WO2020211412A1 - 一种空气热交换器及其制备方法和应用 - Google Patents

一种空气热交换器及其制备方法和应用 Download PDF

Info

Publication number
WO2020211412A1
WO2020211412A1 PCT/CN2019/126150 CN2019126150W WO2020211412A1 WO 2020211412 A1 WO2020211412 A1 WO 2020211412A1 CN 2019126150 W CN2019126150 W CN 2019126150W WO 2020211412 A1 WO2020211412 A1 WO 2020211412A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
heat exchanger
infrared heating
air heat
core layer
Prior art date
Application number
PCT/CN2019/126150
Other languages
English (en)
French (fr)
Inventor
孙晓刚
Original Assignee
江西克莱威纳米碳材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西克莱威纳米碳材料有限公司 filed Critical 江西克莱威纳米碳材料有限公司
Publication of WO2020211412A1 publication Critical patent/WO2020211412A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base

Definitions

  • the invention belongs to the technical field of air preparation equipment, and specifically relates to an air heat exchanger and a preparation method and application thereof.
  • Air-conditioning is the most commonly used household heating equipment. However, it has the disadvantages of slow heating rate, low comfort, high price, and high failure rate. Can not meet people's needs; the commonly used air heating equipment is ceramic PTC air heating equipment, although the purchase cost is lower, but it still needs a longer heating time when in use.
  • the purpose of the present invention is to provide an air heat exchanger and a preparation method and application thereof.
  • the air heat exchanger provided by the present invention uses infrared materials to generate heat, which can realize rapid heating and has low cost.
  • the present invention provides an air heat exchanger, which is characterized by comprising a heat exchange box, and a power supply connector arranged opposite to the side of the heat exchange box.
  • the heat exchange box includes a far-infrared heating honeycomb core layer and is arranged on The insulating honeycomb layers on the two opening faces of the far-infrared heating honeycomb core layer and the insulating paper covering the side surfaces of the far-infrared heating honeycomb core layer.
  • the material of the far-infrared heat-generating honeycomb core layer is far-infrared heat-generating paper, and the resistivity of the far-infrared heat-generating paper is 0.01-200 ⁇ mm; and the tensile strength is 8-10kg/mm 2 .
  • the material of the insulating honeycomb layer or the insulating paper is aramid insulating paper, and the thickness of the aramid insulating paper is 0.05 to 1 mm.
  • the porosity of the far-infrared heating honeycomb core layer is 70-90%, and the porosity is calculated as the percentage of the pore volume to the volume of the far-infrared heating honeycomb core layer.
  • the cell shape of the far-infrared heating honeycomb core layer includes a hexagon, a circle, a quadrilateral or a rhombus.
  • the cross-sectional area of the far-infrared heating honeycomb core layer is 0.1-1000 m 2 , and the height is 0.01-10 m.
  • the power connector includes copper mesh electrodes and wires.
  • the present invention provides the preparation method of the air heat exchanger described in the above technical scheme, which includes the following steps:
  • the present invention provides the application of the air heat exchanger described in the above technical solution or the air heat exchanger prepared by the preparation method described in the above technical solution as an electric heating device.
  • the external voltage of the air heat exchanger is 5-380V; the input power is 0.1-100000W.
  • the present invention provides an air heat exchanger, comprising a heat exchange box, and power supply connectors arranged oppositely on the side of the heat exchange box.
  • the heat exchange box includes a far-infrared heating honeycomb core layer, which is arranged on the far-infrared
  • the insulating honeycomb layer on the two opening faces of the heating honeycomb core layer and the insulating paper covering the side surface of the far-infrared heating honeycomb core layer.
  • the present invention uses far-infrared materials as heating materials and cooperates with the honeycomb structure to realize the chimney effect.
  • the gas in the heat exchange box rises by heating, and the cold wind enters from the bottom surface of the honeycomb core and passes through the far-infrared heating honeycomb After the core layer, it is heated into hot air, and then discharged through the top surface of the honeycomb core. After such a cycle, the air in the fixed space is quickly heated, shortening the heating time.
  • the results of the examples show that the air heat exchanger provided by the present invention heats a space with a fixed volume of 100 m 3 from 0°C to 30°C in only 8 minutes.
  • Figure 1 is a schematic structural diagram of an air heat exchanger provided by the present invention.
  • 1 is a wire
  • 2 is a copper mesh electrode
  • 3 is an insulating honeycomb layer
  • 4 is a far-infrared heating honeycomb core layer.
  • the surface with cells is the opening surface of the honeycomb structure, and the vertical distance between the two opening surfaces is the height of the honeycomb structure.
  • the present invention provides an air heat exchanger, as shown in FIG. 1, comprising a heat exchange box, and power supply connectors arranged opposite to the sides of the heat exchange box, and the heat exchange box includes a far-infrared heating honeycomb core layer 4 , The insulating honeycomb layer 3 arranged on the two opening faces of the far-infrared heating honeycomb core layer 4, and the insulating paper covering the side of the far-infrared heating honeycomb core layer.
  • the air heat exchanger provided by the present invention includes a heat exchange box including a far-infrared heating honeycomb core layer 4.
  • the porosity of the far-infrared heating honeycomb core layer is preferably 70-90%, more preferably 75-85%; the porosity is calculated as the percentage of the pore volume to the volume of the far-infrared heating honeycomb core layer.
  • the aperture of the cells is preferably 2-30 mm, more preferably 5-25 mm, and still more preferably 10-15 mm; the shape of the cells preferably includes a hexagon , Circle, quadrilateral or rhombus, more preferably hexagon or circle; when the cell is hexagon, quadrilateral or rhombus, the aperture is calculated as the diameter of the circle inscribed in the polygon.
  • the present invention has no special requirements on the size of the far-infrared heating honeycomb core layer, and far-infrared heating honeycomb core layers of different sizes can be prepared according to the required model; in the specific embodiment of the present invention, the far-infrared heating honeycomb core layer has The cross-sectional area is preferably 0.1 to 1000 m 2 , and the height is preferably 0.01 to 10 m.
