WO2020209183A1 - Crawler - Google Patents

Crawler Download PDF

Info

Publication number
WO2020209183A1
WO2020209183A1 PCT/JP2020/015245 JP2020015245W WO2020209183A1 WO 2020209183 A1 WO2020209183 A1 WO 2020209183A1 JP 2020015245 W JP2020015245 W JP 2020015245W WO 2020209183 A1 WO2020209183 A1 WO 2020209183A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
lug
width direction
outer peripheral
wheel
Prior art date
Application number
PCT/JP2020/015245
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 智
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2020209183A1 publication Critical patent/WO2020209183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • B62D55/253Tracks of continuously flexible type, e.g. rubber belts having elements interconnected by one or more cables or like elements

Definitions

  • the present disclosure relates to crawlers formed using elastic materials.
  • a lug extending in the circumferential direction of the crawler and extending in the crawler width direction is provided on the outer peripheral surface of the crawler body having an endless band shape on one side in the crawler width direction with the center line of the crawler body in between.
  • crawlers that are distributed to the other side and alternately arranged in the circumferential direction of the crawler, and are arranged on the one side and the other side in the direction opposite to the circumferential direction of the lug crawler.
  • the crawler of the above document has a function of transmitting a driving force to the soil, and the crawler has lugs formed linearly in the width direction of the crawler or sandwiching the center of the crawler. Both sides in the crawler width direction are formed in opposite directions in the circumferential direction. In this case, there is room for improving the traction performance of the crawler when traveling on rough terrain.
  • the purpose of this disclosure is to provide a crawler with improved traction performance when traveling on rough terrain.
  • the crawler according to the present disclosure has an endless crawler body formed of an elastic material and wound around a wheel, and projects on the outer peripheral surface of the crawler body, extends in the width direction of the crawler body, and extends in the circumferential direction of the crawler body.
  • the crawler body is provided with a plurality of lugs at intervals, and a lug is formed which projects forward in the forward rotation direction of the crawler body.
  • this crawler compared to a structure in which lugs are formed linearly in the width direction of the crawler, or a structure in which lugs are formed in opposite directions in the circumferential direction on both sides in the crawler width direction with the center of the crawler in between. , The traction performance of the crawler is improved.
  • the effect of improving the traction performance can be obtained when traveling on rough terrain.
  • FIG. 6 is a perspective view of the crawler of FIG.
  • the endless crawler 10 as the crawler according to the embodiment of the present disclosure is a type of crawler having a core metal described later, and a rotation direction is specified.
  • the crawler 10 is formed of an elastic material and protrudes from an endless crawler body 12 wound around a wheel and an outer peripheral surface 12B of the crawler body 12, extending in the width direction W of the crawler body 12 and in the circumferential direction of the crawler body 12.
  • a plurality of lugs 18 are provided on the R at intervals.
  • the crawler 10 is used by being wound around a drive wheel 100 connected to a drive shaft of a crawler vehicle as an airframe (not shown) and a floating wheel 102 rotatably attached to the crawler vehicle.
  • a plurality of rolling wheels 104 arranged between the driving wheels 100 and the idler wheels 102 and rotatably attached to the crawler vehicle roll on the inner circumference of the crawler 10.
  • the crawler 10 is wound around the drive wheel 100 and the idle wheel 102, but the present disclosure is not limited to this configuration.
  • the crawler 10 may be wound around one or a plurality of rolling wheels 104 in addition to the driving wheels 100 and the floating wheels 102.
  • the crawler 10 has a dimension of 400 mm in the width direction W as an example.
  • the crawler traveling device 90 (see FIG. 1) as a traveling portion of the crawler vehicle is configured by the driving wheels 100, the floating wheels 102, the rolling wheels 104, and the crawler 10 wound around them.
  • the drive wheel 100 has a pair of disk-shaped wheel portions 100A connected to the drive shaft of the crawler wheel.
  • the outer peripheral surface 100B comes into contact with the wheel rolling surface 16 of the crawler main body 12, which will be described later, and rolls on the wheel rolling surface 16.
  • the drive wheel 100 causes a driving force from the crawler vehicle to act on the crawler 10 (details will be described later), and circulates the crawler 10 between the drive wheel 100 and the idle wheel 102.
  • the floating wheel 102 has a pair of disk-shaped wheel portions 102A that are rotatably attached to the crawler vehicle. In these wheel portions 102A, the outer peripheral surface 102B comes into contact with the wheel rolling surface 16 and rolls on the wheel rolling surface 16. Further, the idler wheel 102 is moved in a direction away from the drive wheel 100 by a pressurizing mechanism such as hydraulic pressure provided on the crawler vehicle side (not shown) and pressed against the wheel rolling surface 16. By pressing the idler wheel 102 against the wheel rolling surface 16 in this way, the tension of the crawler 10 wound around the drive wheel 100 and the idler wheel 102 is maintained.
  • a pressurizing mechanism such as hydraulic pressure provided on the crawler vehicle side (not shown)
  • the rolling wheel 104 has a pair of disk-shaped wheel portions 104A that are rotatably attached to the crawler wheel. In these wheel portions 104A, the outer peripheral surface 104B comes into contact with the wheel rolling surface 16 and rolls on the wheel rolling surface 16. The weight of the crawler wheel is supported by the wheels 104. The idle wheel 102 and the rolling wheel 104 are driven to rotate with respect to the crawler 10 circulating between the drive wheel 100 and the idle wheel 102.
  • the crawler 10 (crawler body 12) is wound around the drive wheel 100 and the idle wheel 102 with a predetermined tension, and a sprocket (not shown) is used in combination with the drive wheel 100 so that the teeth of the sprocket become the crawler body.
  • the driving force of the drive wheels 100 is transmitted to the crawler 10 by engaging with the recesses on the inner peripheral surface of the crawler that do not reach the outer peripheral surface of the crawler, and the crawler 10 circulates between the drive wheels 100 and the idler wheels 102. Then, the crawler car runs.
  • the crawler 10 has a crawler body 12 in which a rubber material as an example of an elastic material is formed in an endless band shape.
  • the crawler body 12 of the present embodiment is an example of the endless band-shaped crawler body of the present disclosure.
  • the crawler main body 12 is provided with a core metal 12S inside.
  • the core metal 12S is a plate-shaped member that extends within the range of one end side and the other end side of the width direction W of the crawler body 12 and has a predetermined dimension in the circumferential direction R of the crawler body 12. is there.
  • the core metal 12S is embedded inside the crawler main body 12 at a predetermined pitch in the circumferential direction R of the crawler main body 12 at intervals.
  • a plurality of rubber protrusions 14 projecting from the inner peripheral surface 12A to the inner peripheral side of the crawler are formed on the crawler main body 12 at intervals in the circumferential direction R of the crawler 10.
  • the rubber protrusion 14 is arranged on the center line CL passing through the center of the crawler body 12 in the crawler width direction. Further, the rubber protrusion 14 limits the movement of the wheel in the crawler width direction by contacting the wheel (pointing to the drive wheel 100, the floating wheel 102, and the rolling wheel 104) that rolls on the wheel rolling surface 16. ..
  • the rubber protrusion 14 can suppress the relative movement of the crawler 10 and the wheel in the crawler width direction by abutting against the wheel, that is, the lateral displacement of the crawler 10 with respect to the wheel can be suppressed.
  • the rubber protrusion 14 is arranged on the crawler body 12 so that the center of the rubber protrusion 14 in the crawler width direction is located on the center line CL, but the present disclosure is not limited to this configuration.
  • the rubber protrusion 14 may be arranged on the crawler body 12 so that a part of the rubber protrusion 14 is located on the center line CL.
  • the center of the rubber protrusion 14 in the crawler width direction may be deviated to one side or the other side in the crawler width direction with respect to the center line CL.
  • wheel rolling surfaces 16 extending along the circumferential direction R of the crawler 10 are formed on both outer sides in the crawler width direction with the rubber protrusions 14 of the crawler body 12 interposed therebetween.
  • the wheel rolling surface 16 is flattened and forms a part of the inner peripheral surface 12A of the crawler body 12.
  • the inner peripheral surface 12A of the crawler main body 12 has a configuration in which the surface between the rubber protrusions 14 and the wheel rolling surface 16 are flush with each other (here, the same height). It is not limited to this configuration.
  • the wheel rolling surface 16 may be raised on the inner peripheral side of the crawler with respect to the surface between the rubber protrusions 14, or may be recessed on the outer peripheral side of the crawler (a recessed portion is provided).
  • the crawler main body 12 is provided with a plurality of lugs 18 protruding from the outer peripheral surface 12B toward the outer peripheral side of the crawler.
  • the lug 18 includes a base portion 18A, a tip portion 18B, a front side surface 18F1 facing forward in the forward rotation direction F of the crawler 10, a rear side surface 18R1 facing rearward in the forward rotation direction F of the crawler 10, and these base portions 18A.
  • the top surface 18C surrounded by the tip portion 18B, the front side surface 18F1, and the rear side surface 18R1 is included.
  • the forward rotation direction F is the direction in which the crawler 10 rotates when the crawler vehicle advances.
  • front side surface 18F1 is in front of the lug 18 in the forward rotation direction F, rises from the outer peripheral surface 12B of the crawler 10, and is formed between the top surface 18C.
  • rear side surface 18R1 is rearward of the lug 18 in the forward rotation direction F, rises from the outer peripheral surface 12B of the crawler 10, and is formed between the top surface 18C.
  • a shallow groove portion 18D is formed on the top surface 18C on the side of the lug 18 near the base portion 18A.
  • the shallow groove portion 18D is a groove opened to the front side surface 18F1 and the rear side surface 18R1 along the circumferential direction R when viewed from the side of the outer peripheral surface 12B of the crawler 10. Further, the shallow groove portion 18D is curved and widened toward the front and the rear in the circumferential direction R.
  • the lugs 18 project from the outer peripheral surface 12B of the crawler main body 12, extend in the width direction W of the crawler main body 12, and are provided in plurality in the circumferential direction R of the crawler main body 12 at intervals, and are provided in a plurality of directions in the forward rotation direction of the crawler main body 12.
  • a convex portion 18T that protrudes toward the front of F is formed.
  • the convex portion 18T projects forward on the outer peripheral surface 12B side and the top surface 18C of the crawler body 12 of the lug 18 in the forward rotation direction F of the crawler 10, and in the present embodiment, as an example, the width direction W of the crawler 10 It has a convex side surface 18F2 formed along the direction.
  • the convex portion side surface 18F2 of the convex portion 18T is formed in the forward rotation direction F of the crawler 10, that is, the direction intersecting the center line CL of the crawler 10.
  • the convex side surface 18F2 is formed in a direction orthogonal to the center line CL of the crawler 10 as an example.
  • the convex portion 18T is formed at the central portion of the crawler body 12 of the lug 18 in the width direction W.
  • the traction performance of the crawler 10 is improved as compared with a structure in which a lug in which the convex portion 18T faces in the forward direction with respect to the circumferential direction and a lug in which the convex portion 18T faces in the opposite direction are mixed.
  • the central portion is a region predetermined in the width direction W with respect to the central line CL of the crawler 10.
  • a region W1 corresponding to the pair of wheel rolling surfaces 16 shown in FIG. 2 is included, and the range sandwiched between the pair of regions W1 is referred to.
  • the convex portion 18T is formed at a position closer to the center line CL than one end 12C (the other end 12D). In the present embodiment, the convex portion 18T is formed at a position straddling the center line CL as an example. Further, the convex portion 18T may be formed in the region W1 corresponding to the wheel rolling surface 16 shown in FIG. At that time, the convex portions 18T formed on the lugs 18 adjacent to each other in the circumferential direction R may be formed alternately in the circumferential direction R.
  • the lug 18 has a base 18A formed at one end 12C (the other end 12D) of the crawler body 12 in the width direction W and the other end 12D of the crawler body 12 in the width direction W when viewed from the outer peripheral side of the crawler body 12.
  • the lugs 18 having the tip portion 18B formed on the surface and adjacent to each other in the circumferential direction R are arranged in opposite directions in the width direction W.
  • the followability of the lugs 18 to rough terrain is improved as compared with the structure in which the lugs adjacent to each other in the circumferential direction are arranged in the same direction in the width direction.
  • the base portions 18A and the tip portions 18B of the lugs 18 adjacent to each other in the circumferential direction R of the crawler 10 are alternately arranged with respect to the circumferential direction R of the crawler main body 12.
  • the lug 18 is arranged at a position corresponding to the core metal 12S.
  • the base portion 18A and the tip portion 18B of the lug 18 are arranged at positions corresponding to both ends of the crawler body 12 of the core metal 12S in the width direction W, and the convex portions 18T of the lug 18 are the cores. It is arranged at a position close to the core metal 12S arranged in front of the gold 12S in the forward rotation direction F.
  • corresponding means that the lug 18 and the core metal 12S have a range in which they overlap each other.
  • the lug 18 and the core metal 12S have portions that overlap each other when viewed from the outer peripheral surface 12B side of the crawler main body 12.
  • the convex portion 18T may be arranged so as to overlap another core metal 12S arranged in front of the forward rotation direction F.
  • the portion including the base portion 18A and the tip portion 18B and the portion including the convex portion 18T may be arranged so as to straddle the two core metal 12S adjacent to each other in the circumferential direction R.
  • the dimension of the crawler 10 in the width direction W is 400 mm.
  • the dimension of the lug 18 in the circumferential direction R is set narrower than that of the 400 mm. In this case, if necessary, the dimensions of the core metal 12S and the setting such as narrowing the arrangement pitch may be changed.
  • the front side surface 18F1 facing the front of the lug 18 is entirely inclined rearward with respect to the perpendicular line P on the outer peripheral surface 12B of the crawler body 12, and the convex portion side surface 18F2 on the convex portion 18T.
  • the side surface 18F3 on both sides is an example of another side surface.
  • the backward inclination angle ⁇ 1 of the convex side surface 18F2 with respect to the vertical line P is larger than the backward inclination angle ⁇ 2 of the side surface 18F3 with respect to the vertical line P.
  • the length of the convex side surface 18F2 in the protruding direction H is longer than the length of the side surface 18F3 on both sides in the protruding direction H.
  • a concave portion 18U facing the rear is formed behind the convex portion 18T when viewed from the outer peripheral side of the crawler main body 12.
  • the recess 18U is formed at a position close to the center line CL, and is formed so as to face the convex portion 18T of the lug 18 adjacent to the crawler 10 in the circumferential direction R. In the present embodiment, as an example, it is formed at a position straddling the center line CL. As a result, the earth and sand sandwiched between the lugs 18 adjacent to each other in the circumferential direction are compressed and the shearing force is increased as compared with the structure in which the rear portion is formed in a straight line behind the convex portion.
