WO2020211197A1 - 一种数字光处理投影机 - Google Patents

一种数字光处理投影机 Download PDF

Info

Publication number
WO2020211197A1
WO2020211197A1 PCT/CN2019/093633 CN2019093633W WO2020211197A1 WO 2020211197 A1 WO2020211197 A1 WO 2020211197A1 CN 2019093633 W CN2019093633 W CN 2019093633W WO 2020211197 A1 WO2020211197 A1 WO 2020211197A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
digital
hole
positioning hole
circuit board
Prior art date
Application number
PCT/CN2019/093633
Other languages
English (en)
French (fr)
Inventor
石龙飞
黄永达
侯乃文
李建军
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to US16/655,912 priority Critical patent/US11265521B2/en
Publication of WO2020211197A1 publication Critical patent/WO2020211197A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems

Definitions

  • the invention relates to the field of projection technology, in particular to a digital light processing projector and a fixing structure of a digital micromirror element in the digital light processing projector.
  • Digital Light Processing Projector is a technology based on Digital Micro-mirror Device (DMD) to display visual digital information.
  • the digital micro-mirror element is composed of many micro-lens, and each micro-lens can rotate at a certain angle.
  • the working principle of the digital light processing projector is to project the primary color light beam emitted by the light source onto the micro lens of the digital micro mirror element.
  • a micro lens is equivalent to a pixel unit.
  • the video signal is processed on the digital micro mirror element.
  • the deflection of the control micro-lens is rotated with the signal, and the light may be reflected into the projection lens or deviate from the projection lens.
  • the incident light is selectively reflected by the digital micro-mirror element and enters the projection lens and is projected by the projection lens.
  • the micro-mirror acts as an optical switch in the digital light processing projector.
  • the digital micro-mirror element is the core component of the digital light processing projector. The stability of its connection with other components directly affects the projection quality of the digital light processing projector.
  • the embodiment of the present invention provides a digital light processing projector, which can realize accurate positioning and installation of digital micromirror elements in the digital light processing projector.
  • the embodiment of the present invention provides a digital light processing projector, including: a light source device, an optomechanical lighting device, and an optomechanical lens device; the optomechanical lighting device includes an optomechanical lighting device housing, and the optomechanical lighting device housing is provided There is a first through hole; a digital micro-mirror element, the first surface of the digital micro-mirror element is provided with a mechanical supporting part, and the mechanical supporting part of the first surface of the digital micro-mirror element abuts against the housing of the opto-mechanical lighting device; The first surface of the micromirror element is provided with a reflective lens portion at a position corresponding to the first through hole; the housing of the opto-mechanical lighting device is provided with a first positioning pillar and a second positioning pillar; the digital micromirror element is provided with a first positioning hole and a second positioning pillar.
  • a first positioning pillar is located in the first positioning hole, and a second positioning pillar is located in the second positioning hole;
  • the second surface of the digital micromirror element is opposite to the first surface of the digital micromirror element
  • the second surface of the digital micro-mirror element is provided with a first electrical connection contact;
  • the circuit board assembly includes a circuit board, the first surface of the circuit board faces the second surface of the digital micro-mirror element, the circuit board
  • the first surface is provided with a second electrical connection contact;
  • the second electrical connection contact is electrically connected to the first electrical connection contact;
  • the pressure plate is provided with an insulating pad between the pressure plate and the circuit board;
  • the first connection component is used for The housing of the mechanical lighting device is fixedly connected, and the pressing plate, the circuit board assembly and the digital micro-mirror element are pressed and fixed on the housing of the mechanical lighting device.
  • the embodiment of the present invention provides a digital light processing projector, the circuit board assembly is provided with a second through hole; the pressure plate is provided with a third through hole; the second surface of the digital micro-mirror element is provided with a heat dissipation area; The second through hole and the third through hole are in thermal contact with the heat dissipation area of the digital micro-mirror element; the second connecting component and the second connecting component are used to fix the heat sink on the housing of the optomechanical lighting device.
  • the embodiment of the present invention provides a digital light processing projector, further comprising: an insert, which is arranged between the circuit board and the digital micromirror element, and is used to realize electrical connection between the second electrical connection contact and the first electrical connection contact
  • the insert is provided with a first surface opposite to the second surface of the digital micromirror element; the first surface of the insert is provided with a third positioning pillar and a fourth positioning pillar; the digital micromirror element is provided with a third positioning hole and The fourth positioning hole; the third positioning pillar is located in the third positioning hole, and the fourth positioning pillar is located in the second positioning hole.
  • the embodiment of the present invention provides a digital light processing projector, the insert piece further includes a second surface arranged opposite to the first surface of the insert piece; the second surface of the insert piece is provided with a fifth positioning pillar and a sixth positioning pillar; the circuit board is arranged There are a fifth positioning hole and a sixth positioning hole; the fifth positioning pillar is located in the fifth positioning hole, and the sixth positioning pillar is located in the sixth positioning hole.
  • the embodiment of the present invention provides a digital light processing projector, the digital micro-mirror element is provided with a positioning beveled portion, the first positioning hole is located at the positioning beveled portion of the digital micro-mirror element; the second positioning hole is located in the positioning cut of the digital micro-mirror element The opposite corner of the corner.
  • the embodiment of the present invention provides a digital light processing projector, the digital micro-mirror element is provided with a positioning corner cut portion, and the third positioning hole and the fourth positioning hole are respectively located at the adjacent corners of the positioning corner cut portion.
  • the embodiment of the present invention provides a digital light processing projector, the digital micro-mirror element is provided with a positioning corner cut portion, and the third positioning hole and the fourth positioning hole are respectively located at the adjacent corners of the positioning corner cut portion.
  • the embodiment of the present invention provides a digital light processing projector, the third positioning pillar and the fifth positioning pillar are arranged oppositely, and the fourth positioning pillar and the sixth positioning pillar are arranged oppositely.
  • the embodiment of the present invention provides a digital light processing projector, the second surface of the circuit board is provided with a ground point; the pressure plate includes at least a part of a conductive part, and the conductive part is electrically connected to the ground point through a conductive pad.
  • the embodiment of the present invention provides a digital light processing projector, including a housing of an optomechanical lighting device.
  • the housing of the optomechanical lighting device is provided with a first positioning pillar and a second positioning pillar; the digital micromirror element is provided with a first positioning hole and a second positioning pillar.
  • the pressing plate, circuit board assembly, and digital micro-mirror components are pressed and fixed on the housing of the opto-mechanical lighting device.
  • the embodiment of the present invention provides an optomechanical lighting device for a digital light processing projector.
  • the housing of the optomechanical lighting device is provided with a first positioning pillar and a second positioning pillar;
  • the digital micromirror element is provided with a first positioning hole and a second positioning hole ;
  • a first positioning column is located in the first positioning hole, and the second positioning column is located in the second positioning hole.
  • FIG. 1A is a schematic perspective view of a digital light processing projector in an embodiment of the invention.
  • FIG. 1B is a schematic top view of a digital light processing projector in an embodiment of the invention.
  • FIG. 2 is a block diagram of the control principle of the digital light processing projector in an embodiment of the present invention.
  • 3A is a schematic perspective view of the internal optical related structure of the digital light processing projector in an embodiment of the present invention.
  • 3B is a schematic bottom view of the internal optical related structure of the digital light processing projector in an embodiment of the present invention.
  • 3C is a schematic exploded view of the internal optical related structure of the digital light processing projector in an embodiment of the present invention.
  • 4A is a schematic diagram of a part of the mechanism of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention
  • 4B is a schematic exploded view of part of the mechanism of the optical-mechanical lighting device of the digital light processing projector in an embodiment of the present invention
  • 5A is a schematic structural diagram of a housing of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention
  • 5B is a schematic rear view of the structure of the housing of the opto-mechanical lighting device of the digital light processing projector in an embodiment of the present invention
  • 5C is a schematic diagram of the internal structure of the housing of the opto-mechanical lighting device of the digital light processing projector in an embodiment of the present invention.
  • 5D is a schematic diagram of the internal light path of the housing of the optical-mechanical lighting device of the digital light processing projector in an embodiment of the present invention
  • 5E is a schematic cross-sectional view of the internal structure of the housing of the optical-mechanical lighting device of the digital light processing projector in an embodiment of the present invention
  • 5F is a schematic diagram of the internal cross-sectional light path of the housing of the optical-mechanical lighting device of the digital light processing projector in an embodiment of the present invention
  • 6A is a schematic diagram of a three-dimensional structure of a digital micro-mirror element of a digital light processing projector in an embodiment of the present invention
  • 6B is a schematic diagram of the second surface structure of the digital micro-mirror element of the digital light processing projector in an embodiment of the present invention.
  • FIG. 7A is a schematic structural diagram of a circuit board assembly of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention
  • FIG. 7B is a schematic diagram of the second surface structure of the circuit board of the optical-mechanical lighting device of the digital light processing projector in an embodiment of the present invention.
  • 7C is a schematic diagram of the first surface structure of the circuit board of the optical-mechanical lighting device of the digital light processing projector in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a pressing plate of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention.
  • FIG. 9A is a schematic structural diagram of a heat sink of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention.
  • 9B is a schematic rear view of the structure of the heat sink of the opto-mechanical lighting device of the digital light processing projector in an embodiment of the present invention.
  • 9C is a schematic front view of the structure of the heat sink of the opto-mechanical lighting device of the digital light processing projector in an embodiment of the present invention.
  • 10A is a schematic structural diagram of an inserter of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention
  • 10B is a schematic structural view of the second surface of the interposer of the opto-mechanical lighting device of the digital light processing projector in an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a first sealing member of an optical-mechanical lighting device of a digital light processing projector in an embodiment of the present invention
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, “plurality” means two or more.
  • an embodiment of the present invention provides a digital light processing projector.
  • the digital light processing projector 10 has a substantially rectangular parallelepiped shape and includes a substantially rectangular parallelepiped housing 90.
  • a projection hole 91 is provided on the upper housing of the lens, and the projection hole 91 is covered with a lens cover 92.
  • the projection hole 91 and the lens cover 92 can be used to emit the imaging beam inside the housing.
  • the projection hole and the projection cover may be provided on the front side of the lens device, which is not limited in the present invention.
  • the housing 90 is provided with a plurality of through holes 93 for inhalation or exhaust, so as to realize air circulation inside the housing, thereby promoting the heat dissipation performance of the internal heating components.
  • the through holes 93 are provided on the left and right side walls of the housing. In some embodiments, the through holes are provided on the lower and rear side walls of the housing. The present invention does not limit this.
  • a power button is also provided on the housing to turn on or turn off the power of the digital light processing projector.
  • a power indicator is also provided on the housing to indicate whether the digital light processing projector is powered on.
  • a projection switch is also provided on the housing to turn on or off the projection function.
  • the rear side wall of the housing is provided with various terminals such as a USB terminal, a D-SUB terminal for inputting image signals, an S terminal, an RCA terminal, etc., an input/output connector portion 71, and a power adapter plug. .
  • the digital light processing projector includes a control unit 48, an input/output interface 72, an image conversion unit 63, a display encoder 64, a display drive unit 66, and the like.
  • the image signals of various specifications input from the input/output connector unit 71 are converted by the image conversion unit 63 via the input/output interface 72 and the system bus (SB) to be unified into image signals of a predetermined format suitable for display.
  • SB system bus
  • the display encoder 64 expands and stores the input image signal in the video RAM 65, generates a video signal based on the storage content of the video RAM 65, and outputs it to the display drive unit 66.