  • the material of the far-infrared heat-generating honeycomb core layer is preferably far-infrared heat-generating paper, and the resistivity of the far-infrared heat-generating paper is preferably 0.01 to 200 ⁇ mm, more preferably 1 to 150 ⁇ mm, and more preferably It is 20 to 120 ⁇ mm; the tensile strength is preferably 8 to 10 kg/mm 2 , and more preferably 10 kg/mm 2 .
  • the present invention preferably adopts far-infrared material as the heating material, which can not only improve the energy utilization rate and conversion speed of the air heat exchanger, but also avoid the influence of oxygen or moisture on the heating material and increase the service life of the air heat exchanger.
  • far-infrared heating has a physical therapy function, and as an indoor heating device, it can improve user comfort.
  • the far-infrared heating paper is preferably prepared by the following method:
  • the mixed slurry is suction-filtered and molded, and then dried and hot-pressed to obtain far-infrared carbon nanotubes.
  • the raw materials for preparing the chopped fiber slurry preferably include chopped fibers, a decomposing agent and water, and the mass ratio of the chopped fibers, decomposing agent and water is preferably 1: (0.001 to 0.005): ( 150 to 300), more preferably 1: (0.002 to 0.004): (170 to 280).
  • the chopped fibers preferably include aramid chopped fibers and/or polyimide chopped fibers, and the diameter and length of the chopped fibers may be those well known to those skilled in the art; When the fiber is a mixture of two components, the present invention has no special requirements on the mass ratio of each component in the mixture.
  • the disintegrant is preferably sodium dodecylbenzene sulfonate.
  • the chopped fiber slurry is preferably provided by the following method: mixing the preparation raw materials and then beating.
  • the beating is preferably completed by a beating machine, and the linear speed of the beating machine is preferably 6-9 m/s, more preferably 7-8 m/s; the beating time is preferably 5-10 min, more preferably 6-8 min.
  • the raw materials for preparing the fibrid slurry preferably include fibrid, dispersant and water, and the mass ratio of the fibrid, dispersant and water is preferably 1: (0.001 to 0.005): ( 150 to 300), more preferably 1: (0.002 to 0.004): (170 to 280).
  • the fibrids preferably include aramid pulp fibers.
  • the dispersant is preferably polyethylene oxide.
  • the fibrid slurry is preferably provided by the following method: mixing the preparation raw materials, and then beating and shearing.
  • the beating is preferably completed by a beating machine, the linear speed of the beating machine is preferably 6-9m/s, more preferably 7-8m/s; the beating time is preferably 5-10min, more preferably 6- 8min;
  • the shearing is preferably completed by a high-speed shearing machine, the shearing speed is preferably 2000-4000r/min, more preferably 2500-3000r/min; the time is preferably 30-60min, more preferably 40-50min .
  • the raw materials for preparing the whisker carbon nanotube slurry preferably include whisker carbon nanotubes, dispersant and water.
  • the quality of the whisker carbon nanotubes, dispersant and water is preferably 1: (0.001 ⁇ 0.005): (100 to 200), more preferably 1: (0.02 to 0.04): (125 to 175).
  • the length of the whisker carbon nanotubes is preferably 3-15 ⁇ m, more preferably 5-8 ⁇ m; the diameter is preferably 30-150 nm, more preferably 50-100 nm; the dispersant is preferably dodecane Sodium Sulfate (SDS).
  • the whisker carbon nanotube slurry is preferably provided by the following method: ultrasonically preparing the raw material mixture and then shearing.
  • the frequency of the ultrasound is preferably 15-25kHz, more preferably 20-25kHz;
  • the time of ultrasound is preferably 30-60min, more preferably 40-50min;
  • the shearing speed is preferably 2000-8000r/min , More preferably 3000-6000r/min; preferably 30-60min, more preferably 45-55min.
  • the reinforcing agent is preferably anionic polyacrylamide or a mixture of anionic polyacrylamide and polyvinyl alcohol.
  • the combination of whisker carbon nanotube, aramid chopped fiber, fibrid and reinforcing agent is preferably a ratio of 1: (2 to 4): (2 to 4): (0.1 to 0.5), more preferably 1: (2.8 to 3.5): (2.5 to 3.5): (0.2 to 0.3).
  • the present invention beats the mixture to obtain a mixed slurry.
  • the linear speed of the beating is preferably 6-9 m/s, more preferably 7-8 m/s; the time is preferably 20-40 min, more preferably 30-35 min.
  • the present invention performs suction filtration to shape the mixed slurry to obtain a wet paper sheet.
  • the suction filtration molding is performed in a paper sheet former.
  • the present invention has no special requirements on the specific parameters of the suction filtration molding, and those skilled in the art can be used.
  • the present invention preferably dry the obtained wet paper sheet, the temperature of the drying is preferably 60-80°C, more preferably drying under vacuum conditions. After drying, the present invention preferably heat-presses the dried paper sheet to obtain far-infrared heating paper with better density and strength.
  • the pressure of the hot pressing is preferably 10 to 16 MPa, more preferably 12 to 14 MPa; the holding time is preferably 0.5 to 3 min, more preferably 1 to 2 min; the temperature is preferably 180 to 230 °C, more preferably It is 200 ⁇ 220°C.
  • the heat exchange box of the present invention includes insulating honeycomb layers 3 arranged on both opening faces of the far-infrared heating honeycomb core layer 4.
  • the cell structure of the insulating honeycomb layer 3 is preferably consistent with the cell structure of the far-infrared heating honeycomb core layer 4, and the height of the insulating honeycomb layer 3 is preferably 0.1-10 mm, more preferably 0.3-5 mm .
  • the fixing method of the insulating honeycomb layer and the far-infrared heating honeycomb core layer is preferably bonding; when fixing, the cells of the insulating honeycomb layer are opposite to the cells of the far-infrared heating honeycomb core layer to ensure smooth air Circulation.
  • the material of the insulating honeycomb layer is preferably aramid insulating paper, and the thickness of the aramid insulating paper is preferably 0.05 to 1 mm.
  • the aramid insulating paper is a commercially available product well known to those skilled in the art.
  • the heat exchange box of the present invention also includes insulating paper 4 coated on the side of the far-infrared heating honeycomb core layer.
  • the insulating paper is preferably an aramid insulating paper, and more preferably an insulating paper having the same properties as the aramid insulating paper described in the above technical solution.
