WO2020209577A1 - 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법 - Google Patents

출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법 Download PDF

Info

Publication number
WO2020209577A1
WO2020209577A1 PCT/KR2020/004698 KR2020004698W WO2020209577A1 WO 2020209577 A1 WO2020209577 A1 WO 2020209577A1 KR 2020004698 W KR2020004698 W KR 2020004698W WO 2020209577 A1 WO2020209577 A1 WO 2020209577A1
Authority
WO
WIPO (PCT)
Prior art keywords
output ground
value
difference value
phase
ground fault
Prior art date
Application number
PCT/KR2020/004698
Other languages
English (en)
French (fr)
Inventor
허쉰더
양천석
Original Assignee
엘에스일렉트릭(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭(주) filed Critical 엘에스일렉트릭(주)
Priority to CN202080027977.6A priority Critical patent/CN113678010B/zh
Priority to US17/602,901 priority patent/US12038486B2/en
Publication of WO2020209577A1 publication Critical patent/WO2020209577A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present invention relates to an inverter system capable of output ground fault detection and an output ground fault detection method using the same, and in particular, an inverter that detects an output ground fault by detecting a current of a shunt resistor and an inverter output ground fault detection method using the same.
  • an inverter that detects an output ground fault by detecting a current of a shunt resistor and an inverter output ground fault detection method using the same.
  • An inverter is a device that converts DC power into AC power having a desired frequency and size, and is used to control AC motors. Such an inverter receives 3-phase AC power through a rectifier and converts it into DC power, stores it in a DC-Link, converts power to AC through an inverter, and drives the motor. In addition, the inverter is controlled by a variable voltage variable frequency (VVVF) method, and the voltage and frequency input to the motor can be varied according to a pulse width modulation (PWM) output.
  • VVVF variable voltage variable frequency
  • Inverter may burn out due to abnormal output current.
  • an abnormality in the output current of the inverter typically includes an overcurrent and an output ground fault.
  • Inverter output ground fault means that one or more of the three phases of the inverter output contacts the earth ground to form a current path to the earth ground. This inverter output ground fault occurs due to disconnection of the inverter output line or inflow of a conductor between the inverter output and earth.
  • the motor may burn out due to deterioration due to an overcurrent above the rated current, and even a personal accident may occur if the ground fault line touches the human body.
  • a general-purpose inverter driving an electric motor provides a function to safely protect the motor and the user by notifying the user of the inverter output ground fault in case of an output ground fault and stopping the inverter operation.
  • FIG. 4 is a configuration diagram of a general inverter according to the prior art.
  • FIG. 5 is a configuration diagram of an inverter that detects an output current using a CT according to the prior art
  • FIG. 6 is a configuration diagram of an inverter that detects an output current using a shunt resistor according to the prior art.
  • the inverter 1 receives three-phase AC power from the power supply unit (three-phase power supply, 2), and the rectifying unit 11 rectifies it, and the smoothing unit 12 is the rectifying unit 11
  • the DC voltage rectified by) is smoothed and stored.
  • the inverter unit 13 outputs an AC voltage having a predetermined voltage and frequency according to the PWM control signal from the DC voltage stored in the DC-Link capacitor, which is the smoothing unit 12, and provides the DC voltage to the motor 3 .
  • the inverter unit 13 is composed of three-phase legs, and two switching elements are connected in series to each leg.
  • overcurrent detection In order to protect the inverter from overcurrent, overcurrent detection is necessary.
  • a current sensor (CT) is placed at the output (A) of the inverter 1 to reduce the inverter output current.
  • CT current sensor
  • FIG. 6 by disposing a shunt resistor connected in series with the switching element of the lower leg B of the inverter unit 13, the output current of the inverter unit 13 is By detecting, overcurrent is detected.
  • the overcurrent protection operation is mainly performed by detecting the instantaneous maximum current of the output current.
  • the current detection method using a shunt resistor is of the lower switching element of each leg of the inverter unit 13 of the inverter 1 (for example, an insulated gate bipolar transistor (IGBT)).
  • IGBT insulated gate bipolar transistor
  • Each of the shunt resistors 20 is disposed at the emitter end to detect the current flowing through the shunt resistor 20.
  • the output current is detected discontinuously according to the switching state of the switching element of the inverter unit 13 and switching. Instantaneous maximum current detection was required considering the switching state of the device.
  • FIG. 7 is a diagram illustrating an output current detection limit region according to a PWM state of an inverter.
  • Table 1 is a table showing the calculation method of current detection in the current detection method using a shunt resistor.
  • FIG. 9 is a configuration diagram showing an output current path in a normal state and an output ground fault in an inverter according to the prior art.
  • (a) of FIG. 9 shows the path of the output current of the inverter in a steady state
  • (b) of FIG. 9 shows the path of the output of the inverter when an output fault occurs.
  • the method of calculating the remaining 1-phase current by detecting an effective 2-phase current among the 3-phase output currents of the inverter according to the PWM section cannot detect an output ground fault. That is, in the conventional current detection method using a shunt resistor, the sum of the three-phase output currents according to Kirchhoff's current law is always '0' even when an inverter output ground fault occurs. Therefore, since the conventional ground fault detection method cannot detect the output ground fault of the inverter, the inverter and the user cannot be protected by the overcurrent protection operation of the inverter.
