WO2020211304A1 - 高钇型稀土矿分组分离氧化钇的方法以及中钇富铕型稀土矿分组分离氧化钇的方法 - Google Patents

高钇型稀土矿分组分离氧化钇的方法以及中钇富铕型稀土矿分组分离氧化钇的方法 Download PDF

Info

Publication number
WO2020211304A1
WO2020211304A1 PCT/CN2019/110337 CN2019110337W WO2020211304A1 WO 2020211304 A1 WO2020211304 A1 WO 2020211304A1 CN 2019110337 W CN2019110337 W CN 2019110337W WO 2020211304 A1 WO2020211304 A1 WO 2020211304A1
Authority
WO
WIPO (PCT)
Prior art keywords
yttrium
rare earth
concentration
rich
mixed system
Prior art date
Application number
PCT/CN2019/110337
Other languages
English (en)
French (fr)
Inventor
陈继
邓岳锋
李德谦
李海连
杨茂华
刘郁
邹丹
白彦
常永青
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910307028.2A external-priority patent/CN109881005B/zh
Priority claimed from CN201910307023.XA external-priority patent/CN110002487B/zh
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Priority to US17/601,887 priority Critical patent/US20220205065A1/en
Publication of WO2020211304A1 publication Critical patent/WO2020211304A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/402Mixtures of acyclic or carbocyclic compounds of different types
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/408Mixtures using a mixture of phosphorus-based acid derivatives of different types
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of rare earth extraction and separation, and specifically relates to a method for grouping and separating yttrium oxide from high yttrium type rare earth ore and a method for grouping and separating yttrium oxide from middle yttrium europium-rich rare earth ore.
  • Ionic mines are mainly distributed in Jiangxi, Fujian, Guangdong, Hunan and Guangxi provinces in southern my country. According to the distribution characteristics of rare earth mines, they can be divided into light rare earth type, medium yttrium rich europium type and high yttrium type (also known as heavy rare earth type).
  • the content of heavy rare earth in high yttrium rare earth ore is about 90%, of which the contents of lutetium oxide and yttrium oxide are about 0.47% and 65% respectively.
  • the distribution characteristics of the middle-yttrium-rich europium-type rare earth ore are as follows: (1) the content of europium is 0.5% to 1.0%; (2) the content of light rare earth and medium and heavy rare earth each account for about 50%; (3) the middle rare earth (samarium, europium, terbium) , Dysprosium) content is about 10%; (4) yttrium oxide content is 20%-30%.
  • the high yttrium type and medium yttrium europium-rich ion ore have high content of medium and heavy rare earths and high separation value. They have become important minerals used in the rare earth industry in my country.
  • the preferential separation of higher content of yttrium oxide is one of the key steps in the separation process of high yttrium and middle yttrium europium-rich rare earth ore.
  • the separation of yttrium oxide from high yttrium type rare earth ore or medium yttrium rich europium type rare earth ore mainly uses naphthenic acid system to directly separate yttrium oxide. Naphthenic acid extraction and separation of yttrium oxide has been widely used in the separation process of heavy rare earths.
  • naphthenic acid is a by-product of petroleum processing, it has a complex composition and high water solubility. After long-term use, the composition changes, which affects the stability of the process; extracting rare earths at higher pH values , Easy to emulsify; Affected by raw material composition and temperature, the separation coefficient of lanthanum and yttrium is small, which makes the separation of yttrium and lanthanum extremely difficult.
  • the production of naphthenic acid by-products suitable for separating yttrium oxide from petroleum cracking has been basically stopped. Therefore, it is urgent to develop a process for separating yttrium oxide to replace the existing naphthenic acid separation. Process flow.
  • the Chinese invention patent with the Chinese patent number ZL 99118261.8 proposes the HAB two-solvent extraction system based on the carboxylic acid extractant HA, using CA12 as the main extractant (HA) to improve the extraction efficiency of light rare earths and yttrium.
  • HA main extractant
  • acidic organic phosphorus extractant or its monosulfur substituted derivatives such as P507, Cyanex272 (bis(2,4,4-trimethylpentyl)phosphonic acid), etc. as co-extractant (HB) to improve heavy rare earth and yttrium
  • HB co-extractant
  • the HAB system maintains the advantage that the separation coefficient of La/Y in the HA system is higher than that of naphthenic acid, and overcomes the disadvantage of the low separation coefficient of Tm, Yb, Lu and Y in the HA system.
  • the HAB process is superior to the naphthenic acid extraction process under the same conditions.
  • there are problems in the concentration changes of the two extractants which are difficult to quickly analyze on site, which limits its industrial application.
  • the present invention aims to solve the above-mentioned technical problems in the process flow of separating yttrium by naphthenic acid system and HAB mixed system in the prior art, and provides a method for grouping and separating yttrium oxide from high yttrium type rare earth ore and a medium yttrium rich europium type rare earth ore Method for separating yttrium oxide in groups.
  • the method for grouping and separating yttrium oxide from high yttrium type rare earth ore firstly adopts P507-isooctanol and other mixed system erbium thulium grouping to obtain high yttrium enrichment and thulium ytterbium lutetium enrichment, and then separating and preparing heavy rare earth such as lutetium oxide, and then high yttrium enrichment
  • the aggregates are separated and prepared by the carboxylic acid extractant HA-TBP mixed system to prepare yttrium oxide, and finally the La ⁇ Er enriched substances are separated into other single rare earth elements by the P507 system.
  • the method for grouping and separating yttrium oxide from middle-yttrium-rich europium-rich rare earth ore firstly adopts P507-isooctanol and other mixed system dysprosium holmium to group to obtain yttrium-rich material 1 (Ho ⁇ Lu Y) and light and medium rare earth enrichment (La ⁇ Dy), the light and medium rare earth enriched material uses the P507 system to separate the single rare earth; then the yttrium-rich material 1 is grouped by the mixed system erbium-thulium such as P507-isooctanol to obtain the yttrium-rich material 2 (Ho Er Y) and thulium ytterbium The lutetium enrichment, the thulium ytterbium lutetium enrichment and the single heavy rare earth are separated; finally the yttrium-enriched material 2 is separated and prepared by the HA-TBP mixed system.
  • a method for grouping and separating yttrium oxide from high yttrium type rare earth ore includes the following steps:
  • Step 1 The high yttrium type rare earth mineral material liquid is separated by the P507 mixed system in the erbium thulium grouping manner to obtain the yttrium-rich material (La ⁇ Er Y component) as the raffinate aqueous phase and the thulium-ytterbium-lutetium-rich as the organic phase Collection (Tm Yb Lu component);
  • Step 2 Use the P507 hybrid system to separate the single heavy rare earth from the thulium-ytterbium-lutetium enrichment to obtain 3N ⁇ 5N lutetium oxide, thulium oxide, and ytterbium oxide;
  • Step 3 The yttrium-rich material is directly separated from yttrium oxide using a mixed system of carboxylic acid extractant HA and phase modifier TBP (ie, tributyl phosphate) to obtain the Y component as the raffinate aqueous phase and the organic phase La ⁇ Er components, and the raffinate aqueous phase is precipitated with oxalic acid, ammonium bicarbonate or ammonia water, and burned to obtain 3N ⁇ 5N yttrium oxide;
  • TBP tributyl phosphate
  • Step 4 Use the P507 system to separate the La-Er components from other single rare earths, and the stripping solution is precipitated and burned with oxalic acid, ammonium bicarbonate or ammonia water to obtain 3N-5N single rare earth oxides.
  • the term "high yttrium type rare earth ore” means that the rare earth in the rare earth ore is mainly heavy rare earth elements, with a heavy rare earth content of about 90%, represented by yttrium oxide, terbium oxide, and dysprosium oxide, with a mass fraction of 25. ⁇ 60%, 0.5 ⁇ 1.0% and 3 ⁇ 7%.
  • N means the relative purity of yttrium oxide, that is, "3N-5N yttrium oxide” means yttrium oxide with a relative purity of 99.9% to 99.999%.
  • the P507 mixed system described in steps 1 and 2 are both P507 (2-ethylhexyl phosphate mono-2-ethylhexyl ester)-isooctanol mixed system, P507 (2-ethylhexyl phosphoric acid Mono-2-ethylhexyl ester)-P227 (bis(2-ethylhexyl)phosphonic acid) mixed system or P507 (2-ethylhexyl phosphate mono-2-ethylhexyl ester)-Cyanex272 mixed system.
  • the P507 mixed system described in steps 1 and 2 contains: 2-ethylhexyl phosphate mono-2-ethylhexyl ester (P507); and isooctyl alcohol and bis(2-ethylhexyl) phosphine One or more of acid (P227), bis(2,4,4-trimethylpentyl)phosphonic acid (Cyanex272).
  • the process parameters of the high yttrium type rare earth mineral material liquid using the P507-isooctanol mixed system erbium thulium grouping are: the concentration of P507 is 1.0 ⁇ 1.5mol/L, and the concentration of isooctyl alcohol is 10 ⁇ 30% , The saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 4.5-5.0 mol/L.
  • the process parameters of the high yttrium type rare earth mineral material liquid using the P507-P227 mixed system erbium thulium grouping are: the concentration of P507 is 0.5-0.75 mol/L, the concentration of P227 is 0.5-0.75 mol/L, saponification The concentration is 36%, and the concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the process parameters of the high yttrium type rare earth mineral material liquid using the P507-Cyanex272 mixed system erbium thulium grouping are: the concentration of P507 is 0.5-0.75mol/L, the concentration of Cyanex272 is 0.5-0.75mol/L, and the saponification The concentration is 36%, and the concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the carboxylic acid extractant HA in step 3 is secondary octylphenoxy substituted acetic acid (CA12) or secondary nonylphenoxy substituted acetic acid (CA100).
  • the yttrium-rich material adopts the mixed system of carboxylic acid extractant HA and phase modifier TBP to directly separate yttrium oxide.
  • the process parameters are: HA concentration is 0.50 ⁇ 1.0mol/L, TBP concentration is 10 ⁇ 30 %, the degree of saponification is 80-90%, and the concentration of hydrochloric acid used for back extraction is 2.0-3.0 mol/L.
  • the process parameters of La ⁇ Er component using P507 system to separate other single rare earths in step 4 are: P507 concentration is 1.0 ⁇ 1.5mol/L, saponification degree is 36%, concentration of hydrochloric acid used for back extraction It is 3.0mol/L.
  • a method for grouping and separating yttrium oxide from middle yttrium europium-rich rare earth ore includes the following steps:
  • Step 1 Separate the medium yttrium europium-rich rare earth mineral material liquid with the P507 mixed system in the dysprosium and holmium grouping manner to obtain the light and medium rare earth enrichment (La ⁇ Dy component) as the raffinate aqueous phase and the organic phase Yttrium-rich material 1 (Ho ⁇ Lu Y components, in which the weight percentage of Y 2 O 3 is 83%);
  • Step 2 Use the P507 system to separate a single rare earth from the light and medium rare earth enrichment
  • Step 3 Use the P507 mixing system to separate the yttrium-rich material 1 in erbium-thulium grouping mode to obtain the yttrium-rich material 2 as the raffinate aqueous phase (Ho Er Y component, in which the weight percentage of Y 2 O 3 is 88%) And the thulium-ytterbium-lutetium enrichment as the organic phase, the back-extraction solution uses the P507 mixed system to separate the single heavy rare earth to obtain 3N ⁇ 5N lutetium oxide, thulium oxide, and ytterbium oxide;
  • Step 4 Use the mixed system of carboxylic acid extractant HA and phase modifier TBP to directly extract and separate yttrium oxide from the yttrium-rich material 2 to obtain the Y component as the raffinate aqueous phase and the Ho Er component as the organic phase, and The raffinate aqueous phase is precipitated with oxalic acid, ammonium bicarbonate or ammonia water and burned to obtain 3N-5N yttrium oxide products.
  • the term "middle yttrium europium-rich rare earth ore” means that the light and heavy rare earths in the rare earth ore each account for about 50%, represented by europium oxide and yttrium oxide, with mass fractions of 0.5 to 1.0% and 20 to 30, respectively. %.
