WO2020209157A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2020209157A1
WO2020209157A1 PCT/JP2020/015029 JP2020015029W WO2020209157A1 WO 2020209157 A1 WO2020209157 A1 WO 2020209157A1 JP 2020015029 W JP2020015029 W JP 2020015029W WO 2020209157 A1 WO2020209157 A1 WO 2020209157A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source device
spacer
source substrate
light
Prior art date
Application number
PCT/JP2020/015029
Other languages
English (en)
French (fr)
Inventor
里奈 山本
杉山 健
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020209157A1 publication Critical patent/WO2020209157A1/ja
Priority to US17/449,822 priority Critical patent/US11573453B2/en
Priority to US18/068,206 priority patent/US11852918B2/en
Priority to US18/508,477 priority patent/US20240085737A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133317Intermediate frames, e.g. between backlight housing and front frame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means

Definitions

  • An embodiment of the present invention relates to a light source device and a display device including the light source device.
  • the liquid crystal display device has a light source device (backlight) and a liquid crystal display module arranged on the light source device as a basic configuration.
  • a light source device backlight
  • a liquid crystal display module arranged on the light source device as a basic configuration.
  • Patent Documents 1 to 3 disclose a display device in which a light source device having a plurality of light emitting diodes is superimposed on a liquid crystal display module.
  • One of the problems of the embodiment according to the present invention is to provide a light source device capable of irradiating a liquid crystal display module with light with uniform brightness, and a display device provided with the light source device.
  • a display device provided with the light source device.
  • one of the embodiments is to provide a display device having a narrow frame area and high design.
  • a storage body a storage body, a light source substrate located on the storage body and housed in the storage body, a plurality of inorganic light emitting elements on the light source substrate, and the plurality of inorganic light emitting elements.
  • the light source substrate is provided with an optical sheet located on the inorganic light emitting element, housed in the storage body and separated from the light source substrate, and a spacer housed in the storage body and in contact with the bottom surface of the optical sheet.
  • a light source device is provided in which the region of the upper surface of the above surface that overlaps with the plurality of inorganic light emitting elements does not overlap with the spacer.
  • a storage body a storage body, a light source substrate located on the storage body and housed in the storage body, a plurality of inorganic light emitting elements on the light source substrate, and the above.
  • An optical sheet located on a plurality of inorganic light emitting elements and housed in the storage body is provided, and the optical sheet includes a flat portion overlapping the plurality of inorganic light emitting elements and a pair of side plates sandwiching the flat portion.
  • a light source device having the pair of side plates bent in the direction of the light source substrate.
  • a storage body a storage body, a light source substrate located on the storage body and housed in the storage body, a plurality of inorganic light emitting elements on the light source substrate, and the above.
  • a light source device comprising an optical sheet located on a plurality of inorganic light emitting elements and housed in the storage body, the optical sheet having a recess overlapping the plurality of inorganic light emitting elements and a side plate surrounding the recess.
  • the light source device is a display device including a light source device and a liquid crystal display module on the light source device, and the light source device is located on a storage body and the storage body, and the storage body is located.
  • a light source substrate housed in the body, a plurality of inorganic light emitting elements on the light source board, an optical sheet located on the plurality of inorganic light emitting elements, housed in the storage body, and separated from the light source board.
  • a display device including a spacer that is housed in the storage body and is in contact with the bottom surface of the optical sheet, and a region of the upper surface of the light source substrate that overlaps with the plurality of inorganic light emitting elements does not overlap with the spacer.
  • a display device including a light source device and a liquid crystal display module on the light source device, and the light source device is located on a storage body and the storage body, and the storage body is located.
  • the optics includes a light source substrate housed in the body, a plurality of inorganic light emitting elements on the light source board, and an optical sheet located on the plurality of inorganic light emitting elements and housed in the storage body.
  • a display device is provided in which the sheet has a flat portion overlapping the plurality of inorganic light emitting elements and a pair of side plates sandwiching the flat portion, and the pair of side plates are bent in the direction of the light source substrate.
  • the light source device is a display device including a light source device and a liquid crystal display module on the light source device, and the light source device is located on a storage body and the storage body, and the storage body is located.
  • the optical sheet includes a light source substrate housed in the body, a plurality of inorganic light emitting elements on the light source board, and an optical sheet located on the plurality of inorganic light emitting elements and housed in the storage body.
  • the schematic development view of the display device which concerns on one Embodiment of this invention The schematic development view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention The schematic development view and the top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention The schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention The schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic top view of the light source apparatus which concerns on one Embodiment of this invention The schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic development view and the top view of the light source apparatus which concerns on one Embodiment of this invention.
  • a schematic development view of a light source device according to an embodiment of the present invention, and a schematic perspective view of a light diffusing plate.
  • the schematic development view and the top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention.
  • drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is merely an example and the interpretation of the present invention is limited. It is not something to do.
  • elements having the same functions as those described with respect to the above-described drawings may be designated by the same reference numerals and duplicate description may be omitted.
  • a structure is exposed from another structure means an embodiment in which a part of one structure is not directly or indirectly covered by another structure. This portion, which is not covered by another structure, also includes aspects that are directly or indirectly covered by yet another structure.