  • the display drive section 66 serves as a display element control mechanism.
  • the display driver 66 drives the digital micromirror element (DMD) at an appropriate frame rate in response to the image signal output from the display encoder 64 twenty two.
  • the digital light processing projector 100 irradiates the light beam emitted from the light source device 10 to the digital micro-mirror element 22 via the light guide optical system, thereby utilizing the selective reflection of the digital micro-mirror element 22 to pass through the projection side optical system described later.
  • a screen not shown is projected to display images.
  • the movable lens group 31 of the projection side optical system is driven for zoom adjustment and focus adjustment by a lens motor 32.
  • the image compression/decompression unit 61 performs recording processing of data compression of the luminance signal and color difference signal of the image signal by processing such as encoding, and sequentially writing the data to the memory card 62 which is a nonvolatile readable and writable recording medium.
  • the image compression/decompression unit 61 can read out the image data recorded on the memory card 62 in the reproduction mode, and decompress the image data.
  • the image compression/decompression unit 61 performs a process of outputting the image data to the display encoder 64 via the image conversion unit 63 and enabling display based on the image data stored in the memory card 62.
  • the control unit 48 performs operation control of each circuit in the digital light processing projector 100.
  • the control unit may be constituted by a CPU, a ROM storing programs such as various settings, and a RAM used as a work memory.
  • the operation signal of the key indicator section 47 composed of the power button and power indicator provided on the surface of the housing is sent to the control section 48, and the key operation signal from the remote control is sent to the remote control signal receiving section through Ir, wifi, etc.
  • the code signal received at 45 and demodulated by the remote control processing unit 46 is output to the control unit 48.
  • the control unit 48 is connected to the sound processing unit 81 via a system bus (SB).
  • the sound processing unit 81 includes a sound source circuit such as a PCM sound source, and processes sound data in the projection mode and the reproduction mode, and drives the speaker 82 to reproduce sound.
  • control unit 48 controls the light source control circuit 41 as a light source control mechanism.
  • the light source control circuit 41 controls the light engine 10 to transmit various primary colors in a sequential manner. Specifically, it includes current or voltage control of active light-emitting elements such as lasers or diode light-emitting devices, and also includes current or voltage control of possible fluorescent wheels and radiators.
  • control unit 48 performs temperature detection on the radiator drive control circuit 51 based on a plurality of temperature sensors provided in the light source device 10 and the like, and controls the operating state of the radiator, for example, the rotation of the heat dissipation fan, based on the result of the temperature detection. Speed etc. Or control the working current or working voltage of the TEC.
  • a light source device 10 As shown in FIGS. 3A, 3B, and 3C, a light source device 10, an optomechanical lighting device 20, and an optomechanical lens device 30 are provided inside the housing 100 of the digital light processing projector.
  • the light source device 10 can be used to provide a light source for the optical system of the entire digital light processing projector, and can periodically provide red, green and blue light beams to the light machine lighting device.
  • light beams of red, green, blue and yellow may be periodically provided to the opto-mechanical lighting device.
  • the light source device includes at least a blue laser.
  • the optomechanical lighting device 20 can be used to receive the primary color light periodically irradiated by the light source device 10 and perform spatial light modulation on the primary color light periodically irradiated by the light source device 10.
  • the opto-mechanical lighting device 20 includes a digital micro-mirror element 22, which controls the spatial light modulation of the primary color light periodically irradiated by the light source device 10 according to the driving signal of the display driving unit 66.
  • the light after spatial light modulation by the optomechanical lighting device 20 can be irradiated into the optomechanical lens device 30.
  • the movable lens group 31 provided in the optomechanical lens device 30 can be used for zoom adjustment and focus adjustment through the lens motor 32 drive.
  • the light after spatial light modulation passes through various optical lenses of the movable lens group 31 and finally can be projected and imaged through the projection hole on the housing 90 of the digital light processing projector and the lens cover 92.
  • the opto-mechanical lighting device includes a housing 21, on which a digital micromirror element 22, a circuit board assembly 23, and a pressure plate 24 are fixedly arranged on the object.
  • the pressing plate 24 is detachably connected to the housing 21, and the circuit board assembly 23 and the digital micro-mirror component 22 are pressed and fixed between the pressing plate 24 and the housing 21 through the pressing plate 24.
  • a heat sink 25 is further included, and the heat sink 25 is detachably connected to the housing 21.
  • the heat sink 25 is in thermal contact with the digital micro-mirror element 22 and can be used to dissipate heat to the digital micro-mirror element 22.
  • the housing 21 of the optical lighting device is provided with a digital micro-mirror element 22.
  • a homogenizing device 26 and an optical lens group 27 are fixedly provided inside the housing. The light taken in from the light source device 10 enters The light homogenization device 26 is used to homogenize the light beam.
  • the optical lens 27 group specifically includes a first reduction lens 27A, a second reduction lens 27B, a mirror 27C, a third reduction lens 27D, and a first prism 27E and a second prism 27F.
  • the light homogenized by the homogenization device 26 will pass through the first contraction lens 27A, the second contraction lens 27B, and irradiate the mirror 27C.
  • the mirror 27C converts the light beam from a first angle to a different angle from the first angle. The second angle.
  • the reflected light beam further passes through the third contraction lens 27D, irradiates into the first prism 27E, reflects on the interface of the first prism 27E and the second prism 27F, and projects the first prism 27E, and finally irradiates the shell
  • the inner surface of the body 21 Specifically, it is irradiated on the digital micromirror element 22.
  • the first surface 221 of the digital micromirror element 22 is provided with a reflective lens portion 2211 facing the inside of the optical machine through the first through hole 2120, which can be completely covered by the light spot, and can receive and reflect the light taken in to perform spatial light modulation.
  • the digital micro-mirror element 22 functions as an optical switch in the digital light processing projector. The incident light is selectively reflected by the digital micro-mirror element and is projected and imaged by the projection lens.
  • the light selected by the digital micromirror element 22 for projection imaging is reflected by the digital micromirror element at a selective imaging angle, irradiates into the first prism 27E, and transmits on the interface of the first prism 27E and the second prism 27F, Eventually enter the opto-mechanical lens device 30.
  • images can finally be projected through the projection hole on the housing 90 of the digital light processing projector and the lens cover 92.
  • the digital micro-mirror element is the core component of the digital light processing projector.
  • the stability of its connection with other components directly affects the projection quality of the digital light processing projector.
  • the fixed connection mode of the digital micro-mirror element and related mechanisms in the embodiment of the present invention will be discussed in detail below.
  • a first groove 211 is provided on the outside of the housing 21 of the opto-mechanical lighting device, and a second groove 212 is provided in the first groove 211, and the second groove is used for receiving ⁇ Digital micromirror element 22.
  • the first groove 211 is substantially rectangular, and four corners of the first groove 211 are respectively provided with a threaded hole for connecting with the screw in the first connecting assembly.
  • the second groove 212 is substantially rectangular, and one of the corners 212A is set as a positioning beveled portion, which is used to cooperate with the positioning and beveled portion 22A of the digital micromirror element 22 to avoid incorrect installation of the digital micromirror element 22 and improve the installation effectiveness.
  • a first through hole 2120 is provided in the second groove 212, and the first through hole 2120 is connected to the inside of the optomechanical lighting device.
  • the reflective lens portion 2211 of the digital micromirror element 22 can face the inside of the optical machine through the first through hole 2120, and receive and reflect the light partially taken by the light source.
  • the second groove 212 located around the first through hole 2120 is provided with a positioning column 2121 and a bearing platform 2122.
  • a first positioning post 2121A and a second positioning post 2121B are provided in the second groove 212.
  • the first positioning pillar 2121A is disposed close to the positioning chamfer 212A of the second groove.
  • the second positioning column 2121B is disposed close to the diagonal corner 2121B of the positioning chamfer 212A.
  • the first positioning pillar 2121A and the second positioning pillar 2121B are used to cooperate with the first positioning hole 221A and the second positioning hole 221B provided on the first surface 221 of the digital micromirror element 22 to position the digital micromirror element 22.
  • the first positioning pillar 2121A is larger in size than the second positioning pillar 2121B.
  • the size of the first positioning post 2121A is smaller than the size of the positioning hole 221A.
  • the size of the second positioning post 2121B is smaller than the size of the positioning hole 221B.
  • Both the first positioning column 2121A and the second positioning column 2121B are cylindrical.
  • the diameter of the cross section of the first positioning pillar 2121A is larger than the diameter of the cross section of the second positioning pillar 2121B.
  • the diameter of the cross section of the first positioning pillar 2121A is 1.90 mm-1.97 mm.
  • the diameter of the cross section of the second positioning pillar 2121B is 1.40 mm-1.47 mm.
  • the diameter of the cross section of the first positioning column 2121A is greater than the diameter of the cross section of the second positioning column 2121B, which also avoids the possibility of incorrect assembly to a certain extent.
  • the second groove 212 is provided with a supporting platform 2122.
  • the positioning chamfered portion 212A of the groove and the connecting edge of the corner 212D are arranged;
  • the second supporting platform 2122B is arranged close to the corner 2121B, and is adjacent to the second positioning pillar 2121B.
  • the third bearing platform 2122C is arranged close to the corner 2121C.
  • the supporting platform 2122 is a boss protruding from the second groove 212, and the protruding height is equal.
  • the first supporting table 2122A, the second supporting table 2122B, and the third supporting table 2122C are arranged in a triangle to support the first surface 221 of the digital micromirror element 22.
  • the three bearing platforms arranged in triangles reduce the bearing area, making it easier to guarantee the flatness requirements, and the three-point positioning ensures the stability of the bearing.
  • a plurality of screw posts 213 are further provided outside the housing 21 of the optomechanical lighting device.
  • the specific screw posts 213 include screw posts 213A, screw posts 213B, screw posts 213C, and screw posts 213D.
  • the screw post is used for fixing the radiator 25.
  • the screw post 213 is arranged on the outer periphery of the first groove 211.
  • the four corners of the first groove 211 of the optical-mechanical lighting device housing 21 are respectively provided with screw holes 2111A, screw holes 2111B, screw holes 2111C, and screw holes 2111D. Used to connect with the screw in the first connecting assembly.
  • a groove wall 213 protruding from the first groove 211 is provided on the periphery of the second groove 212 of the housing 21 of the opto-mechanical lighting device housing 21 to assist in restricting and determining the position of the digital micromirror element 22 during the installation process.
  • the groove wall 213, the inner side wall of the first groove 211 and the screw hole 2111A, the screw hole 2111B, the screw hole 2111C, and the outer side wall of the screw hole 2111D jointly define a space for installing the first seal 202.
  • the digital micromirror element 22 abuts against the housing 21 of the opto-mechanical lighting device. Specifically, the first surface 221 of the digital micromirror element 22 abuts against the second groove 212 of the housing 21 of the opto-mechanical lighting device. Specifically, the first surface 221 of the digital micro-mirror element 22 is provided with a reflective lens portion 2211 and a mechanical supporting portion 2212. The mechanical supporting portion 2212 of the first surface 221 of the digital micro-mirror element 22 abuts against the housing of the opto-mechanical lighting device The position of the second groove 212 of the body 21. Specifically, the mechanical supporting portion 2212 of the first surface 221 of the digital micromirror element 22 abuts against the supporting table 2122 provided in the second groove 212.
  • the first surface 221 of the digital micromirror element 22 is provided with a reflective lens portion 2211 and a mechanical supporting portion 2212.
  • the first surface 221 is provided with a reflective lens portion 2211 at a position corresponding to the first through hole 2120.
  • the reflective lens portion 2211 can face the inside of the optical engine through the first through hole 2120, receive the light taken in, and spatially modulate the light according to the video signal.
  • the abutment between the first surface 221 of the digital micro-mirror element 22 and the housing 21 of the opto-mechanical lighting device can be achieved by the following structure:
  • the digital micro-mirror element 22 is provided with a first positioning hole 221A and a second positioning hole 221B. Specifically, the first surface 221 of the digital micro-mirror element 22 is provided with a mechanical supporting portion 2212, and a portion corresponding to the mechanical supporting portion 2212 A first positioning hole 221A and a second positioning hole 221B are provided.
  • the digital micromirror element 22 is provided with a positioning chamfered portion corresponding to the positioning chamfered portion of the second groove.
  • the first positioning hole 221A is corresponding to the first positioning post 2121A, and is provided at the positioning corner of the digital micromirror element.
  • the second positioning hole 221B is corresponding to the second positioning post 2121B.
