WO2020211512A1 - 有机电致发光显示面板、其制作方法及显示装置 - Google Patents

有机电致发光显示面板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2020211512A1
WO2020211512A1 PCT/CN2020/074444 CN2020074444W WO2020211512A1 WO 2020211512 A1 WO2020211512 A1 WO 2020211512A1 CN 2020074444 W CN2020074444 W CN 2020074444W WO 2020211512 A1 WO2020211512 A1 WO 2020211512A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening area
opening
organic light
manufacturing
protective solvent
Prior art date
Application number
PCT/CN2020/074444
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020211512A1 publication Critical patent/WO2020211512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, in particular to an organic electroluminescence display panel, a manufacturing method thereof, and a display device.
  • Organic Light-Emitting Diode has the advantages of self-luminescence, fast response, wide viewing angle, high brightness, bright colors, light and thin. A generation of display technology.
  • the embodiments of the present disclosure provide a manufacturing method of an organic electroluminescence display panel, including:
  • a pixel defining layer with a plurality of opening regions on the base substrate, the plurality of opening regions being divided into at least three opening region groups;
  • the following film forming process is adopted to sequentially form an organic light-emitting film of the same color in each opening area in each of the opening area groups:
  • ink droplets of the same color are dropped into each of the opening areas in the opening area group, and a protective solvent is dropped into at least part of the opening areas in the other opening area groups;
  • the base substrate after the inkjet printing process is dried and formed into a film to form an organic light-emitting film of the same color in each of the opening regions in the opening region group, and the protective solvent is volatilized.
  • the dripping of a protective solvent into each opening area in at least a part of other opening area groups specifically includes:
  • the first protective solvent is dropped into each opening area in the opening area group where the organic light-emitting film has been formed only before this inkjet printing process.
  • the dripping of a protective solvent into each opening area in at least a part of other opening area groups specifically includes:
  • the second protective solvent is dropped into each opening region in the opening region group where the organic light-emitting film is not formed before this inkjet printing process.
  • the dripping of a protective solvent into each opening area in at least a part of other opening area groups specifically includes:
  • the first protective solvent is dropped into each opening area in the opening area group where the organic light-emitting film has been formed before this inkjet printing process, and at the same time, the opening area group in the opening area group where the organic light-emitting film has not been formed before this inkjet printing process A second protective solvent is dropped into each opening area.
  • the difference between the boiling point of the ink drop and the protective solvent is less than a set value.
  • the first protective solvent is a poor solvent corresponding to the organic light-emitting film.
  • the first protective solvent is cycloheptane, cyclooctane, tribromomethane, bromobenzene, dibenzyl ether, anisole, At least one of benzaldehyde, furfural, amyl acetate, ethylene glycol monomethyl ether, and butanol or pentanol.
  • the following film forming process is used to sequentially form an organic light-emitting film of the same color in each of the opening regions in each of the opening region groups Before, the method further includes: forming at least one organic functional layer in each opening area in the pixel defining layer;
  • the second protective solvent is a poor solvent corresponding to the organic functional layer.
  • the second protective solvent is cycloheptane, cyclooctane, tribromomethane, bromobenzene, dibenzyl ether, anisole, At least one of benzaldehyde, furfural, amyl acetate, ethyl benzoate, diethyl oxalate, tributyrin, p-ethoxyaniline, and ethyl benzoate.
  • the drying and film forming process on the base substrate after the inkjet printing process includes:
  • the base substrate after inkjet printing is placed in a vacuum drying box, and vacuum is pumped at room temperature to reduce the atmospheric pressure from 10 5 Pa to less than 10 Pa within 1 minute, and then maintain it for 10 minutes.
  • the drying and film forming process on the base substrate after the inkjet printing process includes:
  • the inkjet-printed substrate in a vacuum drying oven, and vacuum at room temperature to reduce the atmospheric pressure from 10 5 Pa to less than 10 3 Pa in 1 minute, and maintain it for 10 minutes; then in 1 minute The internal drop is less than 10pa and it is maintained for 10 minutes.
  • the method further includes:
  • the organic light-emitting film in each of the opening regions is baked.
  • the baking the organic light-emitting film in each of the opening regions includes:
  • the embodiments of the present disclosure also provide an organic electroluminescent display panel, which is manufactured by the above-mentioned manufacturing method.
  • An embodiment of the present disclosure also provides a display device, including the above-mentioned organic electroluminescence display panel.
  • FIG. 1 is a flowchart of a manufacturing method of an organic electroluminescent display panel provided by an embodiment of the disclosure
  • FIGS. 2 to 11 are respectively structural schematic diagrams of various steps in the manufacturing method provided by the embodiments of the disclosure.
  • Organic electroluminescent device (OLED) thin film deposition methods mainly include vacuum evaporation and solution process.
  • vacuum evaporation is suitable for organic small molecules, and its film formation is good, the technology is relatively mature, but the equipment investment is large, and the material utilization Low rate, large-size product mask (Mask) has low alignment accuracy; solution manufacturing processes, including spin coating, inkjet printing, nozzle coating, etc., are suitable for polymer materials and soluble small molecules, and feature low equipment costs. It has outstanding advantages in large-scale and large-scale production.
  • the organic electroluminescent device has at least three different color sub-pixels, for example, it may include three color sub-pixels of red (R), green (G), and blue (B).
  • the sub-pixels of different colors correspond to inks of different colors. Because the properties of different colors of ink are different, the vacuum drying process after inkjet printing will be different. When RGB inks of different colors are dried together, it is impossible to make different color inks form a uniform film at the same time. In order to achieve good film uniformity, RGB inks of different colors need to be vacuum dried to form films separately, which will cause the film formed by inkjet printing to undergo repeated drying, causing the film to crack in the pixel.
  • embodiments of the present disclosure provide an organic electroluminescent display panel, a manufacturing method thereof, and a display device.
  • An embodiment of the present disclosure provides a manufacturing method of an organic electroluminescence display panel, as shown in FIG. 1, including:
  • the plurality of opening regions 103 are divided into at least three opening region groups;
  • the pixel defining layer 102 formed on the base substrate 101 includes a plurality of barrier wall structures, such as the trapezoidal structure in the figure.
  • the area defined by the plurality of barrier wall structures is the area where the opening area 103 is located.
  • An organic light-emitting film can be formed in the opening area 103 to form a sub-pixel.
