WO2020211440A1 - Procédé et appareil de contrôle de pression de chambre, et dispositif semi-conducteur - Google Patents

Procédé et appareil de contrôle de pression de chambre, et dispositif semi-conducteur Download PDF

Info

Publication number
WO2020211440A1
WO2020211440A1 PCT/CN2019/127864 CN2019127864W WO2020211440A1 WO 2020211440 A1 WO2020211440 A1 WO 2020211440A1 CN 2019127864 W CN2019127864 W CN 2019127864W WO 2020211440 A1 WO2020211440 A1 WO 2020211440A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
value
execution unit
position parameter
Prior art date
Application number
PCT/CN2019/127864
Other languages
English (en)
Chinese (zh)
Inventor
郑文宁
赵迪
陈正堂
Original Assignee
北京七星华创流量计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京七星华创流量计有限公司 filed Critical 北京七星华创流量计有限公司
Priority to JP2019572824A priority Critical patent/JP7041697B2/ja
Publication of WO2020211440A1 publication Critical patent/WO2020211440A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2026Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the invention relates to the technical field of semiconductor manufacturing, in particular to a chamber pressure control method and device, and semiconductor equipment.
  • the reaction chamber such as oxidation furnace is the most important equipment in the semiconductor process.
  • the reaction gas introduced into the reaction chamber includes H 2 , HCl, a large amount of O 2 , a small amount of C 2 H 2 Cl 2 and N 2, etc. These reaction gases need to be under constant pressure conditions To ensure that the process results such as the thickness of the coating meet the requirements, the pressure in the reaction chamber should be kept stable at the set pressure. If the actual process pressure is greater or less than the set pressure, the thickness of the coating will be affected.
  • a method and device that can accurately and quickly control the pressure in the reaction chamber.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a chamber pressure control method and device, and semiconductor equipment, which can accurately and quickly control the pressure in the chamber to stabilize it within a preset range , which can improve process quality and yield.
  • the present invention provides a chamber pressure control method, which includes the following steps:
  • step S2 Calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, proceed to step S3; if it does not exceed, then the process ends;
  • control coefficient is the product of the curvature and the preset PID coefficient, where the curvature is: in the curve of the pressure and the position parameter of the actuator corresponding to the current gas flow value, and The curvature corresponding to the current position parameter value of the execution unit;
  • step S4 Calculate and obtain the position parameter adjustment amount of the execution unit based on the difference value and the control coefficient, and output it to the execution unit, and return to step S2.
  • the method further includes:
  • the sample data template includes different correspondences between the gas flow values and the curves, and different correspondences between the position parameter values and curvatures in each of the curves;
  • the step S3 further includes:
  • S31 Acquire the curvature from the sample data template according to the current gas flow value and the current position parameter value of the execution unit;
  • the execution unit includes a pressure regulating valve
  • the position parameter of the execution unit is a valve position of the pressure regulating valve corresponding to its opening.
  • the initial value of the position parameter of the execution unit is set within a range corresponding to the value range of the opening of the pressure regulating valve; the value range of the opening is 30°-50°.
  • the value range of the gas flow value is 3-50 L/min.
  • step S1 detecting the pressure of the chamber at the exhaust port as the actual pressure value
  • the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber is detected as the actual pressure value.
  • the present invention also provides a chamber pressure control device, including a detection unit, a control unit and an execution unit, wherein:
  • the detection unit is used to detect the actual pressure value inside the chamber and send it to the control unit;
  • the control unit is used to calculate the difference between the actual pressure value and a preset target pressure value; and determine whether the difference exceeds a preset range, and if it exceeds, obtain a control coefficient, and based on the difference sum
  • the control coefficient is calculated to obtain the position parameter adjustment value of the execution unit, and output to the execution unit;
  • the control coefficient is the product of the curvature and the preset PID coefficient, wherein the curvature is: corresponding to the current gas flow value In the curve of pressure and position parameters, the curvature corresponding to the current position parameter value of the execution unit;
  • the execution unit is used to adjust its own position parameter according to the position parameter adjustment amount.
  • control unit includes a storage module, an acquisition module, a calculation module, and a control module, where:
  • the storage module is used to store a sample data template;
  • the sample data template includes different correspondences between the gas flow values and the curves, and the correspondence between different position parameter values and curvatures in each of the curves relationship;
  • the acquisition module is configured to acquire the curvature from the sample data template stored in the storage module according to the current gas flow value and the current position parameter value of the execution unit, and send it to the Calculation module
  • the calculation module is configured to calculate the product of the curvature obtained from the sample data template and the PID coefficient, and send it to the control module as the control coefficient;