  • the size of the first positioning hole 221A is larger than the size of the first positioning pillar 2121A; the size of the second positioning hole 221B is larger than the size of the second positioning pillar 2121B, which facilitates the assembly of the digital micromirror component.
  • the assembly gap between the two should not be too large, preferably between 0.05-0.01 mm.
  • the first positioning hole 221A is a circular hole, and the diameter of the cross section is 1.92 to 2.07 mm.
  • the second positioning hole 221B is an oblong hole, and the distance between the two long sides is 1.42 mm-1.57 mm.
  • the oblong hole has a certain movement space in the length direction, which is biased for installation.
  • the length direction of the second positioning hole intersects with the chamfered edge of the second groove 212A, and the two are not parallel, thereby avoiding the problem of reduced positioning accuracy after installation.
  • the first positioning column 2121A is located in the first positioning hole 221A
  • the second positioning column 2121B is located in the second positioning hole 221B.
  • the mechanical supporting portion 2212 abuts on the first supporting platform 2122A, the second supporting platform 2122B and the third supporting platform 2122C.
  • the first positioning hole 221A and the second positioning hole 221B may be blind holes. After the assembly is completed, the top of the first positioning pillar 2121A and the bottom of the first positioning hole 221A do not contact. The top of the first positioning pillar 2121B and the bottom of the second positioning hole 221B are not in contact. The purpose is to prevent the mechanical supporting portion 2212 of the digital micro-mirror element 22 from abutting on the supporting table 2122, which will not affect the stability of the digital micro-mirror element and the housing due to the contact between the bottom of the positioning hole and the positioning post .
  • the second surface 222 of the digital micro-mirror element 22 includes a mechanical support area 2222 and a heat dissipation area 2221.
  • the second surface 222 is opposite to the first surface 221, and the mechanical support area 2222 is distributed with a plurality of first electrical connection contacts 22221.
  • the circuit board assembly 23 is arranged close to the second surface of the digital micromirror element 22.
  • the circuit board assembly includes a circuit board 231.
  • the first surface 2311 of the circuit board faces the second surface of the digital micromirror device.
  • the first surface 2311 of the circuit board is provided with a plurality of second electrical connection contacts 23111 at positions corresponding to the plurality of first connection contacts 22221.
  • the plurality of second electrical connection contacts 23111 are electrically connected to the plurality of first electrical connection contacts 22221 respectively.
  • the opto-mechanical lighting part 20 includes an insert 201.
  • the circuit board assembly 23, the interposer 201, and the digital micro-mirror element 22 are stacked.
  • the insert 201 is located between the circuit board assembly 23 and the digital micro-mirror element 22, and is used to realize electrical connection between the plurality of second electrical connection contacts 23111 and the plurality of first electrical connection contacts 22221, respectively.
  • the insert 201 includes a first surface 2011 of the insert facing the second surface 222 of the digital micromirror element 22, and a second surface 2012 of the insert facing the first surface 2311 of the circuit board 231 .
  • the first surface 2011 and the second surface 2012 of the insert are respectively provided with a third electrical connection point 20111 and a fourth electrical connection point 20121 which are electrically connected inside.
  • the third electrical connection points 20111 provided on the first surface 2011 of the insert are electrically connected to the first electrical connection contacts 22221 respectively.
  • the fourth electrical connection points 20121 provided on the second surface 2012 of the insert are electrically connected to the second electrical connection contacts 23111 respectively.
  • the first electrical connection contact and the third electrical connection contact are in direct contact.
  • the second electrical connection contact and the fourth electrical connection contact are in direct contact.
  • the first surface 2011 of the insert is provided with a third positioning pillar 2011C and a fourth positioning pillar 2011D.
  • the second surface 2012 of the insert is provided with a fifth positioning post 2012C and a sixth positioning post 2012D.
  • a third positioning hole 222C and a fourth positioning hole 222D are provided on the digital micromirror element 22.
  • the second surface 222 of the digital micromirror element 22 includes a mechanical bearing area 2222, which corresponds to A third positioning hole 222C and a fourth positioning hole 222D are provided at the position of.
  • the third positioning pillar 2011C and the third positioning hole 222C are correspondingly arranged, and the fourth positioning pillar 2011D and the fourth positioning hole 222D are arranged correspondingly.
  • the third positioning hole 222C and the fourth positioning hole 222D are respectively provided on two adjacent corners of the positioning chamfer of the digital micromirror element 22. That is, the first positioning hole and the second positioning hole are arranged on a stack of opposite corners, and the third positioning hole and the fourth positioning hole are arranged on another pair of opposite corners. Furthermore, the DMD is limited on the four corners, so as to ensure the positioning of the DMD is more stable.
  • the third positioning pillar 2011C is a rhombus cylinder, the third positioning hole 222C is an oblong hole; the fourth positioning pillar 2011D is a cylinder, and the fourth positioning hole 222D is a circular hole.
  • the size of the third positioning hole 222C is larger than the size of the third positioning post 2011C; the size of the fourth positioning hole 222D is larger than the size of the fourth positioning post 2011D, which facilitates the assembly between the digital micromirror component and the insert.
  • the assembly gap between the two should not be too large, and now it is the best between 0.05-0.01mm.
  • the third positioning hole 222C and the fourth positioning hole 222D may be blind holes. After the assembly is completed, the top of the third positioning pillar 2011C and the bottom of the third positioning hole 222C do not contact. The top of the fourth positioning pillar 2011D and the bottom of the fourth positioning hole 222D are not in contact. Its purpose is to avoid making the insert and the mechanical supporting portion 2222 of the digital micro-mirror element 22 not tightly abut, and will not affect the mechanical stability and the abutment of the digital micro-mirror element and the insert due to the contact between the positioning hole and the positioning post. Stability of electrical connection.
  • the second surface 2012 of the insert is provided with a fifth positioning post 2012C and a sixth positioning post 2012D.
  • the circuit board 231 is provided with a fifth positioning hole 23103C and a sixth positioning hole 23103D.
  • the fifth positioning pillar 2012C and the third positioning hole 222C are correspondingly arranged, and the sixth positioning pillar 2012D and the sixth positioning hole 23103D are arranged correspondingly.
  • the third positioning post 2011C and the fifth positioning post 2012C are arranged opposite to each other on both sides of the insert.
  • the fourth positioning post 2011D and the sixth positioning post 2012D are arranged opposite to each other on both sides of the insert.
  • the fifth positioning pillar 2012C is a rhombus
  • the fifth positioning hole 23103C is a circular hole
  • the sixth positioning pillar 2012D is a cylinder
  • the sixth positioning hole 23103D is a circular hole.
  • the size of the fifth positioning hole 23103C is larger than the size of the fifth positioning post 2012C
  • the size of the sixth positioning hole 23103D is larger than the size of the sixth positioning post 2012D, which facilitates the assembly between the circuit board and the insert.
  • the assembly gap between the two should not be too large, and now it is the best between 0.05-0.01mm.
  • the first positioning column 2121A is located in the positioning hole 221A
  • the second positioning column 2121B is located in the positioning hole 221B.
  • the mechanical supporting part 2212 abuts on the supporting table 2122A, the supporting table 2122B and the supporting table 2122C.
  • the third positioning pillar 2011C is located in the third positioning hole 222C
  • the fourth positioning pillar 2011D is located in the fourth positioning hole 222D.
  • the fifth positioning pillar 2012C is located in the fifth positioning hole 23103C
  • the sixth positioning pillar 2012D is located in the sixth positioning hole 23103D.
  • the multiple electrical connection points 20111 provided on the first surface 2011 of the insert are electrically connected to the multiple third electrical connection contacts 22221 respectively.
  • the fourth electrical connection points 20121 provided on the second surface 2012 of the insert are electrically connected to the plurality of second electrical connection contacts 23111 respectively.
  • the second surface 222 of the insert supporting the digital micromirror element 22 includes a mechanical supporting area 2222.
  • the circuit board 23 rests on the insert. At the same time, mechanical support and good point contact are realized.
  • the third electrical connection contact and the fourth electrical connection contact of the insert are elastic contacts.
  • the elastic contact of the insert in the solution in which the circuit board directly contacts the flat contact of the digital micro-mirror element, the elastic contact of the insert, so that the second connection contact and When the digital micro-mirror element is in contact with the electrical connection contacts on the surface of the circuit board, the full contact can be ensured by elastic deformation, so that the signal transmission between the circuit board assembly and the digital micro-mirror element can be stabilized.
  • a first seal 202 is provided around the digital micromirror element.
  • the specific first sealing element is an elastic sealing element, which can be made of foam or rubber.
  • the sealing member 202 is arranged around the digital micromirror element 22 and the insert 201.
  • the housing is provided between the circuit board 231 and the optical unit 21 of the lighting device.
  • the sealing element is arranged at the position of the first groove 211. After the circuit board assembly 23 and DMD 22 are fixed and assembled by the pressing plate, they are pressed and fixed between the circuit board and the housing 21 in a compressed state. One end of the sealing ring abuts against the housing 21 and the other abuts against the circuit board 23 .
  • the first sealing element is a sealing ring, which can prevent dust from entering the housing 21 from the first through hole 212, thereby ensuring that the reflective lens portion on the digital micromirror element 22 is not contaminated by dust or the like.
  • the embodiment of the present invention also includes a first connecting component 205 for fixedly connecting the pressure plate 24 and the housing 21. Furthermore, the circuit board assembly 23 and the DMD 22 are fixedly pressed on the object 21 by the pressing plate. The first connection assembly 205 can apply a force to the pressure plate 24 to make the pressure plate 24 face the housing 21 of the optomechanical lighting device.
  • the first connection assembly 205 includes four first screws. After the four first screws pass through the pressing plate 24 and the circuit board 231, they are threadedly connected to the housing 21 of the opto-mechanical lighting device. Specifically, the four corners of the first groove 211 of the optical-mechanical lighting device housing 21 are respectively provided with screw holes 2111A, screw holes 2111B, screw holes 2111C, and screw holes 2111D. The first screws and the threaded holes are arranged in a one-to-one correspondence for realizing threaded connection.
  • the pressure plate is provided with a pressure plate screw escape portion.
  • the screw avoidance part is used to partially pass the screw, and the screw cap of the screw avoidance part should be restricted to the side of the pressure plate and cannot pass.
  • the screw escape portion of the pressure plate may be screw through holes 24A, screw through holes 24B, screw through holes 24C, and screw through holes 24D for four screws to pass through.
  • the size of the four screw through holes is smaller than the size of the nut of the corresponding screw. Therefore, the nut of the screw is restricted to the through hole and exerts force on the pressure plate.
  • the screw through hole of the pressure plate avoiding the screw can be changed to a half hole.
  • the circuit board is provided with a first circuit board screw escape portion.
  • the screw avoidance part of the circuit board is used to partially pass the screw.
  • the screw escape portion of the first circuit board may be a screw via 23102A, a screw via 23102B, a screw via 23102C, and a screw via 23102D for the four first screws to pass through.
  • the screw avoiding portion of the circuit board may be configured as a half hole.
  • the first connecting assembly 205 includes a first screw and a first elastic member.
  • the first screw 2051 passes through the screw through hole of the pressure plate 24 and is threadedly connected to the housing of the optomechanical lighting device. Located between the nut of the first screw and the pressing plate.
  • the first elastic member is provided between the nut of the screw and the pressure plate, so that when the first screw is fixed to the corresponding threaded hole, the compression of the first elastic member by the first screw is adjusted In this way, the elastic force of the first elastic member on the pressure plate can be adjusted, so that the locking force of the first screw on the pressure plate, the circuit board assembly, and the digital micro-mirror element can be controlled and adjusted.
  • the first elastic member can also make the fit between the first screw and the screw through hole tighter, greatly reducing the possibility of loosening and falling of the first screw, thereby improving the pressure plate, circuit board, insert, and digital micromirror components. Reliability of the connection with the housing of the opto-mechanical lighting device.
  • the digital light processing projector in the embodiment of the present invention further includes a heat sink 25 which is in thermal contact with the heat dissipation area 2221 of the digital micromirror element 22.
  • the heat sink 25 is arranged on the plane where the circuit board is located and is spaced apart from the circuit board 231.
  • the circuit board assembly 23 is provided with a second through hole 230, and the heat sink 25 is in thermal contact with the heat dissipation area 2221 of the digital micro-mirror element 22 through the second through hole 230.
  • the radiator 25 is arranged on the plane where the pressure plate is located at a distance from the pressure plate.
  • the pressing plate 24 is provided with a third through hole 240, and the heat sink 25 is in thermal contact with the heat dissipation area 2221 of the digital micromirror element 22 through the third through hole 240.
  • the heat sink 25 includes a heat-conducting body 251 and a heat-dissipating body 252 connected to each other.
  • the heat-dissipating body 253 and the heat-dissipating body 251 sequentially pass through the third through hole 240 of the pressure plate 24, the second through hole 230 of the circuit board 23, and the through hole 2020 of the insert 202. It then contacts the heat dissipation area 2221 of the digital micromirror element 22.