  • N means the relative purity of yttrium oxide, that is, "3N-5N yttrium oxide” means yttrium oxide with a relative purity of 99.9% to 99.999%.
  • the yttrium europium-rich rare earth mineral liquid dysprosium holmium grouping and the yttrium-rich material 1 erbium thulium grouping adopted the P507 mixed system are P507-isooctanol mixed system, P507-P227( Bis (2-ethylhexyl) phosphonic acid) mixed system or P507-Cyanex272 mixed system.
  • the P507 mixed system described in steps 1 and 3 includes: 2-ethylhexyl phosphate mono-2-ethylhexyl ester (P507); and isooctyl alcohol and bis(2-ethylhexyl) phosphine One or more of acid (P227), bis(2,4,4-trimethylpentyl)phosphonic acid (Cyanex272).
  • the process parameters of using the P507-isooctanol mixed system to group the medium yttrium europium-rich rare earth mineral liquid dysprosium holmium and the yttrium-rich material 1 erbium thulium group in steps 1 and 3 are: P507 concentration is 1.0 ⁇ 1.5mol/L, the concentration of isooctyl alcohol is 10-30%, the saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 4.5-5.0mol/L.
  • the P507-Cyanex272 mixed system is used in steps 1 and 3 to group the middle yttrium europium-rich rare earth mineral liquid dysprosium holmium and the yttrium-rich material 1 erbium thulium.
  • the process parameters are: P507 concentration is 0.5-0.75 mol/L, the concentration of Cyanex272 is 0.5-0.75 mol/L, the saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the P507-P227 mixed system is used in steps 1 and 3 to group the medium yttrium europium-rich rare earth ore liquid dysprosium holmium and the yttrium-rich material 1 erbium thulium.
  • the process parameters are: P507 concentration is 0.5-0.75 mol/L, the concentration of P227 is 0.5-0.75 mol/L, the saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the P507 system is used to separate a single rare earth in the light and medium rare earth enrichment in step 2.
  • the process parameters are: P507 concentration is 1.0 ⁇ 1.5mol/L, saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 3.5mol/L.
  • step 4 the yttrium-rich material 2 is directly extracted and separated from yttrium oxide by the carboxylic acid extractant HA-TPB mixed system, wherein the carboxylic acid extractant HA is secondary octylphenoxy substituted acetic acid (CA12) or secondary Nonylphenoxy substituted acetic acid (CA100).
  • the carboxylic acid extractant HA is secondary octylphenoxy substituted acetic acid (CA12) or secondary Nonylphenoxy substituted acetic acid (CA100).
  • the yttrium-rich material 2 in step 4 adopts the carboxylic acid extractant HA-TPB mixed system to directly extract and separate yttrium oxide.
  • the process parameters are: the carboxylic acid extractant HA concentration is 0.50 ⁇ 1.0mol/L, and the TBP concentration is 10-30%, the saponification degree is 80-90%, and the concentration of hydrochloric acid used for back extraction is 2.0-3.0 mol/L.
  • the method of the present invention is suitable for southern ion-type rare earth ore, including middle-yttrium-rich europium-type rare-earth ore, low-yttrium mixed rare-earth ore after yttrium extraction from high-yttrium ore, and yttrium oxide grouping of light rare-earth rare earth ore Separate.
  • a mixed system such as P507-isooctanol is used to separate Tm, Yb, and Lu in advance, and then a HA-TBP mixed system is used to separate La ⁇ Er Y Extraction and separation of yttrium oxide in the enrichment avoids the problem of low separation coefficients of Tm, Yb, Lu and Y in the HA system; the HA-TBP mixed system is used to extract and separate yttrium oxide from the La ⁇ Er Y enrichment, avoiding The HAB system separates yttrium oxide from the high yttrium type rare earth mineral material liquid.
  • the mixed system such as P507-isooctanol is used to pre-group the erbium thulium, and the feed rare earth concentration is high. Large amount, which can give priority to the separation of valuable lutetium and other heavy rare earth products; and compared with naphthenic acid process, this method has short process flow, stable quality, high yield, strong adaptability, stable composition, and low solubility in water ,
  • the extraction process is not easy to emulsify, and its comprehensive technical and economic indicators are better than the naphthenic acid process. It has practical application value and can replace the existing naphthenic acid separation process for yttrium.
  • a mixed system such as P507-isooctanol is used to pre-separate Tm, Yb, and Lu, and then a HA-TBP mixed system is adopted from Ho Er Y Extraction and separation of yttrium oxide from the enrichment avoids the problem of low separation coefficients of Tm, Yb, Lu and Y in the HA system; the HA-TBP mixed system is used to extract and separate yttrium oxide from the Ho Er Y enrichment, avoiding HAB System separation
  • the separation of yttrium oxide from the yttrium-rich enrichment has problems such as the difficulty of rapid analysis on site and the high cost of the HB component.
  • the mixed system of P507-isooctanol and other mixed systems of dysprosium and holmium can give priority to valuable oxidation
  • the rare earth products of thulium and lutetium oxide solve the problem of incomplete reverse extraction of thulium, ytterbium and lutetium in the three-grouping process of the existing P507 system, which leads to the loss and waste of heavy rare earth resources; and compared with the naphthenic acid process, this method has a short process flow and quality Stability, high yield, strong adaptability, stable composition, low solubility in water, difficult to emulsify in the extraction process, etc. Its comprehensive technical and economic indicators are better than naphthenic acid process, and it has practical application value and can replace existing naphthenes Acid separation yttrium process.
  • Fig. 1 is a process flow diagram of a high-yttrium rare earth ore grouping and separating yttrium oxide provided by the present invention.
  • Fig. 2 is a process flow chart of the grouping and separation of yttrium oxide from a middle yttrium rich europium rare earth ore provided by the present invention.
  • a method for grouping and separating yttrium oxide from high yttrium rare earth ore is provided.
  • the inventive idea of the present invention is: the current separation process of yttrium oxide from high yttrium type rare earth ore all uses naphthenic acid system to directly separate yttrium oxide, in order to solve the technical problems existing in the process of separating yttrium by naphthenic acid system, the subject group Invented the HAB two-solvent extraction system (patent number: ZL 99118261.8).
  • the HAB process is better than the naphthenic acid extraction process under the same conditions.
  • problems such as difficulty in rapid analysis of the concentration changes of the two extractants on site. Limits its industrial application.
  • the present invention proposes a method for separating yttrium oxide by groups of high yttrium type rare earth ore. Firstly, a mixed system erbium thulium such as P507-isooctanol is used for grouping to obtain high yttrium enrichment.
  • a mixed system erbium thulium such as P507-isooctanol is used for grouping to obtain high yttrium enrichment.
  • the method for separating yttrium oxide by groups of high yttrium rare earth ore provided by the present invention does not use HA system to directly separate yttrium oxide, but uses P507-isooctanol mixed system to separate thulium, ytterbium, and lutetium heavy rare earths, and then uses HA mixed system to separate and oxidize yttrium.
  • the main reason is that the separation coefficient of La/Y in the HA system is 3.0-4.9, which is significantly better than the naphthenic acid system, but the separation coefficient of Tm, Yb, Lu and Y is 1.4-1.7, which is lower than that of the naphthenic acid system.
  • the HA system is difficult to directly separate yttrium from the yttrium-containing heavy rare earth mixture and is not suitable for industrial production.
  • Using a mixed system such as P507-isooctanol to separate Tm, Yb, and Lu in advance can avoid the problem of low separation coefficients of Tm, Yb, Lu and Y in the HA system.
  • a method for separating yttrium oxide from high yttrium-type rare earth ore in groups provided by the present invention uses a mixed system such as P507-isooctanol to separate Tm, Yb, and Lu in advance, and then adopts HA system from La ⁇ Er Y enrichment
  • the medium extraction and separation of yttrium oxide avoids the problem of low separation coefficients of Tm, Yb, Lu and Y in the HA system.
  • the present invention provides a method for separating yttrium oxide from high yttrium type rare earth minerals in groups.
  • the HA system is used to extract and separate yttrium oxide from La ⁇ Er Y enrichment materials, which avoids the HAB system from separating high yttrium type rare earth minerals from liquid.
  • the concentration changes of the two extractants are difficult to analyze quickly on site.
  • a method for grouping and separating yttrium oxide from high yttrium type rare earth ore provided by the present invention uses a mixed system such as P507-isooctanol to group erbium and thulium in advance, the feed rare earth concentration is high, the processing capacity is large, and the valuables can be separated preferentially Lutetium and other heavy rare earth products.
  • a method for grouping and separating yttrium oxide from high yttrium type rare earth ore provided by the present invention Compared with the naphthenic acid process, the method has short process flow, stable quality, high yield, strong adaptability, stable composition, It has the advantages of low solubility in water and difficult emulsification in the extraction process. Its comprehensive technical and economic indicators are better than the naphthenic acid process. It has practical application value and can replace the existing naphthenic acid separation process for yttrium.
  • a method for separating yttrium oxide from high yttrium type rare earth ore provided by the present invention in combination with Fig. 1 is described, including the following steps:
  • Step 1 Use the P507 mixed system (such as P507-isooctanol) to separate the high yttrium type rare earth mineral material in the erbium thulium grouping manner to obtain the yttrium-rich material (La ⁇ Er Y component) as the raffinate aqueous phase And thulium ytterbium lutetium enrichment (Tm Yb Lu component) as the organic phase;
  • P507 mixed system such as P507-isooctanol
  • Step 2 Use P507 mixed system (such as P507-isooctanol) to separate the single heavy rare earth from the thulium-ytterbium-lutetium enrichment to obtain 3N ⁇ 5N lutetium oxide, thulium oxide, and ytterbium oxide;
  • P507 mixed system such as P507-isooctanol
  • Step 3 Use the mixed system of carboxylic acid extractant HA and phase modifier TBP to separate the yttrium oxide directly from the yttrium-rich material to obtain the Y component as the raffinate aqueous phase and the La ⁇ Er component as the organic phase, and extract The remaining water phase is precipitated with oxalic acid, ammonium bicarbonate or ammonia water and burned to obtain 3N ⁇ 5N yttrium oxide;
  • Step 4 Use the P507 system to separate the La-Er components from other single rare earths, and the stripping solution is precipitated and burned with oxalic acid, ammonium bicarbonate or ammonia water to obtain 3N-5N single rare earth oxides.
  • the P507 mixed system described in steps 1 and 2 is a P507-isooctanol mixed system, a P507-P227 (di(2-ethylhexyl)phosphonic acid) mixed system or a P507-Cyanex272 mixed system.
  • the process parameters of the high yttrium type rare earth mineral material liquid using P507-isooctanol mixed system erbium thulium grouping are: P507 concentration is 1.0 ⁇ 1.5mol/L, isooctanol concentration is 10 ⁇ 30%, saponification degree is 36 %, the concentration of hydrochloric acid used for back extraction is 4.5-5.0 mol/L.
  • the process parameters of the high yttrium type rare earth mineral material liquid using the P507-P227 mixed system erbium thulium grouping in step 1 are: P507 concentration is 0.5-0.75 mol/L, P227 concentration is 0.5-0.75 mol/L, saponification degree is 36%, The concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the process parameters of the high yttrium type rare earth mineral material liquid using the P507-Cyanex272 mixed system erbium thulium grouping are: P507 concentration is 0.5-0.75mol/L, Cyanex272 concentration is 0.5-0.75mol/L, saponification degree is 36%, The concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the carboxylic acid extractant HA in step 3 is secondary octylphenoxy substituted acetic acid (CA12) or secondary nonylphenoxy substituted acetic acid (CA100).