  • the controller includes an output current detection module that detects a three-phase current AD Raw value from a shunt resistor to detect an absolute peak value, an output current comparison module that generates a difference value by comparing the absolute peak value of valid two phases among three phases, and When the difference value is greater than or equal to the output ground level, the count is accumulated in the phase corresponding to the corresponding difference value, and when the accumulated count is greater than the output ground reference, it is determined as an output ground and the operation of the inverter unit is stopped.
  • the output ground fault detection module determines that there is an abnormality in the V phase when the difference between UV and VW is greater than the output ground level and the WU difference is less than the output ground level, and the UV difference value is greater than the output ground level and the VW difference If the value is less than the output ground level and the WU difference value is greater than the output ground level, it is judged that there is an abnormality in the U phase, and the UV difference value is less than the output ground level and the difference between VW and WU is greater than the output ground level. In case, it is judged that there is an abnormality in the W phase.
  • the method for detecting an output ground fault of an inverter includes an inverter unit having two switching elements connected in series to each leg, a shunt resistor connected in series with a switching element of a lower leg of the inverter unit, and an inverter unit.
  • the 3-phase current AD Raw value includes the U-phase current AD Raw value, the V-phase current AD Raw value, and the W-phase current AD Raw value, and the difference value is between the U-phase current AD Raw value and the V-phase current AD Raw value.
  • UV difference value which is the difference between the peak value of the absolute value
  • VW difference value and W-phase current AD
  • WU which is the difference between the raw value and the peak value of the absolute value of the U-phase current AD Raw value.
  • the inverter system capable of output ground fault detection according to the present invention and the inverter output ground fault detection method using the same can reliably detect the output ground fault of the inverter by comparing the absolute peak value of the three-phase current AD Raw value detected from the shunt resistor. .
  • FIG. 2 is a waveform diagram of a three-phase current waveform and a three-phase current calculation raw value in case of an output ground fault in an inverter system capable of detecting an output ground according to the present invention.
  • FIG. 3 is a flowchart of an inverter output ground fault detection method according to the present invention.
  • FIG. 4 is a configuration diagram of a general inverter according to the prior art.
  • FIG. 5 is a configuration diagram of an inverter for detecting an output current using a CT according to the prior art.
  • FIG. 7 is a diagram illustrating an output current detection limit region according to a PWM state of an inverter.
  • FIG. 9 is a configuration diagram showing an output current path in a normal state and an output ground fault in an inverter according to the prior art.
  • FIG. 1 is a circuit diagram of an inverter system capable of detecting an output ground fault according to the present invention.
  • the inverter unit 300 is composed of three-phase legs, and two switching elements are connected to each leg. In addition, the inverter unit 300 receives a PWM input from the controller 400 and outputs a current smoothed by the smoothing unit 200 to the motor. In the inverter unit 300, a shunt resistor is connected to the lower switching element of each leg to transmit the output current to the output ground fault detection unit 410 of the controller 400 to be described later.
  • the output ground fault detection unit 410 detects an output ground fault by comparing the peak values of each phase after taking the current AD (Analog-to-Digital) raw value measured from the shunt resistance as an absolute value.
  • the output ground fault detection unit 410 includes an output current detection module 411 that detects the current AD Raw value from the shunt resistor, an output current comparison module 412 that compares the absolute peak value of each phase, and an output current comparison module 412. ) And an output ground fault detection module 413 that detects an output ground fault with the difference value compared in ).
  • the output ground fault detection module 413 determines as an output ground fault.
  • the output ground fault detection module 413 transmits an output ground fault signal to the inverter control unit 420 when it is determined as an output ground fault.
  • the inverter control unit 420 controls the inverter unit 300 through a PWM input.
  • the inverter control unit 420 blocks the PWM signal input to the inverter unit 300 to cut off the power output from the inverter unit 300 to the motor.
  • the output ground fault detection module detects the current AD Raw value measured from the shunt resistance.
  • the present invention is not limited by the embodiments and drawings disclosed in the present specification, and various by a person skilled in the art within the scope of the technical idea of the present invention. It is obvious that transformation can be made. In addition, even if not explicitly described and described the effects of the configuration of the present invention while describing the embodiments of the present invention, it is natural that the predictable effects of the configuration should also be recognized.
  • the controller may be included in the inverter and implemented as an inverter.
  • the present invention may be implemented as a controller used in an inverter equipped with a conventional shunt resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법에 대한 것으로서, 특히 션트저항(Leg-Shunt Resistor)의 전류를 검출하여 출력지락을 검출하는 인버터와 이를 이용한 인버터 출력지락 검출 방법에 관한 것이다. 본 발명은 션트저항으로부터 검출된 3상의 전류 AD Raw값의 절대치 피크값을 비교하여 인버터의 출력지락을 신뢰성 있게 검출할 수 있다