  • the air heat exchanger provided by the present invention includes a power connector arranged opposite to each other on the side of the heat exchange box, and the power connector includes a copper mesh electrode 2 and a wire 1.
  • the present invention has no special requirements on the structure and size of the copper mesh electrode 2, and only the structure and size well known to those skilled in the art can be used.
  • the power connector is preferably solidified on two opposite sides of the heat exchange box by pasting or sewing.
  • the present invention provides the preparation method of the air heat exchanger described in the above technical scheme, which includes the following steps:
  • the present invention uses far-infrared heating paper to prepare a far-infrared heating honeycomb core layer.
  • the present invention has no special requirements for the preparation process, and it is sufficient to obtain a far-infrared heating honeycomb core layer with the structure described in the above technical solution.
  • the infrared heating paper is folded into a grid of the required shape, and then pasted and fixed to obtain a far-infrared heating honeycomb core layer corresponding to the hole shape.
  • the present invention fixes the power connector at the relative position of the side of the far-infrared heating honeycomb core layer, and then wraps it with insulating paper to fix the power connector.
  • the present invention has no special requirements on the specific method of the package, and it is only necessary to use a method well known to those skilled in the art to fix the power connector.
  • the present invention fixes the insulating honeycomb layer on the two opening faces of the far-infrared heating honeycomb core layer to obtain an air heat exchanger.
  • the insulating honeycomb layer is preferably fixed by bonding, and the adhesive for bonding and fixing is preferably a high temperature resistant adhesive.
  • the present invention has no special requirements on the specific type of the adhesive, as long as the insulating honeycomb layer can be stably connected with the far-infrared heating honeycomb core layer, and it can be epoxy resin glue or reactive polyurethane hot melt glue.
  • the insulating honeycomb layer is opposed to the cells of the far-infrared heating honeycomb core layer to achieve the function of insulation and ventilation.
  • the present invention also provides the application of the air heat exchanger according to the above technical solution or the air heat exchanger prepared by the preparation method according to the above technical solution as an electric heating device.
  • the general adaptability of the air heat exchanger is high, and it can operate normally under different conditions.
  • the present invention has no special requirements on the externally applied voltage of the air heat exchanger, which can be 5 to 380V, and the input power can be 0.1 to 100000W, which can be determined according to the working environment.
  • polyethylene oxide as a dispersant (0.002 parts), aramid pulp fibers (1 part), water (200 parts), beating at a speed of 7m/s for 10 minutes to obtain aramid pulp fiber slurry;
  • whisker carbon nanotubes (1 part), water (150 parts), ultrasonic for 30min at 100W, and then high-speed shearing at 3000r/min for 30min to obtain Whisker carbon nanotube slurry;
  • Aramid insulation paper is a commercial product of Teyi (Shanghai) New Materials Co., Ltd.
  • the far-infrared heating paper and the aramid insulating paper are respectively prepared into a honeycomb structure, and the L-shaped copper mesh electrode is pasted on the two opposite sides of the far-infrared heating honeycomb structure, and then wrapped with aramid insulating paper.
  • a far-infrared heating honeycomb core layer is obtained; and then an aramid insulating honeycomb structure is pasted on the two opening faces of the far-infrared heating honeycomb core layer to form an insulating honeycomb layer to obtain an air heat exchanger.
  • the cell diameter of the honeycomb core is 5mm
  • the number of cells of the honeycomb core is 5000
  • the height of the far-infrared honeycomb core is 1m
  • the amount of air exchanged through the heat exchanger is about 350 ⁇ 700m 3 /h, where the amount of air exchanged through the heat exchanger can be calculated by Equation 1.
  • the heating rate of the air flowing through the heat exchanger is about 20°C/s, and the exhaust flow rate is 1m/s.
  • the room temperature is 10°C, the air in a fixed space of 100m 3 can be raised to 30°C.
  • V The amount of air exchanged through the heat exchanger, unit: m 3 /h;
  • The flow velocity of the gas in the heat exchanger, in the present invention, the exhaust flow velocity is 1 ⁇ 2m/s;
  • n The number of cells in the honeycomb core of the heat exchanger.
  • the air heat exchanger is prepared by the method of Example 1.
  • the heating rate of the air flowing through the heat exchanger is about 40°C/s
  • the exhaust flow rate is 1m/s
  • the room temperature is 0°C
  • 4.5min can heat up the air in a fixed space of 100m 3 to 20°C.
  • the far-infrared heating paper was prepared according to the method of Example 1 in the application number 201810736299.5, and the aramid insulating paper was a commercial product of Teyi (Shanghai) New Materials Co., Ltd., and the air heat exchanger was prepared according to the method of Example 1.
  • the honeycomb core The cell diameter is 5mm, the number of honeycomb core cells is 5000, and the height of the infrared honeycomb core layer is 1m.
  • the heating rate of the air flowing through the air heat exchanger is about 40°C/s, and the exhaust flow rate is 1m/s.
  • the room temperature is 0°C, the fixed space of 100m 3 can be reduced in 4.5 minutes. The air was heated to 20°C.
  • the far-infrared heating paper is prepared according to the method of Example 1 in Application No. 201810735973.8; and the air heat exchanger is prepared according to the method of Example 1.
  • the test conditions are the same as in Example 1.
  • the obtained air heat exchanger is used to heat a fixed space, when the input power is 500W, the exhaust flow rate is 1m/s, and the room temperature rises from 0°C to 25°C, and it takes 10 minutes.
  • the air heat exchanger provided by the present invention has a fast heating rate, can raise the temperature of a fixed space to a predetermined temperature in a short time, and has a high energy conversion rate, which is conducive to energy saving and emission reduction.
  • the use of far infrared The heating method can play the role of far-infrared physical therapy, thereby improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)