  • CA12 secondary octylphenoxy substituted acetic acid
  • CA100 secondary nonylphenoxy substituted acetic acid
  • the yttrium-rich material adopts the mixed system of carboxylic acid extractant HA and phase modifier TBP to directly separate yttrium oxide.
  • the process parameters are: HA concentration is 0.50 ⁇ 1.0mol/L, TBP concentration is 10 ⁇ 30%, and saponification degree is 80-90%, the concentration of hydrochloric acid used for back extraction is 2.0-3.0 mol/L.
  • the process parameters of La ⁇ Er component using P507 system to separate other single rare earths in step 4 are: P507 concentration is 1.0 ⁇ 1.5mol/L, saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 3.0mol/L .
  • a method for grouping and separating yttrium oxide from a middle yttrium europium-rich rare earth ore is provided.
  • the inventive idea of the present invention is: the main process of the separation process of the middle yttrium europium-rich rare earth ore at present is: firstly, the three groups of P507 (2-ethylhexylphosphonic acid mono(2-ethylhexyl) ester) system are used, namely: La Ce Pr Nd, Sm Eu Gd Tb Dy, Ho Er Tm Yb Lu Y (yttrium-rich material), and then the yttrium-rich material is directly separated from yttrium oxide using naphthenic acid, P507 system light, medium rare earth single separation, P507-isooctanol Mixed system thulium ytterbium lutetium heavy rare earth separation.
  • P507 (2-ethylhexylphosphonic acid mono(2-ethylhexyl) ester) system are used, namely: La Ce Pr Nd, Sm Eu Gd Tb Dy, Ho Er Tm Yb Lu Y
  • the applicant’s research group invented the HAB two-solvent extraction system (patent number: ZL 99118261.8).
  • the HAB process is superior to the naphthenic acid extraction process under the same conditions, but During the long-term use of the HAB system, the concentration changes of the two extractants are difficult to quickly analyze on site, which limits its industrial application.
  • the present invention proposes a method for separating yttrium oxide by grouping in yttrium-rich europium-rich rare earth ore.
  • a mixed system such as P507-isooctanol and dysprosium holmium is used to obtain yttrium-rich Material 1 (Ho ⁇ Lu Y) and light and medium rare earth enrichment materials (La ⁇ Dy).
  • the light and medium rare earth enrichment materials adopt P507 system to separate single rare earth; then yttrium enrichment material 1 adopts P507-isooctanol and other mixed system erbium thulium After grouping, yttrium-enriched material 2 (Ho Er Y) and thulium-ytterbium-lutetium enriched material are obtained, and the thulium-ytterbium-lutetium enriched material is then separated into a single heavy rare earth; finally yttrium-enriched material 2 is separated to prepare yttrium oxide by HA-TBP mixed system.
  • yttrium-enriched material 2 Ho Er Y
  • thulium-ytterbium-lutetium enriched material is then separated into a single heavy rare earth
  • yttrium-enriched material 2 is separated to prepare yttrium oxide by HA-TBP mixed system.
  • the method for grouping and separating yttrium oxide from a medium-yttrium-rich europium-rich rare earth ore proposed by the present invention does not directly use the P507 system for three groups, but uses a mixed system such as P507-isooctanol for grouping.
  • the main reason is that the P507 system has the problems of low heavy rare earth separation efficiency, high back extraction acidity and incomplete back extraction in the heavy rare earth separation process of southern ion-type mines.
  • P507-isooctanol and other mixed system dysprosium holmium grouping can give priority to the valuable rare earth products of thulium oxide and lutetium oxide, and solve the problem of incomplete reverse extraction of thulium, ytterbium and lutetium in the three grouping process of the existing P507 system, resulting in the loss of heavy rare earth resources. problem.
  • the yttrium-rich material (Ho ⁇ Lu Y) of the method for separating yttrium oxide from middle-yttrium-rich europium-rich rare earth ore proposed by the present invention does not directly separate yttrium oxide by HA system, but uses a mixed system such as P507-isooctanol to separate yttrium oxide.
  • Dysprosium and holmium are separated in groups, and then the HA hybrid system is used to separate yttrium oxide.
  • the separation coefficient of La/Y in the HA system is 3.0 ⁇ 4.9, which is obviously better than that of the naphthenic acid system, but the separation coefficient of Tm, Yb, Lu and Y is 1.4 ⁇ 1.7, which is lower than that of the naphthenic acid system. Therefore, the HA system is difficult to directly separate yttrium from the yttrium-containing heavy rare earth mixture and is not suitable for industrial production.
  • a mixed system such as P507-isooctanol to separate Tm, Yb, and Lu in advance can avoid the problem of low separation coefficients of Tm, Yb, Lu and Y in the HA system.
  • a method for grouping and separating yttrium oxide from yttrium-rich europium-rich rare earth ore provided by the present invention uses a mixed system such as P507-isooctanol to group dysprosium and holmium, which can give priority to valuable thulium oxide and lutetium oxide rare earth products.
  • the incomplete reverse extraction of thulium, ytterbium, and lutetium in the three-grouping process of the existing P507 system leads to the loss of heavy rare earth resources.
  • the present invention provides a method for separating yttrium oxide in groups from a medium-yttrium-rich europium-rich rare earth ore.
  • a mixed system such as P507-isooctanol is used to pre-separate Tm, Yb, and Lu, and then a HA-TBP mixed system is adopted from Ho Er Extraction and separation of yttrium oxide from Y enrichment avoids the problem of low separation coefficients of Tm, Yb, Lu and Y in the HA system.
  • a method for grouping and separating yttrium oxide from a medium-yttrium-rich europium-rich rare earth ore provided by the present invention uses the HA-TBP mixed system to extract and separate yttrium oxide from the Ho Er Y enrichment, avoiding the separation of yttrium oxide from the HAB system.
  • the separation of yttrium oxide in the enrichment has problems such as the difficulty of rapid analysis on site and the high cost of the HB component.
  • a method for grouping and separating yttrium oxide from middle yttrium-rich europium rare earth ore provided by the present invention Compared with the naphthenic acid process, the method has short process flow, stable quality, high yield, strong adaptability, and composition It has the advantages of stability, low solubility in water, and difficulty in emulsification in the extraction process. Its comprehensive technical and economic indicators are better than the naphthenic acid process. It has practical application value and can replace the existing naphthenic acid separation process for yttrium.
  • Step 1 The medium yttrium europium-rich rare earth mineral material liquid is separated by P507 mixed system (such as: P507-isooctanol) in the way of dysprosium and holmium grouping to obtain the light and medium rare earth enrichment (La ⁇ Dy component) and yttrium-rich material 1 as the organic phase (Ho ⁇ Lu Y component, the weight percentage of Y 2 O 3 is 83%);
  • P507 mixed system such as: P507-isooctanol
  • Step 2 Use the P507 system to separate a single rare earth from the light and medium rare earth enrichment
  • Step 3 The yttrium-rich material 1 is separated by the P507 mixing system (such as P507-isooctanol) in the erbium thulium grouping mode to obtain the yttrium-rich material 2 (Ho Er Y component, Y 2 O The weight percentage of 3 is 88%) and the thulium-ytterbium-lutetium enrichment as the organic phase.
  • the stripping solution is then used to separate a single heavy rare earth with a P507 mixed system (such as P507-isooctanol) to obtain 3N ⁇ 5N lutetium oxide, Thulium oxide, ytterbium oxide;
  • Step 4 Use the carboxylic acid extractant HA-TBP mixed system to directly extract and separate yttrium oxide from the yttrium-rich material 2 to obtain the Y component as the raffinate aqueous phase and the Ho ⁇ Er component as the organic phase, and the raffinate water
  • the phase is precipitated with oxalic acid, ammonium bicarbonate or ammonia water, and burned to obtain 3N-5N yttrium oxide products.
  • the middle yttrium-rich europium-rich rare earth mineral liquid dysprosium-holmium group and the yttrium-rich material 1 erbium-thulium group adopt the P507 mixed system to be P507-isooctanol mixed system, P507-P227 (two (2-ethyl Hexyl) phosphonic acid) mixed system or P507-Cyanex272 mixed system.
  • the P507-isooctanol mixed system is used to group the middle yttrium europium-rich rare earth mineral material liquid dysprosium holmium and the yttrium-rich material 1 erbium thulium.
  • the process parameters are: P507 concentration is 1.0 ⁇ 1.5mol/L , The concentration of isooctyl alcohol is 10-30%, the saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 4.5-5.0 mol/L.
  • the P507-Cyanex272 mixed system is used in steps 1 and 3 to group the middle yttrium europium-rich rare earth mineral liquid dysprosium holmium and the yttrium-rich material 1 erbium thulium.
  • the process parameters are: P507 concentration is 0.5 ⁇ 0.75mol/L, Cyanex272 concentration It is 0.5-0.75 mol/L, the saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the P507-P227 mixed system is used in steps 1 and 3 to group the middle yttrium europium-rich rare earth mineral liquid dysprosium holmium and the yttrium-rich material 1 erbium thulium.
  • the process parameters are: P507 concentration is 0.5 ⁇ 0.75mol/L, P227 The concentration is 0.5-0.75 mol/L, the saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 2.5-3.5 mol/L.
  • the P507 system is used to separate a single rare earth from the light and medium rare earth enrichment.
  • the process parameters are: P507 concentration is 1.0-1.5 mol/L, saponification degree is 36%, and the concentration of hydrochloric acid used for back extraction is 3.5 mol/L.
  • the yttrium-rich material 2 is directly extracted and separated from yttrium oxide using a carboxylic acid extractant HA-TPB mixed system, where the carboxylic acid extractant HA is secondary octylphenoxy substituted acetic acid (CA12) or secondary nonylphenoxy Substitute for acetic acid (CA100).
  • carboxylic acid extractant HA is secondary octylphenoxy substituted acetic acid (CA12) or secondary nonylphenoxy Substitute for acetic acid (CA100).
  • the yttrium-rich material 2 in step 4 adopts the carboxylic acid extractant HA-TPB mixed system to directly extract and separate yttrium oxide.
  • the process parameters are: the carboxylic acid extractant HA concentration is 0.50 ⁇ 1.0mol/L, and the TBP concentration is 10 ⁇ 30%.
  • the saponification degree is 80-90%, and the concentration of hydrochloric acid used for back extraction is 2.0-3.0 mol/L.
  • the method of the invention is suitable for southern ion-type rare earth ore, including middle yttrium rich europium type rare earth ore, low yttrium mixed rare earth ore after yttrium extraction from high yttrium ore, and yttrium oxide group separation of light rare earth type rare earth ore.
  • the reagents used are all commercially available products and are used directly without further purification treatment. Unless otherwise specified, in addition, the "%" mentioned is “% by weight”.
  • Examples 1-4 relate to a method for separating yttrium oxide in groups according to the high yttrium rare earth ore of the present invention.
  • Step 1 Use a 1.0mol/L P507-20% isooctanol mixed system to separate the high yttrium type rare earth mineral material by erbium thulium grouping, the saponification degree is 36%, and the organic phase is back-extracted with 5mol/L hydrochloric acid.
  • the remaining water phase is La-Er Y component (yttrium-rich material), and the organic phase is Tm Yb Lu component (thulium-ytterbium-lutetium enrichment).
  • the thulium, ytterbium, and lutetium enriched materials are then separated by a 1.0mol/L P507-20% isooctyl alcohol mixed system to separate a single heavy rare earth to obtain 5N lutetium oxide, 3N thulium oxide, and 5N ytterbium oxide.