Description

출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법
본 발명은 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법에 대한 것으로서, 특히 션트저항(Leg-Shunt Resistor)의 전류를 검출하여 출력지락을 검출하는 인버터와 이를 이용한 인버터 출력지락 검출 방법에 관한 것이다.
인버터는 직류 전원을 원하는 주파수 및 크기의 교류 전원으로 변환하는 장치로서 교류 전동기 등을 제어하는데 사용된다. 이러한 인버터는 3상 AC 전원을 정류기로 입력받아 DC 전원으로 변환하며, 직류링크(DC-Link)에 저장한 뒤 인버터를 통하여 AC로 전원을 변환한 후 전동기를 구동한다. 또한, 인버터는 가변 전압 가변주파수(variable voltage variable frequency, VVVF) 방식에 의해 제어되며, 펄스 폭 변조(pulse width modulation, PWM) 출력에 따라 전동기에 입력되는 전압과 주파수를 가변할 수 있다.
인버터는 출력전류 이상에 의해 인버터가 소손될 수 있다. 여기서, 인버터의 출력전류 이상은 대표적으로 과전류와 출력지락이 있다. 인버터 출력지락은 인버터 출력의 3상 중 1상 이상이 대지 접지와 접촉되어 대지 접지로 전류 경로(path)가 형성되는 것을 의미한다. 이러한 인버터 출력지락은 인버터 출력선의 단선 또는 인버터 출력과 대지간 도체 유입 등으로 발생한다. 인버터 출력지락 시 전동기는 정격전류 이상의 과전류로 인하여 열화에 의한 소손이 발생할 수 있으며, 지락선이 인체에 접촉되는 경우 인명사고까지 발생할 수 있다. 따라서, 전동기를 구동하는 범용 인버터는 출력지락 시 인버터 출력지락 유무를 사용자에게 알려주고 인버터 운전을 정지하여 전동기 및 사용자를 안전하게 보호하는 기능을 제공하고 있다. 하지만, 결론적으로 범용 인버터에서는 션트저항으로 출력지락을 정확하게 검출할 수 없다.
도 4는 종래기술에 따른 일반적인 인버터의 구성도이다. 또한, 도 5는 종래기술에 따른 CT를 이용하여 출력전류를 검출하는 인버터의 구성도이며, 도 6은 종래기술에 따른 션트저항을 이용하여 출력전류를 검출하는 인버터의 구성도이다.
종래기술에 따른 인버터(1)는 도 4를 참조하면, 전원부(3상 전원, 2)로부터 3상의 교류전원을 인가받아, 정류부(11)가 이를 정류하고, 평활부(12)는 정류부(11)가 정류한 직류전압을 평활하여 저장한다. 인버터부(13)는 평활부(12)인 직류링크(DC-Link) 커패시터에 저장된 직류전압을 PWM 제어신호에 따라 소정 전압 및 주파수를 가지는 교류전압을 출력하여, 이를 전동기(3)에 제공한다. 인버터부(13)는 3상의 레그로 구성되며, 각 레그에는 2개의 스위칭 소자가 직렬로 연결되어 구성된다.
인버터를 과전류부터 보호하기 위해서는 과전류 검출이 필요한데, 이와 같은 과전류 검출을 위해 도 5에 도시된 바와 같이, 인버터(1)의 출력(A)에 전류센서(Current Transformer, CT)를 배치하여 인버터 출력전류를 검출하거나, 또는 도 6에 도시된 바와 같이, 인버터부(13)의 하부레그(B)의 스위칭 소자와 각각 직렬로 연결되는 션트저항을 배치하여, 이로부터 인버터부(13)의 출력전류를 검출함으로써, 과전류를 검출한다. 이때, 주로 출력전류의 순시 최대 전류를 검출하여 과전류 보호동작을 수행하게 된다.
도 6을 참조하면, 션트저항을 이용하는 전류검출 방식은, 인버터(1)의 인버터부(13)의 각 레그의 하부 스위칭 소자(예를 들어, 절연 게이트 양극성 트랜지스터(Insulated Gate Bipolar Transistor, IGBT)의 이미터 단에 션트저항(20)을 각각 배치하여, 션트저항(20)에 흐르는 전류를 검출하였다. 하지만, 인버터부(13)의 스위칭 소자의 스위칭 상태에 따라 불연속적으로 출력전류가 검출되어 스위칭 소자의 스위칭 상태를 고려한 순시 최대 전류 검출이 요구되었다.
도 7은 인버터의 PWM 상태에 따른 출력전류 검출 제한영역을 설명하기 위한 다이어그램이다.
션트저항을 이용하여 인버터의 출력전류를 검출하는 방식은, 스위칭 소자의 동작상태 및 전류 도통시간에 따라 전류검출이 불가능한 영역이 발생한다. 따라서, 전류검출 영역의 확장을 위해서 3상의 출력전류 중 유효한 2상의 전류를 검출하여 나머지 1상의 전류를 연산하여 추정하는 방식을 사용한다.
표 1은 션트저항을 이용한 전류검출 방식에서 전류 검출 연산 방식을 나타낸 표이다.
Figure PCTKR2020004698-appb-img-000001
도 8은 종래기술에 따른 출력결상 검출이 가능한 인버터의 구성도이다.도 8을 참조하면, 3상 출력전류를 검출하고 전처리 과정을 거친 후 인버터 출력전류를 검출한다. 또한, 제어기에 입력된 출력전류의 연산결과에 따라 출력지락 유무를 판단한다.
도 9는 종래기술에 따른 인버터에서 정상상태와 출력지락 시 출력전류 경로를 도시한 구성도이다. 여기서, 도 9의 (a)는 정상상태 인버터 출력전류 경로를 표시한 것이며, 도 9의 (b)는 출력지락 시 인버터 출력전류 경로를 나타낸 것이다.
도 9의 (a)를 참조하면, 인버터 정상 동작에서는 인버터 3상의 전류센서를 통하여 입력되는 출력전류의 합은 키르히호프의 전류 법칙에 따라 'Iu+Iv+Iw=0'이 된다. 하지만, 도 9의 (b)를 참조하면, 출력지락이 발생하면 출력지락 상의 전류가 대지로 경로를 형성하므로 인버터 3상의 전류 센서를 통하여 입력되는 출력전류의 합은 0이 아니게 된다. 인버터의 출력지락 검출은 키르히호프의 전류 법칙을 이용하여 3상 전류의 합이 설정된 레벨 이상일 경우 출력지락으로 판단하고 보호동작을 수행한다.