  • the control module is configured to calculate and obtain the position parameter adjustment amount of the execution unit based on the difference value and the control coefficient, and output to the execution unit.
  • the execution unit includes a pressure regulating valve for adjusting the exhaust flow rate of the chamber, and a vacuum device for extracting the internal gas of the chamber;
  • the position parameter is the valve position of the pressure regulating valve corresponding to its opening.
  • the pressure regulating valve includes a butterfly valve, a needle valve or a ball valve.
  • the chamber pressure control device further includes an input unit for receiving the target pressure value input by the user and sending it to the control unit.
  • the detection unit is configured to detect the pressure of the chamber at the exhaust port as the actual pressure value
  • the detection unit is configured to detect the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber as the actual pressure value.
  • the present invention also provides a semiconductor device, including a reaction chamber, characterized in that it further includes a chamber pressure control device for controlling the pressure of the reaction chamber, and the chamber pressure control device Using the above-mentioned chamber pressure control device provided by the present invention, wherein:
  • the detection unit is used to detect the actual pressure value inside the reaction chamber and send it to the control unit; the execution unit is arranged at the exhaust port of the reaction chamber for The position parameter adjustment amount adjusts its own position parameter.
  • the control coefficient is obtained through step S3.
  • the control coefficient is the product of the curvature corresponding to the current position parameter value of the actuator and the preset PID (Proportion-Integral-Derivative) coefficient in the curve about the pressure and position parameters corresponding to the current gas flow value, that is ,
  • the PID coefficient can be finely adjusted in sections, so as to achieve rapid and stable control of the chamber pressure, so that It is stable within the preset range, which can improve the process quality and yield.
  • FIG. 1 is a flowchart of a method for controlling chamber pressure according to a first embodiment of the present invention
  • Figure 2 is a graph of pressure and position parameters under a certain gas flow rate
  • FIG. 3 is a flow chart of a method for controlling chamber pressure according to a second embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a chamber pressure control device provided by a third embodiment of the present invention.
  • Fig. 5 is a functional block diagram of a control unit adopted in the third embodiment of the present invention.
  • Fig. 6 is a structural diagram of a chamber pressure control device provided by a third embodiment of the present invention.
  • the chamber pressure control method provided by the first embodiment of the present invention includes the following steps:
  • the pressure of the chamber at the exhaust port may be detected as the actual pressure value; or, the difference between the internal pressure of the chamber and the atmospheric pressure outside the chamber may also be detected as the actual pressure value.
  • the chamber pressure control method provided in this embodiment may be applicable to an absolute pressure control method or a relative pressure control method.
  • step S2 Calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, proceed to step S3; if it does not exceed, then the process ends.
  • control coefficient is the product of the curvature corresponding to the current position parameter value of the execution unit and the preset PID coefficient in the curve about the pressure and the position parameter corresponding to the current gas flow value.
  • each gas at a flow value corresponds to a curve about the pressure and the position parameter of the actuator, that is, different gas flow values correspond to different pressure and execution The curve of the location parameter of the unit.
  • the abscissa of each curve is the position parameter value of the execution unit (L1, L2,..., Ln); the ordinate is the position parameter value (L1, L2,..., Ln) One-to-one corresponding chamber pressure value (P1, P2,..., Pn).
  • the curvature of the curve corresponding to each position parameter value (L1, L2,..., Ln) is the conversion coefficient (K1, K2,..., Kn) that represents the pressure change and the valve opening.
  • the aforementioned control coefficient is the product of the conversion coefficient corresponding to the current position parameter value of the execution unit and the preset PID (Proportion-Integral-Derivative) coefficient.
  • PID coefficients refer to the proportional coefficients (Proportion), integral coefficients (Integral) and differential coefficients (Derivative) used to realize PID control, and PID control is realized by the following step S4.
  • PID control is used in closed-loop control. It is used to calculate the control value (for example, the adjustment value of the execution unit) based on the system error, based on the proportional coefficient, integral coefficient, and differential coefficient, and the difference between the actual value and the expected value.
  • the control quantity controls the execution unit.
  • step S4 Calculate and obtain the position parameter adjustment amount of the execution unit based on the above difference and the control coefficient, and output it to the execution unit, and return to step S2.
  • the above-mentioned execution unit is used to adjust the pressure of the chamber.
  • the execution unit is a pressure regulating valve provided on the exhaust pipe of the chamber.
  • the pressure regulating valve adjusts the exhaust flow by adjusting the valve opening, so that the chamber pressure can be adjusted.
  • the position parameter value of the pressure regulating valve is the valve position corresponding to its opening.
