welding. Even if there is a gap G between the metal plate material 506 and the metal plate material 507, a part of the molten metal of the screw portion 106 will flow into the gap G in the linear portion 107. Therefore, in the laser welding method according to the present embodiment, the gap G between the metal plate 506 and the plate member 507 before welding, G D, even if vacant G I, gouging the occurrence of (underfill) and burn It can be suppressed.
- a linear portion 107 is formed continuously with the formation of the screw portion 106, and further, the linear portion is formed. Since the second screw portion 108 is formed in succession to the formation of the 107, the welding speed can be improved. Then, while increasing the welding speed as described above, a high gap margin can be ensured by allowing the molten metal in the screw portion 106 to flow into the gap G in the linear portion 107 as described above.
- FIG. 9 is a schematic plan view showing a welding mode according to the present embodiment.
- the controller 26 circulates around a predetermined location (circumferential center) in the inner bottom surface portion of the recess 511b, and the laser beam is emitted on the scanning locus.
- the light collecting unit 23 is controlled so that the spot of the above can pass through.
- a convex portion 511d having a flat bottom surface portion 511g is formed on the back surface side (inner main surface of the outer metal plate material) of the recess 511b. It is formed.
- the metal in the screw portion 111 having a substantially circular shape in a plan view which is substantially the same as the shape and size of the inner bottom surface portion of the concave portion 511b but smaller than the bottom surface portion 511g of the convex portion 511d, is melted. It is agitated.
- the controller 26 continuously increases the diameter of the screw portion 111 from the outer edge portion on the right side in the X direction of the screw portion 111 while the molten metal of the screw portion 111 is not solidified (while the molten state is maintained).
- the condensing unit 23 is controlled so that the spots of the laser beam pass so as to be separated outward in the direction.
- the metal in the linear portion 112 which is a region of the plane line of sight around the laser beam scanning locus, is melted.
- one of the molten metals melted and stirred by the screw portion 111 in the gap between the metal plate material 511 in the linear portion 112 and the inner metal plate material arranged to face the metal plate material 511. The part flows in.
- molten metal of the screw portion 111 and the linear portion 112 solidifies to form a welded portion (nugget) 110 composed of the screw portion 111 and the linear portion 112 that are continuous with each other.
- the laser welding method according to the present embodiment can obtain the same effect as that of the first embodiment. Further, in the present embodiment, the molten metal in the screw portion 111 is agitated by orbiting the spot of the laser beam, and the metal in the linear portion 112 is melted in the state where the metal in the screw portion 111 is melted. Therefore, before welding. Even if there is a gap between the metal plate material 511 and the inner metal plate material arranged to face the metal plate material 511, a part of the molten metal of the screw portion 111 will flow into the gap in the linear portion 112.
- FIG. 10A is a schematic plan view showing a mode of overhanging according to the present embodiment
- FIG. 10B is a schematic cross-sectional view showing a form of overhanging according to the present embodiment.
- two continuous recesses 516b and 516h are shown, but in reality, a plurality of pairs of recesses are formed in the portion to be welded.
- the recess 516b is a recess having a substantially circular shape in a plan view
- the recess 516h is a recess having a line-of-sight shape.
- the recess 516h is formed so as to extend in the X direction from substantially the center in the radial direction in the outer peripheral portion of the recess 516b.
- the recess 516b according to the present embodiment corresponds to the first recess
- the recess 516h corresponds to the second recess.
- convex portions 516d and 516i having flat bottom portions 516g and 516j are formed on the lower surface side (inner main surface of the outer metal plate material) of the portion where the recesses 516b and 516h are formed.
- the concave portion 516b and the convex portion 516d are formed by the front-back relationship of the metal plate material 516
- the concave portion 516h and the convex portion 516i are formed by the front-back relationship of the metal plate material 516. ..
- each of the overhanging portions having the concave portions 516b and 516h and the convex portions 516d and 516i formed by the overhanging process are the same as those of the first embodiment and the like.
- the overhanged metal plate material 516 is arranged to face the metal plate material (inner metal plate material) 517.
- the laminated body 515 related to the combination of the metal plate material 516 and the metal plate material 517 is the target of laser welding.
- the laminated body 515 arranged as shown in FIG. 10B is irradiated with a laser beam from the side of the metal plate material 516, which is an outer metal plate material, and the screws are continuous with each other.
- a welded portion (nugget) composed of a portion and a linear portion is formed, and the metal plate material 516 and the metal plate material 517 are joined.
- the controller 26 controls the condensing unit 23 so that the spot of the laser light passes on the laser light scanning locus that orbits the predetermined location (circumferential center) in the recess 516b. To do. As a result, the metal in the region having a substantially circular shape in a plan view corresponding to the recess 516b is melted and stirred.
- the controller 26 continuously moves the screw portion from the outer edge portion on the right side in the X direction to the X direction while the molten metal of the screw portion corresponding to the recess 516b is not solidified (while the molten state is maintained).
- the condensing unit 23 is controlled so that the spot of the laser beam passes through the recess 516h formed so as to be separated from the above.
- the metal in the linear portion which is a region in the plane line of sight, melts around the linear laser beam scanning locus.
- the gap G I between the upper surface 517a of the protruding portion bottom portion 516j and the metal plate 517 of 516i in the metal plate 516 flows into a part of the molten metal that has been melted and stirred in screw portions corresponding to the recess 516b.
- the laser welding method according to the present embodiment can also obtain the same effect as that of the first embodiment.
- the spot of the laser beam is orbited in the formed recess 516b to stir the molten metal in the region, and the recess is in a state where the metal in the portion is melted. since melt the linear portion of the metal corresponding to 516h, the gap G, G D, even if vacant G I, part of the molten metal of the screw portion between the metal plate 516 and metal plate 517 prior to welding There flows into the gap G I in the linear portion.
- the gap G between the metal plate 516 and the plate member 517 before welding, G D even if vacant G I, gouging the occurrence of (underfill) and burn It can be suppressed.
- the recess 516h it is possible to reduce the gap G I between the metal plate 516 and metal plate 517 in the linear portion, which is melted and stirred in screw portions corresponding to the recess 516b molten even if the metal is small, it is possible to sufficiently fill the gap G I between the metal plate 516 and metal plate 517 in the linear portions can be joined with high strength.
- the amount of molten metal poured from the screw portion can be suppressed, and the occurrence of gouge (underfill) and melt-through can be suppressed more effectively.
- FIG. 11A is a schematic cross-sectional view showing a laser welding method according to the present embodiment
- FIG. 11B is a schematic cross-sectional view showing a welding form obtained by welding using the method according to the present embodiment.
- a laminate composed of a metal plate material (outer metal plate material) 521 that has been overhanged and a flat metal plate material (inner metal plate material) 522. 520 is the target of welding. Then, in the portion where the convex portion 521d is formed by the overhanging process between the metal plate material 521 and the metal plate material 522, the gap G D between the metal plate materials 521 and 522 is larger than the gap G in the other portion. It's getting smaller. Also in this embodiment, the bottom surface portion 521g of the convex portion 521d facing the upper surface 522a of the metal plate material 522 is flat.
- the wire (additive material) 525 is supplied to the irradiation range of the laser beam.
- the wire 525 is supplied from the upper surface (outer main surface) 521a side of the metal plate material 521 to the outer edge portion of the recess 521b.
- the upper surface 115b of the molten portion (nugget) 115 is welded according to the first embodiment. It is located above the upper surface of the portion 100 in the Z direction.
- a sufficient amount of molten metal (molten metal containing the molten metal of the wire 525) is provided even when the gap G between the metal plates 521 and 522 is large or the welding area is large. Can be fluidized. Further, in the laser welding method according to the present embodiment, since the molten metal including the molten portion of the wire 525 can be accommodated in the recess 521b, the recess 521b is filled with the molten metal so as to be substantially flush with the upper surface 521a. (The amount of dents can be reduced), and high appearance quality after welding can be ensured. That is, if the recess is not formed by the overhanging process, the solidified metal may rise in the wire (filler) and its periphery, which may impair the appearance quality, but such a situation can be avoided.
- FIG. 12 is a schematic cross-sectional view showing a mode of overhanging according to the present embodiment.
- a recess (embossed recess) 531b is formed in the metal plate material (outer metal plate material) 531 and the metal plate material 533 is formed. Also forms a recess (embossed recess) 533b.
- FIG. 12 shows one recess 531b formed in the metal plate material 531 and one recess 533b formed in the metal plate 533, in reality, a plurality of recesses are formed in the portions to be welded. To form.
- the recesses 531b and 533b are recesses that are substantially circular in plan view, and are formed so that their shapes and sizes are substantially the same.
- a convex portion 531d having a flat bottom surface portion 531g is formed on the lower surface side (inner main surface of the outer metal plate material) of the portion of the metal plate material 531 where the concave portion 531b is formed. That is, the concave portion 531b and the convex portion 531d are formed by the relationship between the front and back sides of the metal plate material 531.
- a convex portion 533d having a flat bottom surface portion 533g is formed on the upper surface side of the portion of the metal plate material 533 where the recess 533b is formed. That is, the concave portion 533b and the convex portion 533d are formed by the relationship between the front and back sides of the metal plate material 533.
- each of the overhanging portions having the concave portions 531b and 533b and the convex portions 531d and 533d formed by the overhanging process are the same as those of the first embodiment and the like.
- the overhanged metal plate material 531 and the metal plate material 533 are arranged so as to face each other with the metal plate material 532 sandwiched between them.
- the laminate 530 related to the combination of the metal plate material 531, the metal plate material 532, and the metal plate material 533 is the target of laser welding.
- the gap between the metal plate material 531 and the upper surface 532a of the metal plate material 532 is the gap G D1 at the bottom surface portion 531 g of the convex portion 531d, and other portions. in a gap G 1.
- the gap between the lower surface 532b of the metal plate 533 and metal plate 532 is a gap G D2 at the bottom surface portion 533g of the convex portion 533d, a gap G 2 by the other portions.
- the laminated body 530 arranged as shown in FIG. 12 is irradiated with a laser beam from the side of the metal plate material 531 or the metal plate material 533 to irradiate the welded portion (nugget). ) Is formed, and the metal plate material 531, the metal plate material 532, and the metal plate material 533 are joined.