  • Step 2 Use 0.50mol/L CA12-10%TBP mixed system to directly extract and separate yttrium oxide from the yttrium-rich material liquid, the saponification degree is 80%, the organic phase is back-extracted with 3mol/L hydrochloric acid, and the raffinate aqueous phase is Y component
  • the organic phase is composed of La ⁇ Er.
  • the raffinate aqueous phase is precipitated with ammonium bicarbonate and burned to obtain 3N yttrium oxide with a yield of >96%.
  • Step 3 Separate the La ⁇ Er components with a single rare earth of 1.5mol/L P507 system, the saponification degree is 36%, the organic phase is stripped with 3mol/L hydrochloric acid, and the stripping solution is precipitated and burned with oxalic acid, ammonia bicarbonate or ammonia. After firing, a single rare earth oxide of 3N to 5N is obtained.
  • Step 1 Use 0.5mol/L P507-0.5mol/L Cyanex272 mixed system to separate the high yttrium rare earth mineral material by the erbium thulium grouping method, the saponification degree is 36%, and the organic phase is stripped with 3.5mol/L hydrochloric acid.
  • the remaining water phase is La-Er Y component (yttrium-rich material), and the organic phase is Tm Yb Lu component (thulium-ytterbium-lutetium enrichment).
  • the thulium, ytterbium, and lutetium enriched materials are then separated by a 0.5mol/L P507-0.5mol/L Cyanex272 mixed system to separate a single heavy rare earth to obtain 4N lutetium oxide, 4N thulium oxide, and 4N ytterbium oxide.
  • Step 2 Use 0.8mol/L CA12-20%TBP mixed system to directly extract and separate yttrium oxide from the yttrium-rich material liquid, the saponification degree is 90%, the organic phase is back-extracted with 3.0mol/L hydrochloric acid, and the raffinate aqueous phase is Y group
  • the organic phase is composed of La-Er.
  • the raffinate aqueous phase is precipitated with oxalic acid and burned to obtain 5N yttrium oxide with a yield of >96%.
  • Step 3 Separate La ⁇ Er components using 1.0mol/L P507 system single rare earth, the saponification degree is 36%, the organic phase is stripped with 3mol/L hydrochloric acid, and the stripping solution is precipitated and burned by oxalic acid, ammonia bicarbonate or ammonia water. After firing, a single rare earth oxide of 3N to 5N is obtained.
  • Step 1 Use 0.5mol/L P507-0.5mol/L P227 mixing system to separate the high yttrium rare earth mineral material by erbium thulium grouping, the saponification degree is 36%, the organic phase is back-extracted with 3mol/L hydrochloric acid, and the raffinate
  • the water phase is La ⁇ Er Y component (yttrium-rich material), and the organic phase is Tm Yb Lu component (thulium-ytterbium-lutetium enrichment).
  • the thulium, ytterbium, and lutetium-enriched materials are then separated by a 0.5mol/L P507-0.5mol/L P227 mixing system to separate a single heavy rare earth to obtain 5N lutetium oxide, 4N thulium oxide, and 4N ytterbium oxide.
  • Step 2 Use 0.8mol/L CA100-20%TBP mixed system to directly extract and separate yttrium oxide from the yttrium-rich material liquid, the saponification degree is 90%, the organic phase is back-extracted with 3.0mol/L hydrochloric acid, and the raffinate aqueous phase is Y group
  • the organic phase is composed of La-Er.
  • the raffinate aqueous phase is precipitated with oxalic acid and burned to obtain 5N yttrium oxide with a yield of >96%.
  • Step 3 Use 1.5mol/L P507 system to separate the single rare earth from La ⁇ Er components, the saponification degree is 36%, the organic phase is back-extracted with 3mol/L hydrochloric acid, and the stripping solution is precipitated and burned with oxalic acid, ammonia bicarbonate or ammonia water. After firing, a single rare earth oxide product of 3N to 5N is obtained.
  • Step 1 Use 1.2mol/L P507-15% isooctanol mixed system to separate the high yttrium rare earth mineral material by erbium thulium grouping method, the saponification degree is 36%, and the organic phase is back-extracted with 4.5mol/L hydrochloric acid.
  • the remaining water phase is La-Er Y component (yttrium-rich material), and the organic phase is Tm Yb Lu component (thulium-ytterbium-lutetium enrichment).
  • the thulium-ytterbium-lutetium-enriched material is then separated by a 1.2mol/L P507-15% isooctyl alcohol mixed system to separate a single heavy rare earth to obtain 5N lutetium oxide, 4N thulium oxide, and 4N ytterbium oxide.
  • Step 2 Use 1mol/L CA12-30%TBP mixed system to directly extract and separate yttrium oxide from the yttrium-rich material liquid, the saponification degree is 90%, the organic phase is back-extracted with 3.0mol/L hydrochloric acid, and the raffinate aqueous phase is Y component
  • the organic phase is composed of La ⁇ Er.
  • the raffinate aqueous phase is precipitated with oxalic acid and burned to obtain 5N yttrium oxide with a yield of >96%.
  • Step 3 Separate the La ⁇ Er components with a single rare earth of 1.2mol/L P507 system, the saponification degree is 36%, the organic phase is stripped with 3mol/L hydrochloric acid, and the stripping solution is precipitated and burned with oxalic acid, ammonia bicarbonate or ammonia. After firing, a single rare earth oxide of 3N to 5N is obtained.
  • Examples 5-8 relate to the method for separating yttrium oxide in groups according to the high yttrium rare earth ore of the present invention.
  • Step 1 Use 1.0mol/L P507-20% isooctanol mixture system to separate the medium yttrium europium-rich rare earth mineral material with dysprosium and holmium, the saponification degree is 36%, and the organic phase is back-extracted with 5mol/L hydrochloric acid.
  • the raffinate aqueous phase is light and medium rare earth enrichment (La ⁇ Dy component)
  • the organic phase is yttrium-rich material 1 (Ho ⁇ Lu Y component)
  • the weight percentage of Y 2 O 3 is 83%.
  • a 1.5mol/L P507 system was used to separate a single rare earth from the light and medium rare earth enriched material, the saponification degree was 36%, and the organic phase was back extracted with 3.5mol/L hydrochloric acid.
  • Step 2 Separate the yttrium-rich material 1 with a 1.2mol/L P507-20% isooctyl alcohol mixed system by erbium-thulium grouping.
  • the raffinate aqueous phase is yttrium-rich material 2 (Ho Er Y component), Y 2 O 3
  • the percentage by weight of the product is increased to 88%.
  • the organic phase is the thulium-ytterbium-lutetium-enriched material, and the stripping solution is then used to separate a single heavy rare earth using a 1.2mol/L P507-20% isooctanol mixed system to obtain 3N-5N lutetium oxide, thulium oxide, and ytterbium oxide.
  • Step 3 Use 0.50mol/L CA12-10% TBP system to directly extract and separate yttrium oxide from yttrium-rich material 2 with a saponification degree of 80%.
  • the organic phase is back-extracted with 3mol/L hydrochloric acid, and the raffinate aqueous phase is Y component.
  • the organic phase is the Ho Er component, and the raffinate aqueous phase is precipitated with ammonium bicarbonate and burned to obtain 3N yttrium oxide with a yield of >96%.
  • Step 1 Divide the medium yttrium europium-rich rare earth mineral material into groups with 0.5mol/L P507-0.5mol/L Cyanex272 mixed system dysprosium and holmium, the saponification degree is 36%, the organic phase is back-extracted with 3.5mol/L hydrochloric acid, and the raffinate
  • the water phase is enriched with light and medium rare earths (La-Dy component)
  • the organic phase is yttrium-rich material 1 (Ho-Lu Y component)
  • the weight percentage of Y 2 O 3 is 83%.
  • a 1.0mol/L P507 system was used to separate a single rare earth from the light and medium rare earth enriched material, the saponification degree was 36%, and the organic phase was back-extracted with 3.0mol/L hydrochloric acid.
  • Step 2 Use 0.5mol/L P507-0.5mol/L Cyanex272 mixed system erbium thulium to divide yttrium-rich material 1 into groups, and the raffinate water phase is yttrium-rich material 2 (Ho Er Y component), weight percentage of Y 2 O 3 Increase to 88%.
  • the organic phase is the thulium, ytterbium, and lutetium enriched material, and the stripping solution is then used 0.5mol/L P507-0.5mol/L Cyanex272 mixed system to separate the single heavy rare earth to obtain 3N ⁇ 5N lutetium oxide, thulium oxide, and ytterbium oxide.
  • Step 3 Use 0.8mol/L CA12-20% TBP system to directly extract and separate yttrium oxide from the yttrium-rich material 2 with a saponification degree of 90%.
  • the organic phase is back-extracted with 3.0mol/L hydrochloric acid, and the raffinate aqueous phase is Y component ,
  • the organic phase is the Ho Er component, and the raffinate aqueous phase is precipitated with oxalic acid and burned to obtain 5N yttrium oxide with a yield of >96%.
  • Step 1 Use 0.5mol/L P507-0.5mol/L P227 mixing system to separate the medium yttrium europium-rich rare earth mineral material with dysprosium and holmium.
  • the saponification degree is 36%.
  • the organic phase is back-extracted with 3mol/L hydrochloric acid.
  • the raffinate aqueous phase is the light and medium rare earth enrichment (La ⁇ Dy component)
  • the organic phase is the yttrium-rich material 1 (Ho ⁇ Lu Y component)
  • the weight percentage of Y 2 O 3 is 83%.
  • a 1.2mol/L P507 system was used to separate a single rare earth from the light and medium rare earth enriched material, the saponification degree was 36%, and the organic phase was back extracted with 3.5mol/L hydrochloric acid.
  • Step 2 Use 0.5mol/L P507-0.5mol/L P227 mixing system erbium thulium to divide the yttrium-rich material 1 into groups, the raffinate water phase is yttrium-rich material 2 (Ho Er Y component), the weight percentage of Y 2 O 3 Increase to 88%, the organic phase is the thulium ytterbium lutetium enrichment, the stripping solution is then used 0.5mol/L P507-0.5mol/L P227 mixed system to separate the single heavy rare earth to obtain 3N ⁇ 5N lutetium oxide, thulium oxide and oxidation ytterbium.
  • the raffinate water phase is yttrium-rich material 2 (Ho Er Y component)
  • the weight percentage of Y 2 O 3 Increase to 88%
  • the organic phase is the thulium ytterbium lutetium enrichment
  • the stripping solution is then used 0.5mol/L P507-0.5mol/L P227
  • Step 3 Use 0.8mol/L CA100-20%TBP system to directly extract and separate yttrium oxide with yttrium-rich material 2 with a saponification degree of 90%.
  • the organic phase is back-extracted with 3mol/L hydrochloric acid.
  • the raffinate aqueous phase is Y component, organic
  • the phase is the Ho Er component, and the raffinate aqueous phase is precipitated with ammonia water and burned to obtain 5N yttrium oxide with a yield of >96%.
  • Step 1 Use 1.2mol/L P507-15% isooctanol mixed system to separate the medium yttrium europium-rich rare earth mineral material by dysprosium and holmium, the saponification degree is 36%, and the organic phase is back-extracted with 4.5mol/L hydrochloric acid ,
  • the raffinate aqueous phase is light and medium rare earth enrichment (La ⁇ Dy component)
  • the organic phase is yttrium-rich material 1 (Ho ⁇ Lu Y component)
  • the weight percentage of Y 2 O 3 is 83%.
  • a 1.2mol/L P507 system was used to separate a single rare earth from the light and medium rare earth enriched material, the saponification degree was 36%, and the organic phase was back extracted with 3.5mol/L hydrochloric acid.
  • Step 2 Separate the yttrium-rich material 1 with a 1.2mol/L P507-15% isooctanol mixed system in the erbium-thulium grouping method, and the raffinate aqueous phase is the yttrium-rich material 2 (Ho Er Y component), Y 2 O 3
  • the weight percentage of lutetium is increased to 88%, the organic phase is enriched with thulium, ytterbium, and lutetium.
  • the stripping solution is then used to separate a single heavy rare earth with a 1.2mol/L P507-15% isooctanol mixed system to obtain 3N ⁇ 5N lutetium oxide and oxidation Thulium, Ytterbium Oxide.
  • Step 3 Use 1mol/L CA12-30%TBP system to directly extract and separate yttrium oxide from yttrium-rich material 2 with a saponification degree of 90%.
  • the organic phase is back-extracted with 3mol/L hydrochloric acid.
  • the raffinate aqueous phase is Y component, organic
  • the phase is the Ho Er component, and the raffinate aqueous phase is precipitated with oxalic acid and burned to obtain 5N yttrium oxide with a yield of >96%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高钇型稀土矿分组分离氧化钇的方法以及一种中钇富铕型稀土矿分组分离氧化钇的方法,属于稀土萃取分离技术领域,解决现有环烷酸体系和HAB混合体系分离氧化钇工艺流程长期使用过程中存在环烷酸需要更换及HAB体系两种萃取剂浓度变化现场难以快速分析等问题。分组分离方法具有先进合理、工艺流程短、生产成本低、适应性强、易操作控制等优点,综合技术经济指标性能优于环烷酸工艺,具有实际应用价值。