  • the control coefficient is obtained through step S3, and the control coefficient is the curve of the pressure and position parameters corresponding to the current gas flow value.
  • the curvature corresponding to the current position parameter value of the execution unit and the preset PID coefficient Product that is, according to the corresponding relationship between gas flow, pressure and position parameters, under different gas flow conditions, the PID coefficients can be finely adjusted in sections, that is, different gas flow values, different position parameter values.
  • the curvature of the corresponding curve is different, and the product of the curvature and the PID coefficient (ie, the control coefficient) is also different, so that the chamber pressure can be quickly and stably controlled to stabilize within the preset range, thereby improving the process quality and yield .
  • the chamber pressure control method provided by the embodiment of the present invention can control the chamber pressure with a precision of 0.02% F.S.
  • the chamber pressure control method provided in this embodiment selects the position parameter range of the execution unit based on the PTL (Pressure to Location) strategy to achieve the purpose of minimizing the pressure fluctuation range, thereby improving process stability And repeatability.
  • PTL Pressure to Location
  • the actuator is a pressure regulating valve
  • the pressure regulating valve has a higher sensitivity to control pressure changes.
  • the valve position is close to the fully closed state (opening is 0° )
  • change the valve position the pressure fluctuation is more obvious;
  • the valve position is within the range corresponding to the opening range of 30°-50°, change the valve position, the pressure fluctuation is smaller, and the pressure is more stable.
  • the degree of influence on the process is relatively small; when the valve position is within the range corresponding to the value range of the opening degree greater than 60°, changing the valve position will basically have no effect on the pressure adjustment.
  • the initial value of the position parameter of the execution unit can be set in a range corresponding to the opening range of the pressure regulating valve; the opening range is 30°-50°. In this way, the position parameters of the execution unit can be adjusted in a stable area with small pressure fluctuations, so that the influence of pressure fluctuations on the process can be reduced.
  • FIG. 3 is a flowchart of a method for controlling chamber pressure according to a second embodiment of the present invention.
  • the chamber pressure control method provided by the second embodiment of the present invention is a further improvement made on the basis of the above-mentioned first embodiment. Specifically,
  • step S1 Before the above step S1, it also includes:
  • the sample data template includes the correspondence between different gas flow values and curves, and the correspondence between different position parameter values and curvatures in each curve.
  • different gas flow values gas flow values into the chamber
  • the entire process time is divided into four process time periods, and the four process time periods are respectively Corresponding to four gas flow values, 28L/min, 24L/min, 20L/min, and 16L/min.
  • the process time period corresponding to different gas flow values can be the same or different.
  • the predetermined time period is, for example, 110s.
  • the gas flow rate value ranges from 3-50L/min.
  • multiple sets of data about pressure and position parameters can be collected, and the curves and curvatures about pressure and position parameters can be obtained by fitting the data based on the data, and the parameters reflecting flow, pressure and position can be constructed accordingly.
  • the sample data template of the corresponding relationship is stored before the process.
  • step S3 further includes:
  • the chamber pressure control device provided by the third embodiment of the present invention includes a detection unit 2, a control unit 5, and an execution unit 3, wherein the detection unit 2 uses It detects the actual pressure value inside the chamber and sends it to the control unit 5.
  • the detection unit 2 is, for example, a pressure gauge.
  • the detection unit 2 is used to detect the pressure of the chamber 1 at the exhaust port as the actual pressure value; or the detection unit 2 is used to detect the difference between the internal pressure of the chamber 1 and the atmospheric pressure outside the chamber as the actual pressure Pressure value.
  • the chamber pressure control device provided in this embodiment can be applied to an absolute pressure control system or a relative pressure control system.
  • the control unit 5 is used to calculate the difference between the actual pressure value and the preset target pressure value; and determine whether the difference exceeds the preset range, if it exceeds, obtain the control coefficient, and calculate the execution unit based on the difference and the control coefficient
  • the position parameter adjustment value of 3 is output to the execution unit 3;
  • the control coefficient is the product of the curvature and the preset PID coefficient.
  • the curvature is the curvature corresponding to the current position parameter value of the execution unit 3 in the curve about the pressure and the position parameter corresponding to the current gas flow value.
  • the control unit 5 is a microprocessor.
  • the execution unit 3 is used to adjust its own position parameter according to the position parameter adjustment amount from the control unit 5.
  • the execution unit 3 includes a pressure regulating valve 31 for regulating the exhaust flow of the chamber 1, and a vacuum device 32 for extracting the internal gas of the chamber 1; wherein the pressure