- the controller 26 concentrates the laser light so that the spot of the laser light passes on the laser light scanning locus that orbits the predetermined portion (circumferential center) in the recess 531b or the recess 533b.
- the unit 23 is controlled.
- the metal in the region having a substantially circular shape in a plan view corresponding to the recess 531b and the recess 533b is melted and agitated, and the molten metal solidifies to form a welded portion.
- the laser welding method according to the present embodiment can also obtain the same effect as that of the first embodiment.
- the welding robot 24 is adopted for scanning the spot of the laser beam, but the present invention is not limited thereto.
- the spot of the laser beam may be scanned using an XY table or the like. Further, if the welding is in a certain range, welding to a desired position can be performed only by scanning the light collecting unit 23.
- the laser beam spots are scanned on the laminated body 500, 505, 515, 520, 530 under the control of the condensing unit 23.
- the laminate to be welded a stack of a plurality of metal plates
- the laminate to be welded may be moved to scan the spot of the laser beam.
- the laminated body 500, 505, 515, 520 composed of two metal plates 501, 502, 506, 507, 516, 517, 521, 522 are welded.
- the laminated body 530 composed of three metal plates 531, 532, 533 is targeted for welding, but the present invention is not limited thereto.
- a laminate formed by stacking four or more metal plates can be welded.
- the press machine 10 capable of carrying out overhanging is adopted as an example of the plastic working machine, but the present invention is not limited thereto. ..
- an apparatus capable of drawing can be adopted.
- the plastic working machine may not necessarily be provided in the configuration of the laser welding apparatus 1. That is, it is also possible to adopt a laser welding apparatus provided only with a laser welding machine in which a metal plate material having been subjected to plastic working in the above-mentioned form in advance is introduced and laser welding is performed on the metal plate material.
- the appearance shapes of the convex portions 501d, 506d, 506i, 511d, 516d, 521d, 531d, and 533d in the overhanging portion are conical trapezoidal shapes.
- the invention is not limited to this.
- a pyramidal trapezoidal convex portion may be formed.
- various combinations are adopted, such as when the concave portion is hemispherical and the convex portion is conical trapezoidal, or vice versa, and when the concave portion is pyramidal trapezoidal and the convex portion is conical trapezoidal, or vice versa. be able to.
- the laser welding method for one welded portion is shown, but the present invention is not limited to this. That is, it is naturally possible to perform laser welding at a plurality of locations on the laminated body to be welded.
- At least two superposed metal plates are irradiated with laser light on the outer main surface of the outer metal plate located at the outermost side of the superposition, and at least 2 of the above.
- a laser welding method for joining a sheet of metal plates wherein the at least two metal plates include an inner metal plate adjacent to the inside of the overlap with respect to the outer metal plate, and at least the above.
- the outer metal plate material a recess is formed in which the outer main surface is recessed in the plate thickness direction of the metal plate material in a predetermined region, and the inner main surface opposite to the outer main surface is recessed in the plate thickness direction.
- a convex portion formed to be convex is formed, and laser light is irradiated from the side of the outer main surface toward the inside of the concave portion to perform laser welding to melt the metal of the portion, and the convex portion has an appearance.
- the shape is a cone shape, the bottom surface portion which is the top surface facing the main surface of the inner metal plate material is flat, and in the execution of the laser welding, the bottom surface portion of the convex portion is the inner metal plate material.
- the laser beam is irradiated toward the inside of the recess, and at least a part of the recess is the laser.
- the spot of light is scanned so as to orbit around a predetermined location in the recess.
- the welding speed is faster, the thermal effect is less, and the welding speed is smaller than when resistance welding or the like is used.
- Welding can be performed on a metal plate without contact, the processing efficiency is high, and the rigidity can be increased by continuous welding.
- the laser welding method laser light is irradiated so that the spot orbits around a predetermined portion at least a part of the recess, and the metal plate material is melted and stirred to melt and stir the metal. Since the plate materials are joined to each other, even if there is a gap between the metal plates in the state before welding, the gap between the plates can be filled with the molten metal. Therefore, in the laser welding method according to the above aspect, even if there is a gap between the metal plates in the state before welding, the metal plates can be joined with high strength with a high gap margin. ..
- the at least outer metal plate material a metal plate material in which the outer main surface of a predetermined region is recessed and the inner main surface of the same region is projected is adopted.
- the gap between the metal plates (the gap between the bottom surface and the main surface of the inner metal plate) at the portion to be welded can be reduced. Therefore, when the metal is melted by irradiation with laser light, the amount of molten metal flowing into the gap between the metal plates can be suppressed to a small amount, and the wall thickness of the bridge portion at the outer edge of the recess becomes thin. It is possible to suppress the formation of fragile tissue in the portion.
- the bottom surface portion and the main surface of the inner metal plate can be stably (at regular intervals) close to each other or brought into contact with each other in the welded portion. it can.
- the metal plates can be joined with high joining strength.
- the shape of the bottom surface portion is substantially the same as the shape of the region where the spot of the laser beam is scanned. It is also possible to adopt the configuration of.
- the heat input conditions in the circling direction of the spot are substantially made uniform. It is possible to prevent strained residual stress from remaining in the welded portion.
- the size of the bottom surface portion is equal to or larger than the size of the region where the spot of the laser beam is scanned. It is also possible to adopt a configuration of large.
- the size of the bottom surface of the convex portion of at least the outer metal plate material substantially the same as the plane size of the region where the spot of the laser beam is scanned (the region to be welded), it is the minimum necessary.
- the gap between the metal plate materials can be reduced and the amount of molten metal flowing in can be reduced, so that the metal plates can be made of high strength. Can be joined.
- the recess is a first recess which is a region for scanning the spot of the laser light so as to orbit around a predetermined portion in the recess, and the spot of the laser light. It is also possible to adopt a configuration in which a second recess, which is a region for linearly scanning the laser, is provided.
- the laser welding method when the laser beam is irradiated, at least two metal plates are formed in a state where the bottom surface of the convex portion has a gap with respect to the main surface of the inner metal plate. Overlapping, the depth of the recess is shallower than the maximum gap, which is the gap between the outer metal plate and the inner metal plate in the region excluding the portion where the recess is formed. You can also do it.
- a gap can be left between the bottom surface of the convex portion and the main surface of the inner metal plate over the entire area to be welded, and it is melted by irradiation with laser light.
- the metal can be spread over the entire area to be welded, which is suitable for joining with high strength.
- the gap between the metal plates should be approximately half (0.4 to 0.6 times) the area excluding the portion where the concave portion and the convex portion are formed. Therefore, the amount of molten metal flowing into the gap between the metal plates can be reduced as compared with the case where laser welding is performed on a metal plate material in which no concave portion or convex portion is formed, and the outer edge of the welded portion can be reduced. It is suitable for suppressing the formation of fragile tissue in the portion due to the thinning of the wall thickness of the bridge portion in the portion.
- the filler metal is supplied to the irradiation range of the laser beam in the recess in the execution of the laser welding.
- the inner bottom surface portion of the concave portion is also flat, and when the outer metal plate material is viewed in a plan view from the plate thickness direction, the size of the bottom surface portion of the convex portion is determined by the concave portion. It is also possible to adopt a configuration in which the size is larger than the size of the inner bottom surface portion.
- the welding conditions can be made uniform by substantially making the plate thickness of the region to be irradiated with the laser beam (the region to be welded) in the concave portion substantially uniform.
- the concave portion and the convex portion having a front and back relationship with each other are formed by performing plastic working on at least the outer metal plate material.
- the concave portion and the convex portion are formed in at least a predetermined region of the outer metal plate material by performing plastic working, the concave portion and the convex portion are reliably aligned with the formed portion. Laser welding can be performed while doing so. Therefore, in the laser welding method according to the above aspect, the metal plates can be joined to each other with high joining strength.
- the laser welding apparatus irradiates at least two superposed metal plates with laser light on the outer main surface of the outer metal plate located at the outermost side of the superposition, and at least two of the above.
- a laser welding apparatus for joining a sheet of metal plates wherein the at least two metal plates include an inner metal plate adjacent to the inside of the overlap with respect to the outer metal plate, and at least the said.
- the outer metal plate material a recess is formed in which the outer main surface is recessed in the plate thickness direction of the metal plate material in a predetermined region, and the inner main surface opposite to the outer main surface is recessed in the plate thickness direction.
- a convex portion formed is formed, and a laser welding machine is provided which irradiates a laser beam from the side of the outer main surface toward the inside of the concave portion to melt the metal of the portion, and the convex portion is provided.
- the external shape is a cone shape, the bottom surface portion which is the top surface facing the main surface of the inner metal plate material is flat, and the laser welding machine is said to have the convex portion when irradiated with the laser beam.
- the laser beam is irradiated toward the inside of the recess and the inside of the recess is The spot of the laser beam is scanned so as to orbit around a predetermined portion in the recess in at least a part of the above.
- the welding speed is faster, the thermal effect is less, and the welding speed is smaller than when resistance welding or the like is used.
- Welding can be performed on a metal plate without contact, the processing efficiency is high, and the rigidity can be increased by continuous welding.
- laser light is irradiated so that a spot orbits around a predetermined portion in at least a part of the recess, and the metal plate material is melted and stirred to melt and stir the metal. Since the plate materials are joined to each other, even if there is a gap between the metal plates in the state before welding, the gap between the plates can be filled with the molten metal. Therefore, in the laser welding apparatus according to the above aspect, even if there is a gap between the metal plates in the state before welding, the metal plates can be joined with high strength with a high gap margin. ..
- the at least outer metal plate material a metal plate material in which the outer main surface of a predetermined region is recessed and the inner main surface of the same region is projected is adopted.
- the gap between the outer metal plate material and the inner metal plate material (the gap between the bottom surface portion and the main surface of the inner metal plate material) at the portion to be welded can be reduced. Therefore, when the metal is melted by irradiation with laser light, the amount of molten metal flowing into the gap between the metal plates can be suppressed to a small amount, and the wall thickness of the bridge portion at the outer edge of the recess becomes thin. It is possible to suppress the formation of fragile tissue in the portion.
- the metal plates can be joined with high joining strength.
- the recess is a first recess which is a region for scanning the spot of the laser light so as to orbit around a predetermined portion in the recess, and the spot of the laser light. It is also possible to adopt a configuration in which a second recess, which is a region for linearly scanning the laser, is provided.