Description

高钇型稀土矿分组分离氧化钇的方法以及中钇富铕型稀土矿分组分离氧化钇的方法
相关申请的交叉引用
本申请要求于2019年4月17日提交的中国申请号201910307023.X和2019年4月17日提交的中国申请号201910307028.2的优先权的权益,所述申请的全部内容通过引用结合在此。
技术领域
本发明属于稀土萃取分离技术领域,具体涉及一种高钇型稀土矿分组分离氧化钇的方法以及一种中钇富铕型稀土矿分组分离氧化钇的方法。
背景技术
在中国南部地区,离子型稀土矿配分齐全,主要以中重稀土为主,富含功能材料所需的铕、铽、镝、铒、镥、钇等中重稀土元素,是我国特有的战略资源。离子型矿主要分布在我国南方的江西、福建、广东、湖南和广西等省区,根据稀土矿的配分特征,可分为轻稀土型、中钇富铕型和高钇型(又称重稀土型)。高钇型稀土矿中重稀土含量约为90%,其中氧化镥和氧化钇含量分别为0.47%和65%左右。中钇富铕型稀土矿配分特点如下:(1)铕含量为0.5%~1.0%;(2)轻稀土与中重稀土含量各占50%左右;(3)中稀土(钐、铕、铽、镝)含量约为10%;(4)氧化钇含量为20%~30%。高钇型和中钇富铕型离子矿中、重稀土含量高,分离价值较高,已成为我国稀土工业使用的重要矿物。含量较高的氧化钇优先分离是高钇型和中钇富铕型稀土矿分离工艺关键步骤之一。目前从高钇型稀土矿或中钇富铕型稀土矿分离氧化钇主要是采用环烷酸体系直接分离氧化钇。环烷酸萃取分离氧化钇已在重稀土分离工艺中得到广泛应用。然而,工业实践表明该工艺存在一些问题:由于环烷酸是石油加工的副产品,存在组成复杂且水溶性较大,长期使用后成分发生变化,影响工艺稳定性;在较高pH值下萃取稀土,易发生乳化;受原料组成和温度等的影响,镧钇分离系数小,给钇与镧的分离造成极大困难。近年来,随着石油化工产品的深加工技术的发展,适合分离氧化钇的石油裂解的环烷 酸副产品已基本停产,因此迫切需要开发一种分离氧化钇的工艺流程,替代现有环烷酸分离工艺流程。
如中国专利号为ZL 99118261.8的中国发明专利在羧酸型萃取剂HA基础上提出HAB双溶剂萃取体系,以CA12等为主萃取剂(HA),提高轻稀土与钇的萃取效率。采用酸性有机磷萃取剂或其单硫取代衍生物,如P507、Cyanex272(二(2,4,4-三甲基戊基)膦酸)等作为共萃取剂(HB),提高重稀土与钇的萃取效率。HAB体系保持了HA体系中La/Y的分离系数高于环烷酸的优点,克服了HA体系中Tm、Yb、Lu与Y的分离系数低的缺点。HAB工艺优于相同条件下的环烷酸萃取工艺。但是HAB体系长期使用过程中存在两种萃取剂浓度变化现场难以快速分析等问题,限制了其工业化应用。
发明内容
本发明要解决现有技术中环烷酸体系和HAB混合体系分离钇工艺流程中存在的上述技术问题,提供一种高钇型稀土矿分组分离氧化钇的方法以及一种中钇富铕型稀土矿分组分离氧化钇的方法。所述高钇型稀土矿分组分离氧化钇的方法,首先采用P507-异辛醇等混合体系铒铥分组得到高钇富集物和铥镱镥富集物,再分离制备氧化镥等重稀土,然后高钇富集物采用羧酸类萃取剂HA-TBP混合体系分离制备氧化钇,最后La~Er富集物采用P507体系分组分离其他单一稀土元素。另一方面,所述中钇富铕型稀土矿分组分离氧化钇的方法首先采用P507-异辛醇等混合体系镝钬分组得到富钇料1(Ho~Lu Y)和轻中稀土富集物(La~Dy),轻中稀土富集物采用P507体系分离单一稀土;然后富钇料1采用P507-异辛醇等混合体系铒铥分组,得到富钇料2(Ho Er Y)和铥镱镥富集物,铥镱镥富集物再分离单一重稀土;最后富钇料2采用HA-TBP混合体系分离制备氧化钇。以上描述的两种分组分离方法具有先进合理、工艺流程短、生产成本低、适应性强、易操作控制等优点,综合技术经济指标性能优于环烷酸工艺,具有实际应用价值。
为了解决上述技术问题,本发明的技术方案具体如下。
在本发明的一个方面中,提供了一种高钇型稀土矿分组分离氧化钇的方法,所述方法包括以下步骤:
步骤1:将高钇型稀土矿料液采用P507混合体系以铒铥分组方式分离,以得到作为萃余水相的富钇料(La~Er Y组份)以及作为有机相的铥镱镥富集 物(Tm Yb Lu组份);
步骤2:将铥镱镥富集物采用P507混合体系分离单一重稀土,以得到3N~5N的氧化镥、氧化铥、氧化镱;
步骤3:将富钇料采用羧酸类萃取剂HA和相改良剂TBP(即,磷酸三丁酯)混合体系直接分离氧化钇,以得到作为萃余水相的Y组份以及作为有机相的La~Er组份,并且萃余水相经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的氧化钇;
步骤4:将La~Er组份采用P507体系分离其它单一稀土,反萃液经草酸、碳酸氢氨或氨水沉淀、灼烧,得到3N~5N的单一稀土氧化物。
如上所述,术语“高钇型稀土矿”是指稀土矿中稀土以重稀土元素为主,重稀土含量达90%左右,以氧化钇、氧化铽、氧化镝为代表,质量分数分别为25~60%、0.5~1.0%和3~7%。
在本发明中,“N”表示氧化钇的相对纯度,即“3N~5N的氧化钇”表示相对纯度为99.9%~99.999%的氧化钇。
在上述技术方案中,步骤1和2中所述的P507混合体系均为P507(2-乙基己基磷酸单2-乙基己基酯)-异辛醇混合体系、P507(2-乙基己基磷酸单2-乙基己基酯)-P227(二(2-乙基己基)膦酸)混合体系或P507(2-乙基己基磷酸单2-乙基己基酯)-Cyanex272混合体系。
在上述技术方案中,步骤1和2中所述的P507混合体系包含:2-乙基己基磷酸单2-乙基己基酯(P507);和异辛醇、二(2-乙基己基)膦酸(P227)、二(2,4,4-三甲基戊基)膦酸(Cyanex272)中的一种或多种。
在上述技术方案中,步骤1中高钇型稀土矿料液采用P507-异辛醇混合体系铒铥分组的工艺参数为:P507浓度为1.0~1.5mol/L,异辛醇浓度为10~30%,皂化度为36%,用于反萃取的盐酸的浓度为4.5~5.0mol/L。
在上述技术方案中,步骤1中高钇型稀土矿料液采用P507-P227混合体系铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,P227浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
在上述技术方案中,步骤1中高钇型稀土矿料液采用P507-Cyanex272混合体系铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,Cyanex272浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
在上述技术方案中,步骤3中所述羧酸类萃取剂HA为仲辛基苯氧基取 代乙酸(CA12)或者仲壬基苯氧基取代乙酸(CA100)。
在上述技术方案中,步骤3中富钇料采用羧酸类萃取剂HA和相改良剂TBP混合体系直接分离氧化钇的工艺参数为:HA浓度为0.50~1.0mol/L,TBP浓度为10~30%,皂化度为80~90%,用于反萃取的盐酸的浓度为2.0~3.0mol/L。
在上述技术方案中,步骤4中La~Er组份采用P507体系分离其它单一稀土的工艺参数为:P507浓度为1.0~1.5mol/L,皂化度为36%,用于反萃取的盐酸的浓度为3.0mol/L。
在本发明的另一个方面中,提供了一种中钇富铕型稀土矿分组分离氧化钇的方法,所述方法包括以下步骤:
步骤1:将中钇富铕型稀土矿料液采用P507混合体系以镝钬分组方式分离,以得到作为萃余水相的轻中稀土富集物(La~Dy组份)以及作为有机相的富钇料1(Ho~Lu Y组份,其中Y 2O 3的重量百分数为83%);
步骤2:将轻中稀土富集物采用P507体系分离单一稀土;
步骤3:将富钇料1采用P507混合体系以铒铥分组方式分离,以得到作为萃余水相的富钇料2(Ho Er Y组份,其中Y 2O 3的重量百分数为88%)以及作为有机相的铥镱镥富集物,反萃液再采用P507混合体系分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱;
步骤4:将富钇料2采用羧酸类萃取剂HA和相改良剂TBP混合体系直接萃取分离氧化钇,以得到作为萃余水相的Y组份以及作为有机相的Ho Er组份,并且萃余水相经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的氧化钇产品。
如上所述,术语“中钇富铕型稀土矿”是指稀土矿中轻、重稀土各占50%左右,以氧化铕、氧化钇为代表,质量分数分别为0.5~1.0%和20~30%。
在本发明中,“N”表示氧化钇的相对纯度,即“3N~5N的氧化钇”表示相对纯度为99.9%~99.999%的氧化钇。
在上述技术方案中,步骤1和3中中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组采用的P507混合体系均为P507-异辛醇混合体系、P507-P227(二(2-乙基己基)膦酸)混合体系或P507-Cyanex272混合体系。
在上述技术方案中,步骤1和3中所述的P507混合体系包含:2-乙基己基磷酸单2-乙基己基酯(P507);和异辛醇、二(2-乙基己基)膦酸(P227)、二(2,4,4-三甲基戊基)膦酸(Cyanex272)中的一种或多种。
在上述技术方案中,步骤1和3中采用P507-异辛醇混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为1.0~1.5mol/L,异辛醇浓度为10~30%,皂化度为36%,用于反萃取的盐酸的浓度为4.5~5.0mol/L。
在上述技术方案中,步骤1和3中采用P507-Cyanex272混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为0.5~0.75mol/L,Cyanex272浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
在上述技术方案中,步骤1和3中采用P507-P227混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为0.5~0.75mol/L,P227浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
在上述技术方案中,步骤2中轻中稀土富集物采用P507体系分离单一稀土工艺参数为:P507浓度为1.0~1.5mol/L,皂化度为36%,用于反萃取的盐酸的浓度为3.5mol/L。
在上述技术方案中,步骤4中富钇料2采用羧酸类萃取剂HA-TPB混合体系直接萃取分离氧化钇,其中羧酸类萃取剂HA为仲辛基苯氧基取代乙酸(CA12)或仲壬基苯氧基取代乙酸(CA100)。
在上述技术方案中,步骤4中富钇料2采用羧酸类萃取剂HA-TPB混合体系直接萃取分离氧化钇工艺参数为:羧酸类萃取剂HA浓度为0.50~1.0mol/L,TBP浓度为10~30%,皂化度为80~90%,用于反萃取的盐酸的浓度为2.0~3.0mol/L。
在上述技术方案中,本发明的方法适用于南方离子型稀土矿,包括中钇富铕型稀土矿、高钇矿经提钇后的低钇混合稀土矿及轻稀土型稀土矿的氧化钇分组分离。
本发明的有益效果是:
根据本发明中提供的所述高钇型稀土矿分组分离氧化钇的方法,其中采用P507-异辛醇等混合体系预先分离Tm、Yb、Lu,再采用HA-TBP混合体系从La~Er Y富集物中萃取分离氧化钇,避免了HA体系中Tm、Yb、Lu与Y的分离系数低的问题;采用HA-TBP混合体系从La~Er Y富集物中萃取分离氧化钇,避免了HAB体系从高钇型稀土矿料液中分离氧化钇存在两种萃取剂 浓度变化现场难以快速分析等问题;采用P507-异辛醇等混合体系预先进行铒铥分组,进料稀土浓度高,处理量大,可优先分离出贵重的镥等重稀土产品;并且与环烷酸工艺相比,该方法具有工艺流程短、质量稳定、收率高、适应性强、组成稳定、在水中的溶解度小、萃取过程不易乳化等优点,其综合技术经济指标性能优于环烷酸工艺,具有实际应用价值,可以替代现有环烷酸分离钇工艺。
根据本发明中提供的所述中钇富铕型稀土矿分组分离氧化钇的方法,采用P507-异辛醇等混合体系预先分离Tm、Yb、Lu,再采用HA-TBP混合体系从Ho Er Y富集物中萃取分离氧化钇,避免了HA体系中Tm、Yb、Lu与Y的分离系数低的问题;采用HA-TBP混合体系从Ho Er Y富集物中萃取分离氧化钇,避免了HAB体系分离从富钇富集物中分离氧化钇存在两种萃取剂浓度变化现场难以快速分析及HB组份成本高等问题;采用P507-异辛醇等混合体系镝钬分组,可优先得到宝贵的氧化铥、氧化镥稀土产品,解决现有P507体系三分组过程中铥镱镥反萃不完全,导致重稀土资源流失浪费的问题;并且与环烷酸工艺相比,该方法具有工艺流程短、质量稳定、收率高、适应性强、组成稳定、在水中的溶解度小、萃取过程不易乳化等优点,其综合技术经济指标性能优于环烷酸工艺,具有实际应用价值,可以替代现有环烷酸分离钇工艺。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为本发明提供的一种高钇型稀土矿分组分离氧化钇工艺流程图。
图2为本发明提供的一种中钇富铕型稀土矿分组分离氧化钇工艺流程图。
具体实施方式
根据本发明的一个方面,提供了一种高钇型稀土矿分组分离氧化钇的方法。
具体地,本发明的发明思想为:目前从高钇型稀土矿分离氧化钇工艺均采用环烷酸体系直接分离氧化钇,为了解决环烷酸体系分离钇工艺流程中存在的技术问题,课题组发明了HAB双溶剂萃取体系(专利号:ZL 99118261.8), HAB工艺优于相同条件下的环烷酸萃取工艺,但是HAB体系长期使用过程中存在两种萃取剂浓度变化现场难以快速分析等问题,限制了其工业化应用。为解决环烷酸和HAB体系分离氧化钇存在的问题,本发明提出了一种高钇型稀土矿分组分离氧化钇的方法,首先采用P507-异辛醇等混合体系铒铥分组得到高钇富集物和铥镱镥富集物,再分离制备氧化镥等重稀土,然后高钇富集物采用羧酸类萃取剂HA-TBP混合体系分离制备氧化钇,最后La~Er富集物采用P507体系分组分离其他单一稀土元素。
本发明提供的高钇型稀土矿分组分离氧化钇的方法不是采用HA体系直接分离氧化钇,而是预先采用P507-异辛醇混合体系分离出铥镱镥重稀土,再采用HA混合体系分离氧化钇。其主要原因是:HA体系中La/Y的分离系数为3.0~4.9,明显优于环烷酸体系,但Tm、Yb、Lu与Y的分离系数为1.4~1.7,低于环烷酸体系,因此HA体系直接从含钇重稀土混合物中分离钇存在困难,不适合工业生产。采用P507-异辛醇等混合体系预先分离Tm、Yb、Lu,就可以避免了HA体系中Tm、Yb、Lu与Y的分离系数低的问题。
根据本发明的高钇型稀土矿分组分离氧化钇的方法的主要优点如下:
(1)本发明提供的一种高钇型稀土矿分组分离氧化钇的方法,采用P507-异辛醇等混合体系预先分离Tm、Yb、Lu,再采用HA体系从La~Er Y富集物中萃取分离氧化钇,避免了HA体系中Tm、Yb、Lu与Y的分离系数低的问题。
(2)本发明提供的一种高钇型稀土矿分组分离氧化钇的方法,采用HA体系从La~Er Y富集物中萃取分离氧化钇,避免了HAB体系从高钇型稀土矿料液中分离氧化钇存在两种萃取剂浓度变化现场难以快速分析等问题。
(3)本发明提供的一种高钇型稀土矿分组分离氧化钇的方法,采用P507-异辛醇等混合体系预先铒铥分组,进料稀土浓度高,处理量大,可优先分离出贵重的镥等重稀土产品。
(4)本发明提供的一种高钇型稀土矿分组分离氧化钇的方法,与环烷酸工艺相比,该方法具有工艺流程短、质量稳定、收率高、适应性强、组成稳定、在水中的溶解度小、萃取过程不易乳化等优点,其综合技术经济指标性能优于环烷酸工艺,具有实际应用价值,可以替代现有环烷酸分离钇工艺。
下面结合附图对本发明做以详细说明。
结合图1说明本发明提供的一种高钇型稀土矿分组分离氧化钇的方法,包括以下步骤:
步骤1:将高钇型稀土矿料液采用P507混合体系(如:P507-异辛醇)以铒铥分组方式分离,以得到作为萃余水相的富钇料(La~Er Y组份)以及作为有机相的铥镱镥富集物(Tm Yb Lu组份);
步骤2:将铥镱镥富集物采用P507混合体系(如:P507-异辛醇)分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱;
步骤3:将富钇料采用羧酸类萃取剂HA和相改良剂TBP混合体系直接分离氧化钇,以得到作为萃余水相的Y组份以及作为有机相的La~Er组份,并且萃余水相经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的氧化钇;
步骤4:将La~Er组份采用P507体系分离其它单一稀土,反萃液经草酸、碳酸氢氨或氨水沉淀、灼烧,得到3N~5N的单一稀土氧化物。
优选步骤1和2中所述的P507混合体系均为P507-异辛醇混合体系、P507-P227(二(2-乙基己基)膦酸)混合体系或P507-Cyanex272混合体系。
优选步骤1中高钇型稀土矿料液采用P507-异辛醇混合体系铒铥分组的工艺参数为:P507浓度为1.0~1.5mol/L,异辛醇浓度为10~30%,皂化度为36%,用于反萃取的盐酸的浓度为4.5~5.0mol/L。