하지만 전술된 션트저항을 이용한 전류검출 방식에서, PWM 구간에 따라 인버터 3상 출력전류 중 유효한 2상 전류를 검출하여 나머지 1상 전류를 연산하는 방식은 출력지락을 검출하지 못한다. 즉, 종래의 션트저항을 이용한 전류검출 방식은 인버터 출력지락 발생 시에도 키르히호프의 전류 법칙에 의한 3상 출력전류의 합은 항상 '0'이 된다. 따라서, 종래의 지락검출 방식으로는 인버터의 출력지락을 검출하지 못하므로 인버터의 과전류 보호 동작으로 인버터와 사용자를 보호하지 못하게 된다.
인버터 출력지락 발생 시 전류의 크기는 접지 저항과 연관이 있다. 만약, 3상 중 어느 하나에 아주 작은 접지 저항이 연결되었을 경우 전류가 과도하게 흐르면서 인버터 자체 과전류 보호동작으로 인버터의 출력을 차단한다. 하지만, 접지 저항이 출력지락이 되어도 출력지락 전류가 인버터의 과전류 보호동작을 수행하지 못할 만큼의 크기일 경우나, 인버터의 용량이 커질수록 과전류 보호 레벨은 높아지기 때문에 출력지락 전류가 보호 레벨까지 높지 못한 경우가 발생할 수 있다. 이 경우, 1상에서 출력지락이 발생해도 이를 검출할 수 없기 때문에 보호동작을 수행할 수 없는 문제가 있다.
본 발명의 목적은 션트저항을 이용한 전류 검출 방식에서 출력지락을 검출할 수 있는 인버터 시스템과 이를 이용한 출력지락 검출 방법을 제공하는 것이다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상술한 목적을 달성하기 위해서, 본 발명에 따른 출력지락 검출이 가능한 인버터 시스템은, 레그에 각각 직렬로 연결되는 2개의 스위칭 소자가 구비된 인버터부와, 인버터부의 하부레그의 스위칭 소자와 각각 직렬로 연결된 션트저항, 인버터부를 제어하며, 션트저항으로부터 검출된 3상의 전류 AD Raw값의 절대치 피크값을 비교하여 출력지락을 검출하는 제어기를 포함한다.
제어기는, 션트저항으로부터 3상의 전류 AD Raw값을 검출하여 절대치 피크값을 검출하는 출력전류 검출 모듈과, 3상 중 유효한 2상의 절대치 피크값을 비교하여 차이값을 생성하는 출력전류 비교 모듈, 및 차이값이 출력지락 레벨 이상일 경우 해당 차이값에 해당하는 상에 카운트를 누적하고, 누적된 카운트가 출력지락 기준 이상일 경우 출력지락으로 판단하여 인버터부의 작동을 중지시키는 출력지락 검출 모듈을 포함한다.
출력지락 검출 모듈은, UV 차이값과 VW 차이값이 출력지락 레벨보다 크고 WU 차이값이 출력지락 레벨보다 작을 경우 V상에 이상이 있는 것으로 판단하고, UV 차이값이 출력지락 레벨보다 크고 VW 차이값이 출력지락 레벨보다 작으며 WU 차이값이 출력지락 레벨보다 클 경우 U상에 이상이 있는 것으로 판단하며, UV 차이값이 출력지락 레벨보다 작고 VW 차이값과 WU 차이값이 출력지락 레벨보다 클 경우 W상에 이상이 있는 것으로 판단한다.
또한, 본 발명에 따른 인버터의 출력지락 검출 방법은, 레그에 각각 직렬로 연결되는 2개의 스위칭 소자가 구비된 인버터부와, 인버터부의 하부레그의 스위칭 소자와 각각 직렬로 연결된 션트저항, 및 인버터부를 제어하는 제어기를 포함하는 인버터 시스템의 출력지락 검출 방법으로서, 제어기가 션트저항으로부터 3상의 전류 AD Raw값을 검출하는 단계와, 제어기가 3상의 전류 AD Raw값의 절대치 피크값을 검출하는 단계, 제어기가 3상 중 유효한 2상의 전류 AD Raw값의 절대치 피크값을 비교하여 차이값을 생성하는 단계, 차이값이 출력지락 레벨 이상일 경우 해당 차이값에 해당하는 상에 제어기가 카운트를 누적하고, 누적된 카운트가 출력지락 기준 이상일 경우 출력지락으로 판단하여 인버터부의 작동을 중지시키는 단계를 포함한다.
여기서, 3상의 전류 AD Raw값은 U상 전류 AD Raw값과 V상 전류 AD Raw값 및 W상 전류 AD Raw값을 포함하고, 차이값은 U상 전류 AD Raw값과 V상 전류 AD Raw값의 절대치에 대한 피크값을 비교한 차이값인 UV 차이값과, V상 전류 AD Raw값과 W상 전류 AD Raw값의 절대치에 대한 피크값을 비교한 차이값인 VW 차이값, 및 W상 전류 AD Raw값과 U상 전류 AD Raw값의 절대치에 대한 피크값을 비교한 차이값인 WU 차이값을 포함한다.
차이값이 출력지락 레벨 이상일 경우 해당 차이값에 해당하는 상에 제어기가 카운트를 누적하고, 누적된 카운트가 출력지락 기준 이상일 경우 출력지락으로 판단하여 인버터부의 작동을 중지시키는 단계는, UV 차이값과 VW 차이값이 출력지락 레벨보다 크고 WU 차이값이 출력지락 레벨보다 작을 경우 제어기는 V상에 이상이 있는 것으로 판단하는 단계와, UV 차이값이 출력지락 레벨보다 크고 VW 차이값이 출력지락 레벨보다 작으며 WU 차이값이 출력지락 레벨보다 클 경우 제어기는 U상에 이상이 있는 것으로 판단하는 단계, 및 UV 차이값이 출력지락 레벨보다 작고 VW 차이값과 WU 차이값이 출력지락 레벨보다 클 경우 제어기는 W상에 이상이 있는 것으로 판단하는 단계를 포함한다.
본 발명에 따른 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 인버터 출력지락 검출 방법은, 션트저항으로부터 검출된 3상의 전류 AD Raw값의 절대치 피크값을 비교하여 인버터의 출력지락을 신뢰성 있게 검출할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명에 따른 출력지락 검출이 가능한 인버터 시스템의 회로도이다.
도 2는 본 발명에 따른 출력지락 검출이 가능한 인버터 시스템에서 출력지락 시 3상 전류 파형 및 3상 전류 연산 Raw값의 파형도이다.
도 3은 본 발명에 따른 인버터 출력지락 검출 방법의 순서도이다.