  • the opening regions 103 corresponding to the sub-pixels of the same color can be used as an opening region group, so that the organic light-emitting film of the same color is subsequently formed in an opening region group, that is, one opening region group corresponds to
  • a general display panel includes at least three-color sub-pixels. Therefore, the opening area 103 in the pixel defining layer can be divided into at least three opening area groups. It should be noted that in the drawings provided in the embodiments of the present disclosure, only three opening regions 103 are taken as an example for illustration, and the opening region on the left belongs to the opening region group T1, and the opening region in the middle belongs to the opening region group T2. , The opening area on the right belongs to the opening area group T3 as an example for illustration. The present disclosure does not limit the number of opening area groups and the number and distribution of the opening areas in each opening area group.
  • the organic electroluminescence display panel includes red (R), green (G) ), blue (B) three colors of sub-pixels as an example, for each color of RGB, the organic light-emitting film is made according to S121 and S122.
  • R red
  • G green
  • B blue
  • the manufacturing process is performed in the embodiment, which will not be repeated here.
  • S121 Using an inkjet printing process, drop ink drops of the same color into each opening area in the opening area group, and drop a protective solvent into each opening area in at least part of the other opening area groups.
  • S122. Perform drying and film forming processing on the base substrate after the inkjet printing process to form an organic light-emitting film of the same color in each opening area in the opening area group, and volatilize the protective solvent; as shown in FIG. 8, the opening
  • the ink droplets in each opening area in the area group T2 are dried to form a green organic light-emitting film 203G.
  • the protective solvent in each opening area 103 in the opening area group T1 evaporates after drying and will not remain in the opening area 103.
  • an inkjet printing process is used to drop ink drops of the same color in each opening area in the opening area group, and at least part of the other opening area groups are A protective solvent is dropped into the opening area, and then the ink droplets and the protective solvent are dried together to form a film.
  • the protective solvent protects the underlying film to avoid affecting the uniformity of the underlying film during the drying process. It is realized that ink droplets of different colors are separately dried and formed into a film, so as to avoid repeated drying and cracking of ink droplets of a certain color, so that the uniformity of the formed organic light-emitting film can be better.
  • the above-mentioned protective solvent can protect the underlying film to prevent the underlying film from cracking due to repeated drying, and the protective solvent will not dissolve the underlying film, nor will it chemically react with the underlying film, and The protective solvent can also be volatilized during the drying process.
  • the specific materials of the protective solvent will be described in detail later.
  • the difference between the boiling point of the ink droplet and the protective solvent is generally less than the set value. That is to say, in the same film forming process, the boiling points of the ink droplets and the protective solvent are close, so that the protective solvent and the ink droplets begin to volatilize roughly together during the drying film forming process, and the degree of volatilization after the drying is equal , So as to avoid residual protective solvent.
  • the above-mentioned step S121 may specifically include: adopting an inkjet printing process to drop ink droplets of the same color into each opening area in the opening area group, and only The first protective solvent is dropped into each of the opening regions in the opening region group where the organic light-emitting film has been formed before this inkjet printing process.
  • a green ink droplet 201G is dropped into each opening area 103 in the opening area group T2, and before this inkjet printing process, in the opening area A red organic light emitting film has been formed in each opening area 103 in the group T1, and the first protective solvent 202R is dropped into each opening area in the opening area group T1 to protect the lower red organic light emitting film, after step S121
  • the structure of can be shown in Figure 7; in specific implementation, the above-mentioned first protective solvent and ink droplets can be dropped into the corresponding opening area at the same time, or they can be dropped at different times, which can be selected according to the actual situation.
  • the foregoing step S121 may specifically include:
  • the inkjet printing process is used to drop ink drops of the same color into each opening area in the opening area group, and the second protective solvent is dropped only in the opening area where the organic light-emitting film is not formed before the inkjet printing process.
  • step S12 it may further include: forming at least one organic functional layer 105 in each opening area 103 in the pixel defining layer 102, generally on the pixel defining layer 102 and the base substrate 101 There are also multiple anodes 104 between them.
  • a hole injection layer HIL
  • HTL Hole Transport Layer
  • the opening area is an organic functional layer
  • the second protective solvent can be dropped into the opening area to form a film after drying During the treatment, the second protective solvent can protect the lower organic functional layer to avoid affecting the uniformity of the lower organic functional layer during the drying process.
  • the foregoing step S121 may specifically include:
  • the inkjet printing process is used to drop ink droplets of the same color into each opening area in the opening area group, and drop into each opening area in the opening area group where the organic light-emitting film has been formed before this inkjet printing process
  • the first protective solvent is dropped into the opening area where the organic light-emitting film is not formed before the inkjet printing process.
  • step of dropping the second protective solvent may be the same as the dropping, or the step of the first protective solvent may not be performed at the same time, which can be set according to actual conditions.
  • the foregoing first protective solvent may be a poor solvent corresponding to an organic light-emitting film. Since the organic light-emitting film is in the opening area before the first protective solvent is dropped, the poor solvent of the organic light-emitting film is used as the first protective solvent to ensure that the first protective solvent will not affect the organic light-emitting film.
  • a poor solvent may refer to a solvent that has a weak dissolving ability for polymer solutes, that is, poor solvents are not easy to dissolve polymer solutes.
  • the above-mentioned poor solvents for organic light-emitting films may refer to solvents that are difficult to dissolve organic light-emitting films, thereby ensuring The protective solvent will not dissolve the lower organic light-emitting film, and protect the lower organic light-emitting film from repeated drying.
  • the foregoing first protective solvent that is, the poor solvent corresponding to the organic light-emitting film (red, green, or blue)
  • the foregoing first protective solvent may be cycloheptane, cyclooctane, or tribromomethane.
  • the foregoing second protective solvent is a poor solvent corresponding to the organic functional layer. Since the organic functional layer is in the opening area before the second protective solvent is dropped, the poor solvent of the organic functional layer is used as the second protective solvent to ensure that the second protective solvent will not affect the organic functional layer after being dropped.
  • the foregoing second protective solvent that is, the poor solvent corresponding to the organic functional layer (for example, the HTL layer) may be cycloheptane, cyclooctane, tribromomethane, bromobenzene, At least one of dibenzyl ether, anisole, benzaldehyde, furfural, amyl acetate, ethyl benzoate, diethyl oxalate, tributyrin, p-ethoxyaniline, ethyl benzoate, etc.