  • the fact that a plurality of elements are integrated means that the plurality of elements have different thicknesses, shapes, directions, etc., and have different functions, but these are formed from one member. To do.
  • the integrated elements contain the same material and have the same composition.
  • FIG. 1 is a schematic development view showing the overall configuration of the display device 100.
  • the first direction DX, the second direction DY, and the third direction DZ are orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • the first direction DX and the second direction DY correspond to the directions parallel to the main surface of the substrate constituting the display device 100
  • the third direction DZ corresponds to the thickness direction of the display device 100.
  • viewing the DX-DY plane defined by the first direction DX and the second direction DY is defined as a plan view.
  • viewing a plane including the third direction DZ for example, a DX-DZ plane or a DY-DZ plane is defined as a cross-sectional view.
  • the display device 100 includes a light source device 110 and a liquid crystal display module 200 that superimposes on the light source device 110. Further, the display device 100 may include a touch sensor 220 on the liquid crystal display module 200.
  • the direction from the light source device 110 toward the liquid crystal display module 200 is defined as the upward direction, and the direction from the liquid crystal display module 200 toward the light source device 110 is defined as the downward direction.
  • the liquid crystal display module 200 includes a first substrate 202, a second substrate 214 facing the first substrate 202, a pair of polarizing plates 216 and 218 sandwiching the first substrate 202 and the second substrate 214, and the first substrate 202. It has a liquid crystal layer (not shown) sandwiched between the second substrates 214.
  • the first substrate 202 has a plurality of pixels 204, a drive circuit for driving the pixels 204 (scanning line drive circuit 208, signal line drive circuit 210), and a plurality of terminals 212.
  • the pixel 204, the drive circuit, and the terminal 212 have a laminate of a conductive film, an insulating film, a semiconductor film, and the like.
  • the liquid crystal display module 200 has a display area 206 including a plurality of pixels 204, and a frame area that is an area other than the display area 206.
  • the polarizing plates 216 and 218 are arranged so as to overlap the display area 206.
  • Various signals including a video signal and a power source are supplied to the liquid crystal display module 200 from an external circuit (not shown) via the terminal 212.
  • the drive circuit operates by these signals and power supplies.
  • the orientation of the liquid crystal molecules contained in the liquid crystal layer on the pixel 204 is controlled.
  • the light emitted from the light source device 110 is incident on the liquid crystal display module 200, the incident light is controlled for each pixel 204, and an image is displayed.
  • the touch sensor 220 is arranged so as to overlap the display area 206.
  • the touch sensor 220 for example, the mutual capacitance type capacitive touch sensor shown in FIG. 1 can be used.
  • the touch sensor 220 includes a plurality of first touch electrodes 222 extending in the first direction DX, a plurality of second touch electrodes 224 intersecting with the first touch electrode 222, and an insulating film (illustrated) that electrically insulates them from each other. Does not).
  • a capacitance is formed between the first touch electrode 222 and the second touch electrode 224, and the capacitance changes when an object, for example, a user touches the touch sensor 220 with a finger or the like.
  • touch includes not only contact but also proximity of objects.
  • the light source device 110, the liquid crystal display module 200, and the touch sensor 220 are drawn so as to be separated from each other, but these are fixed to each other by using an adhesive layer, a housing, or the like.
  • the touch sensor 220 of the present embodiment is not limited to the mutual capacitance type touch sensor. As the touch sensor 220, a self-capacitating touch sensor may be used.
  • the touch sensor 220 of the present embodiment is a so-called out-cell type touch sensor provided separately from the liquid crystal display module 200, but is not limited thereto.
  • the touch sensor 220 may be a touch sensor integrated with the liquid crystal display module 200, a so-called in-cell touch panel.
  • the electrodes and wiring included in the liquid crystal display module 200 function as touch electrodes.
  • FIG. 2 shows a schematic development view of the light source device 110.
  • the light source device 110 has a rear bezel 120 and a front cover 180 that fits into the rear bezel 120.
  • the light source substrate 140 and the optical sheet on the light source substrate 140 are arranged between the rear bezel 120 and the front cover 180.
  • the optical sheet includes a light diffusing plate 170, a prism sheet 174 on the light diffusing plate 170, and a polarizing sheet 176 on the prism sheet 174.
  • a plurality of inorganic light emitting elements 142 are arranged on the light source substrate 140.
  • the optical sheet may have a wavelength conversion film 172 between the light diffusing plate 170 and the prism sheet 174.
  • the wavelength conversion film 172 may not be provided between the light diffusing plate 170 and the prism sheet 174, but may be provided between the light source substrate 140 and the light diffusing plate 170.
  • the rear bezel 120 functions as a storage body for accommodating the light source substrate 140 and the optical sheet (light diffusing plate 170, prism sheet 174, polarizing sheet 176, wavelength conversion film 172, etc.) constituting the light source device 110.
  • the rear bezel 120 comprises side plates 120a to 120d and has a bottom plate located between a pair of side plates facing each other (eg, a pair of side plates 120a and 120b, or a pair of side plates 120c and 120d).
  • the bottom plate is integrated with the side plates 120a to 120d.