Abstract

一种空气热交换器,包括热交换箱、以及在热交换箱侧面相对设置的电源连接件,热交换箱包括远红外发热蜂窝芯层(4)、设置在远红外发热蜂窝芯层(4)两开口面的绝缘蜂窝层(3)、以及包覆在远红外发热蜂窝芯层(4)侧面的绝缘纸。还提供了一种空气热交换器的制备方法及其应用。该空气热交换器能使固定空间内的空气被快速加热,缩短升温时间。

Description

一种空气热交换器及其制备方法和应用 技术领域
本发明属于空气制备设备技术领域,具体涉及一种空气热交换器及其制备方法和应用。
背景技术
目前,市场上流行的空气制暖设备主要为空调和风暖两类,空调是最为常用的家用取暖设备,然而其具有着制热速率慢、舒适度低、售价高、故障率高等缺点,并不能满足人们的需求;风暖设备常用的是陶瓷PTC风暖设备,虽然购买成本较低,但在使用时,仍需要较长的升温时间。
发明内容
本发明的目的在于提供一种空气热交换器及其制备方法和应用,本发明提供的空气热交换器利用红外材料发热,可实现快速制热,且成本低廉。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了一种空气热交换器,其特征在于,包括热交换箱,以及在所述热交换箱侧面相对设置的电源连接件,所述热交换箱包括远红外发热蜂窝芯层、设置在所述远红外发热蜂窝芯层两开口面的绝缘蜂窝层,以及包覆在所述远红外发热蜂窝芯层侧面的绝缘纸。
优选的,所述远红外发热蜂窝芯层的材质为远红外发热纸,所述远红外发热纸的电阻率为0.01~200Ω·mm;抗拉强度为8~10kg/mm 2
优选的,所述绝缘蜂窝层或所述绝缘纸的材质为芳纶绝缘纸,所述芳纶绝缘纸的厚度为0.05~1mm。
优选的,所述远红外发热蜂窝芯层的孔隙率为70~90%,所述孔隙率以孔容积占远红外发热蜂窝芯层体积的百分比计。
优选的,所述远红外发热蜂窝芯层的孔格外形包括六边形、圆形、四边形或菱形。
优选的,所述远红外发热蜂窝芯层的横截面积为0.1~1000m 2,高度为0.01~10m。
优选的,所述电源连接件包括铜网电极和导线。
本发明提供了上述技术方案所述的空气热交换器的制备方法,包括以 下步骤:
利用远红外发热纸制备远红外发热蜂窝芯层,然后将电源连接件固定在所述远红外发热蜂窝芯层的侧面相对位置,再用绝缘纸进行包裹,以固定电源连接件;最后将绝缘蜂窝层固定在远红外发热蜂窝芯层两开口面,得到空气热交换器。
本发明提供了上述技术方案所述的空气热交换器或由上述技术方案所述的制备方法制备得到的空气热交换器作为电暖设备的应用。
优选的,所述空气热交换器的外接电压为5~380V;输入功率为0.1~100000W。
本发明提供了一种空气热交换器,包括热交换箱,以及在所述热交换箱侧面相对设置的电源连接件,所述热交换箱包括远红外发热蜂窝芯层、设置在所述远红外发热蜂窝芯层两开口面的绝缘蜂窝层,以及包覆在所述远红外发热蜂窝芯层侧面的绝缘纸。本发明以远红外材料为发热材料,配合蜂窝结构,实现烟囱效应,本发明所述空气热交换器工作时,热交换箱内的气体受热上升,冷风由蜂窝芯底面进入,通过远红外发热蜂窝芯层后,被加热成热风,再经蜂窝芯的顶面排出,如此循环后,固定空间内的空气被快速加热,缩短升温时间。实施例结果表明,本发明提供的空气热交换器将固定容积为100m 3的空间由0℃加热至30℃,仅需8min。
附图说明
图1为本发明提供的空气热交换器的结构示意图;
图中,1为导线,2为铜网电极,3为绝缘蜂窝层,4为远红外发热蜂窝芯层。
具体实施方式
在以下的具体实施过程中,本发明提及的蜂窝结构,具有孔格的面为蜂窝结构的开口面,两开口面的垂直距离为蜂窝结构的高。
本发明提供了一种空气热交换器,如图1所示,包括热交换箱,以及在所述热交换箱侧面相对设置的电源连接件,所述热交换箱包括远红外发热蜂窝芯层4、设置在所述远红外发热蜂窝芯层4两开口面的绝缘蜂窝层3,以及包覆在所述远红外发热蜂窝芯层侧面的绝缘纸。
本发明提供的空气热交换器,包括热交换箱,所述热交换箱包括远红外发热蜂窝芯层4。在本发明中,所述远红外发热蜂窝芯层的孔隙率优选为70~90%,更优选为75~85%;孔隙率以孔容积占远红外发热蜂窝芯层体积的百分比计。在本发明中,所述远红外发热蜂窝芯层中,孔格的孔径优选为2~30mm,更优选为5~25mm,再优选为10~15mm;所述孔格的外形优选包括六边形、圆形、四边形或菱形,更优选为六边形或圆形;所述孔格为六边形、四边形或菱形时,孔径以多边形内切圆的直径计。
本发明对所述远红外发热蜂窝芯层的尺寸没有特殊要求,可以根据所需型号制备不同尺寸的远红外发热蜂窝芯层;在本发明具体实施例中,所述远红外发热蜂窝芯层的横截面积优选为0.1~1000m 2,高度优选为0.01~10m。
在本发明中,所述远红外发热蜂窝芯层的材质优选为远红外发热纸,所述远红外发热纸的电阻率优选为0.01~200Ω·mm,更优选为1~150Ω·mm,再优选为20~120Ω·mm;抗拉强度优选为8~10kg/mm 2,更优选为10kg/mm 2。本发明优选采用远红外材料作为发热材料,不仅可提高空气热交换器的能量利用率和转化速度,还能避免氧气或湿气对发热材料的影响,提高空气热交换器的使用寿命。此外,远红外发热具有理疗功能,作为室内供暖设备,可改善用户舒适度。
在本发明中,所述远红外发热纸优选通过如下方法制备得到:
将短切纤维浆料、沉析纤维浆料、晶须碳纳米管浆料和增强剂进行混合,然后将所得混合料进行打浆,得到混合浆料;