- the concave portions and the convex portions having a front and back relationship with each other are formed.
- the metal plates can be bonded to each other with high bonding strength.
- the metal plates can be joined with high joining strength.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
レーザ溶接の溶接対象である少なくとも2枚の金属板材には、重ね合わせにおいて隣接する外側金属板材と内側金属板材が含まれる。外側金属板材の所定領域には、外側主面に凹部が形成され、内側主面に凸部が形成されている。凸部は、内側金属板材の主面に対向する頂面である底面部が平坦である。レーザ溶接の実行において、凸部の底面部が内側金属板材の主面に当接または近接するように少なくとも2枚の金属板材を重ね合わせ、凹部内の少なくとも一部でレーザ光のスポットを凹部内における所定箇所を中心としてその周りを周回するように走査しながらレーザ光を照射する。
Description
本発明は、レーザ溶接方法およびレーザ溶接装置に関する。
金属板材同士の接合には、レーザ溶接技術が用いられることがある。レーザ溶接を用いた金属板材の接合は、レーザ光の照射により金属板材の一部を溶融させ、凝固させることでなされる。レーザ溶接を用いて金属板材同士を接合する場合には、抵抗溶接により接合する場合などに比べて、溶接速度が速く、熱影響が少ない、という優位性がある。また、レーザ溶接を用いて金属板材同士を接合する場合には、金属板材に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
例えば、特許文献1には、バスバーとタブ端子との接合にレーザ溶接を用いる技術が開示されている。特許文献1に開示のレーザ溶接では、タブ端子における接合領域に半球状の張り出し部を塑性加工(張り出し加工など)により形成し、これによりタブ端子の一方側主面に塑性加工により形成された張り出し部の凹部に向けてレーザ光を照射し、反対側主面に凸出されてなる凸部の頂部でバスバーに接合している。特許文献1では、上記のように塑性加工を施した上でレーザ光照射による接合を行うことにより、レーザ光の照射により発生した熱を凹部内にこもらせることができ、接合強度の向上を図ることができるとされている。
しかしながら、上記特許文献1で開示された技術をはじめとする従来技術では、改善の余地がある。即ち、従来技術では、接合しようとする金属板材同士の間に隙間が空いているような場合には、レーザ光の照射側における金属板材の溶融金属の一部が板材間の隙間部分に流れ込んでしまい、レーザ光を照射した部分に板厚方向に窪んだ窪み部が形成されることとなる。このため、従来技術では、溶接部(ナゲット)の外縁部分におけるブリッジ部の肉厚が薄くなってしまい、高い接合強度を確保することができない。
上記特許文献1に開示の技術のように塑性加工により張り出し部を形成した上で接合を行う場合でも、タブ端子に形成する凸部が半球状であるため、溶接前の状態において、タブ端子における凸部の頂部の周りの部分とバスバーとの間には隙間が空いてしまい、当該周りの部分に溶融金属が流れてゆくこととなるため、やはり、高い接合強度を確保することが難しい。
本発明は、上記のような問題の解決を図ろうとなされたものであって、金属板材同士の間に隙間があるような場合であっても、高い接合強度で金属板材同士を接合可能なレーザ溶接方法およびレーザ溶接装置を提供することを目的とする。
本発明の一態様に係るレーザ溶接方法は、重ね合わされた少なくとも2枚の金属板材に対して、重ね合わせの最外に位置する外側金属板材の外側主面にレーザ光を照射して前記少なくとも2枚の金属板材を接合するレーザ溶接方法であって、前記少なくとも2枚の金属板材には、前記外側金属板材に対して前記重ね合わせの内側に隣接する内側金属板材が含まれており、少なくとも前記外側金属板材は、所定領域において、前記外側主面が当該金属板材の板厚方向に凹入してなる凹部が形成され、前記外側主面とは反対側の内側主面が前記板厚方向に凸出してなる凸部が形成されてなり、前記外側主面の側から前記凹部内に向けてレーザ光を照射して、当該部分の金属を溶融させるレーザ溶接を行い、前記凸部は、外観形状が錐台状であって、前記内側金属板材の主面に対向する頂面である底面部が平坦であり、前記レーザ溶接の実行においては、前記凸部の前記底面部が前記内側金属板材の前記主面に当接または近接するように前記少なくとも2枚の金属板材を重ね合わせた状態で、前記凹部内に向けて前記レーザ光を照射するとともに、前記凹部内の少なくとも一部で前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する。
以下では、実施形態について、図面を参酌しながら説明する。なお、以下で説明の形態は、本発明の一例であって、本発明は、その本質的な構成を除き何ら以下の形態に限定を受けるものではない。
[第1実施形態]
1.レーザ溶接装置1の概略構成
第1実施形態に係るレーザ溶接装置1の概略構成について、図1から図3を用いて説明する。図1は、第1実施形態に係るレーザ溶接装置1の構成のうち、プレス機10の概略構成を示す模式図であり、図3は、レーザ溶接機20の概略構成を示す模式図である。また、図2は、プレス機10により塑性加工(張り出し加工)がされてなる金属板材501の一部構成を示す模式断面図である。
1.レーザ溶接装置1の概略構成
第1実施形態に係るレーザ溶接装置1の概略構成について、図1から図3を用いて説明する。図1は、第1実施形態に係るレーザ溶接装置1の構成のうち、プレス機10の概略構成を示す模式図であり、図3は、レーザ溶接機20の概略構成を示す模式図である。また、図2は、プレス機10により塑性加工(張り出し加工)がされてなる金属板材501の一部構成を示す模式断面図である。
図1および図3に示すように、本実施形態に係るレーザ溶接装置1は、張り出し加工を実行可能なプレス機(塑性加工機)10と、レーザ溶接を実行可能なレーザ溶接機20と、を備える。
図1に示すように、本実施形態に係るプレス機10は、金属板材(外側金属板材)501の所定領域に張り出し加工を施す加工機である。プレス機10は、ロッド12をZ方向に前進および後退させるシリンダ11と、ロッド12の先端に取り付けられた上型13と、上型13とZ方向下側に間隔を空けて対向配置された下型14と、シリンダ11の駆動に係る駆動回路部15と、を備える。
上型13のZ方向下側(下型14に対向する側)の部分に円錐台形に突出する凸部13aが設けられている。凸部13aの下面である頂面部13bは、平坦に形成されている。一方、下型14のZ方向上側(上型13に対向する側)の部分には、凸部13aに対して相似形の凹部14aが設けられている。凹部14aの内底面部14bは、平坦に形成されており、上型13の頂面部13bと略平行となっている。
なお、図1では、上型13に1か所の凸部13aが設けられ、下型14に1か所の凹部14aが設けられた形態を図示しているが、上型13に複数箇所の凸部13aが設けられ、下型14にも上型13に設けられた凸部13aの数に対応する凹部14aが設けられていることとしてもよい。
金属板材501に張り出し加工を施す場合には、上型13と下型14との間に金属板材501を挟み込み、シリンダ11を駆動させることにより上型13が矢印A1のようにZ方向下向きに前進して、金属板材501を矢印A2のように下型14に押し付ける。これにより、金属板材501の上面(外側主面)501aの一部がZ方向下向きに凹入された凹部(エンボス凹部)501bが形成され、下面(内側主面)501cにZ方向下向きに凸出した凸部(エンボス凸部)501dが形成される。凹部501bの形状は上型13の凸部13aの形状により規定され、凸部501dの形状は下型14の凹部14aの形状により規定される。
図2に示すように、本実施形態に係るプレス機10を用いて形成した凹部501bは、円錐台形状であって、内底面部501eが平坦である。そして、凹部501b内の空間の周囲(Z方向に対して交差する方向の周囲)を囲む面が曲面によって構成された斜面部501fである。そして、凹部501bは、内底面部501aの直径がD501eであり、Z方向の深さがH501bである。
凸部501dは、円錐台形であって、当該円錐台の頂面である底面部501gが平坦である。凸部501dにおける底面部501gの直径がD501gであって、本実施形態では直径D501eよりも大きい。即ち、本実施形態では、Z方向に交差する方向における底面部501gのサイズ(平面サイズ)が、内底面部501eの平面サイズよりも大きくなるように、金属板材501に対して張り出し加工がなされる。
なお、本実施形態に係る構成は、板厚が0.5mmから3.2mm程度の、所謂、薄板に対して好適に適用することが可能である。
次に、図3に示すように、本実施形態に係るレーザ溶接機20は、図2に示すような形態で張り出し加工が施された金属板材501と、該金属板材501に重ね合わされた金属板材(内側金属板材)502とをレーザ溶接し、積層体500を形成する溶接機である。レーザ溶接機20は、レーザ発振器21と光路22と集光部(走査部)23とを備える。レーザ発振器21は、当該レーザ発振器21に接続されたコントローラ(制御部)26からの指令に従ってレーザ光を発振する。なお、コントローラ26は、CPU、ROM、RAMなどから構成されたマイクロプロセッサを含み構成されている。
レーザ発振器21で発振されたレーザ光は、光路22を通り集光部23へと伝搬される。集光部23では、伝搬されてきたレーザ光が積層体500における金属板材501における凹部501bの内底面部501eに集光される(スポットが形成される)。そして、集光部23は、コントローラ26からの指令に従って金属板材501の表面でレーザ光のスポットを走査する。
なお、本実施形態では、光路22の一例として光ファイバーケーブルを用いているが、これ以外にもミラーなどによりレーザ光を伝搬することができる種々の光路を採用することができる。
また、レーザ溶接機20は、溶接ロボット24と、該溶接ロボット24の駆動に係る駆動回路部25と、を備える。溶接ロボット24は、その先端部分に集光部23が取り付けられており、駆動回路部25に接続されたコントローラ26からの指令に従って、集光部23を3次元で移動させることができる。
なお、図1および図3に示したように、本実施形態に係るレーザ溶接装置1では、プレス機10の駆動回路部15もコントローラ26に接続されており、張り出し加工を施した部分に関する各位置情報をコントローラ26に送信できる構成としている。そして、コントローラ26は、入力された張り出し加工が施された領域の位置情報に基づき、レーザ光を走査する領域を設定する。
また、図3に示すように、本実施形態では、溶接前の状態において、張り出し加工により形成された凸部501dの底面部501gと金属板材502の上面(主面)502aとの間に隙間GDが空き、その他の部分では隙間Gが空くように配置されている。
本実施形態では、凹部501bの深さH501bが、隙間Gの0.4~0.6倍(具体的には、例えば、0.5倍)となるように、張り出し加工が施されている。