  • the side plates 120a to 120d are preferably arranged perpendicular to the upper surface of the bottom plate.
  • the light from the inorganic light emitting element 142 can be efficiently used and supplied to the liquid crystal display module 200.
  • the light source substrate 140 and the optical sheet are fixed.
  • the rear bezel 120 is provided with one or more openings 120e.
  • the light source substrate 140 and the external circuit are electrically connected by a flexible printed circuit board (FPC) or the like provided through the opening 120e.
  • FPC flexible printed circuit board
  • the rear bezel 120 and the front cover 180 include metals such as aluminum, copper, and stainless steel.
  • the rear bezel 120 can be formed by cutting or pressing a metal plate having a thickness of 1 mm or more and 3 mm or less or 1 mm or more and 2 mm or less, for example.
  • the thickness of the front cover 180 may be different from the thickness of the rear bezel 120.
  • the front cover 180 may be formed by cutting or pressing a metal plate of, for example, 0.1 mm or more and 1 mm or less, 0.1 mm or more and 0.5 mm or less, and 0.1 mm or more and 0.4 mm or less.
  • the bottom plate of the rear bezel 120 does not necessarily have to have a flat shape, and may have a curved shape.
  • the light source substrate 140, the light diffusing plate 170, the prism sheet 174, and the like are also arranged so as to match the curved surface shape.
  • FIG. 3 shows a schematic cross-sectional view of a part of the light source device 110.
  • the light source substrate 140 is housed in the rear bezel 120.
  • the light source substrate 140 may be in contact with the rear bezel 120.
  • the plurality of inorganic light emitting elements 142 are arranged on the light source substrate 140 and overlap with the display area 206.
  • the inorganic light emitting elements 142 are arranged in a grid pattern, for example.
  • the pitch of the adjacent inorganic light emitting elements 142 can be arbitrarily set according to the size of the display device 100.
  • the pitch between the adjacent inorganic light emitting elements 142 may be selected from, for example, 1 mm or more and 20 mm or less, 3 mm or more and 15 mm or less, or 5 mm or more and 10 mm or less.
  • it is preferable that the plurality of inorganic light emitting elements 142 are arranged at a uniform pitch.
  • the inorganic light emitting element 142 is a light emitting diode having an inorganic light emitting body such as gallium nitride or gallium nitride containing indium sandwiched between a pair of electrodes, and a light emitting element having a protective film for protecting the light emitting diode.
  • the inorganic light emitting element 142 is configured to emit light by electroluminescence.
  • an inorganic compound that gives an emission peak between 400 nm and 530 nm can be selected. Blue light is extracted from the inorganic light emitting element 142 through the protective film.
  • a light emitting diode in which a color conversion material that converts light from an inorganic light emitter is dispersed in a protective film may be used.
  • the light emitting diode emits white light because the light from the inorganic light emitter and the light converted by the color conversion material are mixed.
  • a fluorescent material that emits fluorescence in the green to red region, for example, yellow fluorescence may be used.
  • the wavelength conversion film 172 is not provided, and the light diffusing plate 170 and the prism sheet 174 can be arranged so as to be in contact with each other.
  • each inorganic light emitting element 142 there is no limitation on the size of each inorganic light emitting element 142, for example, each occupied area is 1.0 ⁇ 10 4 ⁇ m 2 or more and 1.0 ⁇ 10 6 ⁇ m 2 or less 4.0 ⁇ 10 4 ⁇ m 2 or more 5.0.
  • a light emitting diode of ⁇ 10 5 ⁇ m 2 or less, or 9.0 ⁇ 10 4 ⁇ m 2 or more and 2.5 ⁇ 10 5 ⁇ m 2 or less can be used.
  • a so-called micro LED having a size of about 320 ⁇ m ⁇ 300 ⁇ m can be used as the inorganic light emitting element 142.
  • the light source device 110 may further have an overcoat 144 that covers the inorganic light emitting element 142.
  • the overcoat 144 may be in contact with the light source substrate 140.
  • the overcoat 144 has a function of protecting the inorganic light emitting element 142 and preventing separation from the light source substrate 140, and also absorbs irregularities caused by the inorganic light emitting element 142 to give a flat surface. Further, although the inorganic light emitting element 142 gives light having relatively high directivity, the light from the inorganic light emitting element 142 can be spread or diffused by the overcoat 144.
  • the overcoat 144 has a high transmittance in the visible light region.
  • the overcoat 144 includes, for example, an acrylic resin, polycarbonate, a polymer material exemplified for polyester such as polyethylene terephthalate, or a silicon-containing inorganic compound such as silicon oxide.
  • the thickness of the overcoat 144 is preferably such that it covers the inorganic light emitting element 142.
  • the thickness of the overcoat 144 may be selected from, for example, 200 ⁇ m or more and 1 mm or less, 400 ⁇ m or more and 1 mm or less, or 500 ⁇ m or more and 800 ⁇ m or less.
  • the light diffusing plate 170 diffuses the light from the inorganic light emitting element 142 to provide a uniform light emitting surface.
  • the thickness of the light diffusing plate 170 can be selected from, for example, 0.5 mm or more and 2 mm or less, or 0.75 mm or more and 1.5 mm or less.