  • the regulating valve 31 is arranged on the exhaust pipe 7, which adjusts the valve opening degree by adjusting its valve position, so as to adjust the gas flow in the exhaust pipe 7, thereby realizing the pressure adjustment in the chamber. Therefore, the position parameter of the above-mentioned execution unit 3 is the valve position of the pressure regulating valve 31 corresponding to its opening, and different valve positions correspond to different valve openings.
  • the vacuum device 32 is used for exhausting the gas in the chamber 1 into the exhaust pipe 7 by pumping.
  • the vacuum device 32 is, for example, a vacuum generator.
  • the pressure regulating valve 31 includes a butterfly valve, a needle valve, a ball valve, or the like.
  • a pressure regulating valve with automatic control function is usually provided with a motor for driving the valve (butterfly valve, needle valve, ball valve, etc.) to move, and the control unit 5 realizes the adjustment of the valve position by sending a control signal to the motor.
  • the control unit 5 includes a storage module 51, an acquisition module 52, a calculation module 53, and a control module 54, wherein the storage module 51 is used to store sample data templates, which include different gas flow rates. The corresponding relationship between the value and the curve, and the corresponding relationship between different position parameter values and curvatures in each curve.
  • the obtaining module 52 is configured to obtain the corresponding curvature from the sample data template stored in the storage module 51 according to the current gas flow value and the current position parameter value of the execution unit, and send it to the calculation module 53.
  • the calculation module 53 is used to calculate the product of the curvature obtained from the sample data template and the PID coefficient, and send it as a control coefficient to the control module 54; the control module 54 is used to calculate the position of the execution unit 3 based on the difference and the control coefficient The parameter adjustment amount is output to the execution unit 3.
  • the acquisition module 52 can directly acquire it from the sample data template.
  • Corresponding curvature and use the calculation module 53 to calculate the product of the curvature and the PID coefficient. In this way, not only the control accuracy is high, but also the response speed is fast.
  • the chamber pressure control device further includes an input unit for receiving the target pressure value input by the user and sending it to the control unit 5. In this way, the user can freely input the desired value of the pressure as needed.
  • the chamber pressure control device provided by this embodiment can achieve rapid and stable control of the chamber pressure to stabilize it within a preset range, thereby improving process quality and yield.
  • an embodiment of the present invention also provides a semiconductor device, which includes a reaction chamber and a chamber pressure control device for controlling the pressure of the reaction chamber.
  • the chamber pressure control device adopts the embodiment of the present invention.
  • the above-mentioned chamber pressure control device is provided.
  • the detection unit is used to detect the actual pressure value inside the reaction chamber and send it to the control unit;
  • the execution unit is set at the exhaust port of the reaction chamber and is used to adjust itself according to the position parameter adjustment amount Positional parameters.
  • the semiconductor device includes a reaction chamber 1 and various process gas paths (O2 gas path, H2 gas path, N2 gas path, etc.) for inputting process gas into the reaction chamber.
  • the detection unit can communicate with the exhaust port of the reaction chamber through one end of the three-way joint, and the execution unit can communicate with the exhaust port of the reaction chamber through one end of the three-way interface in the three-way joint.
  • the semiconductor device provided in this embodiment by adopting the chamber pressure control device provided in the embodiment of the present invention, can achieve rapid and stable control of the chamber pressure to stabilize it within a preset range, thereby improving process quality and finished products rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Fluid Pressure (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un procédé et un appareil de contrôle de pression de chambre, et un dispositif semi-conducteur, pouvant contrôler précisément et rapidement la pression à l'intérieur d'une chambre pour la stabiliser dans une plage prédéfinie, améliorant ainsi la qualité de traitement et le rendement de produit. Les étapes du procédé consistent : S1 : à détecter la valeur de pression réelle à l'intérieur d'une chambre ; S2 : à calculer la différence entre la valeur de pression réelle et une valeur de pression cible prédéfinie ; à déterminer si la différence dépasse une plage prédéfinie et, dans l'affirmative, alors à mettre en œuvre l'étape S3 ; et, dans la négative, alors le processus prend fin ; S3 : à acquérir un coefficient de contrôle, le coefficient de contrôle étant le produit d'une courbure et d'un coefficient de PID prédéfini, et la courbure étant la courbure correspondant à une valeur de paramètre de position actuelle d'une unité d'exécution dans une courbe se rapportant à des paramètres de pression et de position correspondant à une valeur d'écoulement de gaz actuelle ; S4 : sur la base de la différence et du coefficient de contrôle, à calculer une quantité de réglage de paramètre de position de l'unité d'exécution et à la transmettre à l'unité d'exécution, et à revenir à l'étape S2.
PCT/CN2019/127864 2019-04-18 2019-12-24 Procédé et appareil de contrôle de pression de chambre, et dispositif semi-conducteur WO2020211440A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019572824A JP7041697B2 (ja) 2019-04-18 2019-12-24 チャンバ圧力制御方法及び装置、半導体設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910314577.2 2019-04-18
CN201910314577.2A CN111831022B (zh) 2019-04-18 2019-04-18 腔室压力控制方法及装置、半导体设备