2.レーザ光のスポットの走査形態
レーザ溶接機20を用いたレーザ溶接における、レーザ光のスポットの走査形態について、図4を用いて説明する。図4は、レーザ溶接機20でのレーザ光のスポットの走査形態を示す模式平面図である。
レーザ溶接機20を用いたレーザ溶接における、レーザ光のスポットの走査形態について、図4を用いて説明する。図4は、レーザ溶接機20でのレーザ光のスポットの走査形態を示す模式平面図である。
図4に示すように、本実施形態に係るレーザ溶接機20を用いた溶接では、コントローラ26がレーザ発振器21にレーザ光を発振する旨の指令を出した状態で、レーザ光のスポットがレーザ光走査軌跡LNLB上を通るように集光部23が制御される。図4に示すように、レーザ光走査軌跡LNLBは、金属板材501の凹部501b内における内底面部501eの所定箇所(周回中心)AxLBの周りを周回する軌跡である。コントローラ26は、レーザ光走査軌跡LNLB上をレーザ光のスポットが通るように集光部23を制御する。これにより、周回中心AxLBの周囲に平面視略円形の領域である部分における金属が溶融・攪拌される。
ここで、図4に示すように、本実施形態では、レーザ光のスポットが周回するレーザ光走査軌跡LNLBの形状(平面視略円形状)を、凹部501bにおける内底面部501eの平面形状(平面視略円形状)および凸部501dにおける底面部501gの平面形状(平面視略円形状)と略同じとしている。
また、本実施形態では、レーザ光走査軌跡LNLBの平面サイズ(Z方向から見た場合のサイズ)を、凹部501bにおける内底面部501eの平面サイズと略同じサイズとし、凸部501dにおける底面部501gの平面サイズよりも小さいサイズとしている。即ち、本実施形態では、内底面部501eの直径D501e(図2を参照。)を、レーザ光走査軌跡LNLBの最大径DLBと略同じとし、底面部501gの直径D501gを、レーザ光走査軌跡LNLBの最大径DLBよりも大きく形成している。
3.溶接部100の形態
本実施形態に係るレーザ溶接装置1を用いた溶接により形成された溶接部(ナゲット)100の形態について、図5および図6を用いて説明する。図5は、図4におけるV-V線断面を示す模式断面図であり、図6は、比較例に係る溶接方法で形成した溶接部の形態を示す模式断面図である。
本実施形態に係るレーザ溶接装置1を用いた溶接により形成された溶接部(ナゲット)100の形態について、図5および図6を用いて説明する。図5は、図4におけるV-V線断面を示す模式断面図であり、図6は、比較例に係る溶接方法で形成した溶接部の形態を示す模式断面図である。
図5に示すように、レーザ光を凹部501b内に向けて照射すると、レーザ光の照射の熱により溶融・攪拌され、その後に金属が凝固することで張り出し加工を行った各部に溶接部(ナゲット)100が形成される。図5に示すように、溶接部100は、溶接前に金属板材501と金属板材502との間に空いていた隙間GD(図3を参照。)を埋めるように形成される。そして、溶接部100は、レーザ光の照射側であるZ方向上側の部分が下向きに窪むこととなる。
ここで、本実施形態に係るレーザ溶接装置1を用いたレーザ溶接方法を採用する場合には、溶融金属が流れ込む隙間GDが他の領域における隙間Gよりも小さいため、溶融金属の流れ込み量が張り出し加工を施さない場合に比べて少ない。よって、凹部501bの斜面部501fの板厚であるブリッジ部Bの肉厚が薄くなるのを従来技術を用いた場合に比べて抑制することができ、また該ブリッジ部Bで脆弱組織が形成されてしまうのを抑制することができる。
一方、図6に示すように、何れの金属板材901,902にも張り出し加工を施さず、互いの間に隙間Gを開けて重ね合わせた金属板材901と金属板材902とに対してレーザ溶接を行った場合には、Z方向上側の金属板材901の上面(外側主面)901aに金属溶融によりZ方向下向きに大きな窪みが形成される。即ち、図6に示す比較例の場合には、大きな隙間Gに多量の溶融金属が流れ込み、溶接部910の上端910aから急峻な斜面で表面が構成されることになりブリッジ部Cの肉厚が薄くなり、これによる急冷に起因して、該ブリッジ部Cで脆弱組織が形成されてしまう。
4.効果
先ず、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、重ね合わされた2枚の金属板材501,502をレーザ溶接により接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、金属板材501,502に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
先ず、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、重ね合わされた2枚の金属板材501,502をレーザ溶接により接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、金属板材501,502に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
次に、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、凹部501b内の少なくとも一部で周回中心AxLBを中心としてその周りをスポットが周回するようにレーザ光の照射を行い、金属板材501,502を溶融・攪拌して、金属板材501,502同士の接合を行うので、仮に溶接前の状態で金属板材501,502同士の間に隙間G,GDが空いていたとしても、溶融金属により金属板材501,502同士の間の隙間GDを埋めることができる。よって、本実施形態では、溶接前の状態で金属板材501,502同士の間に隙間G,GDが空いていた場合にも、高いギャップ裕度を以って金属板材501,502同士を高い強度で接合することができる。
さらに、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ溶接を行う前に、プレス機10により所定領域の上面501aが凹入し、同じ領域の下面501cが凸出するように張り出し加工を施すので、レーザ溶接する部分での金属板材501,502同士の間の隙間GDを張り出し加工を施さない領域の隙間Gよりも小さくすることができる。よって、凹部501b内にレーザ光を照射し、これによって金属を溶融した際に金属板材501,502同士の間の隙間GDに流れ込む溶融金属の量を少なく抑えることができ、ブリッジ部Bの薄肉化が抑えられ、該部分で脆弱組織が形成されるのが抑制される。
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ光のスポットが周回される領域(溶接しようとする領域)と凸部501dの底面部501gとの形状を略同じとすることで、スポットの周回方向における入熱条件を略均一化することができ、溶接部100に歪な残留応力が残ることを抑制することができる。また、溶接しようとする領域(溶接箇所)の特定が容易となり、溶接ロボット24のティーチング作業が簡易になる。
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、凹部501bにおける内底面部501eの直径D501eを、レーザ光が周回する領域の直径DLBと略同じ大きさとすることによって、必要最小限の領域に対する張り出し加工を行うだけで、隙間GDが小さな領域を形成して、当該部分でレーザ溶接を行うことにより、溶融金属の流れ込み量を少なくすることができるので、高い強度での金属板材501,502同士の接合を行うことができる。
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、溶接前の状態において、張り出し加工を施してなる部分で隙間GDが空くように金属板材501,502を配置し、その状態でレーザ溶接を行うので、レーザ光の照射により溶融した金属を溶接しようとする全領域に広げることができ、高い強度での接合を行うのに好適である。
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、溶接を行う部分(張り出し加工の部分)の金属板材501,502同士の間の隙間GDがそれ以外の部分の隙間Gの略半分(0.4~0.6倍)となっているので、張り出し加工を施さず溶接しようとする場合、つまり、隙間Gのままで金属板材501,502同士を溶接する場合に比べて、金属板材501,502同士の間の隙間GDに流れ込む溶融金属の量を低減することができ、溶接部100におけるブリッジ部Bの肉厚が薄くなることに起因して、該部分で脆弱組織が形成されたりするのを抑制するのに好適である。
以上のように、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、溶接前の状態で金属板材501,502同士の間に隙間Gが空いている場合であっても、高い接合強度で金属板材501,502同士を接合可能である。
[第2実施形態]
図7Aは、本実施形態に係る張り出し加工の形態を示す模式平面図であり、図7Bは、本実施形態に係る張り出し加工の形態を示す模式断面図である。また、図8Aは、本実施形態に係る溶接形態を示す模式平面図であり、図8Bは、本実施形態に係る溶接形態を示す模式断面図である。
図7Aは、本実施形態に係る張り出し加工の形態を示す模式平面図であり、図7Bは、本実施形態に係る張り出し加工の形態を示す模式断面図である。また、図8Aは、本実施形態に係る溶接形態を示す模式平面図であり、図8Bは、本実施形態に係る溶接形態を示す模式断面図である。
図7Aに示すように、本実施形態に係るプレス機(塑性加工機)では、金属板材(外側金属板材)506に対して、互いにX方向に離間した凹部(エンボス凹部)506bと凹部(エンボス凹部)506hとを形成する。なお、図7Aでは、2つの凹部506b,506hを図示しているが、実際には、溶接しようとする部分に複数対の凹部を形成する。
図7Bに示すように、各凹部506b,506hが形成された部分の下面(内側主面)は、それぞれ底面部506g,506jが平坦な凸部506d,506iが凸出形成される。
ここで、張り出し加工を行うことにより形成する凹部506b,506hおよび凸部506d,506iを有する各張り出し部の形態やサイズなどは、上記第1実施形態と同じである。
次に、図7Bに示すように、張り出し加工が施された金属板材506を、金属板材(内側金属板材)507と対向配置する。本実施形態では、金属板材506と金属板材507との組み合わせに係る積層体505がレーザ溶接の対象である。
なお、図7Bに示すように、溶接前の状態において、金属板材506と金属板材507との間の隙間は、凸部506d,506iの各底面部506g,506jで隙間GD,GIであり、それ以外の部分で隙間Gである。
図8Aに示すように、本実施形態では、図7Bのように配置された積層体505に対して、重ね合わせの上側(外側)に配置された金属板材506の側からレーザ光を照射して、互いに連続するスクリュ部106と線状部107とスクリュ部108とからなる溶接部(ナゲット)105を形成し、金属板材506と金属板材507とを接合する。