  • the foregoing second protective solvent that is, the poor solvent corresponding to the organic functional layer (for example, the HTL layer
  • the foregoing second protective solvent may be cycloheptane, cyclooctane, tribromomethane, bromobenzene, At least one of dibenzyl ether, anisole, benzaldehyde, furfural, amyl acetate, ethyl benzoate
  • the poor solvent of the organic functional layer and the poor solvent of the organic light-emitting film can be the same material, or different materials, as long as they can play a protective role and will not dissolve the corresponding organic layer.
  • the material of the protective solvent is not limited here.
  • the ink droplet and the protective solvent can be dried and formed into a film in various ways, for example, the following way can be used:
  • vacuum at room temperature to reduce the atmospheric pressure from 10 5 pa to less than 103 pa within 1 minute, and maintain it for about 10 minutes; then within 1 minute Reduce to less than 10pa and maintain it for about 10 minutes.
  • step S12 it may further include:
  • the drying film-forming process in the above step S122 can recover about 95% of the solvent, and the residual solvent can be removed through the baking process, the defects in the organic light-emitting film can be reduced, and the compactness of the organic light-emitting film can be improved.
  • step S13 judging whether an organic light emitting film has been formed in all the opening regions; if so, proceed to step S14 ; If not, go back to step S12.
  • baking the organic light-emitting film in each opening area may include:
  • an organic electroluminescent display panel including sub-pixels of three colors of red, green, and blue is taken as an example to illustrate the manufacturing method of the embodiment of the present disclosure:
  • a plurality of anodes 104 are formed on the base substrate 101, and a pixel defining layer 102 is formed on the film layer where the anodes 104 are located.
  • the pixel defining layer 102 has a plurality of opening regions 103, according to the to-be-formed
  • the pixel arrangement of the organic electroluminescence display panel divides the multiple opening regions 103 in the pixel defining layer 102 into three opening region groups. For example, the opening region 103 on the left in the figure belongs to the opening region group T1, and the middle opening region 103 belongs to the opening area group T2, and the opening area 103 on the right belongs to the opening area group T3.
  • An organic functional layer 105 is formed on the pixel defining layer 102, for example, a hole injection layer (HIL) and a hole transport layer (HTL) are sequentially formed .
  • HIL hole injection layer
  • HTL hole transport layer
  • a red ink droplet 201R is dropped into each opening area 103 in the opening area group T1, and a second drop is dropped into each opening area 103 in the opening area groups T2 and T3.
  • the protective solvent 202H for example, can be dropped into the poor solvent of HTL.
  • the structure after inkjet printing can be as shown in FIG. 4, and then the organic electroluminescent display panel shown in FIG. 4 is dried and formed into a film.
  • Each opening area 103 in T2 and T3 has a protective solvent 202H, so the organic functional layer 105 in each opening area 103 in the opening area groups T2 and T3 can be protected during the drying process, and the organic functional layer 105 is prevented from being repeatedly dried.
  • the structure after the dry film formation process can be as shown in FIG. After volatilization, it will not affect the structure of the organic electroluminescent display panel.
  • a green ink droplet 201G is dropped into each opening area 103 in the opening area group T2, and a first protection is dropped into each opening area 103 in the opening area group T1.
  • a first protection is dropped into each opening area 103 in the opening area group T1.
  • a second protective solvent 202H can be dropped into each opening area 103 in the opening area group T3, for example, it can be dropped in each opening area 103 of the opening area group T3.
  • Poor solvent of HTL is dropped inside, the structure after inkjet printing can be as shown in FIG. 7, and then the organic electroluminescence display panel shown in FIG.
  • the structure after the drying and film formation process can be as shown in Figure 8.
  • a green organic light-emitting film 203G is formed in each opening area 103 in the area group T2, and the first protection solvent in each opening area 103 in the opening area group T1 and the second protection solvent in each opening area 103 in the opening area group T3 are dried After volatilization, it will not affect the structure of the organic electroluminescent display panel.
  • a blue ink droplet 201B is dropped into each opening area 103 in the opening area group T3, and a first drop is dropped into each opening area 103 in the opening area group T1.
  • the first protective solvent 202G is dropped into each opening area 103 in the protective solvents 202R and T2.
  • a red organic light-emitting film poor solvent can be dropped into each opening area 103 in the opening area group T1, and the opening area group T2
  • the poor solvent of the green organic light-emitting thin film is dropped into each opening area 103 of, the structure after inkjet printing can be as shown in FIG. 10, and then the organic electroluminescent display panel shown in FIG. 10 is dried and formed into a film.
  • the opening regions of the opening region groups T1 and T2 can be protected during the drying process
  • the organic layer of 103 avoids repeated heating of the red organic light-emitting film 203R in each opening area 103 in the opening area group T1 and the green organic light-emitting film 203B in each opening area 103 in the opening area group T3, which is beneficial to the formation of the organic layer.
  • Film uniformity, the structure after drying and film formation can be as shown in FIG.
  • a blue organic light-emitting film 203B is formed in each opening region 103 in the opening region group T3, and each opening region 103 in the opening region groups T1 and T2
  • the protective solvent inside evaporates after drying, and will not affect the structure of the organic electroluminescence display panel.
  • embodiments of the present disclosure also provide an organic electroluminescent display panel, which is manufactured by using the above-mentioned manufacturing method. Since the principle of solving the problem of the organic electroluminescent display panel is similar to the above-mentioned manufacturing method, the implementation of the organic light-emitting display panel can refer to the implementation of the above-mentioned manufacturing method, and the repetition will not be repeated. It is precisely because the organic electroluminescent display panel is manufactured by the above-mentioned manufacturing method, compared with the structure obtained by the manufacturing method mentioned in the related art, the organic light-emitting film in the organic electroluminescent display panel provided by the embodiments of the present disclosure is The uniformity is better, and there will be no cracks or unequal thickness.
  • embodiments of the present disclosure provide a display device, including the above-mentioned organic electroluminescence display panel.
  • the display device can be applied to mobile phones, tablet computers, televisions, displays, notebook computers, digital photo frames, navigators, etc. Products or parts with display functions. Since the principle of solving the problems of the display device is similar to the above-mentioned organic electroluminescence display panel, the implementation of the display device can refer to the implementation of the above-mentioned organic electroluminescence display panel, and the repetition will not be repeated.