도 4는 종래기술에 따른 일반적인 인버터의 구성도이다.
도 5는 종래기술에 따른 CT를 이용하여 출력전류를 검출하는 인버터의 구성도이다.
도 6은 종래기술에 따른 션트저항을 이용하여 출력전류를 검출하는 인버터의 구성도이다.
도 7은 인버터의 PWM 상태에 따른 출력전류 검출 제한영역을 설명하기 위한 다이어그램이다.
도 8은 종래기술에 따른 출력결상 검출이 가능한 인버터의 구성도이다.
도 9는 종래기술에 따른 인버터에서 정상상태와 출력지락 시 출력전류 경로를 도시한 구성도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서는, 본 발명의 몇몇 실시예에 따른 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법을 설명하도록 한다.
도 1은 본 발명에 따른 출력지락 검출이 가능한 인버터 시스템의 회로도이다.
본 발명에 따른 출력지락 검출이 가능한 인버터 시스템은 도 1에 도시된 바와 같이, 3상 전원을 정류하는 정류부(100)와, 정류부(100)에서 출력된 전류를 평활하는 평활부(200), 평활부(200)에서 평활된 전류를 제어기의 제어에 따라 전동기에 출력하는 인버터부(300), 인버터부(300)의 션트저항에서 출력되는 출력 전류를 기반으로 출력지락을 검출하여 인버터부(300)를 제어하는 제어기(400)를 포함한다. 여기서, 정류부(100)는 다이오드에 의한 정류기능을 수행하며, 평활부(200)는 콘덴서에 의해 평활기능을 수행한다.
인버터부(300)는 3상 레그로 구성되며 각 레그에는 두개의 스위칭 소자가 연결된다. 또한, 인버터부(300)는 제어기(400)로부터 PWM 입력을 받아 평활부(200)에서 평활된 전류를 전동기에 출력한다. 이러한 인버터부(300)는 각 레그에서 하부의 스위칭 소자에는 션트저항이 연결되어 후술될 제어기(400)의 출력지락 검출부(410)에 출력전류를 전달한다.
제어기(400)는 출력지락을 검출하고 인버터부(300)의 PWM 입력을 제어함으로써 인버터부(300)의 출력을 제어한다. 이를 위해서, 제어기(400)는 출력지락을 검출하는 출력지락 검출부(410)와, 검출된 출력지락에 따라 인버터부(300)를 제어하는 인버터 제어부(420)를 포함한다.
출력지락 검출부(410)는 션트저항으로부터 측정된 전류 AD(Analog-to-Digital) Raw값을 절대치로 한 후 각 상의 피크값을 비교하여 출력지락을 검출한다. 이러한 출력지락 검출부(410)는 션트저항으로부터 전류 AD Raw값을 검출하는 출력전류 검출 모듈(411)과, 각 상의 절대치 피크값을 비교하는 출력전류 비교 모듈(412), 및 출력전류 비교 모듈(412)에서 비교된 차이값으로 출력지락을 검출하는 출력지락 검출 모듈(413)을 포함한다.
출력전류 검출 모듈(411)은 션트저항으로부터 출력전류, 즉, 전류 AD Raw값을 검출한다. 여기서, 전류 AD Raw값은 과전류 검출을 이유로 제어기(400)에서 측정되지 않은 나머지 1상의 전류를 추정하기 위해서 키르히호프의 전류 법칙(Kirchhoff's Current Law, KCL)을 적용하여 전류를 계산하기 전 Raw 상태인 AD 전류를 의미한다. 또한, 출력전류 검출 모듈(411)은 전류 AD Raw값을 절대치하여 음의 구간이 없도록 반전시켜 전류 AD Raw 절대치 피크값(이하, 절대치 피크값이라 함)을 생성한다. 한편, 출력전류 검출 모듈(411)은 제어기(400) 내에 구비되지 않고 별도의 회로로 구현될 수도 있다.
출력전류 비교 모듈(412)은 출력전류 검출 모듈(411)에서 전달된 절대치 피크값을 비교한다. 본 발명은 구조상 션트저항으로부터 2상의 출력전류만 실측할 수 있다. 따라서, 3상, 즉, U상, V상, W상 중, U상과 V상, V상과 W상, W상과 U상과 같이 한쌍식 비교하여 차이값을 생성할 수 있다. 본 실시예는 전술된 차이값을 각각 UV 차이값과 VW 차이값, WU 차이값으로 정의하며, 출력전류 비교 모듈(412)은 UV 차이값과 VW 차이값, WU 차이값을 생성한다.
출력지락 검출 모듈(413)은 출력전류 비교 모듈(412)에서 생성된 UV 차이값과 VW 차이값, WU 차이값을 출력지락 레벨과 비교하고 출력지락 카운트를 누적시켜 출력지락을 검출한다. 보다 구체적으로, 출력지락 검출 모듈(413)은 UV 차이값과 VW 차이값이 출력지락 레벨보다 크고 WU 차이값이 출력지락 레벨보다 작을 경우 전류 AD Raw 중 V상에 이상이 있는 것으로 판단한다. UV 차이값이 출력지락 레벨보다 크고 VW 차이값이 출력지락 레벨보다 작으며 WU 차이값이 출력지락 레벨보다 클 경우 전류 AD Raw 중 U상에 이상이 있는 것으로 판단한다. 또한, UV 차이값이 출력지락 레벨보다 작고 VW 차이값과 WU 차이값이 출력지락 레벨보다 클 경우 전류 AD Raw 중 W상에 이상이 있는 것으로 판단한다. 이상이 있는 것으로 판단된 경우 출력지락 검출 모듈(413)은 출력지락 카운트를 증가시킨다. 즉, U상에 이상이 있을 경우 U상 출력지락 카운트를 증가시키고, V상에 이상이 있을 경우 V상 출력지락 카운트를 증가시키며 W상에 이상이 있을 경우 W상 출력지락 카운트를 증가시킨다. 또한, U상 출력지락 카운트, V상 출력지락 카운트 또는 W상 출력지락 카운트 중 적어도 어느 하나가 출력지락 기준 이상일 경우 출력지락 검출 모듈(413)은 출력지락으로 판단한다. 출력지락 검출 모듈(413)은 출력지락으로 판단되면, 출력지락 신호를 인버터 제어부(420)에 전달한다.
인버터 제어부(420)는 PWM 입력을 통해 인버터부(300)를 제어한다. 여기서, 인버터 제어부(420)는 출력지락 검출 모듈(413)에서 출력지락 신호가 수신되면 인버터부(300)에 입력되는 PWM 신호를 차단하여 인버터부(300)에서 전동기로 출력되는 전원을 차단한다.