  • the light diffusing plate 170 is arranged apart from the inorganic light emitting element 142. Specifically, the distance from the upper surface of the light source substrate 140 (the surface of the DX-DZ plane that is closer to the liquid crystal display module 200) to the bottom surface of the light diffuser plate 170 (the surface of the DX-DZ plane that is farther from the liquid crystal display module 200). (Also called an optical distance) is 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less. Therefore, the light diffusing plate 170 and the inorganic light emitting element 142, or the light diffusing plate 170 and the overcoat 144 do not come into direct contact with each other. The structure for separating the light diffusing plate 170 and the inorganic light emitting element 142 will be described later.
  • the wavelength conversion film 172 is a film having a function of emitting light from the inorganic light emitting element 142 and converting the wavelength of the light diffused by the light diffusing plate 170 to generate white light, and is fluorescent in the polymer material. It has a dispersed structure.
  • the phosphor contains a fluorescent substance that absorbs blue light emitted from the inorganic light emitting element 142 and emits fluorescence in the green to red region, for example, yellow fluorescence.
  • the above-mentioned color conversion material may be used.
  • quantum dots having a particle size of several nm to several tens of nm may be used.
  • the wavelength conversion film 172 may be arranged above or below the light diffusing plate 170 as one separately prepared independent film, or a dispersion liquid containing the above-mentioned polymer material or its precursor and a phosphor or quantum dots. May be formed by applying the above or below the light diffusing plate 170 and then curing.
  • the prism sheet 174 is an optical film for efficiently emitting light after passing through the light diffusing plate 170 and the wavelength conversion film 172 in the upward direction, and has a structure in which a plurality of prism shapes are arranged in parallel on the surface. Has.
  • the polarizing sheet 176 is, for example, an anisotropic reflection polarizer. More specifically, the polarizing sheet 176 reflects light that is circularly polarized or elliptically polarized and does not coincide with the transmission axis of the polarizing sheet 176 by the multilayer film formed in the polarizing sheet 176, and repeatedly recovers the reflected component. .. By efficiently reflecting light, loss of light can be prevented and the brightness of emitted light can be improved. Further, by providing the polarizing sheet 176, the effect of diffusing the highly directional light emitted from the inorganic light emitting element 142 can be obtained.
  • FIG. 4 (A) shows a schematic development view including a rear bezel 120, a light source substrate 140, and a light diffusing plate 170
  • FIG. 4 (B) shows a top view of the rear bezel 120 and the inorganic light emitting element 142.
  • the light source substrate 140 and the light diffusing plate 170 are not shown.
  • the light diffusing plate 170 is arranged so as to be separated from the inorganic light emitting element 142, and the spacer 122 is arranged in the rear bezel 120 as a structure for this purpose.
  • the wavelength conversion film 172 is arranged closest to the inorganic light emitting element 142, the following description may be read by replacing the light diffusing plate 170 with the wavelength conversion film 172.
  • the spacer 122 is provided under the light diffusing plate 170, and at least a part of the spacer 122 overlaps the light diffusing plate 170 in a plan view.
  • the spacer 122 may overlap the inorganic light emitting element 142 under the light source substrate 140, but is preferably arranged on the light source substrate 140 so as not to overlap the inorganic light emitting element 142. More specifically, as shown in FIG. 4B, if the region of the upper surface of the light source substrate 140 that overlaps with the plurality of inorganic light emitting elements 142 is defined as the region 142a, the spacer is defined so that the region 142a does not overlap with the spacer 122.
  • the 122 and the light source substrate 140 are arranged in the rear bezel 120.
  • the spacer 122 is arranged on the upper surface of the light source substrate 140 in a region where the inorganic light emitting element 142 is not provided.
  • 5 (A) to 5 (C) are schematic cross-sectional views taken along the chain line AA'of FIG. 4 (B).
  • the inorganic light emitting element 142 and the overcoat 144 are not shown in consideration of visibility.
  • 6 (A) to 6 (C) and 9 (A) to 9 (C) are enlarged views of the region 130 in FIG. 5 (A).
  • 7 (A) to 8 are schematic top views of the rear bezel 120 and the spacer 122.
  • the spacer 122 has a closed shape on a plane parallel to the upper surface of the light source substrate 140, and surrounds a plurality of inorganic light emitting elements 142 in a plan view. Deploy.
  • the rear bezel 120 and the light source substrate 140 accommodated therein also have a quadrangular shape, so that the spacer 122 has a plurality of straight portions, and the straight portion Are arranged along the side plates 120a to 120d of the rear bezel 120.
  • the spacer 122 can be arranged so as to be in contact with all or part of the side plates 120a to 120d of the rear bezel 120 (FIG. 5 (A)).
  • the spacer 122 may be further arranged so as to be in contact with the upper surface of the bottom plate of the rear bezel 120 (FIG. 5 (A)).
  • the spacer 122 and the light source substrate 140 do not overlap, and the light source substrate 140 is surrounded by the spacer 122.
  • the light source substrate 140 is fixed to the upper surface of the bottom plate of the rear bezel 120 by using an adhesive or double-sided tape (not shown).