  • the concave portion 18U includes a structure formed at a position corresponding to each pair of wheel portions 100A and 102A of the drive wheel 100 and the idle wheel 102 as wheels, similarly to the convex portion 18T.
  • the lugs are formed linearly in the width direction of the crawler, or curved on both sides in the crawler width direction with the center line of the crawler in between, and are formed in opposite directions in the circumferential direction R, respectively.
  • the linear lugs in contact with the soil surface G contact uniformly in the width direction of the crawler.
  • the crawler's traction performance is not improved because it cannot bite into the soil surface G significantly.
  • the bending direction of the lug itself is left and right in the width direction of the crawler. Since the lugs are formed in opposite directions, the lugs that are curved so as to be convex in the direction opposite to the forward rotation direction F of the crawler are compared with the lugs that are curved so as to be convex in the forward rotation direction F of the crawler. Further improvement in traction performance cannot be expected in the rotation of the crawler in the forward rotation direction F.
  • the crawler 10 rotates in the forward rotation direction F, and among the plurality of lugs 18, the lug 18 in contact with the soil surface G has the convex portion 18T of the lug 18 biting into the soil surface G. .. Specifically, the convex side surface 18F2 of the convex portion 18T begins to bite into the soil surface G, and the side surface 18F3 on both sides gradually bites into the soil surface G following the convex side surface 18F2. This is because, as shown in FIG. 3, the convex portion 18T bites into the soil surface G at an earlier timing than the portion where the convex portion 18T is not formed. In other words, the convex side surface 18F2 comes into contact with the soil surface G at an earlier timing than the bilateral side surfaces 18F3.
  • the convex side surface 18F2 of the convex portion 18T of the lug 18 is set to have a larger inclination angle ⁇ 1 than the both side surfaces 18F3 located on both sides of the crawler body 12 of the convex side surface 18F2 in the width direction W.
  • the backward inclination angle ⁇ 1 of the convex side surface 18F2 with respect to the vertical line P is larger than the backward inclination angle ⁇ 2 of the side surface 18F3 with respect to the vertical line P.
  • the depth of penetration of the rug 18 with respect to the soil surface G is increased, so that the traction performance of the crawler is improved.
  • the lug 18 that bites into the soil surface G compresses the earth and sand with the adjacent rug 18 in front of the crawler 10 in the forward rotation direction F on the soil surface G, and the shearing force of the compressed earth and sand causes the rug 18 to compress the earth and sand. , Crawler traction performance is improved.
  • the crawler 10A in the second embodiment has a different shape and arrangement of lugs provided on the crawler body 12.
  • the same configuration as that of the first embodiment will be described with the same reference numerals.
  • the lug is arranged at one end 12C (the other end 12D) of the crawler body 12 in the width direction W when viewed from the outer peripheral side of the crawler body 12. It is arranged between the base portion 181A, the first tip portion 181B extending from the first base portion 181A across the center line CL passing through the center of the crawler body 12 and becoming the tip, and between the first base portion 181A and the first tip portion 181B.
  • a second tip portion 182B extending in a range on the other end side of the CL and forming a tip thereof is provided with a second lug 182, and the first lug 181 and the second lug 182 are the crawler main body 12
  • a plurality of crawler bodies 12 are provided at intervals in the circumferential direction R, and the first tip portion 181B and the second tip portion 182B are arranged to face each other in the width direction W in the width direction W of the crawler body 12.
  • the earth and sand sandwiched between the adjacent lugs in the width direction of the crawler 10A is separated. It is compressed and the shear force is increased.
  • the front side surface 181F1 of the crawler 10A facing the front of the first lug 181 is inclined rearward with respect to the perpendicular line P on the outer peripheral surface 12B of the crawler body 12, as in the first embodiment, and the convex portion 181T
  • the convex side surface 181F2 is set to have a larger inclination angle ⁇ than the both side surfaces 181F3 located on both sides of the crawler body 12 in the width direction of the convex side surface 181F2 (see FIG. 3).
  • the backward inclination angle ⁇ 1 of the convex side surface 181F2 with respect to the vertical line P is larger than the backward inclination angle ⁇ 2 of the side surface 181F3 on both sides with respect to the vertical line P.
  • the amount of bite into the rough terrain of the convex portion 181T is increased as compared with the structure in which the inclination angle of the side surface of the convex portion is the same as the inclination angle of the other side surfaces located on both sides of the crawler body in the width direction. It is designed to do.
  • the front side surface 181F1 is an example of a side surface facing forward
  • the convex portion side surface 181F2 is an example of a side surface in the convex portion
  • the side surface 181F3 on both sides is an example of another side surface.
  • first lugs 181 and second lugs 182 of the crawler 10A are alternately arranged on the outer peripheral surface 12B on the side of one end 12C and the side of the other end 12D with reference to the center line CL, respectively, in the circumferential direction R. Further, in the width direction W, the first tip portion 181B and the second tip portion 182B are arranged at positions facing each other, and the facing first tip portion 181B and the second tip portion 182B are arranged at intervals. As a result, the groove GR is formed, and the groove GR is arranged in front of the convex portion 181T.
  • first tip portion 181B of the first lug 181 and the second tip portion 182B of the second lug 182 are arranged at positions corresponding to the front of the convex portion 181T of the first lug 181.
  • a groove GR is formed by being sandwiched between the two.
  • the groove portion GR is arranged in the width direction W of the crawler 10A by arranging the first tip portion 181B and the second tip portion 182B apart from each other.
  • the position of the convex portion 181T of the first lug 181 adjacent to the circumferential direction R behind the normal rotation direction F in the groove portion GR corresponds to the position of the convex portion 181T of the first lug 181 adjacent to the circumferential direction R behind the normal rotation direction F in the groove portion GR.
  • the traction performance of the crawler 10A is improved by drawing in and compressing the earth and sand in front of the convex portion 181T toward the convex portion 181T as compared with the structure in which the lug is formed in front of the convex portion. It has become.
  • a curved recess 181U facing the rear is formed behind the convex portion 181T when viewed from the outer peripheral side of the crawler main body 12.
  • the curved recess 181U is an example of the recess.
  • the curved recess 181U is a portion of the second lug 182 adjacent to the circumferential direction R that faces the second tip portion 181B formed so as to approach the rear surface of the first lug 181.
  • the second inclined portion of the second lug 182 arranged behind in the forward rotation direction F is arranged to face the position facing the curved recess 181U.
  • the first tip portion 181B and the second tip portion 182B each have a first inclined portion 181V and a second inclined portion 182V following the groove portion GR in front of the crawler 10A.
  • the first inclined portion 181V and the second inclined portion 182V are formed so as to expand toward the front in the forward rotation direction F, and the first inclined portion 181V and the second inclined portion 182V are formed in the forward rotation direction.
  • the rear side of F is continuous with the groove GR.
  • the first inclined portion 181V and the second inclined portion 182V are formed so as to gradually approach each other from the front to the rear in the forward rotation direction F and continue to the groove portion GR.
  • the front side of the groove GR in the forward rotation direction F has a width wider than the width of the groove GR in the width direction W.
  • the traction performance is improved by collecting the earth and sand in front of the groove GR, as compared with the structure in which the front of the first tip and the front of the second tip are formed parallel to the center line of the crawler. ing.
  • the convex portion 181T of the crawler 10A is arranged at a position corresponding to the wheel rolling surface 16 of the crawler main body 12 of the drive wheel 100 and the idle wheel 102.
  • the drive wheel 100 and the idle wheel 102 are examples of wheels
  • the wheel rolling surface 16 is an example of a passing surface.
  • FIG. 8 shows two regions of the crawler main body 12 having a width W1 indicated by a alternate long and short dash line in the direction along the forward rotation direction F. These two regions are portions where the pair of wheel portions 100A and the pair of wheel portions 102A come into contact with the wheel rolling surface 16 of the crawler body 12 and roll on the wheel rolling surface 16.
  • the wheel rolling surface 16 is an example of a passing surface.
  • the convex portion 181T is arranged at a position corresponding to the wheel rolling surface 16.
  • At least one of the first inclined portion 181V and the second inclined portion 182V is arranged at a position corresponding to the wheel rolling surface 16 of the drive wheel 100 and the idle wheel 102 in the crawler main body 12.
  • the first inclined portion 181V is arranged at a position slightly overlapping the wheel rolling surface 16, and the second inclined portion 182V corresponds to the wheel rolling surface 16. Is arranged.
  • the earth and sand in front of the groove GR is strongly compressed as compared with the structure in which both the first inclined portion and the second inclined portion are arranged at positions other than the passing surface of the wheel in the crawler body, and the crawler 10A
  • the traction performance of the car is improved.
  • the first inclined portion 181V may be arranged at a position slightly deviated from the wheel rolling surface 16, and both the first inclined portion 181V and the second inclined portion 182V are arranged on the wheel rolling surface 16.
  • This arrangement setting is determined in consideration of the specifications including the dimensions and load of the crawler 10 and the properties of the soil surface G of the place where the crawler 10 is used, and the traction performance corresponding to the customer's needs is determined by the determination. Contributes to the improvement of.
  • a shallow groove portion 181D is formed on the top surface 181C on the side of the first lug 181 near the base portion 181A.
  • the shallow groove portion 181D is a groove opened to the front side surface 181F1 and the rear side surface 181R1 along the circumferential direction R when viewed from the side of the outer peripheral surface 12B of the crawler 10A. Further, the shallow groove portion 181D is curved and widened toward the front and the rear in the circumferential direction R.
  • the convex portion 181T projects toward the front in the forward rotation direction F of the crawler 10A, and a groove portion GR is formed in front of the convex portion 181T.
  • the first lug 181 formed in front of the tip portion 181B of the first lug 181 in the forward rotation direction F is attracted to the groove GR formed between the 1 inclined portion 181V and the second inclined portion 182V formed in front of the tip portion 182B of the second lug 182 in the forward rotation direction F. Enter into.
  • the earth and sand G1 that has entered the groove GR is compressed by the first inclined portion 181V, the second inclined portion 182V, the outer peripheral surface 12B of the crawler main body 12, and the soil surface G. Subsequently, the convex portion 181T of the first lug 181 adjacent to the rear in the forward rotation direction F comes into contact with the soil surface G, and the convex portion 181T bites into the soil surface G (see also FIG. 3).
  • the action of the convex portion 181T of the first lug 181 is the same as the action of the convex portion 18T of the lug 18 in the first embodiment.
  • the side surface 181F3 formed on both sides in the width direction W, and the soil surface G, the earth and sand G1 is formed.
  • the shearing force of the compressed earth and sand G1 is higher than the shearing force of the earth and sand G1 sandwiched between the first lug 181 and the second lug 182 around the region S.
  • the force for biting the soil surface G in the forward rotation direction F of the crawler 10A increases, the driving force increases, and the traction performance of the crawler 10A improves.
  • the front side surface 181F1 of the first lug 181 is inclined rearward with respect to the perpendicular line P on the outer peripheral surface 12B of the crawler main body 12, and the convex portion side surface 181F2 of the convex portion 181T is the convex portion side surface 181F2.
  • the inclination angle ⁇ is set larger than that of the side surfaces 181F3 located on both sides of the crawler body 12 in the width direction W.
  • the length of the convex side surface 181F2 in the protruding direction H is longer than the length of the side surface 181F3 on both sides in the protruding direction H.
  • the inclination angle of the convex portion side surface 181F2 in the convex portion 181T is the same as the inclination angle of both side surfaces 181F3 located on both sides of the crawler body 12 of the convex portion side surface 181F2 in the width direction W.
  • the amount of bite into rough terrain increases.
  • first lug 181 and the second lug 182 are provided on the outer peripheral surface 12B, with reference to the center line CL, on the side of one end 12C and the side of the other end 12D, respectively, alternately in the circumferential direction R, and in width.
  • first tip portion 181B and the second tip portion 182B are arranged at positions facing each other, and the facing first tip portion 181B and the second tip portion 182B are arranged at intervals so that the groove portion is formed.
  • a GR is formed, and the groove GR is arranged so as to correspond to the front of the convex portion 181T.
  • the crawler is compressed by pulling in the earth and sand G1 in front of the convex portion 181T toward the convex portion 181T, as compared with the structure in which another lug is formed in front of the convex portion 181T in the forward rotation direction F. Traction performance is improved.
  • a curved recess 181U facing the rear is formed behind the convex portion 181T when viewed from the outer peripheral side of the crawler main body 12.
  • first tip portion 181B and the second tip portion 182B have a first inclined portion 181V and a second inclined portion 182V following the groove portion GR in front of the respective forward rotation directions F.
  • the traction performance is improved by collecting the earth and sand G1 in front of the groove GR, as compared with the structure in which the front of the first tip 181B and the second tip 182B is formed parallel to the center line CL of the crawler 10A. To do.
  • the convex portion 181T is arranged at the position W1 corresponding to the wheel rolling surface 16 of the wheel on the crawler main body 12.
  • the traction performance of the crawler 10 is improved by deeply biting into the soil surface G as compared with the structure in which the convex portion 181T is arranged at a position other than the wheel rolling surface 16 of the wheel on the crawler body 12.
  • At least one of the first inclined portion 181V and the second inclined portion 182V is arranged at the position W1 corresponding to the wheel rolling surface 16 of the wheel in the crawler main body 12.
  • both the first inclined portion 181V and the second inclined portion 182V are located in front of the groove portion GR as compared with the structure in which both the first inclined portion 181V and the second inclined portion 182V are arranged at positions other than the wheel rolling surface 16 (region W1) of the wheels in the crawler body 12.
  • the traction performance of the crawler 10 is improved by attracting the earth and sand G1 in the crawler and strongly compressing the earth and sand G1.
  • a sprocket (not shown) is used in combination with the drive wheel 100, and the teeth of the sprocket are formed on the inner peripheral surface of the crawler body 12 and mesh with a recess that does not reach the outer peripheral surface of the crawler to drive the crawler 10.
  • the driving force of the wheel 100 is transmitted to the crawler 10 or 10A
  • the driving wheel 100 is driven by the frictional force between the outer peripheral surface 100B of the driving wheel 100 and the wheel rolling surface 16 without using a sprocket.
  • a friction drive system in which the force is transmitted to the crawler 10 or 10A may be used.
  • the base portion 18A of the lug 18 or the base portion 181A of the first lug 181 is provided with the shallow groove portion 18D or 181D, respectively, the shallow groove portion 18D or 181D is not necessarily provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