具体的なレーザ溶接方法では、コントローラ26が、凹部506b内における所定箇所(周回中心)を中心としてその周りを周回するレーザ光走査軌跡上をレーザ光のスポットが通るように集光部23を制御する。これにより、凹部506bの内底面部の形状およびサイズと略同じであって、凸部506dの底面部506gよりもサイズが小さな、平面視略円形のスクリュ部106(第1スクリュ部)における金属が溶融・攪拌される。
続いて、コントローラ26は、第1スクリュ部106の溶融金属が凝固しない間に(溶融状態が維持されている間に)連続して、スクリュ部106のX方向右側の外縁部分から凹部506hの側に向けて離間するようにレーザ光のスポットが通るように集光部23を制御する。これにより、線状のレーザ光走査軌跡の周囲に平面視線状の領域である線状部107における金属が溶融する。そして、図8Bに示すように、線状部107における金属板材506と金属板材507との間の隙間Gに、スクリュ部106で溶融・攪拌された溶融金属の一部が流れ込む。
なお、図8Bに示すように、スクリュ部106の金属が溶融・攪拌され、連続して線状部107の金属が溶融される段階で、スクリュ部106における金属板材507におけるZ方向下側の面にも凹部が形成される場合がある。これは、スクリュ部106の溶融金属の一部が、線状部107における隙間Gに流れ込むためである。
図8Aに戻って、コントローラ26は、線状部107の溶融金属が凝固しない間に(溶融状態が維持されている間に)連続して、線状部107のX方向右側端部に連続し、凹部506h内の所定箇所(周回中心)を中心としてその周りを周回する軌跡上をレーザ光のスポットが通るように集光部23を制御する。これにより、凹部506hの内底面部の形状およびサイズと略同じであって、凸部506iの底面部506jよりもサイズが小さな、平面視略円形のスクリュ部(第2スクリュ部)108における金属が溶融・攪拌される。
そして、図8Aおよび図8Bに示すように、溶融金属が凝固することにより、互いに連続するスクリュ部106、線状部107、および第2スクリュ部108からなる溶接部(ナゲット)105が形成される。
本実施形態に係るレーザ溶接方法では、上記第1実施形態と同様の効果を得ることができる。また、本実施形態では、レーザ光のスポットを周回させてスクリュ部106における溶融金属を攪拌し、該スクリュ部106の金属が溶融した状態で線状部107の金属を溶融させるので、溶接前に金属板材506と金属板材507との間に隙間Gが空いていても、スクリュ部106の溶融金属の一部が線状部107における隙間Gに流れ込むことになる。よって、本実施形態に係るレーザ溶接方法では、溶接前に金属板材506と板材507との間に隙間G,GD,GIが空いていても、えぐれ(アンダーフィル)や溶け落ちの発生を抑制することができる。
また、本実施形態に係るレーザ溶接方法では、互いに離間した状態で2つのスクリュ部を形成する場合に比べて、スクリュ部106の形成に連続して線状部107を形成し、さらに線状部107の形成に連続して第2スクリュ部108を形成することとしているので溶接速度の向上を図ることができる。そして、このような溶接速度の高速化を図りながらも、上述のようにスクリュ部106における溶融金属を線状部107における隙間Gに流れ込ませることで、高いギャップ裕度を確保することができる。
[第3実施形態]
図9は、本実施形態に係る溶接形態を示す模式平面図である。
図9は、本実施形態に係る溶接形態を示す模式平面図である。
図9に示すように、本実施形態に係るレーザ溶接方法では、コントローラ26が、凹部511bの内底面部における所定箇所(周回中心)を中心としてその周りを周回するレーザ光走査軌跡上をレーザ光のスポットが通るように集光部23を制御する。なお、本実施形態においても、張り出し加工を金属板材(外側金属板材)511に施すことにより、凹部511bの裏面側(外側金属板材の内側主面)には底面部511gが平坦な凸部511dが形成されている。
上記レーザ光の照射により、凹部511bの内底面部の形状およびサイズと略同じであって、凸部511dの底面部511gよりもサイズが小さな、平面視略円形のスクリュ部111における金属が溶融・攪拌される。
続いて、コントローラ26は、スクリュ部111の溶融金属が凝固しない間に(溶融状態が維持されている間に)連続して、スクリュ部111のX方向右側の外縁部から該スクリュ部111の径方向外向きに離間するようにレーザ光のスポットが通るように集光部23を制御する。これにより、レーザ光走査軌跡の周囲に平面視線状の領域である線状部112における金属が溶融する。このとき、上記第2実施形態と同様に、線状部112における金属板材511とこれに対向配置された内側金属板材との間の隙間に、スクリュ部111で溶融・攪拌された溶融金属の一部が流れ込む。
そして、スクリュ部111および線状部112の溶融金属が凝固することにより、互いに連続するスクリュ部111と線状部112とからなる溶接部(ナゲット)110が形成される。
本実施形態に係るレーザ溶接方法では、上記第1実施形態と同様の効果を得ることができる。また、本実施形態では、レーザ光のスポットを周回させてスクリュ部111における溶融金属を攪拌し、該スクリュ部111の金属が溶融した状態で線状部112の金属を溶融させるので、溶接前に金属板材511とこれに対向配置された内側金属板材との間に隙間が空いていても、スクリュ部111の溶融金属の一部が線状部112における隙間に流れ込むことになる。よって、本実施形態に係るレーザ溶接方法では、溶接前に金属板材511とこれに対向配置された内側金属板材との間に隙間が空いていても、えぐれ(アンダーフィル)や溶け落ちの発生を抑制することができる。
[第4実施形態]
図10Aは、本実施形態に係る張り出し加工の形態を示す模式平面図であり、図10Bは、本実施形態に係る張り出し加工の形態を示す模式断面図である。
図10Aは、本実施形態に係る張り出し加工の形態を示す模式平面図であり、図10Bは、本実施形態に係る張り出し加工の形態を示す模式断面図である。
図10Aに示すように、本実施形態に係るプレス機(塑性加工機)では、金属板材(外側金属板材)516に対して、凹部(エンボス凹部)516bと当該凹部516bに連続する凹部(エンボス凹部)516hとを形成する。なお、図10Aでは、連続する2つの凹部516b,516hを図示しているが、実際には、溶接しようとする部分に複数対の凹部を形成する。
ここで、凹部516bは平面視略円形の凹部であるのに対して、凹部516hは平面視線状の凹部である。凹部516hは、凹部516bの外周部部分における径方向略中央からX方向に向けて延びるように形成されている。なお、本実施形態に係る凹部516bが第1凹部に該当し、凹部516hが第2凹部に該当する。
図10Bに示すように、各凹部516b,516hが形成された部分の下面側(外側金属板材の内側主面)は、それぞれ底面部516g,516jが平坦な凸部516d,516iが凸出形成される。即ち、凹部516bと凸部516dとが金属板材516における表裏の関係を以って形成され、同様に、凹部516hと凸部516iとが金属板材516における表裏の関係を以って形成されている。
ここで、張り出し加工を行うことにより形成する凹部516b,516hおよび凸部516d,516iを有する各張り出し部の形態やサイズなどは、上記第1実施形態などと同じである。
次に、図10Bに示すように、張り出し加工が施された金属板材516を、金属板材(内側金属板材)517と対向配置する。本実施形態では、金属板材516と金属板材517との組み合わせに係る積層体515がレーザ溶接の対象である。
なお、図10Bに示すように、溶接前の状態において、金属板材516と金属板材517との間の隙間は、凸部516d,516iの各底面部516g,516jで隙間GD,GIであり、それ以外の部分で隙間Gである。
図示を省略しているが、本実施形態でも、図10Bのように配置された積層体515に対して、外側金属板材である金属板材516の側からレーザ光を照射して、互いに連続するスクリュ部と線状部とからなる溶接部(ナゲット)を形成し、金属板材516と金属板材517とを接合する。
具体的なレーザ溶接方法では、コントローラ26が、凹部516b内における所定箇所(周回中心)を中心としてその周りを周回するレーザ光走査軌跡上をレーザ光のスポットが通るように集光部23を制御する。これにより、凹部516bに対応する平面視略円形の領域の金属が溶融・攪拌される。
続いて、コントローラ26は、凹部516bに対応するスクリュ部の溶融金属が凝固しない間に(溶融状態が維持されている間に)連続して、当該スクリュ部のX方向右側の外縁部分からX方向に離間するように形成された凹部516h内をレーザ光のスポットが通るように集光部23を制御する。これにより、線状のレーザ光走査軌跡の周囲に平面視線状の領域である線状部における金属が溶融する。そして、金属板材516における凸部516iの底面部516jと金属板材517の上面517aとの間の隙間GIに、凹部516bに対応したスクリュ部で溶融・攪拌された溶融金属の一部が流れ込む。
本実施形態に係るレーザ溶接方法でも、上記第1実施形態などと同様の効果を得ることができる。また、本実施形態では、上記第2実施形態と同様に、形成された凹部516b内でレーザ光のスポットを周回させて当該領域における溶融金属を攪拌し、該部分の金属が溶融した状態で凹部516hに対応する線状部の金属を溶融させるので、溶接前に金属板材516と金属板材517との間に隙間G,GD,GIが空いていても、スクリュ部の溶融金属の一部が線状部における隙間GIに流れ込むことになる。よって、本実施形態に係るレーザ溶接方法でも、溶接前に金属板材516と板材517との間に隙間G,GD,GIが空いていても、えぐれ(アンダーフィル)や溶け落ちの発生を抑制することができる。
また、凹部516hを形成することにより、線状部における金属板材516と金属板材517との間の隙間GIを小さくすることができるため、凹部516bに対応したスクリュ部で溶融・攪拌された溶融金属が少ない場合であっても、線状部における金属板材516と金属板材517との間の隙間GIを十分に充填することができ、高い強度で接合することができる。加えて、スクリュ部からの溶融金属の流し込み量を抑えることができ、えぐれ(アンダーフィル)や溶け落ちの発生をより効果的に抑制することができる。
[第5実施形態]
図11Aは、本実施形態に係るレーザ溶接方法を示す模式断面図であり、図11Bは、本実施形態に係る方法を用いて溶接されてなる溶接形態を示す模式断面図である。
図11Aは、本実施形態に係るレーザ溶接方法を示す模式断面図であり、図11Bは、本実施形態に係る方法を用いて溶接されてなる溶接形態を示す模式断面図である。
図11Aに示すように、本実施形態に係るレーザ溶接方法でも、張り出し加工が施された金属板材(外側金属板材)521と、平板状の金属板材(内側金属板材)522と、からなる積層体520を溶接対象とする。そして、金属板材521と金属板材522との間には、張り出し加工により凸部521dが形成された部分では、金属板材521,522同士の間の隙間GDが、他の部分の隙間Gよりも小さくなっている。なお、本実施形態においても、金属板材522の上面522aに対向する凸部521dの底面部521gが平坦である。