  • the heat sink 25 and the heat dissipation area 2221 are realized by respectively opening through holes in the heat dissipation area 22 of the digital micro-mirror component on the pressure plate, the circuit board and the insert, and the heat conductor 251 sequentially passes through the through holes of the pressure plate, the circuit board and the insert.
  • Thermal contact solves the problem of inconvenient contact with other parts between the radiator 5 and the digital micro-mirror element 22, not only ensures the good heat dissipation of the digital micro-mirror element, but also the heat conductor 251 is removed from the pressure plate, circuit board and insert
  • the second through hole in 33 passes through, which can make the structure of the assembly more compact and help reduce its occupied space.
  • the heat conductor 251 of the heat sink 25 may be indirectly contacted with the heat dissipation area 2221 through a heat conductive paste, that is, a gap of about 0.1 mm needs to be reserved between the heat sink 5 and the heat dissipation area 2221 for filling the heat conductive paste.
  • the gap between the heat conductor and the heat dissipation area directly determines the heat dissipation of the digital micro-mirror component. If the gap is too large, the thermal paste will not be able to transfer the heat of the digital micro-mirror component to the heat sink to the greatest extent, which may cause digital Damage to the micromirror components.
  • the heat dissipation area 2221 of the digital micromirror element 2 may be located in the middle of the digital micromirror element 22, and the mechanical support area 2222 of the digital micromirror element 22 is located on a circumference of the heat dissipation area 2221.
  • the embodiment of the present invention also includes a second connecting assembly 207 for fixing the heat sink 25 on the housing 21 of the optomechanical lighting device.
  • the second connection assembly 207 includes four second screws.
  • the outer peripheral screw post of the first groove 211 of the housing 21 of the opto-mechanical lighting device is used for fixing the radiator 25.
  • the screw post 213 includes a screw post 213A, a screw post 213B, a screw post 213C, and a screw post 213D.
  • the screw main body 213 protrudes outward from the housing 21 and passes through the circuit board 231.
  • the second screw and the screw column are arranged in one-to-one correspondence, and are used to realize threaded connection.
  • the circuit board is provided with a screw post avoiding part.
  • the circuit board screw post avoiding part is used for passing the screw post.
  • the screw column avoiding portion may be a screw column through hole 23101A, a screw column through hole 23101B, a screw column through hole 23101C, and a screw column through hole 23101D for four screw columns to pass through.
  • the screw post avoiding portion may be configured as a half hole.
  • the heat sink 25 includes a heat conductor 251 and a heat sink 252. More specifically, the heat sink 252 includes a heat dissipation substrate 2521 and a heat dissipation fin 2522. After the heat sink is installed, the screw post 213 abuts the heat dissipation substrate 2521.
  • the heat dissipation substrate is provided with screw holes 2521A, screw holes 2521B, screw holes 2521C, and screw holes 2521D. After passing through the screw holes, the four second screws are fixed to the four screw posts respectively.
  • first screw escape holes 25210A, 25210B, 25210C, and 25210D are also provided on the heat dissipation substrate 2521 to form a escape space for the first screw, so that the first screw does not contact the heat sink.
  • the radiator is partially embedded to further save installation space.
  • the second connecting assembly 207 includes a second screw and a second elastic member.
  • the second screw passes through the screw through hole of the heat sink 25 and is threadedly connected to the housing of the opto-mechanical lighting device.
  • the second elastic part is provided between the nut of the screw and the radiator, so that when the second screw is fixed to the corresponding screw column, the second elastic part can be adjusted by the second screw.
  • the amount of compression can adjust the elastic force of the second elastic member on the heat sink, so that the locking force of the second screw on the heat sink and the digital micro-mirror element can be controlled and adjusted.
  • the second elastic member can also make the fit between the second screw and the screw through hole tighter, greatly reducing the possibility of the second screw loosening and falling off, thereby improving the reliability of the connection between the heat sink and the optomechanical lighting device housing .
  • the housing of the optomechanical lighting device is provided with a first through hole
  • the first surface of the digital micromirror element abuts against the housing of the optomechanical lighting device, and the first surface corresponds to the first
  • a reflection lens is provided at the position of a through hole.
  • the housing of the opto-mechanical lighting device When a force is applied to the digital micro-mirror element to move the digital micro-mirror element in a direction close to the housing of the opto-mechanical lighting device, the housing of the opto-mechanical lighting device will limit the position of the digital micro-mirror element, thereby preventing the digital micro-mirror
  • the component moves in the direction close to the housing of the opto-mechanical lighting device, so that the reflective lens and the housing of the opto-mechanical lighting device can be fixed, thus ensuring the accuracy of the reflection of light by the reflective lens, and enabling the digital light processing projector to Cast a stable image.
  • the second surface of the digital micro-mirror component includes a mechanical bearing area and a heat dissipation area, the second surface is opposite to the first surface, and the mechanical bearing area is distributed with a plurality of first electrical connection contacts, and the circuit board assembly is close to the digital micro-mirror component
  • the second surface of the circuit board assembly is provided with a plurality of second electrical connection contacts corresponding to the positions of the plurality of first electrical connection contacts.
  • the first connecting assembly can apply a force to the circuit board assembly to move the circuit board assembly closer to the housing of the opto-mechanical lighting device through the pressing plate, so that the circuit board assembly can be applied to the circuit board assembly by adjusting the first connecting assembly.
  • the force of the movement of the housing of the opto-mechanical lighting device is to adjust the force that the mechanical bearing area bears to make the second connection contact fully contact the first connection contact, thereby ensuring that the circuit board assembly and the digital micro
  • the signal transmission between the mirror elements is stable.
  • the second connecting assembly can apply a force to the heat sink to move the heat sink in a direction close to the digital micro-mirror element.
  • the force applied to the heat sink can be adjusted by the second connecting assembly, that is, by adjusting the heat sink and the heat dissipation area.
  • the degree of close contact between the two can adjust the force of the heat dissipation area, so that the radiator can not only fully dissipate heat to the heat dissipation area, but also avoid excessive force on the heat dissipation area.
  • the fixed structure of the digital micro-mirror element in the digital light processing projector provided by the embodiment of the present invention is to adjust the force of the mechanical bearing area and the heat dissipation area through two sets of connecting components, so that the mechanical bearing area can be simultaneously satisfied.
  • the force on the heat dissipation area that is: adjust the force on the mechanical bearing area to an appropriate value through the first connecting component to ensure stable signal transmission between the circuit board component and the digital micromirror component, so that the digital micromirror The component and the opto-mechanical lighting device housing are well fixed, so as to avoid the influence of light reflection caused by the loosening of the digital micro-mirror component and the opto-mechanical lighting device housing; the second connecting component adjusts the force on the heat dissipation area to an appropriate level
  • the value can not only avoid the heat dissipation area from being broken due to excessive force, but also make the heat dissipation area fully dissipate heat.
  • the first elastic member is sleeved between the shoulder of the first screw and the screw head, and the distances between the shoulders of the plurality of first screws and the screw head are equal.
  • the pressing force exerted by the micromirror component is also more uniform, which can ensure that the circuit board, the insert, and the various parts of the digital micromirror component can be fully contacted, thereby making the signal transmission between the circuit board and the digital micromirror component more stable .
  • the number of the first screws can be two, four, six, etc., which is not specifically limited here.
  • the number of the first screws is four, that is, two pairs
  • the two first screws in each pair may be symmetrically arranged on both sides of the center surface of the pressing plate in the length direction or the width direction.
  • the second elastic member is sleeved between the shoulder of the second screw and the nut, and the distances between the shoulders of the plurality of second screws and the nut are equal.
  • the number of the second screws can be two, four, six, etc., which is not specifically limited here.
  • the number of the second screws is four, that is, two pairs, the two second screws in each pair can be symmetrically arranged on both sides of the center surface of the heat sink in the length direction or the width direction; the nut of the second screw can be sunk.
  • the heat sink 25 it can also be attached to the surface of the heat sink, which is not specifically limited here.
  • the types of the first elastic element and the second elastic element are not unique.
  • the first elastic element and the second elastic element may both be Rubber ring, elastic washer.
  • the first elastic member and the second elastic member may both be springs. Compared with rubber rings and elastic washers, the elasticity of the spring is better to improve the anti-loosening effect of the first screw and the second screw.
  • the material of the pressing plate is not unique, for example, the pressing plate may be a plastic plate.
  • the pressing plate 24 is a flat metal plate (such as a stainless steel plate, an aluminum plate, etc.).
  • the second surface 232 of the circuit board 23 is provided with a ground point 2321.
  • a conductive pad 204 is provided between the ground point 2321 and the pressure plate 24 to realize electrical connection between the ground point 2321 and the pressure plate. In this way, the circuit board 23 is grounded.
  • the circuit board 32 may be short-circuited.
  • An insulating pad 205 is provided between the pressing plate 24 and the circuit board 23.
  • the rigidity and flatness of the metal plate is better, and the deformation of the metal plate is smaller when the first connecting component is applied, so that the pressure plate can smoothly compress the insert, the circuit board, and the digital micro-mirror component, which is advantageous for insertion
  • the contacts between the components, the circuit board, and the digital micro-mirror component are in full contact, which is beneficial to the stable signal transmission between the circuit board and the digital micro-mirror component.
  • the circuit board 23 is grounded.
  • the insulating pad 205 is an elastic insulating pad, such as a rubber pad.
  • the conductive pad 204 is an elastic conductive pad, such as a conductive foam noodle.
  • the elastic insulating pad can transmit the pressure of the first connecting component received by the pressing plate 24 to the circuit board more evenly. At the same time, the elastic conductive pad can also ensure a good electrical connection between the pressure plate and the ground point.
  • the ground point is arranged around the second through hole 2310 on the circuit board 231.
  • a conductive pad 204 is provided between the ground point 2321 and the pressure plate 24.
  • the insulating pad 205 is provided on the outer periphery of the conductive pad 204.
  • the insulating pad 205 is arranged on the outer periphery to transmit the pressure of the first connection assembly received by the pressing plate 24 to the circuit board more evenly.
  • a second sealing element is provided between the mechanical bearing surface of the first surface of the digital micro-mirror element and the housing of the opto-mechanical lighting device.
  • the sealing element is an elastic sealing element, which may be foam Or rubber and other materials.
  • the seal can be a sealing ring, one side against the mechanical bearing surface of the first surface, located around the reflector lens, and one side against the housing of the opto-mechanical lighting device, which can be set on the sealing ring to prevent dust from coming from the first surface.
  • the through hole 212 enters the housing 21 to ensure that the reflective lens 221 on the digital micro-mirror element 22 is not polluted by dust or the like.
  • a third sealing member 206 is arranged around the thermal conductor 251 to realize the sealing of the thermal contact portion between the heat dissipation area 2221 of the digital micromirror element and the thermal conductor 251.
  • the sealing element is an elastic sealing element, which can be made of foam or rubber.
  • the third sealing element may be a sealing ring, with one side against the heat sink 252 and the other side against the pressure plate 24. It can prevent dust from entering the thermal contact surface and affecting its thermal conductivity.
  • the elasticity of the third sealing element is selected as foam.
  • the deformation of the foam material is large, which is more conducive to ensuring the relative distance between the heat conductor and the heat dissipation area of the digital micro-mirror element, and achieves a good Of thermal contact.
  • the elastic coefficient of the foam is relatively smaller, and it will not exert excessive pressure on the pressure plate due to the compression of the third sealing element.
  • the heat dissipation substrate 2521 is provided with a heat dissipation boss 2523, and the heat conductor is disposed on the heat dissipation boss.
  • a third sealing member 206 is provided around the heat conductor 251.
  • the third seal can be a sealing ring, one side against the heat dissipation boss 2523, the other side against the pressure plate 24. Since the height of the screw post 213 determines the height difference between the heat dissipation substrate and the pressure plate, by setting the heat dissipation boss 2523, the thickness of the third sealing member 206 can be reduced, which is more conducive to the realization of sealing.
  • the digital light processing projector provided by the embodiment of the present invention includes the fixing structure of the digital micromirror element in the digital light processing projector in any of the above embodiments, the same technical effect can be produced and the same technical problem can be solved.
  • the other structures of the digital light processing projector are well known to those skilled in the art and will not be repeated here.