This crawler is provided with: a crawler main body in the shape of an endless body, formed from a resilient material and wound around a wheel; and a plurality of lugs which project from an outer peripheral surface of the crawler main body, extend in the width direction of the crawler main body, are provided spaced apart in the perimetrical direction R of the crawler main body, and in which protruding portions are formed protruding toward the front in the direction of forward rotation of the crawler main body.

Description

クローラCrawler
 本開示は、弾性材料を用いて形成されたクローラに関する。 The present disclosure relates to crawlers formed using elastic materials.
 特開2007-230266号公報には、無端帯状とされたクローラ本体の外周面に、クローラの周方向に突出し、クローラ幅方向に延びるラグをクローラ本体の中央線を挟んでクローラ幅方向の一方側と他方側に振り分けてクローラの周方向に交互に、かつ、該一方側と他方側とでラグのクローラの周方向に対して逆方向に配置されたクローラが開示されている。 In Japanese Patent Application Laid-Open No. 2007-230266, a lug extending in the circumferential direction of the crawler and extending in the crawler width direction is provided on the outer peripheral surface of the crawler body having an endless band shape on one side in the crawler width direction with the center line of the crawler body in between. Disclosed are crawlers that are distributed to the other side and alternately arranged in the circumferential direction of the crawler, and are arranged on the one side and the other side in the direction opposite to the circumferential direction of the lug crawler.
 ところで、上記文献のクローラは、土壌に対して駆動力を伝達する機能を有しているが、該クローラは、ラグが、クローラの幅方向に直線状に形成され、又はクローラの中央を挟んでクローラ幅方向の両側で、それぞれ周方向に逆向きに形成されている。
 この場合、不整地を走行する場合に、クローラのトラクション性能の向上に余地が残されている。
By the way, the crawler of the above document has a function of transmitting a driving force to the soil, and the crawler has lugs formed linearly in the width direction of the crawler or sandwiching the center of the crawler. Both sides in the crawler width direction are formed in opposite directions in the circumferential direction.
In this case, there is room for improving the traction performance of the crawler when traveling on rough terrain.
 本開示は、不整地走行において、トラクション性能を向上させたクローラを提供することを目的とする。 The purpose of this disclosure is to provide a crawler with improved traction performance when traveling on rough terrain.
 本開示に係るクローラは、弾性材料によって形成され、車輪に巻き掛けられる無端体状のクローラ本体と、前記クローラ本体の外周面に突出し、前記クローラ本体の幅方向に延びるとともに前記クローラ本体の周方向に間隔を隔てて複数設けられ、前記クローラ本体の正回転方向の前方に向けて突出する凸部が形成されているラグと、を備えている。 The crawler according to the present disclosure has an endless crawler body formed of an elastic material and wound around a wheel, and projects on the outer peripheral surface of the crawler body, extends in the width direction of the crawler body, and extends in the circumferential direction of the crawler body. The crawler body is provided with a plurality of lugs at intervals, and a lug is formed which projects forward in the forward rotation direction of the crawler body.
 このクローラによれば、ラグが、クローラの幅方向に直線状に形成された構造、又はクローラの中央を挟んでクローラ幅方向の両側で、それぞれ周方向に逆向きに形成された構造に比べて、クローラのトラクション性能が向上する。 According to this crawler, compared to a structure in which lugs are formed linearly in the width direction of the crawler, or a structure in which lugs are formed in opposite directions in the circumferential direction on both sides in the crawler width direction with the center of the crawler in between. , The traction performance of the crawler is improved.
 以上説明したように、本開示のクローラによれば、不整地走行において、トラクション性能が向上するという効果が得られる。 As described above, according to the crawler of the present disclosure, the effect of improving the traction performance can be obtained when traveling on rough terrain.
本開示の一実施形態のクローラを側方(クローラ幅方向)から見た側面図である。It is a side view which saw the crawler of one Embodiment of this disclosure from the side (crawler width direction). 本開示の第1実施形態におけるクローラをクローラの外周側から見た平面図である。It is a top view which looked at the crawler in 1st Embodiment of this disclosure from the outer peripheral side of the crawler. 本開示の第1実施形態におけるクローラの不正地を走行している状態を、クローラを側方(クローラ幅方向)から見た側面断面図である。It is a side sectional view of the crawler seen from the side (crawler width direction) in the state of traveling on the illegal ground of the crawler in the first embodiment of the present disclosure. 本開示の第2実施形態におけるクローラをクローラ外周側から見た平面図である。It is a top view which looked at the crawler in the 2nd Embodiment of this disclosure from the crawler outer peripheral side. 図4のクローラのクローラ正回転方向正面の斜め上方から見た斜視図である。It is a perspective view seen from diagonally above front of the crawler of FIG. 4 in the forward rotation direction of the crawler. 図4のクローラのクローラ正回転方向斜め前方の上方から見た斜視図である。FIG. 6 is a perspective view of the crawler of FIG. 4 seen from above diagonally forward in the forward rotation direction of the crawler. 図4のクローラにおける溝部に対する土砂の流動方向を示す平面図である。It is a top view which shows the flow direction of earth and sand with respect to the groove part in the crawler of FIG. 図4のクローラにおける転輪の通過面を示す平面図である。It is a top view which shows the passing surface of the rolling wheel in the crawler of FIG.
<第1実施形態>
 以下、本開示の実施形態に係るクローラについて説明する。
 図1に示すように、本開示の一実施形態に係るクローラとしての無端状のクローラ10は、後述する芯金を有するタイプのクローラであり、回転方向が指定されている。
<First Embodiment>
Hereinafter, the crawler according to the embodiment of the present disclosure will be described.
As shown in FIG. 1, the endless crawler 10 as the crawler according to the embodiment of the present disclosure is a type of crawler having a core metal described later, and a rotation direction is specified.
 [クローラ]
 クローラ10は、弾性材料によって形成され、車輪に巻き掛けられる無端体状のクローラ本体12と、クローラ本体12の外周面12Bに突出し、クローラ本体12の幅方向Wに延びるとともにクローラ本体12の周方向Rに間隔を隔てて複数のラグ18が設けられている。
 クローラ10は、図示しない機体としてのクローラ車の駆動軸に連結される駆動輪100と、クローラ車に回転自在に取付けられる遊動輪102とに巻き掛けられて用いられる。また、駆動輪100と遊動輪102の間に配置され且つクローラ車に回転自在に取り付けられた複数の転輪104がクローラ10の内周を転動するようになっている。
[Crawler]
The crawler 10 is formed of an elastic material and protrudes from an endless crawler body 12 wound around a wheel and an outer peripheral surface 12B of the crawler body 12, extending in the width direction W of the crawler body 12 and in the circumferential direction of the crawler body 12. A plurality of lugs 18 are provided on the R at intervals.
The crawler 10 is used by being wound around a drive wheel 100 connected to a drive shaft of a crawler vehicle as an airframe (not shown) and a floating wheel 102 rotatably attached to the crawler vehicle. Further, a plurality of rolling wheels 104 arranged between the driving wheels 100 and the idler wheels 102 and rotatably attached to the crawler vehicle roll on the inner circumference of the crawler 10.
 なお、本実施形態では、クローラ10を駆動輪100及び遊動輪102に巻き掛ける構成としているが、本開示はこの構成に限定されない。例えば、駆動輪100、遊動輪102、及び転輪104の配置によっては、駆動輪100、遊動輪102に加えて一つまたは複数の転輪104にクローラ10を巻き掛ける構成としてもよい。
 また、本実施形態では、クローラ10は、その幅方向Wにおける寸法は、一例として、400mmとされている。
In the present embodiment, the crawler 10 is wound around the drive wheel 100 and the idle wheel 102, but the present disclosure is not limited to this configuration. For example, depending on the arrangement of the drive wheels 100, the floating wheels 102, and the rolling wheels 104, the crawler 10 may be wound around one or a plurality of rolling wheels 104 in addition to the driving wheels 100 and the floating wheels 102.
Further, in the present embodiment, the crawler 10 has a dimension of 400 mm in the width direction W as an example.
 また、駆動輪100、遊動輪102、転輪104、及びこれらに巻き掛けられたクローラ10によってクローラ車の走行部としてのクローラ走行装置90(図1参照)が構成されている。 Further, the crawler traveling device 90 (see FIG. 1) as a traveling portion of the crawler vehicle is configured by the driving wheels 100, the floating wheels 102, the rolling wheels 104, and the crawler 10 wound around them.
 図1に示すように、駆動輪100は、クローラ車の駆動軸に連結される円盤状の一対の輪部100Aを有している。これらの輪部100Aは、外周面100Bが後述するクローラ本体12の車輪転動面16にそれぞれ接触して該車輪転動面16上を転動するようになっている。この駆動輪100は、クローラ車からの駆動力をクローラ10に作用させて(詳細は後述)、クローラ10を駆動輪100及び遊動輪102の間で循環させる。 As shown in FIG. 1, the drive wheel 100 has a pair of disk-shaped wheel portions 100A connected to the drive shaft of the crawler wheel. In these wheel portions 100A, the outer peripheral surface 100B comes into contact with the wheel rolling surface 16 of the crawler main body 12, which will be described later, and rolls on the wheel rolling surface 16. The drive wheel 100 causes a driving force from the crawler vehicle to act on the crawler 10 (details will be described later), and circulates the crawler 10 between the drive wheel 100 and the idle wheel 102.
 遊動輪102は、クローラ車に回転自在に取付けられる円盤状の一対の輪部102Aを有している。これらの輪部102Aは、外周面102Bが車輪転動面16にそれぞれ接触して該車輪転動面16上を転動するようになっている。また、遊動輪102は、クローラ車側が備える図示しない油圧等の加圧機構によって駆動輪100から離間する方向へ移動させられて車輪転動面16に押し付けられる。このように遊動輪102を車輪転動面16に押し付けることで、駆動輪100及び遊動輪102に巻き掛けられるクローラ10のテンション(張力)が保持される。 The floating wheel 102 has a pair of disk-shaped wheel portions 102A that are rotatably attached to the crawler vehicle. In these wheel portions 102A, the outer peripheral surface 102B comes into contact with the wheel rolling surface 16 and rolls on the wheel rolling surface 16. Further, the idler wheel 102 is moved in a direction away from the drive wheel 100 by a pressurizing mechanism such as hydraulic pressure provided on the crawler vehicle side (not shown) and pressed against the wheel rolling surface 16. By pressing the idler wheel 102 against the wheel rolling surface 16 in this way, the tension of the crawler 10 wound around the drive wheel 100 and the idler wheel 102 is maintained.
 転輪104は、クローラ車に回転自在に取付けられる円盤状の一対の輪部104Aを有している。これらの輪部104Aは、外周面104Bが車輪転動面16にそれぞれ接触して該車輪転動面16上を転動するようになっている。この転輪104によってクローラ車の重量が支持される。
 なお、上記遊動輪102及び転輪104は、駆動輪100及び遊動輪102の間を循環するクローラ10に対して従動回転するようになっている。
The rolling wheel 104 has a pair of disk-shaped wheel portions 104A that are rotatably attached to the crawler wheel. In these wheel portions 104A, the outer peripheral surface 104B comes into contact with the wheel rolling surface 16 and rolls on the wheel rolling surface 16. The weight of the crawler wheel is supported by the wheels 104.
The idle wheel 102 and the rolling wheel 104 are driven to rotate with respect to the crawler 10 circulating between the drive wheel 100 and the idle wheel 102.
 ここで、クローラ10(クローラ本体12)が所定の張力をもって、駆動輪100及び遊動輪102に巻き掛けられ、駆動輪100に図示しないスプロケットが併用されることにより、該スプロケットの歯が、クローラ本体12の内周面であって、該クローラの外周面に達しない凹部に噛み合って、駆動輪100の駆動力がクローラ10へ伝達され、クローラ10が駆動輪100と遊動輪102との間を循環して、クローラ車が走行する。 Here, the crawler 10 (crawler body 12) is wound around the drive wheel 100 and the idle wheel 102 with a predetermined tension, and a sprocket (not shown) is used in combination with the drive wheel 100 so that the teeth of the sprocket become the crawler body. The driving force of the drive wheels 100 is transmitted to the crawler 10 by engaging with the recesses on the inner peripheral surface of the crawler that do not reach the outer peripheral surface of the crawler, and the crawler 10 circulates between the drive wheels 100 and the idler wheels 102. Then, the crawler car runs.
 [クローラ本体]
 図1に示すように、クローラ10は、弾性材料の一例としてのゴム材を無端帯状に形成したクローラ本体12を有している。なお、本実施形態のクローラ本体12は、本開示の無端帯状のクローラ本体の一例である。
 また、図2に示すように、クローラ本体12は、その内部に芯金12Sを備えている。具体的には、芯金12Sは、クローラ本体12の幅方向Wの一端側及び他端側の範囲内に延び、クローラ本体12の周方向Rに予め定められた寸法を有する板状の部材である。
 また、芯金12Sは、クローラ本体12の内部において、クローラ本体12の周方向Rに予め定められたピッチで互いに間隔を隔てて埋設されている。
[Crawler body]
As shown in FIG. 1, the crawler 10 has a crawler body 12 in which a rubber material as an example of an elastic material is formed in an endless band shape. The crawler body 12 of the present embodiment is an example of the endless band-shaped crawler body of the present disclosure.
Further, as shown in FIG. 2, the crawler main body 12 is provided with a core metal 12S inside. Specifically, the core metal 12S is a plate-shaped member that extends within the range of one end side and the other end side of the width direction W of the crawler body 12 and has a predetermined dimension in the circumferential direction R of the crawler body 12. is there.
Further, the core metal 12S is embedded inside the crawler main body 12 at a predetermined pitch in the circumferential direction R of the crawler main body 12 at intervals.
 また、図1に示すように、クローラ本体12には、内周面12Aからクローラ内周側に突出するゴム突起14がクローラ10の周方向Rに間隔をあけて複数形成されている。このゴム突起14は、クローラ本体12のクローラ幅方向の中央を通る中央線CL上に配置されている。また、ゴム突起14は、車輪転動面16上を転動する車輪(駆動輪100、遊動輪102、転輪104を指す)と当接することで該車輪のクローラ幅方向への移動を制限する。言い換えると、ゴム突起14は、車輪と当接することで、クローラ10と車輪とのクローラ幅方向の相対移動を抑制する、すなわち、車輪に対するクローラ10の横ずれを抑制することができる。
 なお、本実施形態では、ゴム突起14のクローラ幅方向の中央が中央線CL上に位置するようにゴム突起14がクローラ本体12に配置されているが、本開示はこの構成に限定されず、ゴム突起14の一部が中央線CL上に位置するようにゴム突起14がクローラ本体12に配置されればよい。例えば、ゴム突起14のクローラ幅方向の中央が中央線CLに対してクローラ幅方向の一方側又は他方側にずれていてもよい。
Further, as shown in FIG. 1, a plurality of rubber protrusions 14 projecting from the inner peripheral surface 12A to the inner peripheral side of the crawler are formed on the crawler main body 12 at intervals in the circumferential direction R of the crawler 10. The rubber protrusion 14 is arranged on the center line CL passing through the center of the crawler body 12 in the crawler width direction. Further, the rubber protrusion 14 limits the movement of the wheel in the crawler width direction by contacting the wheel (pointing to the drive wheel 100, the floating wheel 102, and the rolling wheel 104) that rolls on the wheel rolling surface 16. .. In other words, the rubber protrusion 14 can suppress the relative movement of the crawler 10 and the wheel in the crawler width direction by abutting against the wheel, that is, the lateral displacement of the crawler 10 with respect to the wheel can be suppressed.
In the present embodiment, the rubber protrusion 14 is arranged on the crawler body 12 so that the center of the rubber protrusion 14 in the crawler width direction is located on the center line CL, but the present disclosure is not limited to this configuration. The rubber protrusion 14 may be arranged on the crawler body 12 so that a part of the rubber protrusion 14 is located on the center line CL. For example, the center of the rubber protrusion 14 in the crawler width direction may be deviated to one side or the other side in the crawler width direction with respect to the center line CL.
 また、クローラ本体12のゴム突起14を挟んでクローラ幅方向両外側には、クローラ10の周方向Rに沿って延びる車輪転動面16がそれぞれ形成されている。この車輪転動面16は、平坦状とされ、クローラ本体12の内周面12Aの一部を構成している。
 なお、本実施形態では、クローラ本体12の内周面12Aにおいて、ゴム突起14間の面と車輪転動面16とを面一(ここでは同じ高さ)とする構成としているが、本開示はこの構成に限定されない。例えば、車輪転動面16をゴム突起14間の面よりもクローラ内周側に盛り上げる構成、又は、クローラ外周側に窪ませる構成(凹部を設ける構成)としてもよい。