  • the spacer 122 is in contact with the bottom surface of the light diffusing plate 170, but as described above, it is also possible to arrange the wavelength conversion film 172 between the light diffusing plate 170 and the light source substrate 140. .. In this case, the spacer 122 is arranged so as to be in contact with the bottom surface of the wavelength conversion film 172 (FIG. 5 (B)). When the wavelength conversion film 172 is not provided, the bottom surface of the prism sheet 174 is in contact with the light diffusing plate 170 (FIG. 5 (C)).
  • FIG. 6A is an enlarged view of the area 130.
  • the thickness of the spacer 122 is preferably larger than the thickness of the light source substrate 140.
  • the difference ⁇ t 1 between the thickness t 1 of the spacer 122 and the thickness of the light source substrate 140 is in the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
  • the distance between the bottom surface of the optical sheet (light diffusing plate 170 in FIG. 6A) and the top surface of the light source substrate 140 is maintained at a distance equal to the difference ⁇ t 1 .
  • the spacer 122 does not necessarily have to be in contact with all of the side plates 120a to 120d of the rear bezel 120, and may be separated from some or all of the side plates.
  • An example in which the spacer 122 is separated from all the side plates 120a to 120d of the rear bezel 120 is shown in FIG. 6 (B).
  • the spacer 122 may be provided so as to be in contact with the light source substrate 140 or the overcoat 144 provided on the light source substrate 140 so as to overlap the light source substrate 140 (FIG. 6C).
  • the light source substrate 140 may be in contact with all or part of the side plates 120a to 120d of the rear bezel 120 (FIG. 6D).
  • the sum of the thickness of the overcoat 144 and the thickness t 1 of the spacer 122 is 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
  • the thickness t 1 of the spacer 122 is 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
  • the thickness t 1 of the spacer 122 is the distance between the bottom surface of the light diffusing plate 170 and the top surface of the light source substrate 140.
  • a pair of linear rods 122a and 122b (first linear rods 122a and 122b) that are separated from each other as spacers 122 and face each other may be provided.
  • the pair of linear rods 122a and 122b respectively extend along two side plates (here side plates 120c and 120d) facing each other. Even in such an arrangement, the light diffusing plate 170 can be stably held by the pair of linear rods 122a and 122b, and the distance between the light source substrate 140 and the light diffusing plate 170 can be maintained. Further, as shown in FIG.
  • the spacer 122 may have yet another pair of linear rods 122c and 122d (second linear rods 122c and 122d) facing each other.
  • the pair of linear rods 122c and 122d extend along the other pair of side plates (here side plates 120a and 120b), respectively.
  • the spacer 122 can be arranged so that the extending direction of the linear rods 122c and 122d and the extending direction of the pair of linear rods 122a and 122b are orthogonal to each other.
  • a plurality of pads 122e separated from each other may be provided as the spacer 122.
  • the light diffusing plate 170 can be held by arranging at least three pads 122e in the rear bezel 120. As a result, the distance between the light source substrate 140 and the optical sheet can be maintained.
  • four or more pads 122e may be provided. In this case, the four pads 122e are preferably located at the corners of the bottom plate of the rear bezel 120.
  • the direction in which the three pads 122e are arranged is parallel to or substantially parallel to the extending direction of the side plates (side plates 120c and 120d in FIG. 8) of the rear bezel 120. It is preferable to arrange a plurality of pads 122e in the.
  • the cross-sectional shape of the spacer 122 in the DY-DZ plane is not limited to a polygon such as a quadrangle, and may be a circle or an ellipse as shown in FIG. 9A, for example.
  • the spacer 122 may have a stepped shape in cross-sectional view.
  • One or more steps 122f are formed on the spacer 122 shown in FIG. 9B.
  • the step 122f is a surface located between the bottom surface and the uppermost surface, and is a surface (DX-DY plane) parallel to the upper surface of the light source substrate 140.
  • the light diffusing plate 170 is arranged on the step 122f so as to be in contact with the step 122f.
  • the spacer 122 having step 122f is arranged so as to be in contact with the upper surface of the bottom plate of the rear bezel 120.
  • the difference ⁇ t 2 between the height t 2 of step 122 f (that is, the distance from the bottom surface of the spacer 122 to step 122 f) and the thickness of the light source substrate 140 is in the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
  • the spacer 122 having step 122f may be arranged so as to overlap the light source substrate 140 (FIG. 9C).
  • the height t 2 of step 122f, and the sum of the height t 2 and the thickness of the overcoat 144 when the overcoat 144 is provided is the range of ⁇ t 2 described above. Equivalent.
  • the wavelength conversion film 172 when the wavelength conversion film 172 is arranged between the light source substrate 140 and the light diffusing plate 170, the wavelength conversion film 172 is arranged on the spacer 122 so that the step 122f and the wavelength conversion film 172 are in contact with each other. Will be done.
  • the spacer 122 may be composed of a plurality of layers.
  • the spacer 122 is located on the first support layer 122 g and the first support layer 122 g, and is in contact with the first support layer 122 g.
  • Support layer 122h may be provided.
  • the first support layer 122g and the second support layer 122h may contain different materials.
  • the first support layer 122g may contain, for example, a metal as the first material
  • the second support layer 122h may contain, for example, a polymer material as the second material.