  • ink droplets of the same color are dropped into each opening area in the opening area group by using an inkjet printing process , And drop a protective solvent into each opening area in at least part of the other opening area groups, and then dry the ink droplets and the protective solvent together to form a film.
  • the protective solvent protects the underlying film .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光显示面板、其制作方法及显示装置,该制作方法,包括:在衬底基板(101)上形成具有多个开口区域(103)的像素界定层(102),多个开口区域(103)划分为至少三个开口区域组(S11);采用以下成膜工艺,在每一个开口区域组中的各开口区域(103)中形成相同颜色的有机发光薄膜:采用喷墨打印工艺,在开口区域组中的各开口区域(103)内滴入相同颜色的墨滴,并在至少部分其他开口区域组中的各开口区域(103)内滴入保护溶剂(S121);对喷墨打印工艺后的衬底基板(101)进行干燥成膜处理,以在该开口区域组中的各开口区域(103)中形成相同颜色的有机发光薄膜,并挥发保护溶剂(S122)。该制作方法可以避免某种颜色的墨滴反复干燥,因而能够使形成的有机发光薄膜的均匀性较好。

Description

有机电致发光显示面板、其制作方法及显示装置
相关申请的交叉引用
本公开要求在2019年04月18日提交中国专利局、申请号为201910311622.9、申请名称为“一种有机电致发光显示面板、其制作方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤指一种有机电致发光显示面板、其制作方法及显示装置。
背景技术
有机电致发光器件(Organic Light-Emitting Diode,OLED)相对于液晶显示器件(Liquid Crystal Display,LCD)具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为是下一代显示技术。
发明内容
本公开实施例提供了一种有机电致发光显示面板的制作方法,包括:
在衬底基板上形成具有多个开口区域的像素界定层,所述多个开口区域划分为至少三个开口区域组;
采用以下成膜工艺,依次在每一个所述开口区域组中的各开口区域中形成相同颜色的有机发光薄膜:
采用喷墨打印工艺,在本开口区域组中的各所述开口区域内滴入相同颜色的墨滴,并至少部分其他开口区域组中的各开口区域内滴入保护溶剂;
对喷墨打印工艺后的所述衬底基板进行干燥成膜处理,以在本开口区域组中的各所述开口区域中形成相同颜色的有机发光薄膜,并挥发所述保护溶剂。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,具体包括:
仅在本次喷墨打印工艺之前已形成有机发光薄膜的开口区域组中的各开口区域内滴入第一保护溶剂。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,具体包括:
仅在本次喷墨打印工艺之前未形成有机发光薄膜的开口区域组中的各开口区域内滴入第二保护溶剂。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,具体包括:
在本次喷墨打印工艺之前已形成有机发光薄膜的开口区域组中的各开口区域内滴入第一保护溶剂,同时在本次喷墨打印工艺之前未形成有机发光薄膜的开口区域组中的各开口区域内滴入第二保护溶剂。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在同一次所述成膜工艺中,所述墨滴与所述保护溶剂的沸点之差小于设定值。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述第一保护溶剂为对应于所述有机发光薄膜的不良溶剂。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述第一保护溶剂为环庚烷、环辛烷、三溴甲烷、溴苯、二苄醚、苯甲醚、苯甲醛、糠醛、乙酸戊酯、乙二醇单甲醚和丁醇或戊醇中的至少一种。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在采用以下成膜工艺,依次在每一个所述开口区域组中的各开口区域中形成相同颜色的有机发光薄膜之前,还包括:在所述像素界定层中的各开口区域内形成至少一层有机功能层;
所述第二保护溶剂为对应于所述有机功能层的不良溶剂。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述第二保护溶剂为环庚烷、环辛烷、三溴甲烷、溴苯、二苄醚、苯甲醚、苯 甲醛、糠醛、乙酸戊酯、苯甲酸乙酯、乙二酸二乙酯、甘油三丁酸酯、对乙氧基苯胺和苯甲酸乙酯中的至少一种。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述对喷墨打印工艺后的所述衬底基板进行干燥成膜处理,包括:
将喷墨打印后的所述衬底基板置于真空干燥箱中,在室温下真空抽气,使大气压在1分钟内从10 5pa降到小于10pa,然后维持10分钟。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述对喷墨打印工艺后的所述衬底基板进行干燥成膜处理,包括:
将喷墨打印后的所述衬底基板置于真空干燥箱中,在室温下真空抽气,使大气压在1分钟内从10 5pa降到小于10 3pa,维持10分钟;然后在1分钟内降到小于10pa,并维持10分钟。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在所有的所述开口区域中形成有机发光薄膜后,还包括:
在所有的所述开口区域中形成有机发光薄膜后,对各所述开口区域内的所述有机发光薄膜进行烘烤。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述对各所述开口区域内的所述有机发光薄膜进行烘烤,包括:
在氮气或者空气的环境下,采用130℃~250℃范围内的温度烘烤10分钟~60分钟。
本公开实施例还提供了一种有机电致发光显示面板,所述有机电致发光显示面板采用上述制作方法制作而成。
本公开实施例还提供了一种显示装置,包括:上述有机电致发光显示面板。
附图说明
图1为本公开实施例提供的有机电致发光显示面板的制作方法的流程图;
图2至图11分别为本公开实施例提供的制作方法中各步骤的结构示意图。
具体实施方式
有机电致发光器件(OLED)薄膜沉积方法主要有真空蒸镀和溶液制程两种,其中,真空蒸镀适用于有机小分子,其成膜均匀好、技术相对成熟、但是设备投资大、材料利用率低、大尺寸产品掩膜版(Mask)对位精度低;溶液制程,包括旋涂、喷墨打印、喷嘴涂覆法等,适用于聚合物材料和可溶性小分子,其特点设备成本低,在大规模、大尺寸生产上优势突出。