Abstract

本发明公开了一种数字光处理投影机,包括光机照明装置,光机照明装置壳体,所述光机照明装置壳体设置有第一定位柱和第二定位柱;数字微镜元件设置有第一定位孔和第二定位孔;所述有第一定位柱位于所述第一定位孔内,所述第二定位柱位于所述第二定位孔内;电路板组件;压板;第一连接组件,用于与所述光机照明装置壳体固定连接,并将所述压板、电路板组件、数字微镜元件压固在所述光机照明装置壳体上。

Description

一种数字光处理投影机 技术领域
本发明涉及投影技术领域,特别涉及一种数字光处理投影机及数字光处理投影机中数字微镜元件的固定结构。
背景技术
数字光处理投影机(Digital Light Processing简称DLP)是基于数字微镜元件(Digital Micro-mirror Device 简称DMD)来完成可视数字信息显示的技术。数字微镜元件上设置有很多微镜片组成,每个微镜片均可旋转一定角度。数字光处理投影机的工作原理是将光源发射出的原色光束,投射到数字微镜元件的微镜片上,一个微镜片相当于一个像素单元,视频信号经过处理后作用于数字微镜元件,从而控制微镜片的偏转随着信号旋转,光线可能会反射进入投影镜头或偏离投影镜头,入射光线在经过数字微镜元件选择性地反射进入投影镜头后并由投影镜头投影成像。微镜片在数字光处理投影机中起着光开关的作用。数字微镜元件是数字光处理投影机中的核心部件,它与其它部件连接的稳定与否直接关系着数字光处理投影机的投影质量。
技术问题
本发明实施例提供了一种数字光处理投影机,能够实现数字光处理投影机中数字微镜元件的准确定位和安装。
技术解决方案
本发明实施例提供了一种数字光处理投影机,包括:光源装置、光机照明装置、光机镜头装置;所述光机照明装置包括光机照明装置壳体,光机照明装置壳体开设有第一通孔;数字微镜元件,数字微镜元件的第一表面设置有机械承靠部,数字微镜元件的第一表面的机械承靠部与光机照明装置壳体抵靠;数字微镜元件的第一表面对应第一通孔的位置设有反射镜片部;光机照明装置壳体设置有第一定位柱和第二定位柱;数字微镜元件设置有第一定位孔和第二定位孔;有第一定位柱位于第一定位孔内,第二定位柱位于第二定位孔内;所述数字微镜元件的第二表面与所述数字微镜元件的第一表面相对设置;所述数字微镜元件的第二表面设置有第一电连接触点;电路板组件,电路板组件包括电路板,电路板的第一表面朝向数字微镜元件的第二表面,电路板的第一表面设有第二电连接触点;第二电连接触点与第一电连接触点电连接;压板,压板和电路板之间设置有绝缘垫;第一连接组件,用于与光机照明装置壳体固定连接,并将压板、电路板组件、数字微镜元件压固在光机照明装置壳体上。
本发明实施例提供了数字光处理投影机,电路板组件设置有第二通孔;压板设置有第三通孔;数字微镜元件的第二表面设置有散热区;散热器,散热器通过第二通孔、第三通孔,并与数字微镜元件的散热区热接触;第二连接组件,第二连接组件用于将散热器固定在光机照明装置壳体上。
本发明实施例提供了数字光处理投影机,还包括:插入件,插入件设置在电路板和数字微镜元件之间,用于实现第二电连接触点与第一电连接触点电连接;插入件设置有与数字微镜元件的第二表面相对设置的第一表面;插入件的第一表面设置有第三定位柱和第四定位柱;数字微镜元件设置有第三定位孔和第四定位孔;第三定位柱位于第三定位孔内,第四定位柱位于第二定位孔内。
本发明实施例提供了数字光处理投影机,插入件还包括与插入件第一表面相对设置的第二表面;插入件的第二表面设置有第五定位柱和第六定位柱;电路板设置有有第五定位孔和第六定位孔;第五定位柱位于第五定位孔内,第六定位柱位于第六定位孔内。
本发明实施例提供了数字光处理投影机,数字微镜元件设置有定位切角部,第一定位孔位于数字微镜元件的定位切角部;第二定位孔位于数字微镜元件的定位切角部的对角部。
本发明实施例提供了数字光处理投影机,数字微镜元件设置有定位切角部,第三定位孔和第四定位孔分别位于定位切角部的邻角部。
本发明实施例提供了数字光处理投影机,数字微镜元件设置有定位切角部,第三定位孔和第四定位孔分别位于定位切角部的邻角部。
本发明实施例提供了数字光处理投影机,第三定位柱和第五定位柱相对设置,第四定位柱和第六定位柱相对设置。
本发明实施例提供了数字光处理投影机,电路板的第二表面设置有接地点;压板至少包括部分导电部,导电部通过导电垫与接地点电连接。
本发明实施例提供了数字光处理投影机,包括光机照明装置壳体,光机照明装置壳体设置有第一定位柱和第二定位柱;数字微镜元件设置有第一定位孔和第二定位孔;有第一定位柱位于第一定位孔内,第二定位柱位于第二定位孔内;电路板组件;压板第一连接组件,用于与光机照明装置壳体固定连接,并将压板、电路板组件、数字微镜元件压固在光机照明装置壳体上。
有益效果
本发明实施例提供了数字光处理投影机的光机照明装置,光机照明装置壳体设置有第一定位柱和第二定位柱;数字微镜元件设置有第一定位孔和第二定位孔;有第一定位柱位于第一定位孔内,第二定位柱位于第二定位孔内。通过在数字微镜元件上直接设置定位孔,实现了对数字微镜元件更为准确了定位,实现数字光处理投影机中数字微镜元件的准确定位和安装。
附图说明
图1A为本发明某一实施例中的数字光处理投影机的示意立体图;
图1B为本发明某一实施例中的数字光处理投影机的示意上视图;
图2为本发明某一实施例中的数字光处理投影机的控制原理框图;
图3A为本发明某一实施例中的数字光处理投影机内部光学相关结构示意立体图;
图3B为本发明某一实施例中的数字光处理投影机内部光学相关结构示意底视图;
图3C为本发明某一实施例中的数字光处理投影机内部光学相关结构示意爆炸图;
图4A为本发明某一实施例中的数字光处理投影机的光机照明装置的部分机构示意图;
图4B为本发明某一实施例中的数字光处理投影机的光机照明装置的部分机构示意爆炸图;
图5A为本发明某一实施例中的数字光处理投影机的光机照明装置的壳体的结构示意图;
图5B为本发明某一实施例中的数字光处理投影机的光机照明装置的壳体的结构示意后视图;
图5C为本发明某一实施例中的数字光处理投影机的光机照明装置的壳体的内部结构示意图;
图5D为本发明某一实施例中的数字光处理投影机的光机照明装置的壳体的内部光路示意图;
图5E为本发明某一实施例中的数字光处理投影机的光机照明装置的壳体的内部结构剖面示意图;
图5F为本发明某一实施例中的数字光处理投影机的光机照明装置的壳体的内部剖面光路示意图;
图6A为本发明某一实施例中的数字光处理投影机的数字微镜元件的立体结构示意图;
图6B为本发明某一实施例中的数字光处理投影机的数字微镜元件的第二表面结构示意图;
图7A为本发明某一实施例中的数字光处理投影机的光机照明装置的电路板组件的结构示意图;
图7B为本发明某一实施例中的数字光处理投影机的光机照明装置的电路板的第二表面结构示意图;
图7C为本发明某一实施例中的数字光处理投影机的光机照明装置的电路板的第一表面结构示意图;
图8为本发明某一实施例中的数字光处理投影机的光机照明装置的压板的结构示意图;
图9A为本发明某一实施例中的数字光处理投影机的光机照明装置的散热器的结构示意图;
图9B为本发明某一实施例中的数字光处理投影机的光机照明装置的散热器的结构示意后视图;
图9C为本发明某一实施例中的数字光处理投影机的光机照明装置的散热器的结构示意前视图;
图10A为本发明某一实施例中的数字光处理投影机的光机照明装置的插入器的结构示意图;
图10B为本发明某一实施例中的数字光处理投影机的光机照明装置的插入器的第二表面的结构示意图;
图11为本发明某一实施例中的数字光处理投影机的光机照明装置的第一密封件的结构示意图;
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,本部分所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1A、图1B所示,本发明一实施例提供了一种数字光处理投影机,数字光处理投影机10呈大致长方体形状,包括一个大致呈长方体的壳体90.在作为壳体90的上部外壳上设置有投射孔91,投射孔91上覆盖有透镜罩92。投射孔91和透镜罩体92可用于使得壳体内部的成像光束射出。在某些实施例中,投射孔和投射罩体可能设置在透镜装置的前侧面上,本发明对此不做限制。
壳体90上设置有多个通孔93,用于吸气或者排气,以实现壳体内部的空气流通,从而促进其内部发热部件的散热性能。在某些实施例中,通孔93设置在壳体的左右侧壁上。在某些实施例中,通孔设置在壳体的下侧壁、后侧壁上。本发明对此不做限制。
在某些实施例中,外壳上还会设置电源按键,用于接通或者关闭数字光处理投影机的电源。
在某些实施例中,外壳上还会设置电源指示器,用于指示数字光处理投影机是否接通电源。
在某些实施例中,外壳上还会设置投影开关,用于打开或者关闭投影功能。
在某些实施例中,外壳的后侧壁设置有设置USB端子、图像信号输入用的D-SUB端子、S端子、RCA端子等的输入输出连接器部71和电源适配器插头等的各种端子。
如图2所示,在某些实施例中,数字光处理投影机包括控制部48、输入输出接口72、图像变换部63、显示编码器64、显示驱动部66等构成。从输入输出连接器部71输入的各种规格的图像信号在经由输入输出接口72、系统总线(SB)被图像变换部63以统一成适于显示的预定的格式的图像信号的方式变换后,输出至显示编码器64。
显示编码器64在使被输入的图像信号展开存储于视频RAM65后,根据该视频RAM65的存储内容生成视频信号,并输出至显示驱动部66。
显示驱动部66作为显示元件控制机构。显示驱动部66与从显示编码器64输出的图像信号对应地以适当帧率来驱动数字微镜元件(DMD) 22。然后,数字光处理投影机100将从光源装置10射出的光束经由导光光学系统照射至数字微镜元件22,由此利用数字微镜元件22的选择性反射经由后述的投影侧光学系统在未图示的屏幕投影显示图像。此外,该投影侧光学系统的可动透镜组31通过透镜马达32进行变焦调整、聚集调整用的驱动。
图像压缩解压部61进行通过编码等的处理对图像信号的亮度信号和色差信号进行数据压缩,并依次写入作为非易失性可读写的记录介质的存储卡62的记录处理。
另外,图像压缩解压部61可以在再生模式时读出记录于存储卡62的图像数据,使图像数据进行解压。图像压缩解压部61进行如下处理:将该图像数据经由图像变换部63输出至显示编码器64,基于存储于存储卡62的图像数据能够进行显示。
控制部48进行数字光处理投影机100内的各电路的动作控制.具体的,控制部可以由CPU、以及存储了各种设定等的程序的ROM以及用作工作存储器的RAM等构成。
由设置于壳体的表面的电源按键和电源指示器等构成的键指示器部47的操作信号被送至控制部48,来自遥控器的键操作信号通过Ir、wifi等形式被遥控信号接收部45接收,被遥控处理部46解调了的代码信号输出至控制部48。
控制部48经由系统总线(SB)与声音处理部81连接。该声音处理部81具备PCM声源等的声源电路,在投影模式和重播模式时,对声音数据进行处理,驱动扬声器82播放声音。
另外,控制部48对作为光源控制机构的光源控制电路41进行控制。光源控制电路41控制光机10时序性发送各种基色光。具体的,包含了对激光器或二极管发光装置等主动发光元件的电流或者电压控制,还包括了对可能存在的荧光轮、散热器的电流或者电压控制。
另外,控制部48对散热器驱动控制电路51进行基于设置于光源装置10等的多个温度传感器的温度检测,根据该温度检测的结果等来控制散热器的工作状态,例如,散热风扇的旋转速度等。或者控制TEC的工作电流或者工作电压。
如图3A、3B、3C所示,在数字光处理投影机壳体100内部,设置有光源装置10,光机照明装置20,光机镜头装置30。
光源装置10可用于为整个数字光处理投影机的光学系统提供光源,可以周期性的向光机照明装置提供红绿蓝三色光束。在某些实施例中,可以周期性的向光机照明装置提供红绿蓝黄四色光束。在本发明某些实施例中,光源装置中至少包括蓝色激光器。
光机照明装置20,可用于接收光源装置10周期性照射的基色光,对光源装置10周期性照射的基色光进行空间光调制。具体的,光机照明装置20中包括数字微镜元件22,其根据显示驱动部66的驱动信号,控制对光源装置10周期性照射的基色光进行空间光调制。
光机照明装置20进行空间光调制后的光可以照射进入光机镜头装置30,光机镜头装置30中设置有的可动透镜组31,其可以通过透镜马达32进行变焦调整、聚集调整用的驱动。空间光调制后的光通过可动透镜组31各种光学透镜最终可以透过数字光处理投影机壳体90上的投射孔和透镜罩体92投射成像。
如图4A、图4B所示,光机照明装置包括壳体21,客体上以此固定设置有数字微镜元件22,电路板组件23,压板24。压板24与壳体21可拆卸连接,并通过压板24将电路板组件23和数字微镜元件22压合固定在压板24与壳体21之间。
在某些实施例中,还包括散热器25,散热器25与壳体21可拆卸连接。散热器25与数字微镜元件22热接触,可用于给数字微镜元件22散热。
如图5A-5F所示,光学照明装置壳体21上设置有数字微镜元件22.在壳体内部固定设置有匀光装置26,以及光学镜组27. 从光源装置10摄入的光进入匀光装置26,匀光装置用于对光束进行均匀化。
在某些实施例中,光学透镜27组具体包括第一缩束透镜27A,第二缩束透镜27B,反射镜27C,第三缩束透镜27D,以及第一棱镜27E和第二棱镜27F。
经过匀光装置26匀化的光会经过第一缩束透镜27A,第二缩束透镜27B,并照射到反射镜27C,反射镜27C会将光束从第一角度转换为不同于第一角度的第二角度。
经过反射的光束进一步经第三缩束透镜27D,照射进入第一棱镜27E,并在第一棱镜27E和第二棱镜27F的交界面上进行反射,并投射出第一棱镜27E,最终照射在壳体21的内表面。具体的,照射在数字微镜元件22上。数字微镜元件22的第一表面221设置有反射镜片部2211通过第一通孔2120面向光机内部,可以被该光斑完全覆盖,并可以接受并反射摄入的光,进行空间光调制。数字微镜元件22在数字光处理投影机中起着光开关的作用,入射光线在经过数字微镜元件选择性地反射后并由投影镜头投影成像。
被数字微镜元件22选择用于投影成像的光经过数字微镜元件选择性地成像角度反射后,照射进入第一棱镜27E,并在第一棱镜27E和第二棱镜27F的交界面上透射,最终进入光机光机镜头装置30。通过可动透镜组31各种光学透明最终可以透过数字光处理投影机壳体90上的投射孔和透镜罩体92投射成像。
数字微镜元件是数字光处理投影机中的核心部件,它与其它部件连接的稳定与否直接关系着数字光处理投影机的投影质量。下面详细论述本发明实施例中数字微镜元件以及相关机构的固定连接方式。
在本发明某些实施例中,光机照明装置壳体21的外部设置有第一凹槽211,第一凹槽211内设置有第二凹槽212,所述第二凹槽内用于容置数字微镜元件22。
更具体的,第一凹槽211基本为矩形,第一凹槽211的四个角上分别设置有一个螺纹孔,用于与第一连接组件中的螺钉连接。
第二凹槽212基本为矩形,其中一个角212A设置为定位切角部,用于与数字微镜元件22的定位切角部22A配合,用于避免数字微镜元件22的错误安装,提升安装效率。