  • the second support layer 122h may be configured so that at least one surface has adhesiveness.
  • the thickness of the spacer 122 is the sum of the thicknesses of the plurality of support layers.
  • the material constituting the spacer 122 is not limited, and may be a metal or alloy such as aluminum, copper, zinc, iron, stainless steel, or brass, or a polymer material.
  • the polymer material include acrylic resin, epoxy resin, urethane resin, silicone resin, phenol resin, polyolefin such as polyethylene and polypropylene, polystyrene, polyacrylonitrile, polybutadiene, polyisoprene, polyester such as polyethylene terephthalate, and polycarbonate. Be done.
  • the light source substrate 140 on which the plurality of inorganic light emitting elements 142 are arranged and the optical sheet (light diffusion plate 170, prism sheet 174, polarizing sheet 176, etc.) are placed between the rear bezel 120 and the front cover 180. Contained and fixed to each other.
  • a liquid crystal display module 200 is arranged on the light source device 110 to form a display device 100.
  • the spacer 122 is arranged under the light diffusing plate 170, and a constant distance is maintained between the light source substrate 140 and the optical sheet.
  • the emitted light is diffused in the space between the light source substrate 140 and the light diffusing plate 170. Further, the directivity is further lowered by repeatedly reflecting the emitted light in this space. As a result, the local generation of a region (hot spot) having high brightness is suppressed on the bottom surface of the light diffusing plate 170. Further, the light whose intensity distribution is lowered by the space between the light source substrate 140 and the light diffusing plate 170 is further diffused by the light diffusing plate 170, and the light is incident on the liquid crystal display module 200 with uniform brightness. Therefore, light having uniform brightness is provided for the display area 206, and the display device 100 enables high-quality display.
  • the inorganic light emitting element 142 that functions as a light source can be arranged so as to overlap the display area 206 in a plan view.
  • a reflector for reflecting the light toward the liquid crystal display module 200 side becomes unnecessary. Therefore, the number of parts constituting the light source device can be reduced. This contributes to making the display device thinner. Further, since it is not necessary to arrange the light source in the frame area, the frame area can be reduced and the area of the display area 206 with respect to the entire display device 100 can be increased. Therefore, by applying this embodiment, it is possible to provide a display device having excellent design.
  • the light source device 112 having a structure different from that of the light source device 110 of the first embodiment will be described.
  • the description may be omitted for a structure that is the same as or similar to the structure described in the first embodiment.
  • the optical sheet (light diffusion plate 170 or wavelength conversion film 172) is provided with a recess, a through hole, a notch, or a groove, and at least a part of the spacer 122 is the recess, the through hole. It differs from the light source device 110 of the first embodiment in that it is located in a notch or a groove. A specific structure will be described below with reference to FIGS. 11 (A) to 15 (B).
  • FIG. 11A is a schematic view of the rear bezel 120, the spacer 122, the light source substrate 140, and the optical sheet 170 included in the light source device 112, and FIG. 11B is a schematic view of the rear bezel 120 and the spacer 122. It is a top view schematic.
  • the light source device 112 has a support pin 122j as a spacer 122 arranged in the rear bezel 120.
  • the number of support pins 122j is not limited, but may be at least three or more, preferably four or more. When arranging the four support pins 122j, it is preferable to install the support pins 122j at the four corners of the rear bezel 120.
  • the support pins 122j When arranging four or more support pins 122j, as with the pad 122e, the support pins 122j are arranged so that the direction in which three of them are arranged is parallel to or substantially parallel to the direction in which the side plate of the rear bezel 120 extends. Is preferable.
  • the wavelength conversion film 172 When another optical sheet, for example, the wavelength conversion film 172 is arranged closest to the inorganic light emitting element 142, the following description may be read by replacing the light diffusing plate 170 of the present embodiment with the wavelength conversion film 172. ..
  • the support pin 122j is arranged so as not to overlap the area 142a.
  • the region 142a (see FIG. 4B) of the upper surface of the light source substrate 140 that overlaps with the plurality of inorganic light emitting elements 142 does not overlap with the support pin 122j (FIG. 11B).
  • FIG. 12 (B) shows a schematic cross-sectional view taken along the chain line BB'of FIG. 11 (B).
  • the upper portion 122j-2 may penetrate the through hole 170a. Further, although not shown, the upper portion 122j-2 does not have to completely penetrate the through hole 170a.
  • the thickness t 3 of the lower portion 122j-1 contributes to the separation between the light source substrate 140 and the light diffusing plate 170.
  • the difference ⁇ t 3 between the thickness t 3 of the lower portion 122j-1 and the thickness of the light source substrate 140 is 1 mm or more and 3 mm or less, or 1.5 mm. The range is 2.5 mm or less.
  • the difference in thickness ⁇ t 3 is the distance between the light source substrate 140 and the light diffusing plate 170.
  • the thickness t 3 of the lower portion 122j-1 when the support pin 122j is arranged on the light source substrate 140, the thickness t 3 of the lower portion 122j-1, and when the support pin 122j is arranged on the overcoat 144, the thickness t 3 and the overcoat.
  • the sum of the thicknesses of 144 is equivalent to the range described above.