将所述混合浆料进行抽滤成型,再经干燥和热压后,得到远红外碳纳米管。
在本发明中,所述短切纤维浆料的制备原料优选包括短切纤维、疏解剂和水,所述短切纤维、疏解剂和水的质量比优选为1:(0.001~0.005):(150~300),更优选为1:(0.002~0.004):(170~280)。在本发明中,所述短切纤维优选包括芳纶短切纤维和/或聚酰亚胺短切纤维,所述短切纤维的直径和长度采用本领域技术人员熟知的即可;当短切纤维为两种组分的混合物时,本发明对对所述混合物中各组分的质量比没有特殊要求。在 本发明中,所述疏解剂优选为十二烷基苯磺酸钠。在本发明中,所述短切纤维浆料优选通过如下方法提供:将制备原料混合后进行打浆。所述打浆优选通过打浆机完成,打浆机的线速度优选为6~9m/s,更优选为7~8m/s;打浆时间优选为5~10min,更优选为6~8min。
在本发明中,所述沉析纤维浆料的制备原料优选包括沉析纤维、分散剂和水,所述沉析纤维、分散剂和水的质量比优选为1:(0.001~0.005):(150~300),更优选为1:(0.002~0.004):(170~280)。在本发明中,所述沉析纤维优选包括芳纶浆粕纤维。在本发明中,所述分散剂优选为聚氧化乙烯。在本发明中,所述沉析纤维浆料优选通过如下方法提供:将制备原料混合,然后进行打浆和剪切。在本发明中,所述打浆优选通过打浆机完成,打浆机的线速度优选为6~9m/s,更优选为7~8m/s;打浆的时间优选为5~10min,更优选为6~8min;所述剪切优选通过高速剪切机完成,所述剪切的速度优选为2000~4000r/min,更优选为2500~3000r/min;时间优选为30~60min,更优选为40~50min。
在本发明中,所述晶须碳纳米管浆料的制备原料优选包括晶须碳纳米管、分散剂和水,所述晶须碳纳米管、分散剂和水的质量优选为1:(0.001~0.005):(100~200),更优选为1:(0.02~0.04):(125~175)。在本发明中,所述晶须碳纳米管的长度优选为3~15μm,更优选为5~8μm;直径优选为30~150nm,更优选为50~100nm;所述分散剂优选为十二烷基硫酸钠(SDS)。在本发明中,所述晶须碳纳米管浆料优选通过如下方法提供:将制备原料的混合物进行超声,然后剪切。在本发明中,所述超声的频率优选为15~25kHz,更优选为20~25kHz;超声的时间优选为30~60min,更优选为40~50min;剪切的速度优选为2000~8000r/min,更优选为3000~6000r/min;时间优选为30~60min,更优选为45~55min。
在本发明中,所述增强剂优选为阴离子聚丙烯酰胺、或者阴离子聚丙烯酰胺和聚乙烯醇的混合物。
在本发明中,短切纤维浆料、沉析纤维浆料、晶须碳纳米管浆料和增强剂的混合物中,晶须碳纳米管、芳纶短切纤维、沉析纤维和增强剂的质量优选为比1:(2~4):(2~4):(0.1~0.5),更优选为1:(2.8~3.5): (2.5~3.5):(0.2~0.3)。
得到混合物后,本发明对所述混合物进行打浆,得到混合浆料。在本发明中,所述打浆的线速度优选为6~9m/s,更优选为7~8m/s;时间优选为20~40min,更优选为30~35min。
得到混合浆料后,本发明将所述混合浆料进行抽滤成型,得到湿纸页。在本发明中,所述抽滤成型在纸页成型器中进行。本发明对所述抽滤成型的具体参数没有特殊要求,采用本领域技术人员熟知的即可。抽滤成型后,本发明优选将所得湿纸页进行干燥,所述干燥的温度优选为60~80℃,进一步优选在真空条件下干燥。干燥后,本发明优选对干燥后的纸页进行热压,以得到致密度和强度更好的远红外发热纸。在本发明中,所述热压的压力优选为10~16MPa,更优选为12~14MPa;保压时间优选为0.5~3min,更优选为1~2min;温度优选为180~230℃,更优选为200~220℃。
本发明所述热交换箱包括设置在所述远红外发热蜂窝芯层4两开口面的绝缘蜂窝层3。在本发明中,所述绝缘蜂窝层3的孔格结构优选与远红外发热蜂窝芯层4的孔格结构一致,所述绝缘蜂窝层3的高度优选为0.1~10mm,更优选为0.3~5mm。在本发明中,所述绝缘蜂窝层与远红外发热蜂窝芯层的固定方式优选为粘结;固定时,绝缘蜂窝层的孔格与远红外发热蜂窝芯层的孔格相对,以确保空气顺畅流通。
在本发明中,所述绝缘蜂窝层的材质优选为芳纶绝缘纸,所述芳纶绝缘纸的厚度优选为0.05~1mm。在本发明中,所述芳纶绝缘纸为本领域技术人员熟知的市售产品。
本发明所述热交换箱还包括包覆在所述远红外发热蜂窝芯层侧面的绝缘纸4。在本发明中,所述绝缘纸优选为芳纶绝缘纸,进一步优选为与上述技术方案所述芳纶绝缘纸性能一致的绝缘纸。
本发明提供的空气热交换器包括在所述热交换箱侧面相对设置的电源连接件,所述电源连接件包括铜网电极2和导线1。本发明对所述铜网电极2的结构和尺寸没有特殊要求,采用本领域技术人员熟知的结构和尺寸即可。在本发明中,所述电源连接件优选通过粘贴或缝制的方式固体在热交 换箱的两对面。
本发明提供了上述技术方案所述的空气热交换器的制备方法,包括以下步骤:
利用远红外发热纸制备远红外发热蜂窝芯层,然后将电源连接件固定在所述远红外发热蜂窝芯层的侧面相对位置,再用绝缘纸进行包裹,以固定电源连接件;最后将绝缘蜂窝层固定在远红外发热蜂窝芯层两开口面,得到空气热交换器。