Publications (1)

Publication Number Publication Date
WO2020211440A1 true WO2020211440A1 (fr) 2020-10-22

Family

ID=72837720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127864 WO2020211440A1 (fr) 2019-04-18 2019-12-24 Procédé et appareil de contrôle de pression de chambre, et dispositif semi-conducteur

Country Status (4)

Country Link
JP (1) JP7041697B2 (fr)
CN (1) CN111831022B (fr)
TW (1) TWI719807B (fr)
WO (1) WO2020211440A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192866A (zh) * 2021-04-16 2021-07-30 北京北方华创微电子装备有限公司 半导体工艺配方中工艺参数值匹配方法及半导体工艺设备
CN113900457A (zh) * 2021-09-29 2022-01-07 西安北方华创微电子装备有限公司 压力调零方法和半导体工艺设备
WO2022218142A1 (fr) * 2021-04-16 2022-10-20 北京北方华创微电子装备有限公司 Procédé de commande de pression de multiples chambres de traitement et dispositif de traitement de semi-conducteurs

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695297B (zh) * 2020-11-24 2022-12-09 北京北方华创微电子装备有限公司 一种半导体工艺中腔室压力的控制方法
CN114964349A (zh) * 2021-02-19 2022-08-30 中国科学院微电子研究所 一种腔室压力测量装置、测量方法及半导体制造设备
CN113097108A (zh) * 2021-03-31 2021-07-09 北京北方华创微电子装备有限公司 半导体工艺的控制方法和半导体工艺设备
CN113406881B (zh) * 2021-04-12 2023-09-08 北京北方华创微电子装备有限公司 半导体热处理设备及其装卸载腔室中氧含量的控制方法
CN113110632B (zh) * 2021-05-10 2023-09-05 北京七星华创流量计有限公司 压力控制方法、压力控制装置及半导体工艺设备
CN113805619B (zh) * 2021-09-24 2024-05-17 北京北方华创微电子装备有限公司 压力控制系统及控制方法
CN113900455B (zh) * 2021-11-09 2023-11-07 北京七星华创流量计有限公司 半导体工艺设备及其质量流量控制器、流体流量控制方法
CN114277617B (zh) * 2021-12-31 2024-01-30 珠海格力智能装备有限公司 成型模具的冷压控制方法
CN115145319A (zh) * 2022-05-30 2022-10-04 北京七星华创流量计有限公司 压力控制方法、装置及半导体工艺设备
CN117251002B (zh) * 2023-11-20 2024-01-30 常州铭赛机器人科技股份有限公司 散热盖贴装工艺中的压力实时控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854902A (zh) * 2012-08-13 2013-01-02 中国人民解放军海军医学研究所 一种腔室压力调节方法
CN103309369A (zh) * 2012-03-09 2013-09-18 上海微电子装备有限公司 光学系统内部腔室精密气体控制方法及其装置
CN104991581A (zh) * 2015-06-08 2015-10-21 北京北方微电子基地设备工艺研究中心有限责任公司 一种工艺腔室的压力控制方法和装置
JP2018112933A (ja) * 2017-01-12 2018-07-19 株式会社島津製作所 バルブ制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060107898A1 (en) * 2004-11-19 2006-05-25 Blomberg Tom E Method and apparatus for measuring consumption of reactants
CN101836173B (zh) 2007-12-05 2012-02-01 日立造船株式会社 真空容器的压力控制方法及压力控制装置