喷墨打印作为溶液制程中最重要的技术,具有设备成本低、无尺寸限制、可实现全彩化等优势。有机电致发光器件具有至少三种不同颜色的子像素,例如可以包括红(R)、绿(G)、蓝(B)三种颜色的子像素,不同颜色的子像素对应不同颜色的墨水,由于不同颜色的墨水的性质不相同时,喷墨打印后的真空干燥工艺就会有差异,RGB不同颜色的墨水一起进行干燥时,不可能使不同颜色的墨水同时形成均匀性较好的薄膜,为了达到好的成膜均匀性,RGB不同颜色的墨水就需要分开进行真空干燥成膜,这样会导致先喷墨打印形成的薄膜经过反复干燥,使薄膜会在像素内发生开裂。
针对相关技术中存在的喷墨打印形成的有机发光层的薄膜均匀性较差的问题,本公开实施例提供了一种有机电致发光显示面板、其制作方法及显示装置。
下面结合附图,对本公开实施例提供的有机电致发光显示面板、其制作方法及显示装置的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本公开内容。
本公开实施例提供的一种有机电致发光显示面板的制作方法,如图1所示,包括:
S11、在衬底基板101上形成具有多个开口区域103的像素界定层102,参照图2,多个开口区域103被划分为至少三个开口区域组;
如图2所示,在衬底基板101上形成的像素界定层102包括多个挡墙结构,如图中梯形状的结构,多个挡墙结构限定出的区域即开口区域103所在的区域,可以在开口区域103内形成有机发光薄膜,从而形成一个子像素, 通过在各开口区域103内形成不同颜色的有机发光薄膜,以实现彩色显示,也就是说,一个开口区域103对应于一个子像素。为了便于制作,可以将对应于同一种颜色的子像素的开口区域103作为一个开口区域组,以便后续在一个开口区域组中形成相同颜色的有机发光薄膜,也就是说,一个开口区域组对应于一种颜色的多个子像素,为了实现彩色显示,一般显示面板至少包括三种颜色的子像素,因而可以将像素界定层中的开口区域103划分为至少三个开口区域组。应该说明的是,在本公开实施例提供的附图中,仅以三个开口区域103为例进行示意,并以左侧的开口区域属于开口区域组T1,中间的开口区域属于开口区域组T2,右侧的开口区域属于开口区域组T3为例进行示意,本公开不对开口区域组的数量,以及每个开口区域组中开口区域的数量和分布进行限定。
S12、采用以下成膜工艺,依次在每一个开口区域组中的各开口区域中形成相同颜色的有机发光薄膜:本公开实施例中以有机电致发光显示面板包括红(R)、绿(G)、蓝(B)三种颜色的子像素为例,针对RGB中的每个颜色都按照S121和S122制作有机发光薄膜,对于具有更多颜色的有机电致发光显示面板,可以参照本公开中的实施例进行制作工艺,此处不再赘述。
S121、采用喷墨打印工艺,在开口区域组中的各开口区域内滴入相同颜色的墨滴,并在至少部分其他开口区域组中的各开口区域内滴入保护溶剂。S122、对喷墨打印工艺后的衬底基板进行干燥成膜处理,以在该开口区域组中的各开口区域中形成相同颜色的有机发光薄膜,并挥发保护溶剂;如图8所示,开口区域组T2中的各开口区域内的墨滴干燥后形成绿色的有机发光薄膜203G,开口区域组T1中的各开口区域103内的保护溶剂干燥后挥发,不会在开口区域103内残留。
本公开实施例提供的制作方法,在成膜工艺过程中,采用喷墨打印工艺在开口区域组中的各开口区域内滴入相同颜色的墨滴,并在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,之后对墨滴和保护溶剂一起进行干燥成膜处理,在干燥成膜处理过程中,保护溶剂对下层的薄膜进行保护, 避免干燥过程中影响下层薄膜的均匀性,实现了不同颜色的墨滴分别进行干燥成膜处理,避免某种颜色的墨滴反复干燥而开裂,因而能够使形成的有机发光薄膜的均匀性较好。
在本公开实施例中,上述保护溶剂能够对下层的薄膜进行保护,以免下层的薄膜因反复干燥而开裂,并且保护溶剂不会溶解下层的薄膜,也不会与下层的薄膜发生化学反应,而且在干燥过程中保护溶剂也能够挥发掉,保护溶剂的具体材料将在后续进行详细说明。
在具体实施时,本公开实施例提供的上述制作方法中,在同一次成膜工艺中,墨滴与保护溶剂的沸点之差一般小于设定值。也就是说,在同一次成膜工艺中,墨滴与保护溶剂的沸点接近,从而在干燥成膜处理过程中,使保护溶剂与墨滴大致一起开始挥发,并在干燥结束后挥发的程度相当,从而避免残留保护溶剂。
可选地,本公开实施例提供的上述制作方法中,上述步骤S121,具体可以包括:采用喷墨打印工艺,在开口区域组中的各开口区域内滴入相同颜色的墨滴,并仅在本次喷墨打印工艺之前已形成有机发光薄膜的开口区域组中的各开口区域内滴入第一保护溶剂。
例如,如图6所示,以绿色子像素为例,在开口区域组T2内的每个开口区域103内滴入绿色的墨滴201G,并且,在本次喷墨打印工艺之前,在开口区域组T1内每个开口区域103内已经形成了红色的有机发光薄膜,在开口区域组T1内的每个开口区域内滴入第一保护溶剂202R,以保护下层红色的有机发光薄膜,步骤S121后的结构可以如图7所示;在具体实施时,上述第一保护溶剂与墨滴可以同时滴入到对应的开口区域内,也可以不同时滴入,可以根据实际情况进行选择。
或者,可选地,本公开实施例提供的上述制作方法中,上述步骤S121,具体可以包括:
采用喷墨打印工艺,在开口区域组中的各开口区域内滴入相同颜色的墨滴,并仅在本次喷墨打印工艺之前未形成有机发光薄膜的开口区域内滴入第 二保护溶剂。
在具体实施时,参照图2,在上述步骤S12之前还可以包括:在像素界定层102中的各开口区域103内形成至少一层有机功能层105,一般在像素界定层102与衬底基板101之间还设有多个阳极104,为了提高子像素的发光效率,可以在形成有机发光薄膜之前,在像素界定层102中的各开口区域103内,形成空穴注入层(Hole Inject Layer,HIL)和空穴传输层(Hole Transport Layer,HTL)等有机功能层。
也就是说,若在本次喷墨打印工艺之前开口区域内未形成有机发光薄膜,则该开口区域内为有机功能层,通过在开口区域内滴入第二保护溶剂,可以在后续干燥成膜处理过程中,第二保护溶剂可以对下层有机功能层进行保护,避免干燥过程中影响下层有机功能层的均匀性。
或者,可选地,本公开实施例提供的上述制作方法中,上述步骤S121,具体可以包括:
采用喷墨打印工艺,在开口区域组中的各开口区域内滴入相同颜色的墨滴,并在本次喷墨打印工艺之前已形成有机发光薄膜的开口区域组中的各开口区域内滴入第一保护溶剂,在本次喷墨打印工艺之前未形成有机发光薄膜的开口区域内滴入第二保护溶剂。
应该说明的是,上述滴入第二保护溶剂的步骤可以与滴入,也可以不同时进行第一保护溶剂的步骤,可以根据实际情况进行设置。
具体地,本公开实施例提供的上述制作方法中,上述第一保护溶剂可以为对应于有机发光薄膜的不良溶剂。由于在滴入第一保护溶剂之前,开口区域内为有机发光薄膜,因而采用有机发光薄膜的不良溶剂作为第一保护溶剂,可以保证滴入第一保护溶剂后不会对有机发光薄膜产生影响。
具体地,不良溶剂可以指对高分子溶质具有较弱的溶解能力的溶剂,也就是不良溶剂不易溶解高分子溶质,上述有机发光薄膜的不良溶剂,可以指不易溶解有机发光薄膜的溶剂,从而保证保护溶剂不会溶解下层有机发光薄膜,并保护下层有机发光薄膜不被反复干燥。