Further, wheel rolling surfaces 16 extending along the circumferential direction R of the crawler 10 are formed on both outer sides in the crawler width direction with the rubber protrusions 14 of the crawler body 12 interposed therebetween. The wheel rolling surface 16 is flattened and forms a part of the inner peripheral surface 12A of the crawler body 12.
In the present embodiment, the inner peripheral surface 12A of the crawler main body 12 has a configuration in which the surface between the rubber protrusions 14 and the wheel rolling surface 16 are flush with each other (here, the same height). It is not limited to this configuration. For example, the wheel rolling surface 16 may be raised on the inner peripheral side of the crawler with respect to the surface between the rubber protrusions 14, or may be recessed on the outer peripheral side of the crawler (a recessed portion is provided).
 [ラグ]
 図1及び図2に示すように、クローラ本体12には、外周面12Bからクローラ外周側に突出するラグ18が複数設けられている。
 ラグ18は、後述する基部18Aと、先端部18Bと、クローラ10の正回転方向Fの前方を向く前方側面18F1と、クローラ10の正回転方向Fの後方を向く後方側面18R1と、これら基部18Aと先端部18Bと前方側面18F1と後方側面18R1とで囲まれる頂面18Cと、を含んで構成されている。
 ここで、正回転方向Fとは、クローラ車が前進する際にクローラ10が回転する方向である。
 また、前方側面18F1は、ラグ18の正回転方向Fの前方であって、クローラ10の外周面12Bから立ち上がり、頂面18Cまでの間に形成されている。また、後方側面18R1は、ラグ18の正回転方向Fの後方であって、クローラ10の外周面12Bから立ち上がり、頂面18Cまでの間に形成されている。
[Lag]
As shown in FIGS. 1 and 2, the crawler main body 12 is provided with a plurality of lugs 18 protruding from the outer peripheral surface 12B toward the outer peripheral side of the crawler.
The lug 18 includes a base portion 18A, a tip portion 18B, a front side surface 18F1 facing forward in the forward rotation direction F of the crawler 10, a rear side surface 18R1 facing rearward in the forward rotation direction F of the crawler 10, and these base portions 18A. The top surface 18C surrounded by the tip portion 18B, the front side surface 18F1, and the rear side surface 18R1 is included.
Here, the forward rotation direction F is the direction in which the crawler 10 rotates when the crawler vehicle advances.
Further, the front side surface 18F1 is in front of the lug 18 in the forward rotation direction F, rises from the outer peripheral surface 12B of the crawler 10, and is formed between the top surface 18C. Further, the rear side surface 18R1 is rearward of the lug 18 in the forward rotation direction F, rises from the outer peripheral surface 12B of the crawler 10, and is formed between the top surface 18C.
 また、ラグ18の基部18Aに近い側の頂面18Cには、浅溝部18Dが形成されている。浅溝部18Dは、クローラ10の外周面12Bの側から見て、周方向Rに沿って、前方側面18F1と後方側面18R1とに開放された溝である。また、浅溝部18Dは、周方向Rの前方と後方とに向けて湾曲して広がっている。 Further, a shallow groove portion 18D is formed on the top surface 18C on the side of the lug 18 near the base portion 18A. The shallow groove portion 18D is a groove opened to the front side surface 18F1 and the rear side surface 18R1 along the circumferential direction R when viewed from the side of the outer peripheral surface 12B of the crawler 10. Further, the shallow groove portion 18D is curved and widened toward the front and the rear in the circumferential direction R.
 また、ラグ18には、クローラ本体12の外周面12Bに突出し、クローラ本体12の幅方向Wに延びるとともにクローラ本体12の周方向Rに間隔を隔てて複数設けられ、クローラ本体12の正回転方向Fの前方に向けて突出する凸部18Tが形成されている。 Further, the lugs 18 project from the outer peripheral surface 12B of the crawler main body 12, extend in the width direction W of the crawler main body 12, and are provided in plurality in the circumferential direction R of the crawler main body 12 at intervals, and are provided in a plurality of directions in the forward rotation direction of the crawler main body 12. A convex portion 18T that protrudes toward the front of F is formed.
 凸部18Tは、ラグ18のクローラ本体12の外周面12Bの側及び頂面18Cにおいて、クローラ10の正回転方向Fの前方に突出し、本実施形態では、一例として、クローラ10の幅方向Wの沿う方向に形成された凸部側面18F2を有する。
 換言すれば、凸部18Tにおける凸部側面18F2は、クローラ10の正回転方向F、すなわち、クローラ10の中央線CLに交差する方向に形成されている。本実施形態では、凸部側面18F2は、一例として、クローラ10の中央線CLに直交する方向に形成されている。
The convex portion 18T projects forward on the outer peripheral surface 12B side and the top surface 18C of the crawler body 12 of the lug 18 in the forward rotation direction F of the crawler 10, and in the present embodiment, as an example, the width direction W of the crawler 10 It has a convex side surface 18F2 formed along the direction.
In other words, the convex portion side surface 18F2 of the convex portion 18T is formed in the forward rotation direction F of the crawler 10, that is, the direction intersecting the center line CL of the crawler 10. In the present embodiment, the convex side surface 18F2 is formed in a direction orthogonal to the center line CL of the crawler 10 as an example.
 また、凸部18Tは、ラグ18のクローラ本体12の幅方向Wにおける中央部に形成されている。凸部18Tが周方向に対して正方向を向くラグと逆方向を向くラグとが混在する構造と比べて、クローラ10のトラクション性能が向上するようになっている。
 ここで、中央部とは、クローラ10の中央線CLに対して幅方向Wに予め定められた領域である。本実施形態では、一例として、図2に示す一対の車輪転動面16に対応する領域W1を含んで、この一対の領域W1に挟まれた範囲をいう。
Further, the convex portion 18T is formed at the central portion of the crawler body 12 of the lug 18 in the width direction W. The traction performance of the crawler 10 is improved as compared with a structure in which a lug in which the convex portion 18T faces in the forward direction with respect to the circumferential direction and a lug in which the convex portion 18T faces in the opposite direction are mixed.
Here, the central portion is a region predetermined in the width direction W with respect to the central line CL of the crawler 10. In the present embodiment, as an example, a region W1 corresponding to the pair of wheel rolling surfaces 16 shown in FIG. 2 is included, and the range sandwiched between the pair of regions W1 is referred to.
 また、凸部18Tは、一端12C(他端12D)よりも中央線CLに近い位置に形成されている。本実施形態では、凸部18Tは、一例として、中央線CLを跨ぐ位置に形成されている。また、凸部18Tは、図2に示す車輪転動面16に対応する領域W1に形成されていてもよい。その際、周方向Rに隣り合うラグ18に形成されるそれぞれの凸部18Tは、周方向Rに交互に形成されていてもよい。 Further, the convex portion 18T is formed at a position closer to the center line CL than one end 12C (the other end 12D). In the present embodiment, the convex portion 18T is formed at a position straddling the center line CL as an example. Further, the convex portion 18T may be formed in the region W1 corresponding to the wheel rolling surface 16 shown in FIG. At that time, the convex portions 18T formed on the lugs 18 adjacent to each other in the circumferential direction R may be formed alternately in the circumferential direction R.
 また、ラグ18は、クローラ本体12の外周側から見て、クローラ本体12の幅方向Wの一端12C(他端12D)に形成される基部18Aと、クローラ本体12の幅方向Wの他端12Dに形成される先端部18Bと、を有し、周方向Rに隣り合うラグ18は、幅方向Wにそれぞれ逆向きに配置されている。これにより、周方向に隣り合うラグが幅方向にそれぞれ同一の向きに配置されている構造と比べて、不整地に対して、ラグ18の追従性が向上するようになっている。 Further, the lug 18 has a base 18A formed at one end 12C (the other end 12D) of the crawler body 12 in the width direction W and the other end 12D of the crawler body 12 in the width direction W when viewed from the outer peripheral side of the crawler body 12. The lugs 18 having the tip portion 18B formed on the surface and adjacent to each other in the circumferential direction R are arranged in opposite directions in the width direction W. As a result, the followability of the lugs 18 to rough terrain is improved as compared with the structure in which the lugs adjacent to each other in the circumferential direction are arranged in the same direction in the width direction.
 本実施形態では、一例として、クローラ10の周方向Rに隣り合うラグ18のそれぞれの基部18Aと先端部18Bとが、クローラ本体12の周方向Rに対して交互に配置されている。
 この場合、図2に示すように、ラグ18は、芯金12Sに対応する位置に配置されている。本実施形態では、一例として、ラグ18の基部18A及び先端部18Bが芯金12Sのクローラ本体12における幅方向Wの両端部に対応する位置に配置され、ラグ18の凸部18Tが、該芯金12Sの正回転方向Fの前方に配置される芯金12Sに近づく位置に配置されている。
In the present embodiment, as an example, the base portions 18A and the tip portions 18B of the lugs 18 adjacent to each other in the circumferential direction R of the crawler 10 are alternately arranged with respect to the circumferential direction R of the crawler main body 12.
In this case, as shown in FIG. 2, the lug 18 is arranged at a position corresponding to the core metal 12S. In the present embodiment, as an example, the base portion 18A and the tip portion 18B of the lug 18 are arranged at positions corresponding to both ends of the crawler body 12 of the core metal 12S in the width direction W, and the convex portions 18T of the lug 18 are the cores. It is arranged at a position close to the core metal 12S arranged in front of the gold 12S in the forward rotation direction F.
 なお、ラグ18と芯金12Sとは、その大部分がそれぞれ対応する位置に設けられていればよく、相互に、正回転方向Fに対して多少ずれて配置されることが許容されている。ここで、対応するとは、ラグ18と芯金12Sとが互いに重なり合う範囲を有する程度の意味である。換言すれば、ラグ18と芯金12Sとは、クローラ本体12の外周面12Bの側からみて、相互に重なり合う部分を有する。
 例えば、凸部18Tが、正回転方向Fの前方に配置される別の芯金12Sに重なるように配置されていてもよい。換言すれば、ラグ18において、基部18A及び先端部18Bを含む部分と、凸部18Tを含む部分とは、周方向Rに隣り合う2つの芯金12Sに跨って配置されていてもよい。
 また、本実施形態では、クローラ10の幅方向Wの寸法を400mmとしたが、例えば、該寸法を450mmとする場合、ラグ18の周方向Rにおける寸法を、該400mmの場合より狭く設定してもよく、この場合、必要があれば、芯金12Sの寸法及び配置ピッチを狭くする等の設定の変更を行ってもよい。
Most of the lug 18 and the core metal 12S need only be provided at corresponding positions, and it is allowed that the lug 18 and the core metal 12S are arranged slightly offset from each other in the forward rotation direction F. Here, "corresponding" means that the lug 18 and the core metal 12S have a range in which they overlap each other. In other words, the lug 18 and the core metal 12S have portions that overlap each other when viewed from the outer peripheral surface 12B side of the crawler main body 12.
For example, the convex portion 18T may be arranged so as to overlap another core metal 12S arranged in front of the forward rotation direction F. In other words, in the lug 18, the portion including the base portion 18A and the tip portion 18B and the portion including the convex portion 18T may be arranged so as to straddle the two core metal 12S adjacent to each other in the circumferential direction R.
Further, in the present embodiment, the dimension of the crawler 10 in the width direction W is 400 mm. For example, when the dimension is 450 mm, the dimension of the lug 18 in the circumferential direction R is set narrower than that of the 400 mm. In this case, if necessary, the dimensions of the core metal 12S and the setting such as narrowing the arrangement pitch may be changed.
 また、図3に示すように、ラグ18の前方を向く前方側面18F1は、全体がクローラ本体12の外周面12Bにおける垂線Pに対して後方に傾斜しており、凸部18Tにおける凸部側面18F2は、凸部側面18F2のクローラ本体12の幅方向Wの両側に位置する両側側面18F3よりも傾斜角度θ1が大きく設定されている。
 ここで、両側側面18F3は、他の側面の一例である。
Further, as shown in FIG. 3, the front side surface 18F1 facing the front of the lug 18 is entirely inclined rearward with respect to the perpendicular line P on the outer peripheral surface 12B of the crawler body 12, and the convex portion side surface 18F2 on the convex portion 18T. Is set to have a larger inclination angle θ1 than both side surfaces 18F3 located on both sides of the crawler body 12 of the convex side surface 18F2 in the width direction W.
Here, the side surface 18F3 on both sides is an example of another side surface.
 具体的には、凸部側面18F2の垂線Pに対する後方への傾斜角度θ1は、両側側面18F3の垂線Pに対する後方への傾斜角度θ2よりも傾斜角度が大きい。
 換言すれば、凸部側面18F2の突出方向Hにおける長さは、両側側面18F3の突出方向Hにおける長さよりも長い。これにより、凸部における側面の傾斜角度が、該側面のクローラ本体の幅方向両側に位置する他の側面の傾斜角度と同じである構造と比べて、凸部18Tの不整地に対する食い込み量が増大する。
Specifically, the backward inclination angle θ1 of the convex side surface 18F2 with respect to the vertical line P is larger than the backward inclination angle θ2 of the side surface 18F3 with respect to the vertical line P.
In other words, the length of the convex side surface 18F2 in the protruding direction H is longer than the length of the side surface 18F3 on both sides in the protruding direction H. As a result, the amount of biting into the rough terrain of the convex portion 18T is increased as compared with the structure in which the inclination angle of the side surface of the convex portion is the same as the inclination angle of the other side surfaces located on both sides in the width direction of the crawler body of the side surface. To do.
 また、図2に示すように、ラグ18の正回転方向Fにおいて、クローラ本体12の外周側から見て、凸部18Tの後方に該後方を向く凹部18Uが形成されている。 Further, as shown in FIG. 2, in the forward rotation direction F of the lug 18, a concave portion 18U facing the rear is formed behind the convex portion 18T when viewed from the outer peripheral side of the crawler main body 12.
 具体的には、凹部18Uは、中央線CLに近い位置に形成され、クローラ10の周方向Rに隣り合うラグ18の凸部18Tに対向するように形成されている。本実施形態では、一例として、中央線CLを跨ぐ位置に形成されている。これにより、凸部の後方に該後方が直線状に形成されている構造と比べて、周方向に隣り合うラグ18間に挟まれる土砂が圧縮されてせん断力が増大するようになっている。
 また、凹部18Uは、凸部18Tと同様、車輪としての、駆動輪100、遊動輪102のそれぞれの一対の輪部100A、102Aに対応する位置に形成されている構造を含む。
Specifically, the recess 18U is formed at a position close to the center line CL, and is formed so as to face the convex portion 18T of the lug 18 adjacent to the crawler 10 in the circumferential direction R. In the present embodiment, as an example, it is formed at a position straddling the center line CL. As a result, the earth and sand sandwiched between the lugs 18 adjacent to each other in the circumferential direction are compressed and the shearing force is increased as compared with the structure in which the rear portion is formed in a straight line behind the convex portion.
Further, the concave portion 18U includes a structure formed at a position corresponding to each pair of wheel portions 100A and 102A of the drive wheel 100 and the idle wheel 102 as wheels, similarly to the convex portion 18T.
 (本実施形態における作用)
 第1実施形態における作用について、図3を参照して説明する。
 図3に示すように、クローラ10は、土壌面G上を走行するにあたり、正回転方向Fに回転する。このとき、クローラ10は、ラグ18が土壌面Gに食い込み、クローラ10の外周面12B及び隣り合うラグ18によって土砂G1が圧縮され、土砂G1にせん断力が発生することでトラクションを得る。
 以下、この状態をラグ18の作用として説明する。
(Action in this embodiment)
The operation in the first embodiment will be described with reference to FIG.
As shown in FIG. 3, the crawler 10 rotates in the forward rotation direction F when traveling on the soil surface G. At this time, in the crawler 10, the lug 18 bites into the soil surface G, the earth and sand G1 is compressed by the outer peripheral surface 12B of the crawler 10 and the adjacent lug 18, and a shearing force is generated in the earth and sand G1 to obtain traction.
Hereinafter, this state will be described as the action of the lag 18.
 [比較例]
 先ず、比較例について説明する。
 比較例のクローラでは、ラグが、クローラの幅方向に直線状に形成され、又はクローラの中央線を挟んでクローラ幅方向の両側で湾曲し、それぞれ周方向Rに逆向きに形成された構造を想定する。
 当該構成において、クローラを走行させた場合、ラグがクローラの幅方向に直線状に形成された構造では、土壌面Gに接触する直線状のラグは、クローラの幅方向に一様に接触するため、土壌面Gに大きく食い込むことができず、クローラのトラクション性能は向上されない。