优选步骤1中高钇型稀土矿料液采用P507-P227混合体系铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,P227浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
优选步骤1中高钇型稀土矿料液采用P507-Cyanex272混合体系铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,Cyanex272浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
优选步骤3中所述羧酸类萃取剂HA为仲辛基苯氧基取代乙酸(CA12)或者仲壬基苯氧基取代乙酸(CA100)。
优选步骤3中富钇料采用羧酸类萃取剂HA和相改良剂TBP混合体系直接分离氧化钇的工艺参数为:HA浓度为0.50~1.0mol/L,TBP浓度为10~30%,皂化度为80~90%,用于反萃取的盐酸的浓度为2.0~3.0mol/L。
优选步骤4中La~Er组份采用P507体系分离其它单一稀土的工艺参数为:P507浓度为1.0~1.5mol/L,皂化度为36%,用于反萃取的盐酸的浓度为3.0mol/L。
根据本发明的另一个方面,提供了一种中钇富铕型稀土矿分组分离氧化钇的方法。
具体地,本发明的发明思想为:目前中钇富铕型稀土矿分离工艺主要流程为:首先利用P507(2-乙基己基膦酸单(2-乙基己基)酯)体系三分组即:La Ce Pr Nd、Sm Eu Gd Tb Dy、Ho Er Tm Yb Lu Y(富钇料),然后富钇料利用环烷酸直接分离氧化钇、P507体系轻、中稀土单一分离、P507-异辛醇混合体系铥镱镥重稀土分离。为了解决环烷酸体系分离钇工艺流程中存在的技术问题,申请人课题组发明了HAB双溶剂萃取体系(专利号:ZL 99118261.8),HAB工艺优于相同条件下的环烷酸萃取工艺,但是HAB体系长期使用过程中存在两种萃取剂浓度变化现场难以快速分析等问题,限制了其工业化应用。为解决环烷酸和HAB体系分离氧化钇存在的问题,本发明提出一种中钇富铕型稀土矿分组分离氧化钇的方法,首先采用P507-异辛醇等混合体系镝钬分组得到富钇料1(Ho~Lu Y)和轻中稀土富集物(La~Dy),轻中稀土富集物采用P507体系分离单一稀土;然后富钇料1采用P507-异辛醇等混合体系铒铥分组,得到富钇料2(Ho Er Y)和铥镱镥富集物,铥镱镥富集物再分离单一重稀土;最后富钇料2采用HA-TBP混合体系分离制备氧化钇。
本发明提出的一种中钇富铕型稀土矿分组分离氧化钇的方法不是直接采用P507体系三分组,而采用P507-异辛醇等混合体系分组。其主要原因是:P507体系在南方离子型矿重稀土分离工艺中存在重稀土分离效率低、反萃酸度高且反萃不完全等问题。采用P507-异辛醇等混合体系镝钬分组,可优先得到宝贵的氧化铥、氧化镥稀土产品,解决现有P507体系三分组过程中铥镱镥反萃不完全,导致重稀土资源流失浪费的问题。
本发明提出的一种中钇富铕型稀土矿分组分离氧化钇的方法的富钇料(Ho~Lu Y)不是采用HA体系直接分离氧化钇,而是采用P507-异辛醇等混合体系以镝钬分组方式分离,再采用HA混合体系分离氧化钇。其主要原因是:HA体系中La/Y的分离系数为3.0~4.9,明显优于环烷酸体系,但Tm、 Yb、Lu与Y的分离系数为1.4~1.7,低于环烷酸体系,因此HA体系直接从含钇重稀土混合物中分离钇存在困难,不适合工业生产。采用P507-异辛醇等混合体系预先分离Tm、Yb、Lu,就可以避免了HA体系中Tm、Yb、Lu与Y的分离系数低的问题。
根据本发明的中钇富铕型稀土矿分组分离氧化钇的方法的主要优点如下:
(1)本发明提供的一种中钇富铕型稀土矿分组分离氧化钇的方法,采用P507-异辛醇等混合体系镝钬分组,可优先得到宝贵的氧化铥、氧化镥稀土产品,解决现有P507体系三分组过程中铥镱镥反萃不完全,导致重稀土资源流失浪费的问题。
(2)本发明提供的一种中钇富铕型稀土矿分组分离氧化钇的方法,采用P507-异辛醇等混合体系预先分离Tm、Yb、Lu,再采用HA-TBP混合体系从Ho Er Y富集物中萃取分离氧化钇,避免了HA体系中Tm、Yb、Lu与Y的分离系数低的问题。
(3)本发明提供的一种中钇富铕型稀土矿分组分离氧化钇的方法,采用HA-TBP混合体系从Ho Er Y富集物中萃取分离氧化钇,避免了HAB体系分离从富钇富集物中分离氧化钇存在两种萃取剂浓度变化现场难以快速分析及HB组份成本高等问题。
(4)本发明提供的一种中钇富铕型稀土矿分组分离氧化钇的方法,与环烷酸工艺相比,该方法具有工艺流程短、质量稳定、收率高、适应性强、组成稳定、在水中的溶解度小、萃取过程不易乳化等优点,其综合技术经济指标性能优于环烷酸工艺,具有实际应用价值,可以替代现有环烷酸分离钇工艺。
结合图2具体说明本发明提供的一种中钇富铕型稀土矿分组分离氧化钇的方法,包括以下步骤:
步骤1:将中钇富铕型稀土矿料液采用P507混合体系(如:P507-异辛醇)以镝钬分组方式分离,以得到作为萃余水相的轻中稀土富集物(La~Dy组份)以及作为有机相的富钇料1(Ho~Lu Y组份,Y 2O 3的重量百分数为83%);
步骤2:将轻中稀土富集物采用P507体系分离单一稀土;
步骤3:将富钇料1采用P507混合体系(如:P507-异辛醇)以铒铥分组方式分离,以得到作为萃余水相的富钇料2(Ho Er Y组份,Y 2O 3的重量百分数为88%)以及作为有机相的铥镱镥富集物,反萃液再采用P507混合体系(如:P507-异辛醇)分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱;
步骤4:将富钇料2采用羧酸类萃取剂HA-TBP混合体系直接萃取分离氧化钇,以得到作为萃余水相的Y组份以及作为有机相的Ho~Er组份,萃余水相经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的氧化钇产品。
优选步骤1和3中中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组采用的P507混合体系均为P507-异辛醇混合体系、P507-P227(二(2-乙基己基)膦酸)混合体系或P507-Cyanex272混合体系。
优选步骤1和3中采用P507-异辛醇混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为1.0~1.5mol/L,异辛醇浓度为10~30%,皂化度为36%,用于反萃取的盐酸的浓度为4.5~5.0mol/L。
优选步骤1和3中采用P507-Cyanex272混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,Cyanex272浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
优选步骤1和3中采用P507-P227混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为0.5~0.75mol/L,P227浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
优选步骤2中轻中稀土富集物采用P507体系分离单一稀土工艺参数为:P507浓度为1.0~1.5mol/L,皂化度为36%,用于反萃取的盐酸的浓度为3.5mol/L。
优选步骤4中富钇料2采用羧酸类萃取剂HA-TPB混合体系直接萃取分离氧化钇,其中羧酸类萃取剂HA为仲辛基苯氧基取代乙酸(CA12)或 仲壬基苯氧基取代乙酸(CA100)。
优选步骤4中富钇料2采用羧酸类萃取剂HA-TPB混合体系直接萃取分离氧化钇工艺参数为:羧酸类萃取剂HA浓度为0.50~1.0mol/L,TBP浓度为10~30%,皂化度为80~90%,用于反萃取的盐酸的浓度为2.0~3.0mol/L。
本发明的方法适用于南方离子型稀土矿,包括中钇富铕型稀土矿、高钇矿经提钇后的低钇混合稀土矿及轻稀土型稀土矿的氧化钇分组分离。
下面结合实施例对本发明进行更详细的描述。需要指出,这些描述和实施例都是为了使本发明便于理解,而非对本发明的限制。本发明的保护范围以所附的权利要求书为准。
实施例
在本发明中,除非另外指出,所采用的试剂均为商购产品,直接使用而没有进一步纯化处理。除非另外规定,此外,所提及的“%”为“重量%”。
以下实施例1-4涉及根据本发明的高钇型稀土矿分组分离氧化钇的方法。
实施例1
步骤1:将高钇型稀土矿料液采用1.0mol/L P507-20%异辛醇的混合体系以铒铥分组方式分离,皂化度为36%,有机相采用5mol/L盐酸反萃,萃余水相为La~Er Y组份(富钇料),有机相为Tm Yb Lu组份(铥镱镥富集物)。将铥镱镥富集物再采用1.0mol/L P507-20%异辛醇混合体系分离单一重稀土,得到5N的氧化镥、3N的氧化铥、5N氧化镱。
步骤2:将富钇料液采用0.50mol/L CA12-10%TBP混合体系直接萃取分离氧化钇,皂化度为80%,有机相采用3mol/L盐酸反萃,萃余水相为Y组份,有机相为La~Er组份,萃余水相经碳酸氢氨沉淀、灼烧后得到3N的氧化钇,收率>96%。
步骤3:将La~Er组份采用1.5mol/L P507体系单一稀土分离,皂化度为36%,有机相采用3mol/L盐酸反萃,反萃液经草酸、碳酸氢氨或氨水沉 淀、灼烧后得到3N~5N的单一稀土氧化物。
实施例2
步骤1:将高钇型稀土矿料液采用0.5mol/L P507-0.5mol/L Cyanex272混合体系以铒铥分组方式分离,皂化度为36%,有机相采用3.5mol/L盐酸反萃,萃余水相为La~Er Y组份(富钇料),有机相为Tm Yb Lu组份(铥镱镥富集物)。将铥镱镥富集物再采用0.5mol/L P507-0.5mol/L Cyanex272混合体系分离单一重稀土,得到4N的氧化镥、4N的氧化铥、4N氧化镱。
步骤2:将富钇料液采用0.8mol/L CA12-20%TBP混合体系直接萃取分离氧化钇,皂化度为90%,有机相采用3.0mol/L盐酸反萃,萃余水相为Y组份,有机相为La~Er组份,萃余水相经草酸沉淀、灼烧后得到5N的氧化钇,收率>96%。
步骤3:将La~Er组份采用1.0mol/L P507体系单一稀土分离,皂化度为36%,有机相采用3mol/L盐酸反萃,反萃液经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的单一稀土氧化物。
实施例3
步骤1:将高钇型稀土矿料液采用0.5mol/L P507-0.5mol/L P227混合体系以铒铥分组方式分离,皂化度为36%,有机相采用3mol/L盐酸反萃,萃余水相为La~Er Y组份(富钇料),有机相为Tm Yb Lu组份(铥镱镥富集物)。将铥镱镥富集物再采用0.5mol/L P507-0.5mol/L P227混合体系分离单一重稀土,得到5N的氧化镥、4N的氧化铥、4N氧化镱。
步骤2:将富钇料液采用0.8mol/L CA100-20%TBP混合体系直接萃取分离氧化钇,皂化度为90%,有机相采用3.0mol/L盐酸反萃,萃余水相为Y组份,有机相为La~Er组份,萃余水相经草酸沉淀、灼烧后得到5N的氧化钇,收率>96%。
步骤3:将La~Er组份采用1.5mol/L P507体系分离单一稀土,皂化度为36%,有机相采用3mol/L盐酸反萃,反萃液经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的单一稀土氧化物产品。
实施例4
步骤1:将高钇型稀土矿料液采用1.2mol/L P507-15%异辛醇混合体系以铒铥分组方式分离,皂化度为36%,有机相采用4.5mol/L盐酸反萃,萃余水相为La~Er Y组份(富钇料),有机相为Tm Yb Lu组份(铥镱镥富集物)。将铥镱镥富集物再采用1.2mol/L P507-15%异辛醇混合体系分离单一重稀土,得到5N的氧化镥、4N的氧化铥、4N氧化镱。
步骤2:将富钇料液采用1mol/L CA12-30%TBP混合体系直接萃取分离氧化钇,皂化度为90%,有机相采用3.0mol/L盐酸反萃,萃余水相为Y组份,有机相为La~Er组份,萃余水相经草酸沉淀、灼烧后得到5N的氧化钇,收率>96%。
步骤3:将La~Er组份采用1.2mol/L P507体系单一稀土分离,皂化度为36%,有机相采用3mol/L盐酸反萃,反萃液经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的单一稀土氧化物。
以下实施例5-8涉及根据本发明的高钇型稀土矿分组分离氧化钇的方法。
实施例5
步骤1:将中钇富铕型稀土矿料液采用1.0mol/L P507-20%异辛醇混合体系以镝钬分组方式分离,皂化度为36%,有机相采用5mol/L盐酸反萃,萃余水相为轻中稀土富集物(La~Dy组份),有机相为富钇料1(Ho~Lu Y组份),Y 2O 3重量百分数为83%。将轻中稀土富集物采用1.5mol/L P507体系分离单一稀土,皂化度为36%,有机相采用3.5mol/L盐酸反萃。
步骤2:将富钇料1采用1.2mol/L P507-20%异辛醇混合体系以铒铥分组方式分离,萃余水相为富钇料2(Ho Er Y组份),Y 2O 3的重量百分数提高到88%。有机相为铥镱镥富集物,反萃液再采用1.2mol/L P507-20%异辛醇混合体系分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱。
步骤3:将富钇料2采用0.50mol/L CA12-10%TBP体系直接萃取分离氧化钇,皂化度为80%,有机相采用3mol/L盐酸反萃,萃余水相为Y组份, 有机相为Ho Er组份,萃余水相经碳酸氢氨沉淀、灼烧后得到3N的氧化钇,收率>96%。
实施例6
步骤1:将中钇富铕型稀土矿料液采用0.5mol/L P507-0.5mol/L Cyanex272混合体系镝钬分组,皂化度为36%,有机相采用3.5mol/L盐酸反萃,萃余水相为轻中稀土富集物(La~Dy组份),有机相为富钇料1(Ho~Lu Y组份),Y 2O 3的重量百分数为83%。将轻中稀土富集物采用1.0mol/L P507体系分离单一稀土,皂化度为36%,有机相采用3.0mol/L盐酸反萃。
步骤2:将富钇料1采用0.5mol/L P507-0.5mol/L Cyanex272混合体系铒铥分组,萃余水相为富钇料2(Ho Er Y组份),Y 2O 3的重量百分数提高到88%。有机相为铥镱镥富集物,反萃液再采用0.5mol/L P507-0.5mol/L Cyanex272混合体系分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱。
步骤3:将富钇料2采用0.8mol/L CA12-20%TBP体系直接萃取分离氧化钇,皂化度为90%,有机相采用3.0mol/L盐酸反萃,萃余水相为Y组份,有机相为Ho Er组份,萃余水相经草酸沉淀、灼烧后得到5N的氧化钇,收率>96%。
实施例7
步骤1:将中钇富铕型稀土矿料液采用0.5mol/L P507-0.5mol/L P227混合体系以镝钬分组方式分离,皂化度为36%,有机相采用3mol/L盐酸反萃,萃余水相为轻中稀土富集物(La~Dy组份),有机相为富钇料1(Ho~Lu Y组份),Y 2O 3的重量百分数为83%。将轻中稀土富集物采用1.2mol/L P507体系分离单一稀土,皂化度为36%,有机相采用3.5mol/L盐酸反萃。
步骤2:将富钇料1采用0.5mol/L P507-0.5mol/L P227混合体系铒铥分组,萃余水相为富钇料2(Ho Er Y组份),Y 2O 3的重量百分数提高到88%,有机相为铥镱镥富集物,反萃液再采用0.5mol/L P507-0.5mol/L P227混合体系分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱。
步骤3:富钇料2采用0.8mol/L CA100-20%TBP体系直接萃取分离氧化钇,皂化度为90%,有机相采用3mol/L盐酸反萃,萃余水相为Y组份,有机相为Ho Er组份,萃余水相经氨水沉淀、灼烧后得到5N的氧化钇,收率>96%。
实施例8
步骤1:将中钇富铕型稀土矿料液采用1.2mol/L P507-15%异辛醇混合体系以镝钬分组方式分离,皂化度为36%,有机相采用4.5mol/L盐酸反萃,萃余水相为轻中稀土富集物(La~Dy组份),有机相为富钇料1(Ho~Lu Y组份),Y 2O 3的重量百分数为83%。将轻中稀土富集物采用1.2mol/L P507体系分离单一稀土,皂化度为36%,有机相采用3.5mol/L盐酸反萃。
步骤2:将富钇料1采用1.2mol/L P507-15%异辛醇混合体系以铒铥分组方式分离,萃余水相为富钇料2(Ho Er Y组份),Y 2O 3的重量百分数提高到88%,有机相为铥镱镥富集物,反萃液再采用1.2mol/L P507-15%异辛醇混合体系分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱。
步骤3:将富钇料2采用1mol/L CA12-30%TBP体系直接萃取分离氧化钇,皂化度为90%,有机相采用3mol/L盐酸反萃,萃余水相为Y组份,有机相为Ho Er组份,萃余水相经草酸沉淀、灼烧后得到5N的氧化钇,收率>96%。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