  • a recess 170b may be formed in the light diffusing plate 170 instead of the through hole 170a, and a part of the support pin 122j may be housed in the recess 170b.
  • the support pin 122j is arranged on the light source substrate 140, the length L, and when the overcoat 144 is arranged, the sum of the length L and the thickness of the overcoat 144 is the above-mentioned range. And.
  • a notch 170c may be formed at a corner of the light diffusing plate 170 instead of the through hole 170a and the recess 170b.
  • the notch 170c and a part of the support pin 122j are arranged so as to overlap each other.
  • the upper portion 122j-2 of the support pin 122j overlaps with the notch 170c, and the lower portion 122j-1.
  • the upper surface is in contact with the bottom surface of the light diffusing plate 170.
  • a pair of rails 122k may be provided as the spacer 122.
  • the pair of rails 122k are extended in parallel with the side plates facing each other (side plates 120c and 120d in the example shown in FIG. 14 (A)). Further, the pair of rails 122k are arranged so as to sandwich the region 142a in a plan view.
  • the light diffusing plate 170 is provided with a pair of grooves 170d at positions corresponding to the pair of rails 122k (FIG. 14B). At least a part of each rail 122k is housed in the groove 170d. For example, as shown in a schematic cross-sectional view (14 (C)) along the chain line DD'in FIG.
  • each rail 122k extends parallel to the side plate and has a width smaller than the width of the groove 170d. It has an upper part 122k-2 with, and a lower part 122k-1 extending parallel to the side plate and larger than the width of the groove 170d.
  • the bottom surface of the light diffusing plate 170 is in contact with the upper surface of the lower portion 122k-1.
  • the groove 170d may penetrate the light diffusing plate 170, or may be a bottomed groove (not shown) that does not penetrate the light diffusing plate 170.
  • the light diffusing plate 170 is along the long side or the short side, that is, the first direction DX or the second.
  • a pair of linear notches 170e along the direction DY may be formed.
  • the length W of the region sandwiched between the pair of notches 170e is the length W of the pair of rails 122 k. It is shorter than the distance between the upper 122k-2 and longer than the distance between the lower 122k-1. As a result, the space between the light source substrate 140 and the light diffusing plate 170 is maintained by the pair of rails 122k.
  • two pairs of rails 122k may be provided as spacers 122.
  • a pair of rails 122k extending in the first direction DX and a pair of rails 122k along the second direction DY may be provided as the spacer 122.
  • the light diffusing plate 170 is formed with two pairs of grooves 170d or two pairs of notches 170e corresponding to two pairs of rails 122k.
  • the through hole 170a, the recess 170b, the notch 170c, and the groove 170d may be formed in the wavelength conversion film 172.
  • the inorganic light emitting element 142 and the optical sheet can be separated from each other by the spacer 122 including the support pin 122j and the rail 122k, and the distance between the inorganic light emitting element 142 and the optical sheet. Can be kept constant. Therefore, the same effect as that of the first embodiment is obtained.
  • the light source device 114 having a structure different from that of the light source devices 110 and 112 will be described with reference to FIGS. 16A to 18C. The description may be omitted for structures that are the same as or similar to the structures described in the first and second embodiments.
  • the light source device 114 differs from the light source device 110 of the first embodiment and the light source device 112 of the second embodiment in that the optical sheet also functions as the spacer 122 described in the first and second embodiments at the same time.
  • a specific configuration is shown in FIG. 16 (A).
  • the light source substrate 140 is drawn so as to be located on the light diffusing plate 170 in consideration of visibility. Therefore, in FIG. 16A, the inorganic light emitting element 142 and the overcoat 144 are located below the light source substrate 140.
  • the light diffusing plate 170 of the light source device 114 has a recess 170f.
  • the recess 170f is a region of the upper surface of the light source substrate 140 that overlaps the plurality of inorganic light emitting elements 142, and overlaps the entire region 142a.
  • the light diffusing plate 170 has 170 g of side plates having a closed shape on a surface parallel to the upper surface of the light source substrate 140.
  • the region 170h surrounded by the side plate 170g functions as the bottom plate of the recess 170f and overlaps the entire region 142a.
  • the bottom plate is integrated with 170 g of the side plate.
  • FIG. 17 (A) shows the rear bezel 120, the light source substrate 140, and the light diffusing plate 170 of the light source device 114 in an unfolded state
  • FIG. 17 (B) shows a schematic top view of these
  • FIG. 17 (B) shows.
  • a schematic view of the cross section along the chain line DD' is shown in FIG. 18 (A).
  • the opening side of the recess 170f of the light diffusing plate 170 is located on the rear bezel 120 side.
  • the light source substrate 140 and the inorganic light emitting element 142 provided on the light source substrate 140 are located between the rear bezel 120 and the light diffusing plate 170, and the recess 170f covers the region 142a.
  • the side plate 170g of the light diffusing plate 170 is in contact with the rear bezel 120, and the bottom plate of the recess 170f is separated from the light source substrate 140. Therefore, the side plate 170 g also functions as the spacer 122 of the light source device 110 and 112.
  • the height h 1 of the side plate 170 g (that is, the difference between the thickness of the side plate 170 g and the thickness of the bottom plate) and the thickness difference h 2 of the light source substrate 140 correspond to the distance GP between the light source substrate 140 and the optical sheet.