 また、ラグが、クローラの中央線を挟んでクローラの幅方向の両側で湾曲し、それぞれ周方向Rに逆向きに形成された構造では、ラグ自体の湾曲の方向が、クローラの幅方向で左右にそれぞれ逆向きに形成されていることから、クローラの正回転方向Fと反対側に凸となるように湾曲するラグは、クローラの正回転方向Fに凸となるように湾曲するラグに比べて、クローラの正回転方向Fへの回転において、トラクション性能のさらなる向上は期待できない。
[Comparison example]
First, a comparative example will be described.
In the crawler of the comparative example, the lugs are formed linearly in the width direction of the crawler, or curved on both sides in the crawler width direction with the center line of the crawler in between, and are formed in opposite directions in the circumferential direction R, respectively. Suppose.
In this configuration, when the crawler is run, in a structure in which the lugs are formed linearly in the width direction of the crawler, the linear lugs in contact with the soil surface G contact uniformly in the width direction of the crawler. , The crawler's traction performance is not improved because it cannot bite into the soil surface G significantly.
Further, in a structure in which the lugs are curved on both sides in the width direction of the crawler with the center line of the crawler in between and formed in opposite directions to the circumferential direction R, the bending direction of the lug itself is left and right in the width direction of the crawler. Since the lugs are formed in opposite directions, the lugs that are curved so as to be convex in the direction opposite to the forward rotation direction F of the crawler are compared with the lugs that are curved so as to be convex in the forward rotation direction F of the crawler. Further improvement in traction performance cannot be expected in the rotation of the crawler in the forward rotation direction F.
 一方、本実施形態におけるクローラは、クローラ10が正回転方向Fに回転して、複数のラグ18のうち、土壌面Gに接触したラグ18は、ラグ18の凸部18Tが土壌面Gに食い込む。具体的には、凸部18Tの凸部側面18F2が土壌面Gに食い込み始め、両側側面18F3が凸部側面18F2に続いて土壌面Gに徐々に食い込む。これは、図3に示すように、凸部18Tが、凸部18Tが形成されていない部分よりも早いタイミングで土壌面Gに食い込む。換言すれば、凸部側面18F2は、両側側面18F3よりも早いタイミングで土壌面Gに接触する。 On the other hand, in the crawler of the present embodiment, the crawler 10 rotates in the forward rotation direction F, and among the plurality of lugs 18, the lug 18 in contact with the soil surface G has the convex portion 18T of the lug 18 biting into the soil surface G. .. Specifically, the convex side surface 18F2 of the convex portion 18T begins to bite into the soil surface G, and the side surface 18F3 on both sides gradually bites into the soil surface G following the convex side surface 18F2. This is because, as shown in FIG. 3, the convex portion 18T bites into the soil surface G at an earlier timing than the portion where the convex portion 18T is not formed. In other words, the convex side surface 18F2 comes into contact with the soil surface G at an earlier timing than the bilateral side surfaces 18F3.
 また、ラグ18の凸部18Tにおける凸部側面18F2は、凸部側面18F2のクローラ本体12の幅方向Wの両側に位置する両側側面18F3よりも傾斜角度θ1が大きく設定されている。具体的には、凸部側面18F2の垂線Pに対する後方への傾斜角度θ1は、両側側面18F3の垂線Pに対する後方への傾斜角度θ2よりも傾斜角度が大きい。 Further, the convex side surface 18F2 of the convex portion 18T of the lug 18 is set to have a larger inclination angle θ1 than the both side surfaces 18F3 located on both sides of the crawler body 12 of the convex side surface 18F2 in the width direction W. Specifically, the backward inclination angle θ1 of the convex side surface 18F2 with respect to the vertical line P is larger than the backward inclination angle θ2 of the side surface 18F3 with respect to the vertical line P.
 これにより、ラグ18の土壌面Gに対する食い込み深さが増大することで、クローラのトラクション性能が向上する。
 換言すれば、土壌面Gに食い込んだラグ18は、土壌面Gにおいて、クローラ10の正回転方向Fの前方に隣り合うラグ18との間で土砂を圧縮し、圧縮された土砂のせん断力によって、クローラのトラクション性能が向上する。
As a result, the depth of penetration of the rug 18 with respect to the soil surface G is increased, so that the traction performance of the crawler is improved.
In other words, the lug 18 that bites into the soil surface G compresses the earth and sand with the adjacent rug 18 in front of the crawler 10 in the forward rotation direction F on the soil surface G, and the shearing force of the compressed earth and sand causes the rug 18 to compress the earth and sand. , Crawler traction performance is improved.
<第2実施形態>
 次に、第2実施形態について、図1及び図4から図8を参照しながら説明する。
 第2実施形態におけるクローラ10Aは、クローラ本体12に設けられるラグの形状及び配置が異なる。なお、クローラ10Aにおいて、第1実施形態と同じ構成は同一の符号を付して説明する。
<Second Embodiment>
Next, the second embodiment will be described with reference to FIGS. 1 and 4 to 8.
The crawler 10A in the second embodiment has a different shape and arrangement of lugs provided on the crawler body 12. In the crawler 10A, the same configuration as that of the first embodiment will be described with the same reference numerals.
 [ラグ]
 図4に示すように、第2実施形態におけるクローラ10Aは、ラグが、クローラ本体12の外周側から見て、クローラ本体12の幅方向Wの一端12C(他端12D)に配置される第1基部181Aと、第1基部181Aからクローラ本体12の中央を通る中央線CLを跨いで延びて先端となる第1先端部181Bと、第1基部181Aと第1先端部181Bとの間に配置される凸部181Tと、が形成された第1ラグ181と、クローラ本体12の幅方向Wの他端に配置される第2基部182Aと、第2基部182Aからクローラ本体12の中央を通る中央線CLよりも他端の側の範囲で延びて先端となる第2先端部182Bと、が形成された第2ラグ182と、を備え、第1ラグ181と第2ラグ182とが、クローラ本体12の周方向Rに間隔を隔てて複数設けられるとともに、クローラ本体12の幅方向Wにおいて、第1先端部181Bと第2先端部182Bとが幅方向Wで対向して配置されている。
 これにより、第1ラグの先端部と第2ラグの先端部とがクローラ本体の周方向にずれて配置されている構造と比べて、クローラ10Aの幅方向に隣り合うラグ間に挟まれる土砂が圧縮されてせん断力が増大するようになっている。
[Lag]
As shown in FIG. 4, in the crawler 10A in the second embodiment, the lug is arranged at one end 12C (the other end 12D) of the crawler body 12 in the width direction W when viewed from the outer peripheral side of the crawler body 12. It is arranged between the base portion 181A, the first tip portion 181B extending from the first base portion 181A across the center line CL passing through the center of the crawler body 12 and becoming the tip, and between the first base portion 181A and the first tip portion 181B. The first lug 181 on which the convex portion 181T is formed, the second base portion 182A arranged at the other end of the width direction W of the crawler main body 12, and the center line passing through the center of the crawler main body 12 from the second base portion 182A. A second tip portion 182B extending in a range on the other end side of the CL and forming a tip thereof is provided with a second lug 182, and the first lug 181 and the second lug 182 are the crawler main body 12 A plurality of crawler bodies 12 are provided at intervals in the circumferential direction R, and the first tip portion 181B and the second tip portion 182B are arranged to face each other in the width direction W in the width direction W of the crawler body 12.
As a result, as compared with the structure in which the tip of the first lug and the tip of the second lug are arranged so as to be offset in the circumferential direction of the crawler body, the earth and sand sandwiched between the adjacent lugs in the width direction of the crawler 10A is separated. It is compressed and the shear force is increased.
 また、クローラ10Aにおける第1ラグ181の前方を向く前方側面181F1は、第1実施形態と同じく、全体がクローラ本体12の外周面12Bにおける垂線Pに対して後方に傾斜しており、凸部181Tにおける凸部側面181F2は、凸部側面181F2のクローラ本体12の幅方向W両側に位置する両側側面181F3よりも傾斜角度θが大きく設定されている(図3を参照)。具体的には、凸部側面181F2の垂線Pに対する後方への傾斜角度θ1は、両側側面181F3の垂線Pに対する後方への傾斜角度θ2よりも傾斜角度が大きい。これにより、凸部における側面の傾斜角度が、該側面のクローラ本体の幅方向両側に位置する他の側面の傾斜角度と同じである構造と比べて、凸部181Tの不整地に対する食い込み量が増大するようになっている。
 ここで、前方側面181F1は、前方を向く側面の一例であり、凸部側面181F2は、凸部における側面の一例であり、両側側面181F3は、他の側面の一例である。
Further, the front side surface 181F1 of the crawler 10A facing the front of the first lug 181 is inclined rearward with respect to the perpendicular line P on the outer peripheral surface 12B of the crawler body 12, as in the first embodiment, and the convex portion 181T The convex side surface 181F2 is set to have a larger inclination angle θ than the both side surfaces 181F3 located on both sides of the crawler body 12 in the width direction of the convex side surface 181F2 (see FIG. 3). Specifically, the backward inclination angle θ1 of the convex side surface 181F2 with respect to the vertical line P is larger than the backward inclination angle θ2 of the side surface 181F3 on both sides with respect to the vertical line P. As a result, the amount of bite into the rough terrain of the convex portion 181T is increased as compared with the structure in which the inclination angle of the side surface of the convex portion is the same as the inclination angle of the other side surfaces located on both sides of the crawler body in the width direction. It is designed to do.
Here, the front side surface 181F1 is an example of a side surface facing forward, the convex portion side surface 181F2 is an example of a side surface in the convex portion, and the side surface 181F3 on both sides is an example of another side surface.
 また、クローラ10Aの第1ラグ181と第2ラグ182とは、外周面12Bにおいて、中央線CLを基準に、一端12Cの側及び他端12Dの側に、それぞれ周方向Rに交互に複数、かつ、幅方向Wにおいて、第1先端部181Bと第2先端部182Bとが互いに対向する位置に配置され、対向する第1先端部181Bと第2先端部182Bとが間隔を隔てて配置されることで溝部GRが形成され、溝部GRは凸部181Tの前方に対応して配置されている。
 具体的には、第1ラグ181の凸部181Tの前方に対応する位置に、該前方に配置された第1ラグ181の第1先端部181Bと、第2ラグ182の第2先端部182Bとに挟まれて溝部GRが形成されている。
 換言すれば、図5、6にも示すように、溝部GRは、クローラ10Aの幅方向Wにおいて、第1先端部181Bと第2先端部182Bとが離れて配置されることによって、幅方向Wに交差する方向に形成され、溝部GRにおける正回転方向Fの後方の周方向Rに隣り合う第1ラグ181の凸部181Tの位置に対応している。
 これにより、凸部の前方にラグが形成されている構造に比べて、凸部181Tに向けて凸部181Tの前方の土砂を引き込んで圧縮することで、クローラ10Aのトラクション性能が向上するようになっている。
Further, a plurality of first lugs 181 and second lugs 182 of the crawler 10A are alternately arranged on the outer peripheral surface 12B on the side of one end 12C and the side of the other end 12D with reference to the center line CL, respectively, in the circumferential direction R. Further, in the width direction W, the first tip portion 181B and the second tip portion 182B are arranged at positions facing each other, and the facing first tip portion 181B and the second tip portion 182B are arranged at intervals. As a result, the groove GR is formed, and the groove GR is arranged in front of the convex portion 181T.
Specifically, the first tip portion 181B of the first lug 181 and the second tip portion 182B of the second lug 182 are arranged at positions corresponding to the front of the convex portion 181T of the first lug 181. A groove GR is formed by being sandwiched between the two.
In other words, as shown in FIGS. 5 and 6, the groove portion GR is arranged in the width direction W of the crawler 10A by arranging the first tip portion 181B and the second tip portion 182B apart from each other. Corresponds to the position of the convex portion 181T of the first lug 181 adjacent to the circumferential direction R behind the normal rotation direction F in the groove portion GR.
As a result, the traction performance of the crawler 10A is improved by drawing in and compressing the earth and sand in front of the convex portion 181T toward the convex portion 181T as compared with the structure in which the lug is formed in front of the convex portion. It has become.
 また、クローラ10Aは、第1ラグ181の正回転方向Fにおいて、クローラ本体12の外周側から見て、凸部181Tの後方に該後方を向く湾曲凹部181Uが形成されている。
 ここで、湾曲凹部181Uは、凹部の一例である。
Further, in the crawler 10A, in the forward rotation direction F of the first lug 181, a curved recess 181U facing the rear is formed behind the convex portion 181T when viewed from the outer peripheral side of the crawler main body 12.
Here, the curved recess 181U is an example of the recess.
 湾曲凹部181Uは、周方向Rに隣り合う第2ラグ182において、第1ラグ181の後面に近づくように形成された第2先端部181Bに対向する部分である。
 換言すれば、湾曲凹部181Uに対向する位置に、正回転方向Fの後方に配置された第2ラグ182の第2傾斜部が対向する配置とされている。
 これにより、第1ラグの後方が直線状である構造に比べて、第1ラグ181の後方と第2ラグ182の第2先端部182Bとの間に土砂が多く入り込むことで、トラクション性能が向上するようになっている。
The curved recess 181U is a portion of the second lug 182 adjacent to the circumferential direction R that faces the second tip portion 181B formed so as to approach the rear surface of the first lug 181.
In other words, the second inclined portion of the second lug 182 arranged behind in the forward rotation direction F is arranged to face the position facing the curved recess 181U.
As a result, compared to the structure in which the rear part of the first lug is linear, a large amount of earth and sand enters between the rear part of the first lug 181 and the second tip portion 182B of the second lug 182, thereby improving the traction performance. It is designed to do.
 また、クローラ10Aは、第1先端部181B及び第2先端部182Bは、それぞれの前方において、溝部GRに続く第1傾斜部181V及び第2傾斜部182Vを有する。 Further, in the crawler 10A, the first tip portion 181B and the second tip portion 182B each have a first inclined portion 181V and a second inclined portion 182V following the groove portion GR in front of the crawler 10A.
 具体的には、第1傾斜部181V及び第2傾斜部182Vは、正回転方向Fの前方に向けて拡がるように形成されており、第1傾斜部181V及び第2傾斜部182Vの正回転方向Fの後方の側が溝部GRに連続している。
 換言すれば、正回転方向Fの前方から後方に向けて、第1傾斜部181V及び第2傾斜部182Vが互いに徐々に近づくように形成されて溝部GRに続いている。
 溝部GRの側から見れば、溝部GRの正回転方向Fの前方の側は、幅方向Wにおいて、溝部GRの幅よりも広い幅を有している。
 これにより、第1先端部及び第2先端部の前方がクローラの中央線に平行に形成されている構造に比べて、該溝部GRの前方の土砂を集めることでトラクション性能が向上するようになっている。
Specifically, the first inclined portion 181V and the second inclined portion 182V are formed so as to expand toward the front in the forward rotation direction F, and the first inclined portion 181V and the second inclined portion 182V are formed in the forward rotation direction. The rear side of F is continuous with the groove GR.
In other words, the first inclined portion 181V and the second inclined portion 182V are formed so as to gradually approach each other from the front to the rear in the forward rotation direction F and continue to the groove portion GR.
When viewed from the side of the groove GR, the front side of the groove GR in the forward rotation direction F has a width wider than the width of the groove GR in the width direction W.
As a result, the traction performance is improved by collecting the earth and sand in front of the groove GR, as compared with the structure in which the front of the first tip and the front of the second tip are formed parallel to the center line of the crawler. ing.
 また、クローラ10Aにおける凸部181Tは、駆動輪100及び遊動輪102のクローラ本体12における車輪転動面16に対応する位置に配置されている。
 ここで、駆動輪100及び遊動輪102は車輪の一例であり、車輪転動面16は、通過面の一例である。
 これにより、凸部がクローラ本体における車輪の通過面を除く位置に配置されている構造と比べて、クローラ10Aのトラクション性能が向上するようになっている。
Further, the convex portion 181T of the crawler 10A is arranged at a position corresponding to the wheel rolling surface 16 of the crawler main body 12 of the drive wheel 100 and the idle wheel 102.
Here, the drive wheel 100 and the idle wheel 102 are examples of wheels, and the wheel rolling surface 16 is an example of a passing surface.