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
JP4778549B2 (ja) 2008-12-26 2011-09-21 シーケーディ株式会社 真空圧力制御システム及び真空圧力制御プログラム
FR2942272B1 (fr) * 2009-02-16 2011-05-06 Snecma Procede et systeme de regulation de turbine a gaz et turbine a gaz munie d'un tel systeme
JP2011044446A (ja) * 2009-08-19 2011-03-03 Tokyo Electron Ltd 圧力制御機器、圧力制御方法および基板処理装置
JP4815538B2 (ja) * 2010-01-15 2011-11-16 シーケーディ株式会社 真空制御システムおよび真空制御方法
FI124621B (en) * 2011-12-23 2014-11-14 Aalto Korkeakoulusäätiö Method for detecting faults in an industrial process or part thereof or for controlling and / or optimizing an industrial process or part thereof
CN102646619B (zh) * 2012-04-28 2014-12-03 中微半导体设备(上海)有限公司 腔室的压力控制方法
KR20170048578A (ko) * 2014-09-05 2017-05-08 어플라이드 머티어리얼스, 인코포레이티드 분위기 에피택셜 퇴적 챔버
CN107452587B (zh) * 2016-06-01 2019-10-11 北京北方华创微电子装备有限公司 一种传输腔室的压力控制方法及控制系统
CN106197902B (zh) * 2016-07-22 2019-01-18 华中科技大学 一种气密检测装置及其伺服控制方法
US10256126B2 (en) * 2016-09-22 2019-04-09 Globalfoundries Inc. Gas flow process control system and method using crystal microbalance(s)
CN107068587B (zh) * 2016-10-28 2019-10-25 北京北方华创微电子装备有限公司 反应腔室的压力控制系统及压力控制方法
DE102017207586A1 (de) * 2017-05-05 2018-11-08 Arburg Gmbh + Co Kg STEUERN UND REGELN DES DRUCKS EINER ZYKLISCH ARBEITENDEN SPRITZGIEßMASCHINE
JP6959773B2 (ja) * 2017-06-29 2021-11-05 ダイダン株式会社 室圧制御システム
CN107881306A (zh) * 2017-11-24 2018-04-06 北京七星华创磁电科技有限公司 一种压力控制系统及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309369A (zh) * 2012-03-09 2013-09-18 上海微电子装备有限公司 光学系统内部腔室精密气体控制方法及其装置
CN102854902A (zh) * 2012-08-13 2013-01-02 中国人民解放军海军医学研究所 一种腔室压力调节方法
CN104991581A (zh) * 2015-06-08 2015-10-21 北京北方微电子基地设备工艺研究中心有限责任公司 一种工艺腔室的压力控制方法和装置
JP2018112933A (ja) * 2017-01-12 2018-07-19 株式会社島津製作所 バルブ制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192866A (zh) * 2021-04-16 2021-07-30 北京北方华创微电子装备有限公司 半导体工艺配方中工艺参数值匹配方法及半导体工艺设备
WO2022218142A1 (fr) * 2021-04-16 2022-10-20 北京北方华创微电子装备有限公司 Procédé de commande de pression de multiples chambres de traitement et dispositif de traitement de semi-conducteurs
CN113900457A (zh) * 2021-09-29 2022-01-07 西安北方华创微电子装备有限公司 压力调零方法和半导体工艺设备
CN113900457B (zh) * 2021-09-29 2024-03-19 西安北方华创微电子装备有限公司 压力调零方法和半导体工艺设备