第二凹槽212内设置有第一通孔2120,第一通孔2120与光机照明装置内部导通。数字微镜元件22的反射镜片部2211可以通过第一通孔2120面向光机内部,接受并反射光源部分摄入的光。
第二凹槽212内,位于第一通孔2120四周设置有定位柱2121和承靠台2122.
具体的,第二凹槽212内设置有第一定位柱2121A和第二定位柱2121B。第一定位柱2121A靠近第二凹槽的定位切角部212A设置。
第二定位柱2121B靠近定位切角部212A的对角2121B设置。第一定位柱2121A和第二定位柱2121B用于与数字微镜元件22的第一表面221上设置的第一定位孔221A和第二定位孔221B相互配合,对数字微镜元件22进行定位。
具体的,第一定位柱2121A比第二定位柱2121B尺寸大。第一定位柱2121A的尺寸小于定位孔221A的尺寸。第二定位柱2121B的尺寸小于定位孔221B的尺寸。
第一定位柱2121A和第二定位柱2121B均为圆柱状。第一定位柱2121A的横截面的直径大于第二定位柱2121B的横截面的直径。优选的,第一定位柱2121A的横截面的直径为1.90mm-1.97mm。第二定位柱2121B的横截面的直径为1.40mm-1.47mm。第一定位柱2121A的横截面的直径大于第二定位柱2121B的横截面的直径,也在一定程度上避免了错误装配的可能性。
具体的,第二凹槽212内设置有承靠台2122.具体的,第一承靠台2122A,第二承靠台2122B和第三承靠台2122C,其中第一承靠台2122A靠近第二凹槽的定位切角部212A与角212D的连接边设置;第二承靠台2122B靠近角2121B设置,与第二定位柱2121B相邻。第三承靠台2122C靠近角2121C设置。承靠台2122为从第二凹槽212内突出的凸台,且突出高度相等。第一承靠台2122A,第二承靠台2122B和第三承靠台2122C三角布设,用于承靠数字微镜元件22的第一表面221。限于加工工艺的影响,如果用整个第二凹槽的底部承靠数字微镜元件,难以保障底部平面较大面积的平整度,可能会影响承靠数字微镜元件的稳定性。利用三角布设的三个承靠台,承靠面积缩小,更易于保障平整度要求,且三点定位保障了承靠的受力稳定性。
光机照明装置壳体21的外部还设置有多个螺钉柱213.具体的螺钉柱213包括螺钉柱213A,螺钉柱213B,螺钉柱213C,螺钉柱213D。螺钉柱用于散热器25的固定。螺钉柱213设置在第一凹槽211的外周。
光机照明装置壳体21的第一凹槽211的四个角部分别设置有螺钉孔2111A,螺钉孔2111B,螺钉孔2111C,螺钉孔2111D。用于与第一连接组件中的螺钉连接。
光机照明装置壳体21的第二凹槽212的周边设置有突出于第一凹槽211的凹槽壁213,用于在安装过程中辅助限制确定数字微镜元件22的位置。同时,通过凹槽壁213、第一凹槽211的内侧壁和螺钉孔2111A,螺钉孔2111B,螺钉孔2111C,螺钉孔2111D的外侧壁共同限定出了安装第一密封件202的空间。
数字微镜元件22与光机照明装置壳体21抵靠。具体的,数字微镜元件22的第一表面221抵靠在光机照明装置壳体21的第二凹槽212位置。具体的,数字微镜元件22的第一表面221设置有反射镜片部2211和机械承靠部2212. 数字微镜元件22的第一表面221的机械承靠部2212抵靠在光机照明装置壳体21的第二凹槽212位置。具体的,数字微镜元件22的第一表面221的机械承靠部2212抵靠在第二凹槽212内设置的承靠台2122上。
数字微镜元件22的第一表面221设置有反射镜片部2211和机械承靠部2212.
第一表面221对应第一通孔2120的位置设有反射镜片部2211。反射镜片部2211可以通过第一通孔2120面向光机内部,接受摄入的光,根据视频信号对光进行空间调制。
具体的,数字微镜元件22的第一表面221与光机照明装置壳体21抵靠可以通过以下结构来实现:
数字微镜元件22设置有开设有第一定位孔221A和第二定位孔221B,具体的,数字微镜元件22的第一表面221设置有机械承靠部2212,机械承靠部2212对应的部位设置有第一定位孔221A和第二定位孔221B。
具体的,数字微镜元件22设置有与第二凹槽的定位切角部对应设置的定位切角部。第一定位孔221A与第一定位柱2121A对应设置,设置在数字微镜元件的定位切角部。第二定位孔221B与第二定位柱2121B对应设置。第一定位孔221A的尺寸大于第一定位柱2121A的尺寸;第二定位孔221B的尺寸大于第二定位柱2121B的尺寸,便于数字微镜元件的装配。同时,两者的装配间隙不宜过大,优选的,在0.05-0.01mm之间为最佳。
具体的,第一定位孔221A为圆形孔,横截面的直径为1.92-2.07mm。第二定位孔221B为长圆孔,两个长边的间距为1.42mm-1.57mm。长圆孔在长度方向上有一定的活动空间,偏于安装。同时第二定位孔的长度方向与第二凹槽212A的切角边相交,二者不平行,进而避免了安装完成后的限位准确性降低的问题。
当通过压板将电路板组件23、DMD22固定压合装配完毕后,第一定位柱2121A位于第一定位孔221A内,第二定位柱2121B位于第二定位孔221B内。机械承靠部2212抵靠在第一承靠台2122A,第二承靠台2122B和第三承靠台2122C上。
在某些实施例中,第一定位孔221A和第二定位孔221B可以是盲孔,装配完毕后,第一定位柱2121A的顶部和第一定位孔221A的底部不接触。第一定位柱2121B的顶部和第二定位孔221B的底部不接触。其目的在于避免使得数字微镜元件22的机械承靠部2212抵靠在承靠台2122上,不会由于定位孔底部和定位柱的接触而影响数字微镜元件与壳体抵靠的稳定性。
数字微镜元件22的第二表面222包括机械承靠区2222和散热区2221,第二表面222与第一表面221相对,机械承靠区2222分布有多个第一电连接触点22221。
电路板组件23,电路板组件23靠近数字微镜元件22的第二表面设置。电路板组件包括电路板231。
具体的,电路板的第一表面2311朝向数字微镜元件的第二表面。电路板的第一表面2311对应多个第一连接触点22221的位置设有多个第二电连接触点23111。多个第二电连接触点23111分别与多个第一电连接触点22221电连接。
优选的,在某些实施例中,光机照明部20包括插入件201。电路板组件23、插入件201、数字微镜元件22层叠设置。
插入件201位于电路板组件23和数字微镜元件22之间,用于实现多个第二电连接触点23111分别与多个第一电连接触点22221电连接。
具体的,如图10A和图10B所示,插入件201包括朝向数字微镜元件22的第二表面222插入件第一表面2011,以及朝向电路板231第一表面2311的插入件第二表面2012。插入件第一表面2011和第二表面2012上设置分别设置有内部分别电连接第三电连接点20111和第四电连接点20121。插入件第一表面2011上设置的第三电连接点20111分别与第一电连接触点22221电连接。插入件第二表面2012上设置的第四电连接点20121分别与第二电连接触点23111电连接。
在某些实施例中,第一电连接触点和第三电连接触点是直接接触的。第二电连接触点和第四电连接触点是直接接触的。
插入件第一表面2011设置有第三定位柱2011C第四和定位柱2011D。插入件第二表面2012设置有第五定位柱2012C和第六定位柱2012D。对应的,在数字微镜元件22设置有第三定位孔222C和第四定位孔222D,具体的,在数字微镜元件22的第二表面222包括机械承靠区2222,机械承靠区2222对应的部位设置有第三定位孔222C和第四定位孔222D。具体的, 第三定位柱2011C和第三定位孔222C对应设置,第四定位柱2011D和第四定位孔222D对应设置。
在某些实施例中,第三定位孔222C和第四定位孔222D分别设置在数字微镜元件22的定位切角部相邻的两个对角上。即第一定位孔、第二定位孔设置在一堆对角上,第三定位孔和第四定位孔设置在另一对对角上。进而在四个角上都对DMD进行了限位,从而保障DMD的定位更为稳定。
某些实施例中,第三定位柱2011C为菱柱体,第三定位孔222C为长圆孔;第四定位柱2011D为圆柱,第四定位孔222D为圆形孔。第三定位孔222C的尺寸大于第三定位柱2011C的尺寸;第四定位孔222D的尺寸大于第四定位柱2011D的尺寸,便于数字微镜元件和插入件之间的装配。同时,两者的装配间隙不宜过大,现在在0.05-0.01mm之间为最佳。
在某些实施例中,第三定位孔222C和第四定位孔222D可以是盲孔,装配完毕后,第三定位柱2011C的顶部和第三定位孔222C的底部不接触。第四定位柱2011D的顶部和第四定位孔222D的底部不接触。其目的在于避免使得插入件与数字微镜元件22的机械承靠部2222抵靠不严密,不会由于定位孔和定位柱的接触而影响数字微镜元件与插入件抵靠的机械稳定性和电连接稳定性。
插入件第二表面2012设置有第五定位柱2012C和第六定位柱2012D。对应的,电路板231上设置有第五定位孔23103C和第六定位孔23103D。具体的, 第五定位柱2012C和第三定位孔222C对应设置,第六定位柱2012D和第六定位孔23103D对应设置。
在某些实施例中,第三定位柱2011C和第五定位柱2012C在插入件的两侧相对设置。第四定位柱2011D和第六定位柱2012D在插入件的两侧相对设置。
在某些实施例中,第五定位柱2012C为菱柱体,第五定位孔23103C为圆形孔;第六定位柱2012D为圆柱,第六定位孔23103D为圆形孔。第五定位孔23103C的尺寸大于第五定位柱2012C的尺寸;第六定位孔23103D的尺寸大于第六定位柱2012D的尺寸,便于电路板和插入件之间的装配。同时,两者的装配间隙不宜过大,现在在0.05-0.01mm之间为最佳。
当通过压板将电路板组件23、DMD22固定压合装配完毕后,第一定位柱2121A位于定位孔221A内,第二定位柱2121B位于定位孔221B内。机械承靠部2212抵靠在承靠台2122A,承靠台2122B和承靠台2122C上。第三定位柱2011C位于第三定位孔222C内,第四定位柱2011D位于第四定位孔222D。第五定位柱2012C位于第五定位孔23103C内,第六定位柱2012D位于第六定位孔23103D。插入件第一表面2011上设置的多个电连接点20111分别与多个第三电连接触点22221电连接。插入件第二表面2012上设置的第四电连接点20121分别与多个第二电连接触点23111电连接。同时,插入件承靠在数字微镜元件22的第二表面222包括机械承靠区2222。电路板23承靠在插入件上。同时实现了机械承靠和良好的点接触。
在某些实施例中,插入件的第三电连接触点和第四电连接触点为弹性触点。相比电路板直接与数字微镜元件的平触点直接接触的方案,电路板组件通过插入件与数字微镜元件相接触的方案中,插入件的弹性触点,这样第二连接触点与数字微镜元件和电路板表面的电连接触点接触时,就可以通过发生弹性变形来保证其充分接触,从而可以使电路板组件与数字微镜元件之间的信号传输稳定。
在某些实施例中,数字微镜元件周边设置有第一密封件202。具体的第一密封件为弹性密封件,可以为泡棉或者橡胶等材质。具体内,密封件202设置在数字微镜元件22和插入件201周边。设置在 路板231和光机照明装置的壳体21之间。具体的,密封件设置在第一凹槽211的位置上。当通过压板将电路板组件23、DMD22固定压合装配完毕后,以压缩状态被压固在电路板和壳体21之间,密封圈一端与壳体21抵靠,一面与电路板23相抵靠。第一密封件为密封圈,可以防止灰尘从第一通孔212处进入到壳体21内,从而保证数字微镜元件22上的反射镜片部不受灰尘等污染。
本发明实施例还包括第一连接组件205,用于将压板24与壳体21固定连接。进而实现通过压板将电路板组件23、DMD22固定压合在客体21上。第一连接组件205能够向压板24施加使压板24朝向光机照明装置壳体21的方向的力。
第一连接组件205包括四个第一螺钉。四个第一螺穿过压板24、电路板231后,与光机照明装置壳体21螺纹连接。具体的,光机照明装置壳体21的第一凹槽211的四个角部分别设置有螺钉孔2111A,螺钉孔2111B,螺钉孔2111C,螺钉孔2111D。第一螺钉与螺纹孔一一对应设置,用于实现螺纹连接。
具体的,压板设置有压板螺钉避让部。螺钉避让部用于使螺钉部分通过,且螺钉避让部应可以是的螺钉的螺帽限制在压板一侧,不能通过。
具体的,压板螺钉避让部可以为螺钉过孔24A,螺钉过孔24B,螺钉过孔24C,螺钉过孔24D,用于四个螺钉穿过。四个螺钉过孔的尺寸小于对应螺钉的螺帽的尺寸。所以螺钉的螺帽会限制在通孔处,对压板施力。在某些实施例中,压板上避让螺钉的螺钉过孔可以改设置为半孔。
具体的,电路板上设置有第一电路板螺钉避让部。电路板螺钉避让部用于使螺钉部分通过。
具体的,第一电路板螺钉避让部可以为螺钉过孔23102A,螺钉过孔23102B,螺钉过孔23102C,螺钉过孔23102D,用于四个第一螺钉穿过。在某些实施例中,电路板螺钉避让部可以设置为半孔。
在某些实施例中,第一接组件205的包括第一螺钉和第一弹性件,第一螺钉2051穿过压板24的螺钉过孔后与光机照明装置壳体螺纹连接,第一弹性件位于第一螺的螺帽与压板之间。相比于仅仅使用螺钉的方案,由于螺钉的螺帽与压板之间设有第一弹性件,这样当第一螺钉与相应的螺纹孔固定后,通过调节第一螺钉对第一弹性件的压缩量,就可以调节第一弹性件对压板的弹力,从而可以使第一螺钉对压板、电路板组件、数字微镜元件的锁紧力可控调节。另外,第一弹性件也可以使第一螺钉与螺钉过孔之间配合的更紧,大大降低第一螺钉的松动脱落的可能,从而可提高了压板、电路板、插入件、数字微镜元件和光机照明装置壳体的连接可靠性。
本发明实施例中的数字光处理投影机还包括散热器25,散热器25与数字微镜元件22的散热区2221热接触。
散热器25在电路板所在平面上,与电路板231间隔设置。优选的,在某些实施例中,电路板组件23设置有第二通孔230,散热器25通过第二通孔230与数字微镜元件22的散热区2221热接触。
散热器25在压板所在平面上,与压板间隔设置。优选的,在某些实施例中,压板24设置有第三通孔240,散热器25通过第三通孔240与与数字微镜元件22的散热区2221热接触。
散热器25包括相互连接的导热体251和散热体252,散热体253导热体251依次穿过压板24的第三通孔240、电路板23的第二通孔230和插入件202的通孔2020后与数字微镜元件22的散热区2221接触。
通过在压板、电路板和插入件上对应数字微镜元件的散热区22分别开设通孔,导热体251依次穿过压板、电路板和插入件的通孔的方式实现散热器25与散热区2221热接触,解决了散热器5与数字微镜元件22之间隔有其它零件相接触不方便的问题,不但保证了数字微镜元件的良好散热,而且导热体251是从压板、电路板和插入件33内的第二通孔穿过的,这样可以使组件的结构更加紧凑,有利于减小其占用空间。
需要说明的是散热器25的导热体251可以是通过导热膏与散热区2221间接接触,即散热器5与散热区2221之间需要预留约0.1mm的空隙用来填充导热膏。而导热体与散热区之间的间隙大小直接决定数字微镜元件的散热好坏,如果此间隙过大,那么会导致导热膏无法将数字微镜元件热量最大程度的传给散热器容易造成数字微镜元件的损伤。