具体地,本公开实施例提供的上述制作方法中,上述第一保护溶剂,即对应于有机发光薄膜(红色、绿色、或蓝色)的不良溶剂可以为环庚烷、环辛烷、三溴甲烷、溴苯、二苄醚、苯甲醚、苯甲醛、糠醛、乙酸戊酯、乙二醇单甲醚、丁醇和戊醇等中的至少一种。
具体地,本公开实施例提供的上述制作方法中,上述第二保护溶剂为对应于有机功能层的不良溶剂。由于在滴入第二保护溶剂之前,开口区域内为有机功能层,因而采用有机功能层的不良溶剂作为第二保护溶剂,可以保证滴入第二保护溶剂后不会对有机功能层产生影响。
具体地,本公开实施例提供的上述制作方法中,上述第二保护溶剂,即对应于有机功能层(例如HTL层)的不良溶剂可以为环庚烷、环辛烷、三溴甲烷、溴苯、二苄醚、苯甲醚、苯甲醛、糠醛、乙酸戊酯、苯甲酸乙酯、乙二酸二乙酯、甘油三丁酸酯、对乙氧基苯胺和苯甲酸乙酯等中的至少一种。
在具体实施时,上述有机功能层的不良溶剂和有机发光薄膜的不良溶剂可以采用相同的材料,也可以采用不同的材料,只要能够起到保护作用,并且不会溶解对应的有机层即可,此处不对保护溶剂的材料进行限定。
在具体实施时,本公开实施例提供的上述制作方法中,上述步骤S122中,可以采用多种方式对墨滴和保护溶剂进行干燥成膜处理,例如可以采用以下方式:
方式一:
将喷墨打印后的衬底基板置于真空干燥箱中,在室温下真空抽气,使大气压在1分钟内从10 5pa降到小于10pa,然后维持10分钟左右。
方式二:
将喷墨打印后的衬底基板置于真空干燥箱中,在室温下真空抽气,使大气压在1分钟内从10 5pa降到小于10 3pa,维持10分钟左右;然后在1分钟内降到小于10pa,并维持10分钟左右。
在实际应用中,本公开实施例提供的上述制作方法中,如图1所示,在上述步骤S12之后,还可以包括:
S14、在所有的开口区域中形成有机发光薄膜后,对各开口区域内的有机发光薄膜进行烘烤。
上述步骤S122中的干燥成膜处理过程能够恢复掉大约95%的溶剂,通过烘烤工艺能够去除残余溶剂,减小有机发光薄膜内的缺陷,并提高有机发光薄膜的致密性。
如图1所示,在实际工艺过程中,在上述步骤S12之后,上述步骤S14之前,还可以包括:步骤S13、判断所有的开口区域中是否均已形成有机发光薄膜;若是,则进行步骤S14;若否,则返回进行步骤S12。
具体地,上述步骤S14中,对各开口区域内的有机发光薄膜进行烘烤,可以包括:
在氮气或者空气的环境下,采用130℃~250℃范围内的温度烘烤10分钟~60分钟左右。
以下结合附图,以有机电致发光显示面板包括红、绿、蓝三种颜色的子像素为例,对本公开实施例的制作方法进行举例说明:
如图2所示,在衬底基板101之上形成多个阳极104,并在阳极104所在膜层之上形成像素界定层102,该像素界定层102具有多个开口区域103,按照将要形成的有机电致发光显示面板的像素排布,将像素界定层102中的多个开口区域103划分为三个开口区域组,例如图中左侧的开口区域103属于开口区域组T1,中间的开口区域103属于开口区域组T2,右侧的开口区域103属于开口区域组T3,在像素界定层102之上形成有机功能层105,例如依次形成空穴注入层(HIL)和空穴传输层(HTL)。
如图3所示,采用喷墨打印工艺,在开口区域组T1中的各开口区域103内滴入红色的墨滴201R,并在开口区域组T2和T3中各开口区域103内滴入第二保护溶剂202H,例如可以滴入HTL的不良溶剂,喷墨打印后的结构可以如图4所示,然后对图4所示的有机电致发光显示面板进行干燥成膜处理,由于在开口区域组T2和T3中的各开口区域103内具有保护溶剂202H,因而在干燥过程中可以保护开口区域组T2和T3中各开口区域103内的有机功能 层105,避免有机功能层105被反复干燥,有利于有机功能层105的成膜均匀性,干燥成膜处理后的结构可以如图5所示,在开口区域组T1中形成红色的有机发光薄膜203R,开口区域组T2和T3内的保护溶剂干燥后挥发,不会影响有机电致发光显示面板的结构。
如图6所示,采用喷墨打印工艺,在开口区域组T2中的各开口区域103内滴入绿色的墨滴201G,并在开口区域组T1中的各开口区域103内滴入第一保护溶剂202R,例如可以滴入对应于红色有机发光薄膜的不良溶剂,以及在开口区域组T3中的各开口区域103内滴入第二保护溶剂202H,例如可以在开口区域组T3的各开口区域103内滴入HTL的不良溶剂,喷墨打印后的结构可以如图7所示,然后对图7所示的有机电致发光显示面板进行干燥成膜处理,由于在开口区域组T1的开口区域103内具有第一保护溶剂202R,在开口区域组T3的开口区域103中具有第二保护溶剂202H,因而在干燥过程中可以保护开口区域组T1的开口区域103内的红色有机发光薄膜和开口区域组T3的开口区域103内的有机功能层,避免红色有机发光薄膜和有机功能层被反复加热,有利于有机层的成膜均匀性,干燥成膜处理后的结构可以如图8所示,在开口区域组T2中的各开口区域103内形成绿色的有机发光薄膜203G,开口区域组T1中各开口区域103内的第一保护溶剂和开口区域组T3中各开口区域103内的第二保护溶剂干燥后挥发,不会影响有机电致发光显示面板的结构。
如图9所示,采用喷墨打印工艺,在开口区域组T3中的各开口区域103内滴入蓝色的墨滴201B,并在开口区域组T1中的各开口区域103内滴入第一保护溶剂202R和T2中的各开口区域103内滴入第一保护溶剂202G,例如可以在开口区域组T1中的各开口区域103内滴入红色的有机发光薄膜的不良溶剂,在开口区域组T2的各开口区域103内滴入绿色的有机发光薄膜的不良溶剂,喷墨打印后的结构可以如图10所示,然后对图10所示的有机电致发光显示面板进行干燥成膜出处理,由于在开口区域组T1的开口区域103中具有第一保护溶剂202R和开口区域组T2的开口区域103中具有第一保护溶剂 202G,因而在干燥过程中可以保护开口区域组T1和T2的开口区域103的有机层,避免开口区域组T1中的各开口区域103内的红色有机发光薄膜203R和开口区域组T3中各开口区域103内的绿色有机发光薄膜203B被反复加热,有利于有机层的成膜均匀性,干燥成膜处理后的结构可以如图11所示,在开口区域组T3中的各开口区域103内形成蓝色的有机发光薄膜203B,开口区域组T1和T2中各开口区域103内的保护溶剂干燥后挥发,不会影响有机电致发光显示面板的结构。
基于同一发明构思,本公开实施例还提供了一种有机电致发光显示面板,该有机电致发光显示面板采用上述制作方法制作而成。由于该有机电致发光显示面板解决问题的原理与上述制作方法相似,因此该有机发光显示面板的实施可以参见上述制作方法的实施,重复之处不再赘述。正是由于该有机电致发光显示面板采用上述制作方法制作而成,相比于相关技术中提到的制作方法得到的结构,本公开实施例提供的有机电致发光显示面板中的有机发光薄膜的均匀性更好,不会出现开裂或者厚度不等的情况。
基于同一发明构思,本公开实施例提供一种显示装置,包括上述有机电致发光显示面板,该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述有机电致发光显示面板相似,因此该显示装置的实施可以参见上述有机电致发光显示面板的实施,重复之处不再赘述。