도 2는 본 발명에 따른 출력지락 검출이 가능한 인버터에서 출력지락 시 3상 전류 파형 및 3상 전류 연산 Raw값의 파형도이다. 도 2에서 파형 21과 파형 22 및 파형 23은 각각 채널 8(W상), 채널 9(U상) 및 채널 10(V상)의 실제 출력 전류 파형이고, 아래의 파형 24(채널 6)는 V상(파형 23, 채널 10), 파형 25(채널 7)는 W상(파형 21, 채널 8) 출력 전류의 반전된 값을 제어기에서 연산한 값이다.
도 2를 참조하면, 출력지락 시에는 실제 전류가 지락상에만 큰 전류가 흐르는 것을 볼 수 있다. 또한, 전류 AD Raw 값이 전류의 모양의 반 사이클 이상을 반영하는 것을 확인할 수 있다. 즉, 운전주기 1 사이클 내에서는 출력지락이 아닐 때 전류 AD Raw값의 절대치 피크값이 일정한 값을 유지하고 있다가 출력지락 시에는 1상의 전류 AD Raw값의 절대치 피크값이 다른 2상보다 크게 흐른다. 따라서, 운전주기 1 사이클 당 각 상 전류 AD Raw값의 절대치 피크값을 검출하고 검출한 절대치 피크값 각각을 비교하여 1상의 값이 일정값(출력지락 레벨) 이상의 큰 값이 나올 때 출력지락으로 판단할 수 있다.
상술한 바와 같이, 본 발명은 션트저항으로부터 검출된 3상의 전류 AD Raw값의 절대치 피크값을 비교하여 인버터의 출력지락을 신뢰성 있게 검출할 수 있다.
다음은 본 발명에 따른 인버터 출력지락 검출 방법에 대해 도면을 참조하여 설명한다. 후술될 내용 중 전술된 본 발명에 따른 출력지락 검출이 가능한 인버터 시스템의 설명과 중복되는 내용은 생략하거나 간략히 설명한다.
도 3은 본 발명에 따른 인버터 출력지락 검출 방법의 순서도이다.
본 발명에 따른 인버터 출력지락 검출 방법은 도 3에 도시된 바와 같이, 전류 AD Raw값을 검출하는 단계(S1)와, 전류 AD Raw값의 절대치 피크값을 검출하는 단계(S2), 절대치 피크값을 비교하는 단계(S3), 출력지락 레벨을 판단하는 단계(S4), 카운트를 증가시키는 단계(S5), 출력지락 기준 대비 누적 카운트를 판단하는 단계(S6), 및 보호 동작을 수행하는 단계(S7)를 포함한다.
전류 AD Raw값을 검출하는 단계(S1)는 출력지락 검출 모듈이 션트저항으로부터 측정된 전류 AD Raw값을 검출한다.
절대치 피크값을 검출하는 단계(S2)는 전류 AD Raw값을 검출하는 단계(S1)에서 검출된 전류 AD Raw값을 출력지락 검출 모듈이 절대치한 후 피크값을 검출하여 절대치 피크값을 생성한다.
절대치 피크값을 비교하는 단계(S3)는 절대치 피크값을 검출하는 단계(S2)에서 생성된 절대치 피크값을 비교하여 차이값을 생성한다. 이때 생성되는 차이값은 U상 전류 AD Raw 절대치 피크값과 V상 전류 AD Raw 절대피 치크값을 비교한 차이값인 UV 차이값과, V상 전류 AD Raw 절대치 피크값과 W상 전류 AD Raw 절대피 치크값을 비교한 차이값인 VW 차이값, 및 W상 전류 AD Raw 절대치 피크값과 U상 전류 AD Raw 절대피 치크값을 비교한 차이값인 WU 차이값이다.
출력지락 레벨을 판단하는 단계(S4)는 절대치 피크값을 비교하는 단계(S3)에서 생성된 UV 차이값과 VW 차이값 및 WU 차이값을 출력지락 레벨과 비교한다. 이는 출력지락 검출 모듈이 UV 차이값과 VW 차이값이 출력지락 레벨보다 크고 WU 차이값이 출력지락 레벨보다 작을 경우 전류 AD Raw 중 V상에 이상이 있는 것으로 판단함으로써 수행할 수 있다. 또한, UV 차이값이 출력지락 레벨보다 크고 VW 차이값이 출력지락 레벨보다 작으며 WU 차이값이 출력지락 레벨보다 클 경우 출력지락 검출 모듈은 전류 AD Raw 중 U상에 이상이 있는 것으로 판단한다. 또한, UV 차이값이 출력지락 레벨보다 작고 VW 차이값과 WU 차이값이 출력지락 레벨보다 클 경우 출력지락 검출 모듈은 전류 AD Raw 중 W상에 이상이 있는 것으로 판단한다.
카운트를 증가시키는 단계(S5)는 출력지락 레벨을 판단하는 단계(S4)에서 비교한 결과로, U상과 V상 및 W상 중 적어도 어느 하나가 이상이 있는 것으로 판단되면 출력지락 검출 모듈은 해당되는 출력지락 카운트를 증가시킨다. 이는 예를 들어, U상에 이상이 있을 경우 U상 출력지락 카운트를 증가시키고, V상에 이상이 있을 경우 V상 출력지락 카운트를 증가시키며 W상에 이상이 있을 경우 W상 출력지락 카운트를 증가시킴으로써 수행할 수 있다.
출력지락 기준 대비 누적 카운트를 판단하는 단계(S6)는 카운트를 증가시키는 단계(S5)에서 누적된 U상 출력지락 카운트와 V상 출력지락 카운트 및 W상 출력지락 카운트를 출력지락 기준과 비교하여 출력지락을 최종적으로 판단한다. 예를 들어, 출력지락 기준이 3회이고 U상 출력지락 카운트가 3회일 경우 출력지락 검출 모듈은 U상에서 출력지락이 발생된 것으로 판단한다. 물론, 나머지 V상과 W상에 대해서도 이와 동일하게 판단할 수 있다.
보호 동작을 수행하는 단계(S7)는 출력지락 기준 대비 누적 카운트를 판단하는 단계(S6)에서 출력지락 검출 모듈이 출력지락이 발생한 것으로 판단하면, 출력지락 검출 모듈이 인버터 제어부가 인버터부에 PWM 신호를 입력하는 것을 중지시켜 인버터부에서 전동기로 전원이 출력되는 것을 방지한다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다. 예를 들어, 본 발명은 인버터 시스템으로 예시하여 설명하였으나, 제어기가 인버터에 포함되어 인버터로 구현될 수도 있다. 또한, 본 발명은 기존의 션트저항이 구비된 인버터에 사용되는 제어기로 구현될 수도 있다.