数字微镜元件2的散热区2221可以位于数字微镜元件22的中部,数字微镜元件22的机械承靠区2222位于散热区2221的一周。通过这样设置,当机械承靠区2222受到第一连接组件较大的锁紧力时,可以保证数字微镜元件2的受力均匀。
本发明实施例还包括第二连接组件207,用于将散热器25固定在光机照明装置的壳体21上。
第二连接组件207包括四个第二螺钉。光机照明装置壳体21的第一凹槽211的外周螺钉柱,用于散热器25的固定。螺钉柱213包括螺钉柱213A,螺钉柱213B,螺钉柱213C,螺钉柱213D。螺钉主213从壳体21上向外突出,穿过电路板231后。第二螺钉与螺钉柱一一对应设置,用于实现螺纹连接。
具体的,电路板上设置有螺钉柱避让部。电路板螺钉柱避让部用于使螺钉柱通过。具体的,螺钉柱避让部可以为螺钉柱过孔23101A,螺钉柱过孔23101B,螺钉柱过孔23101C,螺钉柱过孔23101D,用于四个螺钉柱穿过。在某些实施例中,螺钉柱避让部可以设置为半孔。
在某些实施例中,散热器25包括导热体251和散热体252。更具体的,散热体252包括散热基板2521,散热片2522。散热器安装完毕后,螺钉柱213与散热基板2521抵靠。散热基板上设置有螺钉孔2521A、螺钉孔2521B、螺钉孔2521C、螺钉孔2521D。四个第二螺钉从上述螺钉孔穿过后,与分别与四个螺钉柱固定。
在某些实施例中,散热基板2521上还设置有四个第一螺钉避让孔25210A,25210B、25210C、25210D,为第一螺钉形成避让空间,从而可以使得在第一螺钉与散热器不接触的情况下,部分嵌入散热器,进一步节省安装空间。
在某些实施例中,第二接组件207的包括第二螺钉和第二弹性件,第二螺钉穿过散热器25的螺钉过孔后与光机照明装置壳体螺纹连接,第二弹性件位于第二螺钉的螺帽与散热器25之间。相比于仅仅使用螺钉的方案,由于螺钉的螺帽与散热器之间设有第二弹性件,这样当第二螺钉与相应的螺钉柱固定后,通过调节第二螺钉对第二弹性件的压缩量,就可以调节第二弹性件对散热器的弹力,从而可以使第二螺钉对散热器、数字微镜元件的锁紧力可控调节。另外,第二弹性件也可以使第二螺钉与螺钉过孔之间配合的更紧,大大降低第二螺钉的松动脱落的可能,从而可提高了散热器和光机照明装置壳体的连接可靠性。
本发明实施例提供的数字光处理投影机,由于光机照明装置壳体上开设有第一通孔,数字微镜元件的第一表面与光机照明装置壳体抵靠,第一表面对应第一通孔的位置设有反射镜片。当向数字微镜元件施加使数字微镜元件向靠近光机照明装置壳体的方向移动的力时,光机照明装置壳体会对数字微镜元件起到限位作用,从而阻止了数字微镜元件沿靠近光机照明装置壳体的方向移动,这样反射镜片与光机照明装置壳体之间就可以保持固定,从而确保了反射镜片对光线反射的准确性,进而使数字光处理投影机能够投出稳定的图像。
由于数字微镜元件的第二表面包括机械承靠区和散热区,第二表面与第一表面相对,机械承靠区分布有多个第一电连接触点,电路板组件靠近数字微镜元件的第二表面设置,且电路板组件对应多个第一电连接触点的位置设有多个第二电连接触点。第一连接组件通过压板能够向电路板组件施加使电路板组件向靠近光机照明装置壳体的方向移动的力,这样就可以通过调节第一连接组件向电路板组件施加使电路板组件向靠近光机照明装置壳体的方向移动的力的大小,即调节机械承靠区所承受力的大小,以使第二连接触点与第一连接触点充分接触,从而保证电路板组件与数字微镜元件之间信号传输稳定。
由于散热器与数字微镜元件的散热区热接触,且与压板、电路板组件间隔设置,散热器向数字微镜元件施加的力只作用于散热区。第二连接组件能够向散热器施加使散热器向靠近数字微镜元件的方向移动的力,这样就可以通过调节第二连接组件向散热器施加力的大小,即通过调节散热器与散热区之间接触紧密程度,来调节散热区受力的大小,以使散热器既能对散热区充分散热,又能够避免散热区的受力过大。
本发明实施例提供的数字光处理投影机中数字微镜元件的固定结构是通过两组连接组件分别调节机械承靠区与散热区的所受力的大小,这样可以能够同时满足机械承靠区与散热区所受力的要求,即:通过第一连接组件将机械承靠区所受的力调节到合适的值,保证电路板组件与数字微镜元件之间信号传输稳定,使数字微镜元件与光机照明装置壳体固定良好,从而可以避免数字微镜元件与光机照明装置壳体松动时对光线反射造成的影响;通过第二连接组件将散热区所受的力调节到合适的值,不仅可以避免散热区受力过大而发生破碎,而且还可以使散热区充分散热。
为了使压板对电路板、插入件、数字微镜元件均匀压紧,以保证在某些实施例中,第一螺钉为多个,且均匀分布于压板上,多个第一螺钉均为轴肩螺钉,第一弹性件套设于第一螺钉的轴肩与螺钉头之间,且多个第一螺钉的轴肩到螺钉头之间的距离相等。通过在压板上设置多个第一螺钉,并且多个第一螺钉的轴肩到螺帽之间的距离相等,在旋紧第一螺钉时,第一螺钉的轴肩与压板相抵靠,从而就可以保证每个第一螺钉轴肩上所套设的第一弹性件的压缩量相等,每个第一弹性件对压板所施加的弹力就容易保持相等,那么压板对电路板、插入件、数字微镜元件所施加的压紧力也更加均匀,从而可以保证电路板、插入件、数字微镜元件的各个部分均能够充分接触,进而可以使电路板与数字微镜元件之间的信号传输更加稳定。
其中,第一螺钉的数目可以为两个、四个、六个等,在此不做具体限定。当第一螺钉的数目为四个时,即两对,每对中的两个第一螺钉可以对称设置于压板沿长度方向或者宽度方向中心面的两侧。
在某些实施例中,为了使散热器的受力均匀,以保证导热体与散热区均匀接触,第二螺钉为多个,且均匀分布于散热器上,多个第二螺钉均为轴肩螺钉,第二弹性件套设于第二螺钉的轴肩与螺帽之间,且多个第二螺钉的轴肩到螺帽之间的距离相等。通过在散热器上设置多个第二螺钉,并且多个第二螺钉的轴肩到螺帽之间的距离相等,在旋紧第二螺钉时,第二螺钉的轴肩与散热体相抵靠,从而就可以保证每个第二螺钉轴肩上所套设的第二弹性件的压缩量相等,每个第二弹性件对散热器所施加的弹力就容易保持相等,这样可以使散热体上受力更加均匀,可以避免散热体因受力不均所发生的倾斜,从而可以使导热体与数字微镜元件的散热区的接触更加均匀,进而可以进一步提高散热器的散热效果。
其中,第二螺钉的数目可以为两个、四个、六个等,在此不做具体限定。当第二螺钉的数目为四个时,即两对,每对中的两个第二螺钉可以对称设置于散热体沿长度方向或者宽度方向中心面的两侧;第二螺钉的螺帽可沉入散热器25中,也可以与散热体的表面相贴合,在此不做具体限定。
本发明实施例提供的数字光处理投影机中数字微镜元件的固定结构中,第一弹性件和第二弹性件的种类并不唯一A,比如第一弹性件和第二弹性件可以均为橡胶圈、弹性垫圈。优选的,第一弹性件和第二弹性件也可以均为弹簧。相比橡胶圈、弹性垫圈,弹簧的弹性更好有利于提高第一螺钉和第二螺钉的防松效果。
本发明实施例提供的数字光处理投影机中数字微镜元件的固定结构中,压板的材料并不唯一,比如压板可以为塑料板。
本发明的某些实施例中,压板24为金属平板(比如不锈钢板、铝板等)。电路板23的第二表面232设置有接地点2321 。接地点2321与压板24之间设置有导电垫204,用于实现接地点2321与压板之间的电连接。从而实现电路板23的接地。
同时,为了防止可以金属的压板41与电路板32的其他部分直接接触使电路板32发生短路。压板24与电路板23之间设置有绝缘垫205。金属平板的刚度和平整度更好,金属板受第一连接组件的作用时的变形更小,从而能够使压板平整地对插入件、电路板、数字微镜元件进行压紧,这样有利于插入件、电路板、数字微镜元件之间的触点充分接触,进而有利于电路板与数字微镜元件之间的信号传递稳定。同时,通过接地点2321与压板之间的电连接。从而实现电路板23的接地。
优选的,绝缘垫205为弹性绝缘垫,如橡胶垫等。导电垫204为弹性导电垫,例如导电泡面等。通过弹性的绝缘垫能够更均匀的将压板24收到的第一连接组件的压力传递到电路板。同时,弹性导电垫也可以保障压板和接地点之间良好的电连接。
在某些实施例中,接地点设置在电路板231上第二通孔2310的周围。接地点2321与压板24之间设置有导电垫204。绝缘垫205设置在导电垫204的外周。在外周设置有绝缘垫205能够更均匀的将压板24收到的第一连接组件的压力传递到电路板。
在某些实施例中,在数字微镜元件的第一表面的机械承靠面和光机照明装置壳体之间设置有第二密封件,具体的,密封件为弹性密封件,可以为泡棉或者橡胶等材质。密封件可以为密封圈,一面抵靠在第一表面的机械承靠面,位于反射镜片的周围,一面抵靠在光机照明装置的壳体上,可以设置在密封圈可以防止灰尘从第一通孔212处进入到壳体21内,从而保证数字微镜元件22上的反射镜片221不受灰尘等污染。
在某些实施例中,在导热体251四周设置有第三密封件206,实现数字微镜元件的散热区2221和导热体251的热接触部位的密封。具体的,密封件为弹性密封件,可以为泡棉或者橡胶等材质。第三密封件可以为密封圈,一面抵靠在散热体252上,一面抵靠在压板24上。可以防止灰尘从进入到热接触面,影响其导热性能。在某些实施例中,第三密封件的弹性选择为泡棉,相对于橡胶,泡棉材质的变形形变更大,更利于保障导热体和数字微镜元件的散热区的相对距离,实现良好的热接触。且泡棉的弹性系数相对更小,不会由于第三密封件的压缩施加给压板过大的压力。
在某些实施例中,散热基板2521上设置有散热凸台2523,导热体设置在散热凸台上。导热体251四周设置有第三密封件206。第三密封件可以为密封圈,一面抵靠在散热凸台2523上,一面抵靠在压板24上.由于螺钉柱213的高度确定了散热基板和压板之间的高度差,通过设置散热凸台2523,可以减小第三密封件206的厚度,更利于密封的实现。
由于本发明实施例提供的数字光处理投影机中包括上述任一实施例中的数字光处理投影机中数字微镜元件的固定结构,所以也能产生相同的技术效果,解决相同的技术问题。关于数字光处理投影机的其它结构,已为本领域所属人员所公知,在此不再赘述。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种数字光处理投影机,包括:光源装置、光机照明装置、光机镜头装置;其特征在于,所述光机照明装置包括: 
    光机照明装置壳体,所述光机照明装置壳体开设有第一通孔;
    数字微镜元件,所述数字微镜元件的第一表面设置有机械承靠部,所述数字微镜元件的第一表面的机械承靠部与所述光机照明装置壳体抵靠;所述数字微镜元件的第一表面对应所述第一通孔的位置设有反射镜片部;所述光机照明装置壳体设置有第一定位柱和第二定位柱;所述数字微镜元件设置有第一定位孔和第二定位孔;所述有第一定位柱位于所述第一定位孔内,所述第二定位柱位于所述第二定位孔内;
    所述数字微镜元件的第二表面与所述数字微镜元件的第一表面相对设置;所述数字微镜元件的第二表面设置有第一电连接触点;
    电路板组件,所述电路板组件包括电路板,所述电路板的第一表面朝向所述数字微镜元件的第二表面,所述电路板的第一表面位置设有第二电连接触点;所述第二电连接触点与所述第一电连接触点电连接;
    压板,所述压板和所述电路板之间设置有绝缘垫;
    第一连接组件,用于与所述光机照明装置壳体固定连接,并将所述压板、电路板组件、数字微镜元件压固在所述光机照明装置壳体上。
  2. 如权利要求1所述的一种数字光处理投影机,其特征在于,
    所述电路板组件设置有第二通孔;
    所述压板设置有第三通孔;
    所述数字微镜元件的第二表面设置有散热区
    散热器,所述散热器通过所述第二通孔、第三通孔,并与所述数字微镜元件的散热区热接触;
    第二连接组件,所述第二连接组件用于将所述散热器固定在所述光机照明装置壳体上。
  3. 如权利要求1或2所述的一种数字光处理投影机,其特征在于,还包括:
    插入件,所述插入件设置在所述电路板和所述数字微镜元件之间,用于实现所述第二电连接触点与所述第一电连接触点电连接;
    所述插入件设置有与所述数字微镜元件的第二表面相对设置的第一表面;所述插入件的第一表面设置有第三定位柱和第四定位柱;
    所述数字微镜元件设置有第三定位孔和第四定位孔;
    所述第三定位柱位于所述第三定位孔内,所述第四定位柱位于所述第二定位孔内。
  4. 如权利要求3所述的一种数字光处理投影机,其特征在于,
    所述插入件还包括与所述插入件第一表面相对设置的第二表面;
    所述插入件的第二表面设置有第五定位柱和第六定位柱;
    所述电路板设置有第五定位孔和第六定位孔;
    所述第五定位柱位于所述第五定位孔内,所述第六定位柱位于所述第六定位孔内。
  5. 如权利要求1所述的一种数字光处理投影机,其特征在于,所述数字微镜元件设置有定位切角部,所述第一定位孔位于所述数字微镜元件的定位切角部;所述第二定位孔位于所述数字微镜元件的定位切角部的对角部。
  6. 如权利要求2和5所述的一种数字光处理投影机,其特征在于,所述数字微镜元件设置有定位切角部,所述第三定位孔和所述第四定位孔分别位于所述定位切角部的邻角部。
  7. 如权利要求6所述的一种数字光处理投影机,其特征在于,所述数字微镜元件设置有定位切角部,所述第三定位孔和所述第四定位孔分别位于所述定位切角部的邻角部。
  8. 如权利要求4所述一种数字光处理投影机,其特征在于,所述第三定位柱和所述第五定位柱相对设置,所述第四定位柱和所述第六定位柱相对设置。
  9. 如权利要求1所述一种数字光处理投影机,其特征在于,
    所述电路板的第二表面设置有接地点;
    所述压板至少包括部分导电部,所述导电部通过导电垫与所述接地点电连接。
  10. 一种数字光处理投影机,包括光机照明装置壳体和数字微镜元件: 
    所述光机照明装置壳体设置有第一定位柱和第二定位柱;
    所述数字微镜元件设置有第一定位孔和第二定位孔;所述有第一定位柱位于所述第一定位孔内,所述第二定位柱位于所述第二定位孔内。
PCT/CN2019/093633 2019-04-18 2019-06-28 一种数字光处理投影机 WO2020211197A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/655,912 US11265521B2 (en) 2019-04-18 2019-10-17 Digital light processing projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910327640.6A CN110099265B (zh) 2019-04-18 2019-04-18 一种数字光处理投影机
CN201910327640.6 2019-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/655,912 Continuation US11265521B2 (en) 2019-04-18 2019-10-17 Digital light processing projector