本发明利用远红外发热纸制备远红外发热蜂窝芯层,本发明对所述的制备过程没有特殊要求,能得到具有上述技术方案所述结构的远红外发热蜂窝芯层即可,例如可以将远红外发热纸折叠成所需形状的孔格,然后粘贴固定,得到对应孔形的远红外发热蜂窝芯层。
得到远红外发热蜂窝芯层后,本发明将电源连接件固定在所述远红外发热蜂窝芯层的侧面相对位置,再用绝缘纸进行包裹,以固定电源连接件。本发明对所述包裹的具体方式没有特殊要求,采用本领域技术人员熟知的方式,能使电源连接件固定即可。
电源连接件固定后,本发明将所述绝缘蜂窝层固定在远红外发热蜂窝芯层的两开口面,得到空气热交换器。在本发明中,所述绝缘蜂窝层的固定方式优选为粘结固定,所述粘结固定用粘结剂优选为耐高温粘结剂。本发明对所述粘结剂的具体种类没有特殊要求,能使绝缘蜂窝层与远红外发热蜂窝芯层稳定连接即可,具体可以是环氧树脂胶或反应型聚氨酯热熔胶。在本发明中,粘结时,绝缘蜂窝层与远红外发热蜂窝芯层的孔格相对,以达到绝缘通气的作用。
本发明还提供了上述技术方案所述的空气热交换器或上述技术方案所述的制备方法制备得到的空气热交换器作为电暖设备的应用。
在本发明中,所述空气热交换器的普适应较高,可在不同条件下正常运行。本发明对所述空气热交换器的外加电压没有特殊要求,可以为5~380V,所述输入功率可以为0.1~100000W,具体根据工作环境确定即可。
为了进一步说明本发明,下面结合附图和实施例对本发明提供的空气热 交换器及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
以下实施例中所述份为质量份。
实施例1
以十二烷基硫磺酸钠为疏解剂(0.002份),芳纶短切纤维(广州龙塔贸易有限公司的市售产品,1份),水(200份),在7m/s的速度下,打浆10min,得到短切纤维浆料;
以聚氧化乙烯为分散剂(0.002份),芳纶浆粕纤维(1份),水(200份),在7m/s的速度下,打浆10min,得到芳纶浆粕纤维浆料;
以十二烷基硫磺酸钠为分散剂0.002份,晶须碳纳米管(1份),水(150份),在100W下超声30min,然后在3000r/min的速度下高速剪切30min,得到晶须碳纳米管浆料;
将短切纤维浆料、芳纶沉析纤维浆料、晶须碳纳米管浆料和增强剂按照1:2:2:0.1的质量比混合,在7m/s的速度下,打浆5min,然后在2000r/min的速度下,剪切30min,得到混合浆料;
将得到的混合浆料注入纸页成型器中,进行抽滤成型,再在60℃下干燥120min,压力为12MPa下,温度为220℃下,保压1min,得到远红外发热纸。所得远红外发热纸的厚度为0.1mm、电阻率为0.7Ω·mm、抗拉强度为10kg/mm 2
芳纶绝缘纸为特一(上海)新材料有限公司的市售产品。
按照图1所示,将远红外发热纸和芳纶绝缘纸分别制备成蜂窝状结构,将L型铜网电极粘贴在远红外发热蜂窝结构体的两对面,然后用芳纶绝缘纸进行包裹,得到远红外发热蜂窝芯层;再在远红外发热蜂窝芯层的两开口面粘贴芳纶绝缘蜂窝结构体,形成绝缘蜂窝层,得到空气热交换器。
本实施例所得空气热交换器中,蜂窝芯的孔格直径为5mm,蜂窝芯孔格个数为5000,远红外蜂窝芯层高度为1m,通过热交换器换出的空气量约为350~700m 3/h,其中通过热交换器交换出的空气量可通过式一计算。
当输入功率为500W时,流过热交换器的空气升温速率约为20℃/s,按排风流速为1m/s计算,当室温为10℃时,8min可将100m 3的固定空间空气 升至30℃。
式一:
Figure PCTCN2019126150-appb-000001
式一中:
Dg——蜂窝芯孔格直径,单位:m;
V——通过热交换器交换出的空气量,单位:m 3/h;
ω——热交换器内气体的流速,在本发明中排风流速为1~2m/s;
n——热交换器蜂窝芯孔格的个数。
实施例2
采用实施例1的方式制备空气热交换器,当输入功率为1000W时,流过热交换器的空气升温速率约为40℃/s,按排风流速为1m/s计算,当室温为0℃时,4.5min可将100m 3的固定空间空气升温至至20℃。
实施例3
远红外发热纸按照申请号为201810736299.5中实施例1的方法制备,芳纶绝缘纸为特一(上海)新材料有限公司市售产品,按照实施例1的方法制备空气热交换器,蜂窝芯的孔格直径为5mm,蜂窝芯孔格个数为5000,红外蜂窝芯层高度为1m。
当输入功率为1000W时,流过空气热交换器的空气升温速率约为40℃/s,按排风流速为1m/s计算,当室温为0℃时,4.5min可将100m 3的固定空间空气升温至至20℃。
实施例4
远红外发热纸按照申请号为201810735973.8中实施例1的方法制备;并按照实施例1的方式制备空气热交换器,当输入功率为1000W时,通过空气热交换器的空气升温速率达到约35℃/s,测试条件同实施例1,所得空气热交换器用于加热固定空间时,在输入功率为500W时,排风流速为1m/s,室温由0℃升温至25℃,需要10min。
由以上实施例可知,本发明提供的空气热交换器的升温速率快,能在短时间内将固定空间的温度升至预定温度,能量转化率高,有利于节能减排,另外,采用远红外方式进行加热,可发挥远红外的理疗作用,进而改善用户体验。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部 分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (10)