Claims (7)

  1. 레그에 각각 직렬로 연결되는 2개의 스위칭 소자가 구비된 인버터부와,
    상기 인버터부의 하부레그의 스위칭 소자와 각각 직렬로 연결된 션트저항,
    상기 인버터부를 제어하며, 상기 션트저항으로부터 검출된 3상의 전류값의 절대치 피크값을 비교하여 출력지락을 검출하는 제어기를 포함하는 출력지락 검출이 가능한 인버터 시스템.
  2. 제1항에 있어서,
    상기 제어기는,
    상기 션트저항으로부터 3상의 전류값을 검출하여 절대치 피크값을 검출하는 출력전류 검출 모듈과,
    상기 3상 중 유효한 2상의 절대치 피크값을 비교하여 차이값을 생성하는 출력전류 비교 모듈, 및
    상기 차이값이 출력지락 레벨 이상일 경우 해당 차이값에 해당하는 상에 카운트를 누적하고, 누적된 카운트가 출력지락 기준 이상일 경우 출력지락으로 판단하여 상기 인버터부의 작동을 중지시키는 출력지락 검출 모듈을 포함하는 출력지락 검출이 가능한 인버터 시스템.
  3. 제2항에 있어서,
    상기 3상의 전류값은 U상 전류값과 V상 전류값 및 W상 전류값을 포함하고,
    상기 차이값은 U상 전류값과 V상 전류값을 절대치한 후 피크값을 비교한 차이값인 UV 차이값과, V상 전류값과 W상 전류값을 절대치한 후 피크값을 비교한 차이값인 VW 차이값, 및 W상 전류값과 U상 전류값을 절대치한 후 피크값을 비교한 차이값인 WU 차이값을 포함하는 출력지락 검출이 가능한 인버터 시스템.
  4. 제3항에 있어서,
    상기 출력지락 검출 모듈은,
    상기 UV 차이값과 상기 VW 차이값이 출력지락 레벨보다 크고 상기 WU 차이값이 출력지락 레벨보다 작을 경우 V상에 이상이 있는 것으로 판단하고,
    상기 UV 차이값이 출력지락 레벨보다 크고 상기 VW 차이값이 출력지락 레벨보다 작으며 상기 WU 차이값이 출력지락 레벨보다 클 경우 U상에 이상이 있는 것으로 판단하며,
    상기 UV 차이값이 출력지락 레벨보다 작고 상기 VW 차이값과 상기 WU 차이값이 출력지락 레벨보다 클 경우 W상에 이상이 있는 것으로 판단하는 출력지락 검출이 가능한 인버터 시스템.
  5. 레그에 각각 직렬로 연결되는 2개의 스위칭 소자가 구비된 인버터부와, 상기 인버터부의 하부레그의 스위칭 소자와 각각 직렬로 연결된 션트저항, 및 상기 인버터부를 제어하는 제어기를 포함하는 인버터 시스템의 출력지락 검출 방법으로서,
    상기 제어기가 상기 션트저항으로부터 3상의 전류값을 검출하는 단계와,
    상기 제어기가 상기 3상의 전류값의 절대치 피크값을 검출하는 단계,
    상기 제어기가 상기 3상 중 유효한 2상의 전류값의 절대치 피크값을 비교하여 차이값을 생성하는 단계,
    상기 차이값이 출력지락 레벨 이상일 경우 해당 차이값에 해당하는 상에 제어기가 카운트를 누적하고, 누적된 카운트가 출력지락 기준 이상일 경우 출력지락으로 판단하여 상기 인버터부의 작동을 중지시키는 단계를 포함하는 인버터의 출력지락 검출 방법.
  6. 제5항에 있어서,
    상기 3상의 전류값은 U상 전류값과 V상 전류값 및 W상 전류값을 포함하고,
    상기 차이값은 상기 U상 전류값과 상기 V상 전류값을 절대치한 후 피크값을 비교한 차이값인 UV 차이값과, 상기 V상 전류값과 상기 W상 전류값을 절대치한 후 피크값을 비교한 차이값인 VW 차이값, 및 상기 W상 전류값과 상기 U상 전류값을 절대치한 후 피크값을 비교한 차이값인 WU 차이값을 포함하는 인버터의 출력지락 검출 방법.
  7. 제6항에 있어서,
    상기 차이값이 출력지락 레벨 이상일 경우 해당 차이값에 해당하는 상에 제어기가 카운트를 누적하고, 누적된 카운트가 출력지락 기준 이상일 경우 출력지락으로 판단하여 상기 인버터부의 작동을 중지시키는 단계는,
    상기 UV 차이값과 상기 VW 차이값이 출력지락 레벨보다 크고 상기 WU 차이값이 출력지락 레벨보다 작을 경우 상기 제어기는 V상에 이상이 있는 것으로 판단하는 단계와,
    상기 UV 차이값이 출력지락 레벨보다 크고 상기 VW 차이값이 출력지락 레벨보다 작으며 상기 WU 차이값이 출력지락 레벨보다 클 경우 상기 제어기는 U상에 이상이 있는 것으로 판단하는 단계, 및
    상기 UV 차이값이 출력지락 레벨보다 작고 상기 VW 차이값과 상기 WU 차이값이 출력지락 레벨보다 클 경우 상기 제어기는 W상에 이상이 있는 것으로 판단하는 단계를 포함하는 인버터의 출력지락 검출 방법.
PCT/KR2020/004698 2019-04-11 2020-04-07 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법 WO2020209577A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080027977.6A CN113678010B (zh) 2019-04-11 2020-04-07 能够检测输出接地的逆变器系统及利用该系统的输出接地检测方法
US17/602,901 US12038486B2 (en) 2019-04-11 2020-04-07 Inverter system capable of detecting output ground fault and output ground fault detection method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190042512A KR102138360B1 (ko) 2019-04-11 2019-04-11 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법
KR10-2019-0042512 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020209577A1 true WO2020209577A1 (ko) 2020-10-15