As a result, the traction performance of the crawler 10A is improved as compared with the structure in which the convex portion is arranged at a position other than the passing surface of the wheel on the crawler body.
 図8には、クローラ本体12において、正回転方向Fに沿う方向に一点鎖線で示す幅W1を有する領域がふたつ示されている。このふたつの領域は、一対の輪部100A及び一対の輪部102Aが、クローラ本体12の車輪転動面16にそれぞれ接触して該車輪転動面16上を転動する部分とされている。
 ここで、車輪転動面16は、通過面の一例である。
 本実施形態では、この車輪転動面16に対応する位置に、凸部181Tが配置されている。
FIG. 8 shows two regions of the crawler main body 12 having a width W1 indicated by a alternate long and short dash line in the direction along the forward rotation direction F. These two regions are portions where the pair of wheel portions 100A and the pair of wheel portions 102A come into contact with the wheel rolling surface 16 of the crawler body 12 and roll on the wheel rolling surface 16.
Here, the wheel rolling surface 16 is an example of a passing surface.
In the present embodiment, the convex portion 181T is arranged at a position corresponding to the wheel rolling surface 16.
 また、クローラ10Aにおいて、第1傾斜部181V及び第2傾斜部182Vの少なくとも一方は、クローラ本体12における駆動輪100及び遊動輪102の車輪転動面16に対応する位置に配置されている。 Further, in the crawler 10A, at least one of the first inclined portion 181V and the second inclined portion 182V is arranged at a position corresponding to the wheel rolling surface 16 of the drive wheel 100 and the idle wheel 102 in the crawler main body 12.
 図8に示すように、本実施形態では、一例として、第1傾斜部181Vは、車輪転動面16に若干重なる位置に配置され、第2傾斜部182Vは、車輪転動面16に対応して配置されている。
 これにより、第1傾斜部及び第2傾斜部の両方がクローラ本体における車輪の通過面を除く位置に配置されている構造に比べて、溝部GRの前方にある土砂が強く圧縮されて、クローラ10Aのトラクション性能が向上するようになっている。
 また、当該配置は、第1傾斜部181Vが車輪転動面16から若干外れる位置に配置されていてもよく、また、第1傾斜部181V及び第2傾斜部182Vの両方が車輪転動面16の領域内に配置されるようにしてもよい。
 この配置設定は、クローラ10の寸法・荷重等を含む仕様や、クローラ10が使用される場所の土壌面Gの性状等を考慮して決定され、当該決定により、顧客のニーズに対応したトラクション性能の向上に寄与する。
As shown in FIG. 8, in the present embodiment, as an example, the first inclined portion 181V is arranged at a position slightly overlapping the wheel rolling surface 16, and the second inclined portion 182V corresponds to the wheel rolling surface 16. Is arranged.
As a result, the earth and sand in front of the groove GR is strongly compressed as compared with the structure in which both the first inclined portion and the second inclined portion are arranged at positions other than the passing surface of the wheel in the crawler body, and the crawler 10A The traction performance of the car is improved.
Further, in this arrangement, the first inclined portion 181V may be arranged at a position slightly deviated from the wheel rolling surface 16, and both the first inclined portion 181V and the second inclined portion 182V are arranged on the wheel rolling surface 16. It may be arranged in the area of.
This arrangement setting is determined in consideration of the specifications including the dimensions and load of the crawler 10 and the properties of the soil surface G of the place where the crawler 10 is used, and the traction performance corresponding to the customer's needs is determined by the determination. Contributes to the improvement of.
 また、第1ラグ181の基部181Aに近い側の頂面181Cには、浅溝部181Dが形成されている。浅溝部181Dは、クローラ10Aの外周面12Bの側から見て、周方向Rに沿って、前方側面181F1と後方側面181R1とに開放された溝である。また、浅溝部181Dは、周方向Rの前方と後方とに向けて湾曲して広がっている。 Further, a shallow groove portion 181D is formed on the top surface 181C on the side of the first lug 181 near the base portion 181A. The shallow groove portion 181D is a groove opened to the front side surface 181F1 and the rear side surface 181R1 along the circumferential direction R when viewed from the side of the outer peripheral surface 12B of the crawler 10A. Further, the shallow groove portion 181D is curved and widened toward the front and the rear in the circumferential direction R.
 <第2実施形態の作用>
 ここで、第2実施形態における作用について主に図3及び図7を参照しながら説明する。
<Operation of the second embodiment>
Here, the operation in the second embodiment will be described mainly with reference to FIGS. 3 and 7.
 図7に示すように、凸部181Tは、クローラ10Aの正回転方向Fの前方に向けて突出し、凸部181Tの前方に、溝部GRが形成されている。
 クローラ10Aが正回転方向Fに回転して、第1ラグ181と第2ラグ182とが土壌面Gに接触すると、第1ラグ181の先端部181Bの正回転方向Fの前方に形成された第1傾斜部181Vと、第2ラグ182の先端部182Bの正回転方向Fの前方に形成された第2傾斜部182Vとに挟まれた溝部GRに、土壌面Gの土砂G1が誘い込まれるように進入する。
 溝部GRに進入した土砂G1は、第1傾斜部181Vと第2傾斜部182Vとクローラ本体12の外周面12Bと土壌面Gとによって圧縮される。
 続いて、正回転方向Fの後方に隣り合う第1ラグ181の凸部181Tが土壌面Gに接触して凸部181Tが土壌面Gに食い込む(図3も参照)。この第1ラグ181の凸部181Tの作用は、第1実施形態におけるラグ18の凸部18Tの作用と同じである。
As shown in FIG. 7, the convex portion 181T projects toward the front in the forward rotation direction F of the crawler 10A, and a groove portion GR is formed in front of the convex portion 181T.
When the crawler 10A rotates in the forward rotation direction F and the first lug 181 and the second lug 182 come into contact with the soil surface G, the first lug 181 formed in front of the tip portion 181B of the first lug 181 in the forward rotation direction F. The earth and sand G1 on the soil surface G is attracted to the groove GR formed between the 1 inclined portion 181V and the second inclined portion 182V formed in front of the tip portion 182B of the second lug 182 in the forward rotation direction F. Enter into.
The earth and sand G1 that has entered the groove GR is compressed by the first inclined portion 181V, the second inclined portion 182V, the outer peripheral surface 12B of the crawler main body 12, and the soil surface G.
Subsequently, the convex portion 181T of the first lug 181 adjacent to the rear in the forward rotation direction F comes into contact with the soil surface G, and the convex portion 181T bites into the soil surface G (see also FIG. 3). The action of the convex portion 181T of the first lug 181 is the same as the action of the convex portion 18T of the lug 18 in the first embodiment.
 そうすると、正回転方向Fの前方で最初に土壌面Gに接触した第1ラグ181の先端部181Bにおける後方側面181R1と第2ラグ182の先端部182Bにおける後方側面182R1と溝部GRと、正回転方向Fの後方に隣り合う第1ラグ181の凸部181Tの凸部側面181F2とその幅方向Wの両側に形成された両側側面181F3と、土壌面Gとに囲まれた領域Sでは、土砂G1が圧縮されて土砂G1のせん断力が、領域Sの周囲で第1ラグ181と第2ラグ182との間に挟まれた土砂G1のせん断力よりも高まる。
 これにより、領域Sでは、クローラ10Aの正回転方向Fにおける土壌面Gを噛み込む力が増大して駆動力が高まり、クローラ10Aのトラクション性能が向上する。
Then, the rear side surface 181R1 at the tip portion 181B of the first lug 181 that first contacts the soil surface G in front of the forward rotation direction F, the rear side surface 182R1 and the groove portion GR at the tip portion 182B of the second lug 182, and the forward rotation direction. In the region S surrounded by the convex side surface 181F2 of the convex portion 181T of the first lug 181 adjacent to the rear of F, the side surface 181F3 formed on both sides in the width direction W, and the soil surface G, the earth and sand G1 is formed. The shearing force of the compressed earth and sand G1 is higher than the shearing force of the earth and sand G1 sandwiched between the first lug 181 and the second lug 182 around the region S.
As a result, in the region S, the force for biting the soil surface G in the forward rotation direction F of the crawler 10A increases, the driving force increases, and the traction performance of the crawler 10A improves.
 また、第1ラグ181の前方側面181F1は、全体がクローラ本体12の外周面12Bにおける垂線Pに対して後方に傾斜しており、凸部181Tにおける凸部側面181F2は、該凸部側面181F2のクローラ本体12の幅方向Wの両側に位置する両側側面181F3よりも傾斜角度θが大きく設定されている。
 換言すれば、凸部側面181F2の突出方向Hにおける長さは、両側側面181F3の突出方向Hにおける長さよりも長い。
Further, the front side surface 181F1 of the first lug 181 is inclined rearward with respect to the perpendicular line P on the outer peripheral surface 12B of the crawler main body 12, and the convex portion side surface 181F2 of the convex portion 181T is the convex portion side surface 181F2. The inclination angle θ is set larger than that of the side surfaces 181F3 located on both sides of the crawler body 12 in the width direction W.
In other words, the length of the convex side surface 181F2 in the protruding direction H is longer than the length of the side surface 181F3 on both sides in the protruding direction H.
 これにより、凸部181Tにおける凸部側面181F2の傾斜角度が、該凸部側面181F2のクローラ本体12の幅方向Wの両側に位置する両側側面181F3の傾斜角度と同じ構造と比べて、凸部181Tの不整地に対する食い込み量が増大する。 As a result, the inclination angle of the convex portion side surface 181F2 in the convex portion 181T is the same as the inclination angle of both side surfaces 181F3 located on both sides of the crawler body 12 of the convex portion side surface 181F2 in the width direction W. The amount of bite into rough terrain increases.
 また、第1ラグ181と第2ラグ182とは、外周面12Bにおいて、中央線CLを基準に、一端12Cの側及び他端12Dの側に、それぞれ周方向Rに交互に複数、かつ、幅方向Wにおいて、第1先端部181Bと第2先端部182Bとが互いに対向する位置に配置され、対向する第1先端部181Bと第2先端部182Bとが間隔を隔てて配置されることで溝部GRが形成され、該溝部GRは凸部181Tの前方に対応して配置されている。 Further, the first lug 181 and the second lug 182 are provided on the outer peripheral surface 12B, with reference to the center line CL, on the side of one end 12C and the side of the other end 12D, respectively, alternately in the circumferential direction R, and in width. In the direction W, the first tip portion 181B and the second tip portion 182B are arranged at positions facing each other, and the facing first tip portion 181B and the second tip portion 182B are arranged at intervals so that the groove portion is formed. A GR is formed, and the groove GR is arranged so as to correspond to the front of the convex portion 181T.
 これにより、凸部181Tの正回転方向Fの前方に別のラグが形成されている構造に比べて、凸部181Tに向けて凸部181Tの前方の土砂G1を引き込んで圧縮することで、クローラのトラクション性能が向上する。 As a result, the crawler is compressed by pulling in the earth and sand G1 in front of the convex portion 181T toward the convex portion 181T, as compared with the structure in which another lug is formed in front of the convex portion 181T in the forward rotation direction F. Traction performance is improved.
 また、第1ラグ181の正回転方向Fにおいて、クローラ本体12の外周側から見て、凸部181Tの後方に該後方を向く湾曲凹部181Uが形成されている。 Further, in the forward rotation direction F of the first lug 181, a curved recess 181U facing the rear is formed behind the convex portion 181T when viewed from the outer peripheral side of the crawler main body 12.
 これにより、第1ラグ181の後方が直線状の構造に比べて、第1ラグ181の後方と第2ラグ182の第2先端部182Bとの間に土砂G1が多く入り込むことで、トラクション性能が向上する。 As a result, as compared with the structure in which the rear part of the first lug 181 is linear, a large amount of earth and sand G1 enters between the rear part of the first lug 181 and the second tip portion 182B of the second lug 182, so that the traction performance is improved. improves.
 また、第1先端部181B及び第2先端部182Bは、それぞれの正回転方向Fの前方において、溝部GRに続く第1傾斜部181V及び第2傾斜部182Vを有する。 Further, the first tip portion 181B and the second tip portion 182B have a first inclined portion 181V and a second inclined portion 182V following the groove portion GR in front of the respective forward rotation directions F.
 これにより、第1先端部181B及び第2先端部182Bの前方がクローラ10Aの中央線CLに平行に形成されている構造に比べて、溝部GRの前方の土砂G1を集めることでトラクション性能が向上する。 As a result, the traction performance is improved by collecting the earth and sand G1 in front of the groove GR, as compared with the structure in which the front of the first tip 181B and the second tip 182B is formed parallel to the center line CL of the crawler 10A. To do.
 また、凸部181Tは、クローラ本体12における車輪の車輪転動面16に対応する位置W1に配置されている。 Further, the convex portion 181T is arranged at the position W1 corresponding to the wheel rolling surface 16 of the wheel on the crawler main body 12.
 これにより、凸部181Tがクローラ本体12における車輪の車輪転動面16を除く位置に配置されている構造と比べて、土壌面Gに深く食い込むことでクローラ10のトラクション性能が向上する。 As a result, the traction performance of the crawler 10 is improved by deeply biting into the soil surface G as compared with the structure in which the convex portion 181T is arranged at a position other than the wheel rolling surface 16 of the wheel on the crawler body 12.
 また、第1傾斜部181V及び第2傾斜部182Vの少なくとも一方は、クローラ本体12における車輪の車輪転動面16に対応する位置W1に配置されている。 Further, at least one of the first inclined portion 181V and the second inclined portion 182V is arranged at the position W1 corresponding to the wheel rolling surface 16 of the wheel in the crawler main body 12.
 これにより、第1傾斜部181V及び第2傾斜部182Vの両方が、クローラ本体12における車輪の車輪転動面16(領域W1)を除く位置に配置されている構造に比べて、溝部GRの前方にある土砂G1を誘い込み、土砂G1が強く圧縮されることでクローラ10のトラクション性能が向上する。 As a result, both the first inclined portion 181V and the second inclined portion 182V are located in front of the groove portion GR as compared with the structure in which both the first inclined portion 181V and the second inclined portion 182V are arranged at positions other than the wheel rolling surface 16 (region W1) of the wheels in the crawler body 12. The traction performance of the crawler 10 is improved by attracting the earth and sand G1 in the crawler and strongly compressing the earth and sand G1.
 以上、実施形態を挙げて本開示の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 The embodiments of the present disclosure have been described above with reference to the embodiments, but these embodiments are examples and can be modified in various ways without departing from the gist. It goes without saying that the scope of rights of the present disclosure is not limited to these embodiments.
 例えば、クローラ10又は10Aは、駆動輪100に図示しないスプロケットが併用され、該スプロケットの歯が、クローラ本体12の内周面に形成され、該クローラの外周面に達しない凹部に噛み合って、駆動輪100の駆動力がクローラ10又は10Aへ伝達されると説明したが、スプロケットを用いず、駆動輪100の外周面100Bと車輪転動面16との間の摩擦力によって、駆動輪100の駆動力がクローラ10又は10Aへ伝達される摩擦駆動方式としてもよい。 For example, in the crawler 10 or 10A, a sprocket (not shown) is used in combination with the drive wheel 100, and the teeth of the sprocket are formed on the inner peripheral surface of the crawler body 12 and mesh with a recess that does not reach the outer peripheral surface of the crawler to drive the crawler 10. Although it has been explained that the driving force of the wheel 100 is transmitted to the crawler 10 or 10A, the driving wheel 100 is driven by the frictional force between the outer peripheral surface 100B of the driving wheel 100 and the wheel rolling surface 16 without using a sprocket. A friction drive system in which the force is transmitted to the crawler 10 or 10A may be used.
 また、ラグ18の基部18A又は第1ラグ181の基部181Aに、それぞれ浅溝部18D又は181Dを備えると説明したが、浅溝部18D又は181Dは必ずしも備える発用はない。 Further, although it has been explained that the base portion 18A of the lug 18 or the base portion 181A of the first lug 181 is provided with the shallow groove portion 18D or 181D, respectively, the shallow groove portion 18D or 181D is not necessarily provided.
 2019年4月8日に出願された日本国特許出願2019-73662号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2019-73662 filed on April 8, 2019 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (12)