  1. 一种高钇型稀土矿分组分离氧化钇的方法,所述方法包括以下步骤:
    步骤1:将高钇型稀土矿料液采用P507混合体系以铒铥分组方式分离,以得到作为萃余水相的富钇料以及作为有机相的铥镱镥富集物;
    步骤2:将铥镱镥富集物采用P507混合体系分离单一重稀土,以得到3N~5N的氧化镥、氧化铥、氧化镱;
    步骤3:将富钇料采用羧酸类萃取剂HA和相改良剂TBP混合体系直接分离氧化钇,以得到作为萃余水相的Y组份以及作为有机相的La~Er组份,并且萃余水相经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的氧化钇;
    步骤4:将La~Er组份采用P507体系分离其它单一稀土,反萃液经草酸、碳酸氢氨或氨水沉淀、灼烧,得到3N~5N的单一稀土氧化物。
  2. 根据权利要求1所述的方法,其中,步骤1和2中所述的P507混合体系均为P507-异辛醇混合体系、P507-P227混合体系或P507-Cyanex272混合体系。
  3. 根据权利要求2所述的方法,其中,步骤1中高钇型稀土矿料液采用P507-异辛醇混合体系铒铥分组的工艺参数为:P507浓度为1.0~1.5mol/L,异辛醇浓度为10~30%,皂化度为36%,用于反萃取的盐酸的浓度为4.5~5.0mol/L。
  4. 根据权利要求2所述的方法,其中,步骤1中高钇型稀土矿料液采用P507-P227混合体系铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,P227浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
  5. 根据权利要求2所述的方法,其中,步骤1中高钇型稀土矿料液采用P507-Cyanex272混合体系铒铥分组的工艺参数为:P507浓度为0.5~0.75mol/L,Cyanex272浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
  6. 根据权利要求1所述的方法,其中,步骤3中所述羧酸类萃取剂HA为仲辛基苯氧基取代乙酸或者仲壬基苯氧基取代乙酸。
  7. 根据权利要求1所述的方法,其中,步骤3中富钇料采用羧酸类萃取剂HA和相改良剂TBP混合体系直接分离氧化钇的工艺参数为:HA浓度为0.50~1.0mol/L,TBP浓度为10~30%,皂化度为80~90%,用于反萃取的盐酸的浓度为2.0~3.0mol/L。
  8. 根据权利要求1所述的方法,其中,步骤4中La~Er组份采用P507体系分离其它单一稀土的工艺参数为:P507浓度为1.0~1.5mol/L,皂化度为36%,用于反萃取的盐酸的浓度为3.0mol/L。
  9. 一种中钇富铕型稀土矿分组分离氧化钇的方法,所述方法包括以下步骤:
    步骤1:将中钇富铕型稀土矿料液采用P507混合体系以镝钬分组方式分离,以得到作为萃余水相的轻中稀土富集物以及作为有机相的富钇料1;
    步骤2:将轻中稀土富集物采用P507体系分离单一稀土;
    步骤3:将富钇料1采用P507混合体系以铒铥分组方式分离,以得到作为萃余水相的富钇料2以及作为有机相的铥镱镥富集物,反萃液再采用P507混合体系分离单一重稀土,得到3N~5N的氧化镥、氧化铥、氧化镱;
    步骤4:将富钇料2采用羧酸类萃取剂HA和相改良剂TBP混合体系直接萃取分离氧化钇,以得到作为萃余水相的Y组份以及作为有机相的Ho~Er组份,并且萃余水相经草酸、碳酸氢氨或氨水沉淀、灼烧后得到3N~5N的氧化钇产品。
  10. 根据权利要求9所述的方法,其中,步骤1和3中中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组采用的P507混合体系均为P507-异辛醇混合体系、P507-P227混合体系或P507-Cyanex272混合体系。
  11. 根据权利要求10所述的方法,其中,步骤1和3中采用P507-异辛醇混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为1.0~1.5mol/L,异辛醇浓度为10~30%,皂化度为36%,用于反萃取的盐酸的浓度为4.5~5.0mol/L。
  12. 根据权利要求10所述的方法,其中,步骤1和3中采用P507-Cyanex272混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为0.5~0.75mol/L,Cyanex272浓度为0.5~0.75mol/L,皂化度为 36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
  13. 根据权利要求10所述的方法,其中,步骤1和3中采用P507-P227混合体系对中钇富铕型稀土矿料液镝钬分组和富钇料1铒铥分组的工艺参数均为:P507浓度为0.5~0.75mol/L,P227浓度为0.5~0.75mol/L,皂化度为36%,用于反萃取的盐酸的浓度为2.5~3.5mol/L。
  14. 根据权利要求9所述的方法,其中,步骤2中轻中稀土富集物采用P507体系分离单一稀土的工艺参数为:P507浓度为1.0~1.5mol/L,皂化度为36%,用于反萃取的盐酸的浓度为3.5mol/L。
  15. 根据权利要求9所述的方法,其中,步骤4中富钇料2采用羧酸类萃取剂HA-TPB混合体系直接萃取分离氧化钇,其中羧酸类萃取剂HA为仲辛基苯氧基取代乙酸或仲壬基苯氧基取代乙酸。
  16. 根据权利要求9所述的方法,其中,步骤4中富钇料2采用羧酸类萃取剂HA-TPB混合体系直接萃取分离氧化钇的工艺参数为:羧酸类萃取剂HA浓度为0.50~1.0mol/L,TBP浓度为10~30%,皂化度为80~90%,用于反萃取的盐酸的浓度为2.0~3.0mol/L。
  17. 根据权利要求9所述的方法,其中,其还适用于高钇矿经提钇后的低钇混合稀土矿或轻稀土型稀土矿的氧化钇分组分离。
PCT/CN2019/110337 2019-04-17 2019-10-10 高钇型稀土矿分组分离氧化钇的方法以及中钇富铕型稀土矿分组分离氧化钇的方法 WO2020211304A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/601,887 US20220205065A1 (en) 2019-04-17 2019-10-10 Method for separating yttrium oxide from high-yttrium rare earth ore by grouping manner and method for separating yttrium oxide from medium-yttrium and europium-rich earth ore by grouping manner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910307028.2 2019-04-17
CN201910307028.2A CN109881005B (zh) 2019-04-17 2019-04-17 一种中钇富铕型稀土矿分组分离氧化钇的方法
CN201910307023.X 2019-04-17
CN201910307023.XA CN110002487B (zh) 2019-04-17 2019-04-17 一种高钇型稀土矿分组分离氧化钇的方法