本公开实施例提供的上述有机电致发光显示面板、其制作方法及显示装置,在成膜工艺过程中,采用喷墨打印工艺在开口区域组中的各开口区域内滴入相同颜色的墨滴,并在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,之后对墨滴和保护溶剂一起进行干燥成膜处理,在干燥成膜处理过程中,保护溶剂对下层的薄膜进行保护,避免干燥过程中影响有机发光薄膜的均匀性,实现了不同颜色的墨滴分别进行干燥成膜处理,避免某种颜色的墨滴反复干燥而开裂,因而能够使形成的有机发光薄膜的均匀性较好。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本 公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种有机电致发光显示面板的制作方法,其中,包括:
    在衬底基板上形成具有多个开口区域的像素界定层,所述多个开口区域被划分为至少三个开口区域组;
    采用以下成膜工艺,依次在每一个所述开口区域组中的各开口区域中形成相同颜色的有机发光薄膜:
    采用喷墨打印工艺,在本开口区域组中的各所述开口区域内滴入相同颜色的墨滴,并在至少部分其他开口区域组中的各开口区域内滴入保护溶剂;
    对喷墨打印工艺后的所述衬底基板进行干燥成膜处理,以在本开口区域组中的各所述开口区域中形成相同颜色的有机发光薄膜,并挥发所述保护溶剂。
  2. 如权利要求1所述的制作方法,其中,所述在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,具体包括:
    仅在本次喷墨打印工艺之前已形成有机发光薄膜的开口区域组中的各开口区域内滴入第一保护溶剂。
  3. 如权利要求1所述的制作方法,其中,所述在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,具体包括:
    仅在本次喷墨打印工艺之前未形成有机发光薄膜的开口区域组中的各开口区域内滴入第二保护溶剂。
  4. 如权利要求1所述的制作方法,其中,所述在至少部分其他开口区域组中的各开口区域内滴入保护溶剂,具体包括:
    在本次喷墨打印工艺之前已形成有机发光薄膜的开口区域组中的各开口区域内滴入第一保护溶剂,同时在本次喷墨打印工艺之前未形成有机发光薄膜的开口区域组中的各开口区域内滴入第二保护溶剂。
  5. 如权利要求1所述的制作方法,其中,在同一次所述成膜工艺中,所述墨滴与所述保护溶剂的沸点之差小于设定值。
  6. 如权利要求2或4所述的制作方法,其中,所述第一保护溶剂为对应于所述有机发光薄膜的不良溶剂。
  7. 如权利要求6所述的制作方法,其中,所述第一保护溶剂为环庚烷、环辛烷、三溴甲烷、溴苯、二苄醚、苯甲醚、苯甲醛、糠醛、乙酸戊酯、乙二醇单甲醚或丁醇和戊醇中的至少一种。
  8. 如权利要求3或4所述的制作方法,其中,在采用以下成膜工艺,依次在每一个所述开口区域组中的各开口区域中形成相同颜色的有机发光薄膜之前,还包括:在所述像素界定层中的各开口区域内形成至少一层有机功能层;
    所述第二保护溶剂为对应于所述有机功能层的不良溶剂。
  9. 如权利要求8所述的制作方法,其中,所述第二保护溶剂为环庚烷、环辛烷、三溴甲烷、溴苯、二苄醚、苯甲醚、苯甲醛、糠醛、乙酸戊酯、苯甲酸乙酯、乙二酸二乙酯、甘油三丁酸酯、对乙氧基苯胺和苯甲酸乙酯中的至少一种。
  10. 如权利要求1-5、7、9任一项所述的制作方法,其中,所述对喷墨打印工艺后的所述衬底基板进行干燥成膜处理,包括:
    将喷墨打印后的所述衬底基板置于真空干燥箱中,在室温下真空抽气,使大气压在1分钟内从10 5pa降到小于10pa,然后维持10分钟。
  11. 如权利要求1-5、7、9任一项所述的制作方法,其中,所述对喷墨打印工艺后的所述衬底基板进行干燥成膜处理,包括:
    将喷墨打印后的所述衬底基板置于真空干燥箱中,在室温下真空抽气,使大气压在1分钟内从10 5pa降到小于10 3pa,维持10分钟;然后在1分钟内降到小于10pa,并维持10分钟。
  12. 如权利要求1-5、7、9任一项所述的制作方法,其中,在所有的所述开口区域中形成有机发光薄膜后,还包括:
    对各所述开口区域内的所述有机发光薄膜进行烘烤。
  13. 如权利要求11所述的制作方法,其中,所述对各所述开口区域内的 所述有机发光薄膜进行烘烤,包括:
    在氮气或者空气的环境下,采用130℃~250℃范围内的温度烘烤10分钟~60分钟。
  14. 一种有机电致发光显示面板,其中,所述有机电致发光显示面板采用如权利要求1~13任一项所述的制作方法制作而成。
  15. 一种显示装置,其中,包括:如权利要求14所述的有机电致发光显示面板。
PCT/CN2020/074444 2019-04-18 2020-02-06 有机电致发光显示面板、其制作方法及显示装置 WO2020211512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910311622.9 2019-04-18
CN201910311622.9A CN109860441B (zh) 2019-04-18 2019-04-18 一种有机电致发光显示面板、其制作方法及显示装置

Publications (1)

Publication Number Publication Date
WO2020211512A1 true WO2020211512A1 (zh) 2020-10-22

Family

ID=66889254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074444 WO2020211512A1 (zh) 2019-04-18 2020-02-06 有机电致发光显示面板、其制作方法及显示装置

Country Status (2)

Country Link
CN (1) CN109860441B (zh)
WO (1) WO2020211512A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860441B (zh) * 2019-04-18 2021-01-22 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192215A (ja) * 2009-02-17 2010-09-02 Sharp Corp 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法
US20140335639A1 (en) * 2011-12-15 2014-11-13 Panasonic Corporation Method for producing organic el display panel
CN108630734A (zh) * 2018-05-11 2018-10-09 京东方科技集团股份有限公司 像素界定结构及其制备方法以及显示面板和显示装置
CN109065718A (zh) * 2018-07-19 2018-12-21 深圳市华星光电技术有限公司 一种oled发光层薄膜的制作方法、系统以及显示基板
CN109860441A (zh) * 2019-04-18 2019-06-07 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088745A1 (ja) * 2011-12-15 2013-06-20 パナソニック株式会社 有機el表示パネルの製造方法