  1.  弾性材料によって形成され、車輪に巻き掛けられる無端体状のクローラ本体と、
     前記クローラ本体の外周面に突出し、前記クローラ本体の幅方向に延びるとともに前記クローラ本体の周方向に間隔を隔てて複数設けられ、前記クローラ本体の正回転方向の前方に向けて突出する凸部が形成されているラグと、
     を備えたクローラ。
    An endless crawler body formed of elastic material and wrapped around a wheel,
    A plurality of convex portions projecting on the outer peripheral surface of the crawler body, extending in the width direction of the crawler body and at intervals in the circumferential direction of the crawler body, and projecting forward in the forward rotation direction of the crawler body. With the rug being formed,
    Crawler with.
  2.  前記凸部は、前記ラグの前記クローラ本体の幅方向における中央部に形成されている、請求項1に記載のクローラ。 The crawler according to claim 1, wherein the convex portion is formed at a central portion of the lug in the width direction of the crawler body.
  3.  前記ラグは、前記クローラ本体の外周側から見て、前記クローラ本体の幅方向の一端に形成される基部と、前記クローラ本体の幅方向の他端に形成される先端部と、を有し、
     前記周方向に隣り合う前記ラグは、前記幅方向にそれぞれ逆向きに配置されている、請求項1又は2に記載のクローラ。
    The lug has a base portion formed at one end in the width direction of the crawler body and a tip portion formed at the other end in the width direction of the crawler body when viewed from the outer peripheral side of the crawler body.
    The crawler according to claim 1 or 2, wherein the lugs adjacent to each other in the circumferential direction are arranged in opposite directions in the width direction.
  4.  前記ラグの前記前方を向く側面は、全体が前記クローラ本体の外周面における垂線に対して後方に傾斜しており、
     前記凸部における前記側面は、該側面のクローラ本体の幅方向両側に位置する他の側面よりも傾斜角度が大きく設定されている、請求項1から3のいずれか1項に記載のクローラ。
    The front-facing side surface of the lug is entirely inclined rearward with respect to the perpendicular on the outer peripheral surface of the crawler body.
    The crawler according to any one of claims 1 to 3, wherein the side surface of the convex portion has a larger inclination angle than the other side surfaces located on both sides of the crawler body in the width direction.
  5.  前記ラグの前記正回転方向において、前記クローラ本体の外周側から見て、前記凸部の後方に該後方を向く凹部が形成されている、請求項1から4のいずれか1項に記載のクローラ。 The crawler according to any one of claims 1 to 4, wherein a concave portion facing the rear is formed behind the convex portion when viewed from the outer peripheral side of the crawler main body in the forward rotation direction of the lug. ..
  6.  前記ラグは、
     前記クローラ本体の外周側から見て、前記クローラ本体の幅方向の一端に配置される第1基部と、前記第1基部から前記クローラ本体の中央を通る中央線を跨いで延びて先端となる第1先端部と、前記第1基部と前記第1先端部との間に配置される前記凸部と、が形成された第1ラグと、
     前記クローラ本体の幅方向の他端に配置される第2基部と、前記第2基部から前記クローラ本体の中央を通る中央線よりも前記他端の側の範囲で延びて先端となる第2先端部と、が形成された第2ラグと、
     を備え、
     前記第1ラグと前記第2ラグとが、前記クローラ本体の周方向に間隔を隔てて複数設けられるとともに、前記クローラ本体の幅方向において、前記第1先端部と前記第2先端部とが前記幅方向で対向して配置されている、請求項1に記載のクローラ。
    The lag is
    When viewed from the outer peripheral side of the crawler body, a first base portion arranged at one end in the width direction of the crawler body and a first base portion extending from the first base portion across a central line passing through the center of the crawler body to become a tip. A first lug in which one tip portion and the convex portion arranged between the first base portion and the first tip portion are formed.
    A second base portion arranged at the other end in the width direction of the crawler body, and a second tip extending from the second base portion to the other end side of the center line passing through the center of the crawler body. The second lug on which the part was formed,
    With
    A plurality of the first lug and the second lug are provided at intervals in the circumferential direction of the crawler body, and the first tip portion and the second tip portion are provided in the width direction of the crawler body. The crawler according to claim 1, which is arranged so as to face each other in the width direction.
  7.  前記第1ラグの前記前方を向く側面は、全体が前記クローラ本体の外周面における垂線に対して後方に傾斜しており、
     前記凸部における前記側面は、該側面のクローラ本体の幅方向両側に位置する他の側面よりも傾斜角度が大きく設定されている、請求項6に記載のクローラ。
    The front-facing side surface of the first lug is entirely inclined rearward with respect to a perpendicular line on the outer peripheral surface of the crawler body.
    The crawler according to claim 6, wherein the side surface of the convex portion is set to have a larger inclination angle than other side surfaces located on both sides of the crawler body in the width direction.
  8.  前記第1ラグと前記第2ラグとは、前記外周面において、前記中央線を基準に、一端の側及び他端の側に、それぞれ前記周方向に交互に複数、かつ、前記幅方向において、前記第1先端部と前記第2先端部とが互いに対向する位置に配置され、
     前記対向する前記第1先端部と前記第2先端部とが間隔を隔てて配置されることで溝部が形成され、
     該溝部は前記凸部の前記前方に対応して配置されている、請求項6又は7に記載のクローラ。
    The first lug and the second lug are provided on the outer peripheral surface, with reference to the center line, on one end side and the other end side, respectively, alternately in the circumferential direction and in the width direction. The first tip portion and the second tip portion are arranged at positions facing each other.
    A groove is formed by arranging the facing first tip and the second tip at intervals.
    The crawler according to claim 6 or 7, wherein the groove is arranged corresponding to the front of the convex portion.
  9.  前記第1ラグの前記正回転方向において、前記クローラ本体の外周側から見て、前記凸部の後方に該後方を向く凹部が形成されている、請求項6から8のいずれか1項に記載のクローラ。 The invention according to any one of claims 6 to 8, wherein a concave portion facing the rear is formed behind the convex portion when viewed from the outer peripheral side of the crawler main body in the forward rotation direction of the first lug. Crawler.
  10.  前記第1先端部及び第2先端部は、それぞれの前記前方において、前記溝部に続く第1傾斜部及び第2傾斜部を有する、請求項8に記載のクローラ。 The crawler according to claim 8, wherein the first tip portion and the second tip portion have a first inclined portion and a second inclined portion following the groove portion in the front thereof, respectively.
  11.  前記凸部は、前記クローラ本体における前記車輪の通過面に対応する位置に配置されている、請求項6から10のいずれか1項に記載のクローラ。 The crawler according to any one of claims 6 to 10, wherein the convex portion is arranged at a position corresponding to a passing surface of the wheel in the crawler main body.
  12.  前記第1傾斜部及び前記第2傾斜部の少なくとも一方は、前記クローラ本体における前記車輪の通過面に対応する位置に配置されている、請求項10に記載のクローラ。 The crawler according to claim 10, wherein at least one of the first inclined portion and the second inclined portion is arranged at a position corresponding to a passing surface of the wheel in the crawler main body.
PCT/JP2020/015245 2019-04-08 2020-04-02 Crawler WO2020209183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019073662A JP2020172131A (en) 2019-04-08 2019-04-08 Crawler
JP2019-073662 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020209183A1 true WO2020209183A1 (en) 2020-10-15