  1. 一种空气热交换器,其特征在于,包括热交换箱,以及在所述热交换箱侧面相对设置的电源连接件,所述热交换箱包括远红外发热蜂窝芯层、设置在所述远红外发热蜂窝芯层两开口面的绝缘蜂窝层,以及包覆在所述远红外发热蜂窝芯层侧面的绝缘纸。
  2. 如权利要求1所述的空气热交换器,其特征在于,所述远红外发热蜂窝芯层的材质为远红外发热纸,所述远红外发热纸的电阻率为0.01~200Ω·mm;抗拉强度为8~10kg/mm 2
  3. 如权利要求1所述的空气热交换器,其特征在于,所述绝缘蜂窝层或所述绝缘纸的材质为芳纶绝缘纸,所述芳纶绝缘纸的厚度为0.05~1mm。
  4. 如权利要求1~3任一项所述的空气热交换器,其特征在于,所述远红外发热蜂窝芯层的孔隙率为70~90%,所述孔隙率以孔容积占远红外发热蜂窝芯层体积的百分比计。
  5. 如权利要求4所述的空气热交换器,其特征在于,所述远红外发热蜂窝芯层的孔格外形包括六边形、圆形、四边形或菱形。
  6. 如权利要求1、2、3或5所述的空气热交换器,其特征在于,所述远红外发热蜂窝芯层的横截面积为0.1~1000m 2,高度为0.01~10m。
  7. 如权利要求1所述的空气热交换器,其特征在于,所述电源连接件包括铜网电极和导线。
  8. 权利要求1~7任一项所述的空气热交换器的制备方法,包括以下步骤:
    利用远红外发热纸制备远红外发热蜂窝芯层,然后将电源连接件固定在所述远红外发热蜂窝芯层的侧面相对位置,再用绝缘纸进行包裹,以固定电源连接件;最后将绝缘蜂窝层固定在远红外发热蜂窝芯层两开口面,得到空气热交换器。
  9. 权利要求1~7任一项所述的空气热交换器或由权利要求8所述的制备 方法制备得到的空气热交换器作为电暖设备的应用。
  10. 如权利要求9所述的应用,其特征在于,所述空气热交换器的外接电压为5~380V;输入功率为0.1~100000W。
PCT/CN2019/126150 2019-04-18 2019-12-18 一种空气热交换器及其制备方法和应用 WO2020211412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910312496.9 2019-04-18
CN201910312496.9A CN109974295A (zh) 2019-04-18 2019-04-18 一种空气热交换器及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020211412A1 true WO2020211412A1 (zh) 2020-10-22