本実施形態に係るレーザ溶接方法では、レーザ光を照射する際に、当該レーザ光の照射範囲にワイヤ(溶加材)525を供給する。なお、本実施形態では、金属板材521の上面(外側主面)521a側から凹部521bの外縁部分にワイヤ525を供給する。
図11Bに示すように、本実施形態に係るレーザ溶接方法を用い金属板材521と金属板材522とを接合した場合には、溶融部(ナゲット)115の上面115bが上記第1実施形態に係る溶接部100の上面よりもZ方向上側に位置する。
本実施形態に係るレーザ溶接方法では、金属板材521,522間の隙間Gが大きい場合や、溶接面積が大きい場合などでも、十分な量の溶融金属(ワイヤ525の溶融分を含む溶融金属)を流動させることができる。また、本実施形態に係るレーザ溶接方法では、ワイヤ525の溶融分を含めた溶融金属を凹部521b内に収容することができるため、凹部521b内を溶融金属で埋めて上面521aと略同一平面とすることができ(凹み量を小さくすることができ)、溶接後における高い外観品質を確保することができる。すなわち、張り出し加工により凹部を形成しない場合には、ワイヤ(溶加材)およびその周辺に凝固金属が盛り上がり、外観品質を損なうおそれがあるが、そのような事態を避けることができる。
[第6実施形態]
図12は、本実施形態に係る張り出し加工の形態を示す模式断面図である。
図12は、本実施形態に係る張り出し加工の形態を示す模式断面図である。
図12に示すように、本実施形態に係るプレス機(塑性加工機)では、金属板材(外側金属板材)531に対して、凹部(エンボス凹部)531bを形成するとともに、金属板材533に対しても凹部(エンボス凹部)533bを形成する。なお、図12では、金属板材531に形成された1つの凹部531b,金属板材533に形成された1つの凹部533bを図示しているが、実際には、溶接しようとする部分にそれぞれ複数の凹部を形成する。
ここで、図示を省略しているが、凹部531b,533bはそれぞれ平面視略円形の凹部であり、互いの形状およびサイズが略同じとなるように形成されている。
図12に示すように、金属板材531における凹部531bが形成された部分の下面側(外側金属板材の内側主面)は、底面部531gが平坦な凸部531dが凸出形成される。即ち、凹部531bと凸部531dとが金属板材531における表裏の関係を以って形成されている。同様に、金属板材533における凹部533bが形成された部分の上面側は、底面部533gが平坦な凸部533dが凸出形成される。即ち、凹部533bと凸部533dとが金属板材533における表裏の関係を以って形成されている。
ここで、張り出し加工を行うことにより形成する凹部531b,533bおよび凸部531d,533dを有する各張り出し部の形態やサイズなどは、上記第1実施形態などと同じである。
次に、図12に示すように、張り出し加工が施された金属板材531および金属板材533を、金属板材532を挟んで対向するように配置する。本実施形態では、金属板材531と金属板材532と金属板材533との組み合わせに係る積層体530がレーザ溶接の対象である。
なお、図12に示すように、溶接前の状態において、金属板材531と金属板材532の上面532aとの間の隙間は、凸部531dの底面部531gで隙間GD1であり、それ以外の部分で隙間G1である。また、溶接前の状態において、金属板材533と金属板材532の下面532bとの間の隙間は、凸部533dの底面部533gで隙間GD2であり、それ以外の部分で隙間G2である。
図示を省略しているが、本実施形態でも、図12に示すように配置された積層体530に対して、金属板材531または金属板材533の側からレーザ光を照射して、溶接部(ナゲット)を形成し、金属板材531と金属板材532と金属板材533とを接合する。
具体的なレーザ溶接方法では、コントローラ26が、凹部531b内または凹部533b内における所定箇所(周回中心)を中心としてその周りを周回するレーザ光走査軌跡上をレーザ光のスポットが通るように集光部23を制御する。これにより、凹部531bおよび凹部533bに対応する平面視略円形の領域の金属が溶融・攪拌され、当該溶融金属が固化することにより溶接部が形成される。
本実施形態に係るレーザ溶接方法でも、上記第1実施形態などと同様の効果を得ることができる。
[変形例]
上記第1実施形態から上記第6実施形態では、レーザ光のスポットを走査するために溶接ロボット24を採用することとしたが、本発明は、これに限定を受けるものではない。例えば、X-Yテーブルなどを用いてレーザ光のスポットを走査させることとしてもよい。また、一定範囲の溶接であれば、集光部23の走査のみによっても所望位置への溶接が可能である。
上記第1実施形態から上記第6実施形態では、レーザ光のスポットを走査するために溶接ロボット24を採用することとしたが、本発明は、これに限定を受けるものではない。例えば、X-Yテーブルなどを用いてレーザ光のスポットを走査させることとしてもよい。また、一定範囲の溶接であれば、集光部23の走査のみによっても所望位置への溶接が可能である。
また、上記第1実施形態から上記第6実施形態では、積層体500,505,515,520,530に対して集光部23の制御によりレーザ光のスポットを走査することとしたが、本発明は、これに限定を受けるものではない。例えば、溶接に供される積層体(複数枚の金属板材を重ね合わせたもの)を移動させてレーザ光のスポットを走査することとしてもよい。
また、上記第1実施形態から上記第5実施形態では、2枚の金属板材501,502,506,507,516,517,521,522で構成される積層体500,505,515,520を溶接対象とし、上記第6実施形態では、3枚の金属板材531,532,533で構成される積層体530を溶接対象としたが、本発明は、これに限定を受けるものではない。本発明は、4枚以上の金属板材を重ね合わせてなる積層体を溶接対象とすることもできる。
また、上記第1実施形態から上記第6実施形態では、塑性加工機の一例として張り出し加工を実施可能なプレス機10を採用することとしたが、本発明は、これに限定を受けるものではない。例えば、絞り加工を実施可能な機器を採用することもできる。
また、上記第1実施形態から上記第6実施形態のように、レーザ溶接装置1の構成中に塑性加工機を必ずしも備えていなくてもよい。即ち、予め上記のような形態の塑性加工が施された金属板材を導入して、これをレーザ溶接するレーザ溶接機だけを備えるレーザ溶接装置を採用することもできる。
また、上記第1実施形態から上記第6実施形態では、張り出し部における凸部501d,506d,506i,511d,516d、521d,531d,533dの各外観形状が円錐台形であることとしたが、本発明は、これに限定を受けるものではない。例えば、角錐台形の凸部を形成することとしてもよい。また、表裏の関係にある凹部と凸部とが相似形状であることは必ずしも必須の要件ではない。例えば、凹部が半球形で凸部が円錐台形の場合や、その逆の場合や、さらには凹部が角錐台形で凸部が円錐台形の場合や、その逆の場合など、種々の組み合わせを採用することができる。
また、本発明では、上記第1実施形態から上記第6実施形態を相互に組み合わせて適用することも可能である。
また、上記第1実施形態から上記第6実施形態の説明で用いた図では、1か所の溶接箇所に係るレーザ溶接方法ついて図示したが、本発明は、これに限定されるものではない。即ち、溶接対象である積層体に対して、複数の箇所でのレーザ溶接することも当然に可能である。
[まとめ]
本発明の一態様に係るレーザ溶接方法は、重ね合わされた少なくとも2枚の金属板材に対して、重ね合わせの最外に位置する外側金属板材の外側主面にレーザ光を照射して前記少なくとも2枚の金属板材を接合するレーザ溶接方法であって、前記少なくとも2枚の金属板材には、前記外側金属板材に対して前記重ね合わせの内側に隣接する内側金属板材が含まれており、少なくとも前記外側金属板材は、所定領域において、前記外側主面が当該金属板材の板厚方向に凹入してなる凹部が形成され、前記外側主面とは反対側の内側主面が前記板厚方向に凸出してなる凸部が形成されてなり、前記外側主面の側から前記凹部内に向けてレーザ光を照射して、当該部分の金属を溶融させるレーザ溶接を行い、前記凸部は、外観形状が錐台状であって、前記内側金属板材の主面に対向する頂面である底面部が平坦であり、前記レーザ溶接の実行においては、前記凸部の前記底面部が前記内側金属板材の前記主面に当接または近接するように前記少なくとも2枚の金属板材を重ね合わせた状態で、前記凹部内に向けて前記レーザ光を照射するとともに、前記凹部内の少なくとも一部で前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する。
本発明の一態様に係るレーザ溶接方法は、重ね合わされた少なくとも2枚の金属板材に対して、重ね合わせの最外に位置する外側金属板材の外側主面にレーザ光を照射して前記少なくとも2枚の金属板材を接合するレーザ溶接方法であって、前記少なくとも2枚の金属板材には、前記外側金属板材に対して前記重ね合わせの内側に隣接する内側金属板材が含まれており、少なくとも前記外側金属板材は、所定領域において、前記外側主面が当該金属板材の板厚方向に凹入してなる凹部が形成され、前記外側主面とは反対側の内側主面が前記板厚方向に凸出してなる凸部が形成されてなり、前記外側主面の側から前記凹部内に向けてレーザ光を照射して、当該部分の金属を溶融させるレーザ溶接を行い、前記凸部は、外観形状が錐台状であって、前記内側金属板材の主面に対向する頂面である底面部が平坦であり、前記レーザ溶接の実行においては、前記凸部の前記底面部が前記内側金属板材の前記主面に当接または近接するように前記少なくとも2枚の金属板材を重ね合わせた状態で、前記凹部内に向けて前記レーザ光を照射するとともに、前記凹部内の少なくとも一部で前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する。
先ず、上記態様に係るレーザ溶接方法は、重ね合わされた少なくとも2枚の金属板材をレーザ溶接により接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、金属板材に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
次に、上記態様に係るレーザ溶接方法では、凹部内の少なくとも一部で所定箇所を中心としてその周りをスポットが周回するようにレーザ光の照射を行い、金属板材を溶融・攪拌して、金属板材同士の接合を行うので、仮に溶接前の状態で金属板材同士の間に隙間が空いていたとしても、溶融金属により板材間の隙間を埋めることができる。よって、上記態様に係るレーザ溶接方法では、溶接前の状態で金属板材同士の間に隙間があった場合にも、高いギャップ裕度を以って金属板材同士を高い強度で接合することができる。
さらに、上記態様に係るレーザ溶接方法では、上記少なくとも外側金属板材として、所定領域の外側主面が凹入し、同じ領域の内側主面が凸出されてなる金属板材を採用するので、レーザ溶接する部分での金属板材間の隙間(底面部と内側金属板材の主面との間の隙間)を小さくすることができる。よって、レーザ光の照射により金属を溶融した際に金属板材間の隙間に流れ込む溶融金属の量を少なく抑えることができ、凹部の外縁部分におけるブリッジ部の肉厚が薄くなることに起因して、該部分で脆弱組織が形成されたりするのを抑制することができる。