Family

ID=72751104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015245 WO2020209183A1 (en) 2019-04-08 2020-04-02 Crawler

Country Status (2)

Country Link
JP (1) JP2020172131A (en)
WO (1) WO2020209183A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098898A (en) * 2002-09-10 2004-04-02 Sumitomo Rubber Ind Ltd Elastic crawler
JP2004131014A (en) * 2002-10-11 2004-04-30 Sumitomo Rubber Ind Ltd Elastic crawler
JP2006069416A (en) * 2004-09-03 2006-03-16 Sumitomo Rubber Ind Ltd Elastic crawler
JP2006248470A (en) * 2005-03-14 2006-09-21 Sumitomo Rubber Ind Ltd Elastic crawler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098898A (en) * 2002-09-10 2004-04-02 Sumitomo Rubber Ind Ltd Elastic crawler
JP2004131014A (en) * 2002-10-11 2004-04-30 Sumitomo Rubber Ind Ltd Elastic crawler
JP2006069416A (en) * 2004-09-03 2006-03-16 Sumitomo Rubber Ind Ltd Elastic crawler
JP2006248470A (en) * 2005-03-14 2006-09-21 Sumitomo Rubber Ind Ltd Elastic crawler

Also Published As

Publication number Publication date
JP2020172131A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP4183701B2 (en) Undercarriage with a coreless rubber crawler using chain drive {UNDERCARRIAGEEEQUIPPEDWITHANON-STEELTYPERUBBERCRAWLERUSINGCHAINACTION}
EP1273504A1 (en) Elastic crawler traveling apparatus and sprocket for crawler belt used in the same
JP5851546B2 (en) Crawler
US9446805B2 (en) Track assembly having arcuate crawler shoes
CN107848589B (en) Elastic crawler and elastic crawler device
JP2003252259A (en) Elastic crawler
KR101393906B1 (en) Crawler traveling device
JP2003089366A (en) Elastic crawler
EP0614430A1 (en) Track laying vehicles
JP5319249B2 (en) Elastic track
WO2020209183A1 (en) Crawler
JPWO2010122929A1 (en) Rubber crawler
JP2011207315A (en) Crawler traveling device
AU2016331655B2 (en) Self aligning idler wheel design for rubber tracks
JP5939762B2 (en) Elastic crawler
JP2011084092A (en) Crawler traveling device
JP2015214305A (en) Elastic crawler and crawler travel device comprising the same
JP2975202B2 (en) Core for rubber crawler
JPWO2017017958A1 (en) Elastic crawler
JP2012126398A (en) Crawler traveling device
JPH06263067A (en) Elastic crawler device
WO2015174367A1 (en) Elastic crawler and crawler travelling device equipped with same
US12049268B2 (en) Elastic crawler
JP5348992B2 (en) Elastic track
JP3035000B2 (en) Elastic crawler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786980

Country of ref document: EP

Kind code of ref document: A1