Also Published As

Publication number Publication date
JP7041697B2 (ja) 2022-03-24
JP2021524068A (ja) 2021-09-09
CN111831022A (zh) 2020-10-27
CN111831022B (zh) 2022-03-18
TWI719807B (zh) 2021-02-21
TW202040302A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
WO2020211440A1 (fr) Procédé et appareil de contrôle de pression de chambre, et dispositif semi-conducteur
JP5111519B2 (ja) 真空容器の圧力制御方法および圧力制御装置
US20120132291A1 (en) Transient measurements of mass flow controllers
US10496112B2 (en) Valve device
US20120116596A1 (en) Mass flow controller
TWI575349B (zh) 流動比率控制器組件、氣體輸送系統及其操作方法
TWI492013B (zh) 對質流控制器具有改善效能的多模式控制迴路
US9971360B2 (en) Positioner
JP2014036216A5 (fr)
CN113324605A (zh) 气体质量流量控制器和气体质量流量控制方法
WO2023231914A1 (fr) Procédé et appareil de commande de pression, et dispositif de traitement à semi-conducteur
CN111665877B (zh) 压力控制方法和装置、光伏设备
US10316835B2 (en) Method of determining output flow rate of gas output by flow rate controller of substrate processing apparatus
TWI640853B (zh) 用於控制使用前饋調整的流量比率控制器之方法及系統
JP2019165117A (ja) 目標開度推定器および圧力調整真空バルブ
KR102596165B1 (ko) 질량 유량 제어 시스템 및 당해 시스템을 포함하는 반도체 제조 장치 및 기화기
JP5118216B2 (ja) 真空圧力制御システム及び真空圧力制御プログラム
US8056579B2 (en) Mass flow controller
US20140290752A1 (en) Processing method and processing apparatus
CN114706431A (zh) 反应腔室的压力控制方法、装置和半导体工艺设备
CN114370521B (zh) 一种电比例溢流阀滞环补偿控制方法及其系统
US20170045482A1 (en) Feedback control device
JP2002297244A (ja) 反応室の圧力制御方法および装置
JP2003005802A (ja) 制御方法および制御装置
JP2008248395A (ja) プラズマ処理装置およびプラズマ処理装置の調圧方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019572824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925494

Country of ref document: EP

Kind code of ref document: A1