KR102048870B1 (ko) * 2013-01-18 2019-11-27 삼성디스플레이 주식회사 유기 발광 표시 장치의 제조 방법 및 이에 사용되는 잉크젯 프린트 장치
CN108461654B (zh) * 2017-02-17 2019-09-20 纳晶科技股份有限公司 膜层、发光器件、膜层处理方法、装置及系统
CN108389979B (zh) * 2018-03-07 2019-10-01 京东方科技集团股份有限公司 一种电致发光显示面板、其制备方法及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192215A (ja) * 2009-02-17 2010-09-02 Sharp Corp 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法
US20140335639A1 (en) * 2011-12-15 2014-11-13 Panasonic Corporation Method for producing organic el display panel
CN108630734A (zh) * 2018-05-11 2018-10-09 京东方科技集团股份有限公司 像素界定结构及其制备方法以及显示面板和显示装置
CN109065718A (zh) * 2018-07-19 2018-12-21 深圳市华星光电技术有限公司 一种oled发光层薄膜的制作方法、系统以及显示基板
CN109860441A (zh) * 2019-04-18 2019-06-07 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
CN109860441A (zh) 2019-06-07
CN109860441B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US11004917B2 (en) Pixel defining layer, display substrate and manufacturing method thereof, and display apparatus
CN107887423B (zh) 一种显示面板、其制备方法及显示装置
US9556323B2 (en) Ink for display device manufacturing and method for manufacturing of the same, method for manufacturing using the same
US9969180B2 (en) Inkjet printing method, inkjet printing device, and method for manufacturing display substrate
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
Chen et al. 30.1: Invited Paper: 65‐Inch Inkjet Printed Organic Light‐Emitting Display Panel with High Degree of Pixel Uniformity
US10270031B2 (en) Inkjet printing film-forming method, production method of organic light-emitting device, organic light-emitting device, and display apparatus
US11038109B2 (en) Method for fabricating organic light-emitting display panel and display device using ink jet printing to form light-emiting layer
WO2014190685A1 (zh) Oled像素限定结构、其制作方法及阵列基板
US11342393B2 (en) Method for manufacturing OLED light emitting device, OLED light emitting device and OLED display device
US11903260B2 (en) OLED display panel with same color sub-pixel groups
WO2020211512A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
US10141510B2 (en) OLED display panel, manufacturing method thereof and display device
Chen et al. P‐56: High Resolution Organic Light‐Emitting Diode Panel Fabricated by Ink Jet Printing Process
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
US9048461B2 (en) Methods of manufacturing OLED pixel and display device
US11011705B2 (en) Pixel defining layer, display panel, fabricating method thereof, and display device
WO2020224082A1 (zh) Oled 显示面板以及显示装置
Wang et al. 63‐4: Development of Ink‐jet Printing Process for 55‐inch UHD AMQLED Display
CN110048031B (zh) Oled面板发光层的处理方法、oled面板制备方法及oled面板
WO2019200903A1 (zh) 阵列基板的喷墨打印方法、阵列基板、显示装置
CN112599711B (zh) Oled器件的制备方法及oled器件
WO2020019481A1 (zh) Oled基板及其制作方法
US11289672B2 (en) Organic light emitting diode display device and method of manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790472

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20790472

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20790472

Country of ref document: EP

Kind code of ref document: A1