なお、凸部の底面部を平坦に構成することにより、溶接部において該底面部と内側金属板材の主面とを安定して(一定の間隔で)近接させることができ、または接触させることができる。
従って、上記態様に係るレーザ溶接方法では、溶接前の状態で金属板材同士の間に隙間があるような場合にあっても、高い接合強度で金属板材同士を接合可能である。
上記態様に係るレーザ溶接方法において、前記外側金属板材をその板厚方向から平面視する場合において、前記底面部の形状は、前記レーザ光のスポットが走査される領域の形状と略同じである、との構成を採用することもできる。
上記のように、レーザ光のスポットが周回される領域(溶接しようとする領域)と凸部の底面部との形状を略同じとすることで、スポットの周回方向における入熱条件を略均一化することができ、溶接部分に歪な残留応力が残ることを抑制することができる。
また、溶接箇所の特定が容易となり、溶接ロボットなどを用いる場合のティーチング作業が簡易になる。
上記態様に係るレーザ溶接方法において、前記外側金属板材をその板厚方向から平面視する場合において、前記底面部のサイズは、前記レーザ光のスポットが走査される領域のサイズと同じかそれよりも大きい、との構成を採用することもできる。
上記のように、上記少なくとも外側金属板材における凸部の底面部のサイズを、レーザ光のスポットが走査される領域(溶接しようとする領域)の平面サイズと略同一とすることによって、必要最小限の領域に凹部および凸部を有してなる金属板材を準備するだけで、金属板材間の隙間を小さくして溶融金属の流れ込み量を少なくすることができるので、高い強度での金属板材同士の接合を行うことができる。
上記態様に係るレーザ溶接方法において、前記凹部は、前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する領域である第1凹部と、前記レーザ光のスポットを線状に走査する領域である第2凹部と、を備える、との構成を採用することもできる。
上記のように、レーザ光のスポットを走査する領域の全てに凹部を形成して(第1凹部および第2凹部を形成して)、外側金属板材と内側金属板材との間の隙間を小さくした上で、第1凹部内ではレーザ光のスポットを周回させ、その後に第2凹部内でレーザ光のスポットを線状に走査するので、第1凹部を形成した部分での溶融金属の一部が第2凹部を形成した部分の金属板材間の隙間に流れ込むようにすることができる。よって、上記構成を採用する場合には、第2凹部を形成した部分における接合強度をより高くすることができる。
上記態様に係るレーザ溶接方法において、前記レーザ光の照射に際して、前記凸部の前記底面部が前記内側金属板材の前記主面に対して隙間を空けた状態で、前記少なくとも2枚の金属板材を重ね合わせ、前記凹部の深さは、当該凹部が形成されてなる部分を除く領域での前記外側金属板材と前記内側金属板材との間の隙間である最大隙間より浅い、との構成を採用することもできる。
なお、ここでの最大隙間とは、設計上想定される最大の隙間のことを意味する。
上記のような構成を採用する場合には、溶接しようとする領域の全域にわたり、凸部の底面部と内側金属板材の主面との間に隙間を残すことができ、レーザ光の照射により溶融した金属を溶接しようとする全領域に広げることができ、高い強度での接合を行うのに好適である。
上記態様に係るレーザ溶接方法において、前記凹部の深さは、前記最大隙間の0.4~0.6倍である、との構成を採用することもできる。
上記のような構成を採用する場合には、凹部および凸部が形成されてなる部分を除く領域に比べて、金属板材間の隙間が略半分(0.4~0.6倍)とすることができるので、凹部および凸部が形成されていない金属板材を対象としてレーザ溶接を行う場合に比べて金属板材同士の間の隙間に流れ込む溶融金属の量を低減することができ、溶接部の外縁部分におけるブリッジ部の肉厚が薄くなることに起因して、該部分で脆弱組織が形成されたりするのを抑制するのに好適である。
上記態様に係るレーザ溶接方法において、前記レーザ溶接の実行において、前記凹部内における前記レーザ光の照射範囲に溶加材を供給する、との構成を採用することもできる。
上記のような構成を採用する場合には、溶加材を供給しながらレーザ溶接を行うので、底面部と内側金属板材の主面との間の隙間が大きい場合や、溶接面積が大きい場合などでも、十分な量の溶融金属を流動させることができる。また、上記のような構成を採用する場合において、溶加材の溶融分を含めた溶融金属を凹部内に収容することができるため、凹部内を溶融金属で埋めて主面と略同一平面とすることができ、何れの金属板材にも凹部および凸部が形成されておらず、溶接部およびその周辺に凝固金属が盛り上がる場合に比べて、溶接後における高い外観品質を確保するのに好適である。
上記態様に係るレーザ溶接方法において、前記凹部の内底面部も平坦であり、前記外側金属板材をその板厚方向から平面視する場合において、前記凸部の前記底面部のサイズは、前記凹部における前記内底面部のサイズよりも大きい、との構成を採用することもできる。
上記のような構成を採用する場合には、凹部内におけるレーザ光を照射する領域(溶接しようとする領域)の板厚を略均一化することで、溶接条件の均一化を図ることができる。
上記態様に係るレーザ溶接方法において、前記少なくとも外側金属板材に対して塑性加工を行うことにより、互いに表裏の関係の前記凹部および前記凸部を形成する、との構成を採用することもできる。
上記態様に係るレーザ溶接方法は、塑性加工を実行することにより上記少なくとも外側金属板材の所定領域に凹部および凸部が形成することとしているので、凹部および凸部を形成した部分に確実に位置合わせしながらレーザ溶接を行うことができる。よって、上記態様に係るレーザ溶接方法では、高い接合強度で金属板材同士を接合可能である。
本発明の一態様に係るレーザ溶接装置は、重ね合わされた少なくとも2枚の金属板材に対して、重ね合わせの最外に位置する外側金属板材の外側主面にレーザ光を照射して前記少なくとも2枚の金属板材を接合するレーザ溶接装置であって、前記少なくとも2枚の金属板材には、前記外側金属板材に対して前記重ね合わせの内側に隣接する内側金属板材が含まれており、少なくとも前記外側金属板材は、所定領域において、前記外側主面が当該金属板材の板厚方向に凹入してなる凹部が形成され、前記外側主面とは反対側の内側主面が前記板厚方向に凸出してなる凸部が形成されてなり、前記外側主面の側から前記凹部内に向けてレーザ光を照射して、当該部分の金属を溶融させるレーザ溶接機を、備え、前記凸部は、外観形状が錐台状であって、前記内側金属板材の主面に対向する頂面である底面部が平坦であり、前記レーザ溶接機は、前記レーザ光の照射に際して、前記凸部の前記底面部が前記内側金属板材の前記主面に当接または近接するように前記少なくとも2枚の金属板材を重ね合わせた状態で、前記凹部内に向けて前記レーザ光を照射するとともに、前記凹部内の少なくとも一部で前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する。
先ず、上記態様に係るレーザ溶接装置は、重ね合わされた少なくとも2枚の金属板材をレーザ溶接により接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、金属板材に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
次に、上記態様に係るレーザ溶接装置では、凹部内の少なくとも一部において所定箇所を中心としてその周りをスポットが周回するようにレーザ光の照射を行い、金属板材を溶融・攪拌して、金属板材同士の接合を行うので、仮に溶接前の状態で金属板材同士の間に隙間が空いていたとしても、溶融金属により板材間の隙間を埋めることができる。よって、上記態様に係るレーザ溶接装置では、溶接前の状態で金属板材同士の間に隙間があった場合にも、高いギャップ裕度を以って金属板材同士を高い強度で接合することができる。
さらに、上記態様に係るレーザ溶接装置では、上記少なくとも外側金属板材として、所定領域の外側主面が凹入し、同じ領域の内側主面が凸出されてなる金属板材を採用するので、レーザ溶接する部分での外側金属板材と内側金属板材との間の隙間(底面部と内側金属板材の主面との間の隙間)を小さくすることができる。よって、レーザ光の照射により金属を溶融した際に金属板材間の隙間に流れ込む溶融金属の量を少なく抑えることができ、凹部の外縁部分におけるブリッジ部の肉厚が薄くなることに起因して、該部分で脆弱組織が形成されたりするのを抑制することができる。
従って、上記態様に係るレーザ溶接装置では、溶接前の状態で金属板材同士の間に隙間があるような場合にあっても、高い接合強度で金属板材同士を接合可能である。
上記態様に係るレーザ溶接装置において、前記凹部は、前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する領域である第1凹部と、前記レーザ光のスポットを線状に走査する領域である第2凹部と、を備える、との構成を採用することもできる。
上記のように、レーザ光のスポットを走査する領域の全てに凹部を形成して(第1凹部および第2凹部を形成して)、外側金属板材と内側金属板材との間の隙間を小さくした上で、第1凹部内ではレーザ光のスポットを周回させ、その後に第2凹部内でレーザ光のスポットを線状に走査するので、第1凹部を形成した部分での溶融金属の一部が第2凹部を形成した部分の金属板材間の隙間に流れ込むようにすることができる。よって、上記構成を採用する場合には、第2凹部を形成した部分における接合強度をより高くすることができる。
上記態様に係るレーザ溶接装置において、前記少なくとも外側金属板材における前記所定領域に対して該金属板材の板厚方向に圧力を付加することにより、互いに表裏の関係の前記凹部および前記凸部が形成されるように、塑性加工を行う塑性加工機を、さらに備える、との構成を採用することもできる。
上記のような構成を採用する場合には、塑性加工機とレーザ溶接機との連携を図ることが容易であり、塑性加工機を用いて形成した凹部および凸部の位置と、レーザ溶接機によりレーザ光を照射する位置とを合致させることができる。よって、上記態様に係るレーザ溶接装置では、高い接合強度で金属板材同士を接合可能である。
以上のように、上記の各態様では、溶接前の状態で金属板材同士の間に隙間があるような場合にあっても、高い接合強度で金属板材同士を接合可能である。
Claims (12)
- 重ね合わされた少なくとも2枚の金属板材に対して、重ね合わせの最外に位置する外側金属板材の外側主面にレーザ光を照射して前記少なくとも2枚の金属板材を接合するレーザ溶接方法であって、
前記少なくとも2枚の金属板材には、前記外側金属板材に対して前記重ね合わせの内側に隣接する内側金属板材が含まれており、
少なくとも前記外側金属板材は、所定領域において、前記外側主面が当該外側金属板材の板厚方向に凹入してなる凹部が形成され、前記外側主面とは反対側の内側主面が前記板厚方向に凸出してなる凸部が形成されてなり、
前記外側主面の側から前記凹部内に向けてレーザ光を照射して、当該部分の金属を溶融させるレーザ溶接を行い、
前記凸部は、外観形状が錐台状であって、前記内側金属板材の主面に対向する頂面である底面部が平坦であり、