Family

ID=71893856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004698 WO2020209577A1 (ko) 2019-04-11 2020-04-07 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법

Country Status (4)

Country Link
US (1) US12038486B2 (ko)
KR (1) KR102138360B1 (ko)
CN (1) CN113678010B (ko)
WO (1) WO2020209577A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389540B (zh) * 2022-01-18 2023-08-11 阳光电源股份有限公司 变换装置及其电流传感器失效检测方法、新能源发电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221404A (ja) * 2004-02-06 2005-08-18 Hokkaido Electric Power Co Inc:The 地絡事故検出装置及び地絡事故検出方法
JP2010284078A (ja) * 2004-11-29 2010-12-16 Mitsubishi Electric Corp インバータ装置
KR20150013150A (ko) * 2012-05-04 2015-02-04 이턴 코포레이션 가변 속도 드라이브 내 지락 검출 및 가변 속도 드라이브 보호를 위한 시스템 및 방법
KR20160120914A (ko) * 2015-04-09 2016-10-19 엘에스산전 주식회사 인버터의 지락 검출 방법
KR101790134B1 (ko) * 2016-05-27 2017-10-25 엘지전자 주식회사 인버터의 고장진단 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210779A (ja) * 1990-12-14 1992-07-31 Mitsubishi Electric Corp インバータ装置の地絡検出器及び地絡検出方法
KR100548769B1 (ko) 2003-10-15 2006-02-06 엘에스산전 주식회사 인버터의 출력단 결선 진단 방법
KR100566437B1 (ko) 2003-11-11 2006-03-31 엘에스산전 주식회사 위상천이를 이용한 인버터 고장 검출 장치 및 방법
JP4741391B2 (ja) * 2006-03-09 2011-08-03 オムロンオートモーティブエレクトロニクス株式会社 モータ駆動回路の地絡検出装置
JP5428961B2 (ja) * 2010-03-12 2014-02-26 ダイキン工業株式会社 過電流保護装置
FI124174B (fi) * 2010-05-03 2014-04-15 Vacon Oyj Maasulkuvirran mittaaminen
JP5406146B2 (ja) * 2010-08-31 2014-02-05 日立オートモティブシステムズ株式会社 電動駆動制御装置の過電流検出装置および過電流検出方法
KR102014185B1 (ko) * 2018-03-27 2019-08-26 엘에스산전 주식회사 인버터 피크전류 검출장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221404A (ja) * 2004-02-06 2005-08-18 Hokkaido Electric Power Co Inc:The 地絡事故検出装置及び地絡事故検出方法
JP2010284078A (ja) * 2004-11-29 2010-12-16 Mitsubishi Electric Corp インバータ装置
KR20150013150A (ko) * 2012-05-04 2015-02-04 이턴 코포레이션 가변 속도 드라이브 내 지락 검출 및 가변 속도 드라이브 보호를 위한 시스템 및 방법
KR20160120914A (ko) * 2015-04-09 2016-10-19 엘에스산전 주식회사 인버터의 지락 검출 방법
KR101790134B1 (ko) * 2016-05-27 2017-10-25 엘지전자 주식회사 인버터의 고장진단 방법

Also Published As

Publication number Publication date
US12038486B2 (en) 2024-07-16
KR102138360B1 (ko) 2020-07-27
CN113678010B (zh) 2024-08-06
US20220196757A1 (en) 2022-06-23
CN113678010A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
US12034292B2 (en) Adjustable speed drive with integrated solid-state circuit breaker and method of operation thereof
US7667941B2 (en) Power supply circuit protecting method and apparatus for the same
JP2903863B2 (ja) インバータ装置
JP5689497B2 (ja) Dcリンク部異常検出機能を備えたモータ駆動装置
WO2020209577A1 (ko) 출력지락 검출이 가능한 인버터 시스템과 이를 이용한 출력지락 검출 방법
US11509254B2 (en) Method for detecting a motor phase fault of a motor arrangement and drive circuit for driving an electronically commutated motor
US6998735B2 (en) Controlled rectifier bridge, control system, and method for controlling rectifier bridge by disabling gate control signals
JP2001218474A (ja) インバータの地絡検出方法および検出装置
JP3864793B2 (ja) Pwmサイクロコンバータ及びpwmサイクロコンバータの保護方法
KR102036578B1 (ko) 인버터 출력결상 검출장치
WO2020209516A1 (ko) 과전류 보호 인버터
JP5719827B2 (ja) 電力変換装置
KR101873764B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2008141886A (ja) 地絡検出保護回路を有するpamインバータ装置
KR20180067207A (ko) 3상 ac-dc 변환장치
JP3269368B2 (ja) 電力変換器の異常検出回路
CN106921157A (zh) 一种柔性环网控制器的交流侧单相接地故障控制方法
JPH0685620B2 (ja) インバータ装置の過電流保護装置
JPS63114502A (ja) 電気車制御装置
KR20150044485A (ko) 입출력 오결선 시 인버터의 파워부품을 보호하는 전력변환장치
JPH03253297A (ja) 2次励磁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788008

Country of ref document: EP

Kind code of ref document: A1