Publications (1)

Publication Number Publication Date
WO2020211304A1 true WO2020211304A1 (zh) 2020-10-22

Family

ID=72836952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110337 WO2020211304A1 (zh) 2019-04-17 2019-10-10 高钇型稀土矿分组分离氧化钇的方法以及中钇富铕型稀土矿分组分离氧化钇的方法

Country Status (2)

Country Link
US (1) US20220205065A1 (zh)
WO (1) WO2020211304A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850775A (zh) * 2021-02-24 2021-05-28 赣州有色冶金研究所有限公司 一种氧化稀土生产过程中碳-氨循环利用的方法
CN114892002A (zh) * 2022-05-29 2022-08-12 江西农业大学 重稀土TmYbLu富集物萃取分离工艺
CN115679130A (zh) * 2021-07-21 2023-02-03 中国科学院长春应用化学研究所 一种离子型稀土矿铒铥分组方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715424A (en) * 1967-11-08 1973-02-06 E Greinacher Process of separating yttrium and lanthanum through lutetium from mixtures of such elements
CN1288069A (zh) * 1999-09-11 2001-03-21 中国科学院长春应用化学研究所 液-液萃取分离高纯钇工艺
CN1563442A (zh) * 2004-03-19 2005-01-12 中国科学院长春应用化学研究所 溶剂萃取分离高纯氧化钇工艺
CN101012501A (zh) * 2007-02-05 2007-08-08 金坛市西南化工研究所 一种从富钇稀土矿中全分离高纯稀土氧化物的方法
CN103466679A (zh) * 2013-09-10 2013-12-25 中铝稀土(常熟)有限公司 高纯度氧化钇的制备方法
CN106498193A (zh) * 2016-12-22 2017-03-15 南昌航空大学 一种分组分离三种稀土原料的萃取方法
WO2018048464A1 (en) * 2016-09-06 2018-03-15 Iowa State University Research Foundation, Inc. Dissolution and separation of rare earth metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715424A (en) * 1967-11-08 1973-02-06 E Greinacher Process of separating yttrium and lanthanum through lutetium from mixtures of such elements
CN1288069A (zh) * 1999-09-11 2001-03-21 中国科学院长春应用化学研究所 液-液萃取分离高纯钇工艺
CN1563442A (zh) * 2004-03-19 2005-01-12 中国科学院长春应用化学研究所 溶剂萃取分离高纯氧化钇工艺
CN101012501A (zh) * 2007-02-05 2007-08-08 金坛市西南化工研究所 一种从富钇稀土矿中全分离高纯稀土氧化物的方法
CN103466679A (zh) * 2013-09-10 2013-12-25 中铝稀土(常熟)有限公司 高纯度氧化钇的制备方法
WO2018048464A1 (en) * 2016-09-06 2018-03-15 Iowa State University Research Foundation, Inc. Dissolution and separation of rare earth metals
CN106498193A (zh) * 2016-12-22 2017-03-15 南昌航空大学 一种分组分离三种稀土原料的萃取方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850775A (zh) * 2021-02-24 2021-05-28 赣州有色冶金研究所有限公司 一种氧化稀土生产过程中碳-氨循环利用的方法
CN115679130A (zh) * 2021-07-21 2023-02-03 中国科学院长春应用化学研究所 一种离子型稀土矿铒铥分组方法
CN114892002A (zh) * 2022-05-29 2022-08-12 江西农业大学 重稀土TmYbLu富集物萃取分离工艺

Also Published As

Publication number Publication date
US20220205065A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
WO2020211304A1 (zh) 高钇型稀土矿分组分离氧化钇的方法以及中钇富铕型稀土矿分组分离氧化钇的方法
CN102618736B (zh) 稀土元素的萃取分离方法
CN103468950B (zh) 一种稀土水溶液萃取除杂质离子的方法
CN104294063B (zh) 低浓度稀土溶液萃取回收稀土的方法
CN102312098B (zh) 一种从废弃荧光粉中分离提纯荧光级氧化钇和氧化铕的方法
Yadav et al. NdFeB magnet recycling: Dysprosium recovery by non-dispersive solvent extraction employing hollow fibre membrane contactor
CN101012501A (zh) 一种从富钇稀土矿中全分离高纯稀土氧化物的方法
WO2013166781A1 (zh) 一种从废旧稀土发光材料中回收稀土的方法
CN102876894A (zh) 一种盐酸体系中稀土元素的萃取分离方法
JP2011001584A (ja) 希土類元素の抽出・分離方法
CN104195335B (zh) 一种重稀土元素的萃取分离方法
CN103436719B (zh) 从掺铈铝酸镥闪烁晶体废料中回收的氧化镥及回收方法
CN105543476A (zh) 用于分离钇的混合萃取剂及从稀土料液中萃取分离钇的方法
Khaironie et al. Solvent extraction of light rare earth ions using D2EHPA from nitric acid and sulphuric acid solutions
CN103540746B (zh) 从硝酸稀土料液中分离镧的方法以及稀土精矿分离方法
JP5299914B2 (ja) 希土類元素の抽出・分離方法
CN102876893A (zh) 一种硫酸体系中稀土元素的萃取分离方法
CN109881005B (zh) 一种中钇富铕型稀土矿分组分离氧化钇的方法
Singh et al. Development of a solvent extraction process for production of nuclear grade dysprosium oxide from a crude concentrate
CN110002487B (zh) 一种高钇型稀土矿分组分离氧化钇的方法
CN103060560A (zh) 一种分离重稀土元素的萃取剂
CN102443699A (zh) 非皂化转型预纯化和联动萃取结合分离出单一稀土的方法
CN109022837B (zh) 基于反相微乳液法制备棒状草酸稀土粉末的方法
CN106834689A (zh) 从含锆固体废料中分离锆和稀土的方法
CN108996536B (zh) 一种联产纯镨和纯钆的萃取分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925085

Country of ref document: EP

Kind code of ref document: A1