前記レーザ溶接の実行においては、前記凸部の前記底面部が前記内側金属板材の前記主面に当接または近接するように前記少なくとも2枚の金属板材を重ね合わせた状態で、前記凹部内に向けて前記レーザ光を照射するとともに、前記凹部内の少なくとも一部で前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する、
レーザ溶接方法。 - 請求項1に記載のレーザ溶接方法において、
前記外側金属板材をその板厚方向から平面視する場合において、前記底面部の形状は、前記レーザ光のスポットが走査される領域の形状と略同じである、
レーザ溶接方法。 - 請求項1または請求項2に記載のレーザ溶接方法において、
前記外側金属板材をその板厚方向から平面視する場合において、前記底面部のサイズは、前記レーザ光のスポットが走査される領域のサイズと同じかそれよりも大きい、
レーザ溶接方法。 - 請求項1から請求項3の何れかに記載のレーザ溶接方法において、
前記凹部は、
前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する領域である第1凹部と、
前記レーザ光のスポットを線状に走査する領域である第2凹部と、
を備える、
レーザ溶接方法。 - 請求項1から請求項4の何れかに記載のレーザ溶接方法において、
前記レーザ光の照射において、前記凸部の前記底面部が前記内側金属板材の前記主面に対して隙間を空けた状態で、前記少なくとも2枚の金属板材を重ね合わせ、
前記凹部の深さは、当該凹部が形成されてなる部分を除く領域での前記外側金属板材と前記内側金属板材との間の隙間である最大隙間より浅い、
レーザ溶接方法。 - 請求項5に記載のレーザ溶接方法において、
前記凹部の深さは、前記最大隙間の0.4~0.6倍である、
レーザ溶接方法。 - 請求項1から請求項6の何れかに記載のレーザ溶接方法において、
前記レーザ溶接の実行において、前記凹部内における前記レーザ光の照射範囲に溶加材を供給する、
レーザ溶接方法。 - 請求項1から請求項7の何れかに記載のレーザ溶接方法において、
前記凹部の内底面部も平坦であり、
前記外側金属板材をその板厚方向から平面視する場合において、前記凸部の前記底面部のサイズは、前記凹部における前記内底面部のサイズよりも大きい、
レーザ溶接方法。 - 請求項1から請求項8の何れかに記載のレーザ溶接方法において、
前記少なくとも外側金属板材に対して塑性加工を行うことにより、互いに表裏の関係の前記凹部および前記凸部を形成する、
レーザ溶接方法。 - 重ね合わされた少なくとも2枚の金属板材に対して、重ね合わせの最外に位置する外側金属板材の外側主面にレーザ光を照射して前記少なくとも2枚の金属板材を接合するレーザ溶接装置であって、
前記少なくとも2枚の金属板材には、前記外側金属板材に対して前記重ね合わせの内側に隣接する内側金属板材が含まれており、
少なくとも前記外側金属板材は、所定領域において、前記外側主面が当該金属板材の板厚方向に凹入してなる凹部が形成され、前記外側主面とは反対側の内側主面が前記板厚方向に凸出してなる凸部が形成されてなり、
前記外側主面の側から前記凹部内に向けてレーザ光を照射して、当該部分の金属を溶融させるレーザ溶接機を、備え、
前記凸部は、外観形状が錐台状であって、前記内側金属板材の主面に対向する頂面である底面部が平坦であり、
前記レーザ溶接機は、前記レーザ光の照射に際して、前記凸部の前記底面部が前記内側金属板材の前記主面に当接または近接するように前記少なくとも2枚の金属板材を重ね合わせた状態で、前記凹部内に向けて前記レーザ光を照射するとともに、前記凹部内の少なくとも一部で前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する、
レーザ溶接装置。 - 請求項10に記載のレーザ溶接装置において、
前記凹部は、
前記レーザ光のスポットを前記凹部内における所定箇所を中心としてその周りを周回するように走査する領域である第1凹部と、
前記レーザ光のスポットを線状に走査する領域である第2凹部と、
を備える、
レーザ溶接装置。 - 請求項10または請求項11に記載のレーザ溶接装置において、
前記少なくとも外側金属板材における前記所定領域に対して該金属板材の板厚方向に圧力を付加することにより、互いに表裏の関係の前記凹部および前記凸部が形成されるように、塑性加工を行う塑性加工機を、さらに備える、
レーザ溶接装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-079117 | 2019-04-18 | ||
JP2019079117A JP7372642B2 (ja) | 2019-04-18 | 2019-04-18 | レーザ溶接方法およびレーザ溶接装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020213302A1 true WO2020213302A1 (ja) | 2020-10-22 |
Family
ID=72837559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010403 WO2020213302A1 (ja) | 2019-04-18 | 2020-03-10 | レーザ溶接方法およびレーザ溶接装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7372642B2 (ja) |
WO (1) | WO2020213302A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013510727A (ja) * | 2009-11-16 | 2013-03-28 | ジョンソン コントロールズ テクノロジー カンパニー | Twip鋼と低炭素鋼とをレーザ溶接する方法 |
WO2016189855A1 (ja) * | 2015-05-28 | 2016-12-01 | パナソニックIpマネジメント株式会社 | レーザ溶接方法 |
WO2018056172A1 (ja) * | 2016-09-26 | 2018-03-29 | 株式会社神戸製鋼所 | 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手 |
JP2019005768A (ja) * | 2017-06-20 | 2019-01-17 | トヨタ自動車株式会社 | 積層金属箔の溶接方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107735208B (zh) * | 2015-06-02 | 2019-06-07 | 通用汽车环球科技运作有限责任公司 | 激光焊接重叠的金属工件 |
-
2019
- 2019-04-18 JP JP2019079117A patent/JP7372642B2/ja active Active
-
2020
- 2020-03-10 WO PCT/JP2020/010403 patent/WO2020213302A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013510727A (ja) * | 2009-11-16 | 2013-03-28 | ジョンソン コントロールズ テクノロジー カンパニー | Twip鋼と低炭素鋼とをレーザ溶接する方法 |
WO2016189855A1 (ja) * | 2015-05-28 | 2016-12-01 | パナソニックIpマネジメント株式会社 | レーザ溶接方法 |
WO2018056172A1 (ja) * | 2016-09-26 | 2018-03-29 | 株式会社神戸製鋼所 | 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手 |
JP2019005768A (ja) * | 2017-06-20 | 2019-01-17 | トヨタ自動車株式会社 | 積層金属箔の溶接方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020175411A (ja) | 2020-10-29 |
JP7372642B2 (ja) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102728960B (zh) | 混合焊接设备和焊接的系统与方法 | |
US11786989B2 (en) | Method for splash-free welding, in particular using a solid-state laser | |
WO2015104762A1 (ja) | レーザ溶接方法 | |
JP2009255179A (ja) | 接合素材、接合品および自動車車体 | |
WO2008133063A1 (ja) | 重ね合わせワークのレーザ溶接方法 | |
WO2015159514A1 (ja) | レーザ溶接方法 | |
JP2005254282A (ja) | レーザーによる突合せ溶接金属板の製造方法 | |
JPH08257773A (ja) | レーザ溶接方法 | |
WO2020213302A1 (ja) | レーザ溶接方法およびレーザ溶接装置 | |
JP4210857B2 (ja) | メッキ板材のレーザー機械加工方法 | |
WO2020195806A1 (ja) | レーザ溶接装置およびレーザ溶接方法 | |
WO2017086008A1 (ja) | レーザー溶接方法、およびレーザー溶接装置 | |
JP5177745B2 (ja) | めっき鋼板の重ねレーザ溶接方法及びめっき鋼板の重ねレーザ溶接構造 | |
JP5000982B2 (ja) | 差厚材のレーザ溶接方法 | |
JPH09216078A (ja) | レーザ溶接方法及びレーザ溶接装置 | |
WO2020217809A1 (ja) | レーザ溶接方法およびレーザ溶接装置 | |
JP2006218497A (ja) | 板材のレーザー溶接方法 | |
WO2020217760A1 (ja) | レーザ溶接方法およびレーザ溶接装置 | |
KR100597908B1 (ko) | 용접끝점의 부분함몰 방지를 위한 레이저 용접장치 및이를 이용한 용접방법 | |
WO2020085492A1 (ja) | 接合方法 | |
JP2008043972A (ja) | レーザ溶接方法および装置 | |
JPH06106371A (ja) | レーザビーム溶接方法 | |
WO2023167045A1 (ja) | 板材、接合体、板材の接合方法及び板材の製造方法 | |
JP6947669B2 (ja) | レーザ溶接方法 | |
JP4998634B1 (ja) | レーザ溶接方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20791085 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20791085 Country of ref document: EP Kind code of ref document: A1 |