Publications (1)

Publication Number Publication Date
WO2020211197A1 true WO2020211197A1 (zh) 2020-10-22

Family

ID=67445592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093633 WO2020211197A1 (zh) 2019-04-18 2019-06-28 一种数字光处理投影机

Country Status (2)

Country Link
CN (1) CN110099265B (zh)
WO (1) WO2020211197A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474967A (zh) * 2020-04-29 2020-07-31 苏州东方克洛托光电技术有限公司 用于提高数字微镜环境适应性的动态温控装置
CN112433423B (zh) * 2020-08-18 2021-10-08 深圳市安华光电技术有限公司 Dmd组件及投影光机
CN113075841B (zh) * 2020-12-23 2022-08-23 深圳市安华光电技术有限公司 光机及投影仪
CN214067558U (zh) * 2021-02-09 2021-08-27 海信视像科技股份有限公司 显示装置及其光机组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221347A (zh) * 2007-01-11 2008-07-16 中强光电股份有限公司 光阀模块
US20160295180A1 (en) * 2015-04-01 2016-10-06 Sintai Optical (Shenzhen) Co., Ltd. Pico projector
CN205787359U (zh) * 2016-06-30 2016-12-07 海信集团有限公司 数字微镜器件芯片限位结构、固定结构及光机组件
CN107329232A (zh) * 2017-08-11 2017-11-07 青岛海信电器股份有限公司 一种投影机中数字微镜元件的固定结构及投影机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221347A (zh) * 2007-01-11 2008-07-16 中强光电股份有限公司 光阀模块
US20160295180A1 (en) * 2015-04-01 2016-10-06 Sintai Optical (Shenzhen) Co., Ltd. Pico projector
CN205787359U (zh) * 2016-06-30 2016-12-07 海信集团有限公司 数字微镜器件芯片限位结构、固定结构及光机组件
CN107329232A (zh) * 2017-08-11 2017-11-07 青岛海信电器股份有限公司 一种投影机中数字微镜元件的固定结构及投影机

Also Published As

Publication number Publication date
CN110099265B (zh) 2020-10-23
CN110099265A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020211197A1 (zh) 一种数字光处理投影机
JP6428155B2 (ja) 画像投影装置及び画像生成装置
US11265521B2 (en) Digital light processing projector
US20130050663A1 (en) Light source device, projector, and light source device fabrication method
JP2004354853A (ja) 冷却装置、この冷却装置を備えた光学装置およびプロジェクタ
CN109521636B (zh) 电子装置、光源装置以及投影装置
US10585341B2 (en) Light source unit and projector
JP7371678B2 (ja) 電子装置の製造方法及び投影装置の製造方法
JP3642338B2 (ja) 光学装置及びプロジェクタ
JP4375349B2 (ja) プロジェクタ
JP2018097312A (ja) 電子装置、投影装置及び電子装置の製造方法
JP5880924B2 (ja) 光源装置、プロジェクタ、及び、光源装置の製造方法
US20190302584A1 (en) Image projection apparatus
JP4952981B2 (ja) 光変調素子ユニット及びプロジェクタ
US11822219B2 (en) Projector
US9971236B2 (en) Projector having two diffusion plates
WO2022170814A1 (zh) 显示装置及其光机组件
US10247405B2 (en) Light source unit, projector, and method of assembling a light source unit
US7891827B2 (en) Projector
JP4228603B2 (ja) 光変調装置、光学装置及びプロジェクタ
JP2014123028A (ja) 光学素子固定装置、光学素子固定装置を含むプロジェクタ、及び、光学素子固定装置による光学素子の角度調整方法
JP5505705B2 (ja) 表示素子調整機構及びプロジェクタ
JP2004170512A (ja) 光学装置、光学ユニット、およびプロジェクタ
WO2022199549A1 (zh) 投影主机
JP2005043679A (ja) プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925404

Country of ref document: EP

Kind code of ref document: A1