Family

ID=67085252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126150 WO2020211412A1 (zh) 2019-04-18 2019-12-18 一种空气热交换器及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109974295A (zh)
WO (1) WO2020211412A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974295A (zh) * 2019-04-18 2019-07-05 江西克莱威纳米碳材料有限公司 一种空气热交换器及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2793669Y (zh) * 2005-06-17 2006-07-05 周惠敏 高效节能热交换器
EP2693153A1 (en) * 2011-03-29 2014-02-05 NGK Insulators, Ltd. Heat exchange member and heat exchanger
EP2977699A1 (en) * 2013-03-22 2016-01-27 NGK Insulators, Ltd. Heat exchanger
CN105645940A (zh) * 2014-12-04 2016-06-08 湖南嘉盛电陶新材料股份有限公司 一种远红外蜂窝陶瓷发热体的制备方法
CN106550500A (zh) * 2015-09-17 2017-03-29 广东森林堡木业有限公司 一种远红外纳米碳纤维发热板
CN108744297A (zh) * 2018-07-06 2018-11-06 江西克莱威纳米碳材料有限公司 一种远红外纸及其制备方法和一种芳纶远红外理疗电暖装置
CN109168203A (zh) * 2018-09-10 2019-01-08 江西克莱威纳米碳材料有限公司 一种远红外加热套及其制备方法
CN109974295A (zh) * 2019-04-18 2019-07-05 江西克莱威纳米碳材料有限公司 一种空气热交换器及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200994195Y (zh) * 2006-12-26 2007-12-19 宁波市科技园区健坤电热技术有限公司 蜂窝陶瓷电热膜元件
CN201636967U (zh) * 2010-01-25 2010-11-17 上海正攀实业有限公司 远红外辐射对流采暖器
CN203036767U (zh) * 2013-01-24 2013-07-03 刘文斌 一种蜂窝罩及设有该蜂窝罩的平板型远红外辐射装置
CN203131937U (zh) * 2013-01-28 2013-08-14 昆山能保健家电有限公司 一种电暖器
CN204555209U (zh) * 2014-11-20 2015-08-12 李春生 一种高效环保型远红外制冷机节能网
CN204598338U (zh) * 2015-05-13 2015-08-26 无锡市龙源微电热技术应用开发有限公司 一种模拟蜂窝电热膜加热部件
CN107551733A (zh) * 2017-09-06 2018-01-09 安徽乐金环境科技有限公司 远红外加热空气过滤网
CN108824085B (zh) * 2018-07-06 2019-11-05 江西克莱威纳米碳材料有限公司 一种芳纶纤维远红外发射纸及其制备方法
CN210892158U (zh) * 2019-04-18 2020-06-30 江西克莱威纳米碳材料有限公司 一种空气热交换器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2793669Y (zh) * 2005-06-17 2006-07-05 周惠敏 高效节能热交换器
EP2693153A1 (en) * 2011-03-29 2014-02-05 NGK Insulators, Ltd. Heat exchange member and heat exchanger
EP2977699A1 (en) * 2013-03-22 2016-01-27 NGK Insulators, Ltd. Heat exchanger
CN105645940A (zh) * 2014-12-04 2016-06-08 湖南嘉盛电陶新材料股份有限公司 一种远红外蜂窝陶瓷发热体的制备方法
CN106550500A (zh) * 2015-09-17 2017-03-29 广东森林堡木业有限公司 一种远红外纳米碳纤维发热板
CN108744297A (zh) * 2018-07-06 2018-11-06 江西克莱威纳米碳材料有限公司 一种远红外纸及其制备方法和一种芳纶远红外理疗电暖装置
CN109168203A (zh) * 2018-09-10 2019-01-08 江西克莱威纳米碳材料有限公司 一种远红外加热套及其制备方法
CN109974295A (zh) * 2019-04-18 2019-07-05 江西克莱威纳米碳材料有限公司 一种空气热交换器及其制备方法和应用

Also Published As

Publication number Publication date
CN109974295A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020211412A1 (zh) 一种空气热交换器及其制备方法和应用
CN107201687A (zh) 气凝胶隔热纸的制备方法
CN107845617A (zh) 一种芯片烧结品、子单元、igbt封装模块及制备方法
CN207991179U (zh) 小型食品检测用电热鼓风干燥箱
CN210892158U (zh) 一种空气热交换器
CN105960035A (zh) 一种自控温电热膜的生产方法及其电热膜
CN206081670U (zh) 一种用于Fe3O4C复合材料制备的干燥烘箱
CN110279277A (zh) 一种石墨烯基保温地毯
CN107300304A (zh) 一种农副产品烘烤专用箱
CN206100499U (zh) 远红外铁氟龙碳纤维电地暖线
CN205929702U (zh) 一种层压机热风系统
CN206079919U (zh) 一种低电压红外发热智能光热毯
CN210431924U (zh) 一种便携式远红外加热装置
CN104109947B (zh) 一种涤纶纤维电热无纺纸制造方法
CN207147078U (zh) 一种农副产品烘烤专用箱
CN208829897U (zh) 纤维单丝涂膜干燥装置
CN208154947U (zh) 一种用于喷浆玉米皮干燥的平板烘干装置
CN208968157U (zh) 种子干燥机
CN207453706U (zh) 一种自动烘干汽车门把手
CN207113500U (zh) 一种组装式农副产品烘烤专用箱
CN206864576U (zh) 新型新能源电池加热片
CN207702865U (zh) 一种节能高效型豆腐干自动烘干机
CN202993754U (zh) 一种结构改良的工业烤箱
CN206272871U (zh) 用于地板或瓷砖的发热体
CN207143572U (zh) 一种新型可折叠的电熨斗

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925388

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19925388

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925388

Country of ref document: EP

Kind code of ref document: A1