  • the difference h 2 is preferably 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less, and the thickness of the bottom plate of the light diffusing plate 170 is 0.5 mm or more and 2 mm or less, or 0.75 mm or more and 1.5 mm or less.
  • the side plate 170 g may be arranged so as to overlap the light source substrate 140 in a plan view.
  • the side plate 170 g and the light source substrate 140, or the side plate 170 g and the overcoat 144 are in contact with each other, and the bottom plate covers the entire region 142a.
  • the height h 1 of the side plate 170 g, and the sum of the thickness of the overcoat 144 and the height h 1 of the side plate 170 g when the overcoat 144 is provided, is 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less. To do.
  • the light diffusing plate 170 may not be provided with the recess 170f, and the wavelength conversion film 172 may be provided with the recess (FIG. 18C). Also in this case, the recess of the wavelength conversion film 172 covers the entire region 142a.
  • the side plate 170 g of the light diffusing plate 170 does not necessarily have to have a closed shape on a surface parallel to the upper surface of the light source substrate 140.
  • the ends of the light diffusing plate 170 facing each other may be bent in the direction of the light source substrate 140.
  • the light diffusing plate 170 may have a pair of side plates 170g separated from each other and a flat portion 170j located between the side plates 170g.
  • the pair of side plates 170g may be arranged along the long side of the light diffusing plate 170, that is, along the first direction DX (FIG. 16B), along the short side, that is, in the second direction DY. It may be arranged along (FIG. 16 (C)).
  • the flat portion 170j covers the entire region 142a.
  • a wavelength conversion film 172 may be arranged between the light source substrate 140 and the light diffusing plate 170, and the wavelength conversion film 172 may have the same structure as the light diffusing plate 170 described above.
  • the side plate 170 g functions as a spacer 122 that holds the distance between the light source substrate 140 and the optical sheet. Therefore, the portion of the light diffusing plate 170 that is mainly responsible for light diffusing (for example, the bottom plate or the flat portion 170j) and the light source substrate 140 can be separated from each other. Therefore, the same effect as that of the first embodiment is obtained.
  • the present embodiment has described an example of bending the light diffusing plate or the wavelength conversion film, the present embodiment is not limited to this. Instead of the light diffusing plate or the wavelength conversion film, the optical sheet closest to the inorganic light emitting element 142 may be bent.

Abstract

光源装置はリアベゼル、光源基板、光源基板上の複数の発光ダイオード、光拡散板、およびスペーサを備える。光源基板はリアベゼル上に位置し、リアベゼル内に収容される。光拡散板は複数の発光ダイオード上に位置し、リアベゼル内に収容され、光源基板から離隔する。スペーサはリアベゼル内に収容され、光拡散板の底面と接する。光源基板の上面のうち、複数の発光ダイオードと重なる領域はスペーサから露出する。前記スペーサは光源基板を囲んでもよい。

Description

光源装置
 本発明の実施形態は、光源装置、および光源装置を備える表示装置に関する。
 現在最も汎用されている表示装置の1つとして液晶表示装置が挙げられる。液晶表示装置は、光源装置(バックライト)、光源装置上に配置される液晶表示モジュールを基本構成として有している。例えば特許文献1から3では、複数の発光ダイオードを有する光源装置が液晶表示モジュールと重畳する表示装置が開示されている。
特開2013-143240号公報 特開2017-173785号公報 特開2012-104731号公報
 本発明に係る実施形態の1つは、液晶表示モジュールを均一な輝度で光照射可能な光源装置、及び当該光源装置を備える表示装置を提供することを課題の1つとする。あるいは実施形態の1つは、額縁領域が狭く、デザイン性の高い表示装置を提供することを課題の1つとする。
 本発明の実施形態の1つによれば、収納体と、前記収納体上に位置し、前記収納体内に収容される光源基板と、前記光源基板上の複数の無機発光素子と、前記複数の無機発光素子上に位置し、前記収納体内に収容され、前記光源基板から離隔する光学シートと、および、前記収納体内に収容され、前記光学シートの底面と接するスペーサと、を備え、前記光源基板の上面のうち前記複数の無機発光素子と重なる領域は、前記スペーサと重畳しない、光源装置が提供される。
 本発明の実施形態の1つによれば、収納体と、前記収納体上に位置し、前記収納体内に収容される光源基板と、前記光源基板上の複数の無機発光素子と、および、前記複数の無機発光素子上に位置し、前記収納体内に収容される光学シートと、を備え、前記光学シートは、前記複数の無機発光素子と重なる平坦部、および前記平坦部を挟む一対の側板を有し、前記一対の側板は前記光源基板の方向へ屈曲している、光源装置が提供される。
 本発明の実施形態の1つによれば、収納体と、前記収納体上に位置し、前記収納体内に収容される光源基板と、前記光源基板上の複数の無機発光素子と、および、前記複数の無機発光素子上に位置し、前記収納体内に収容される光学シートとを備え、前記光学シートは、前記複数の無機発光素子と重なる凹部と、前記凹部を囲む側板を有する、光源装置が提供される。
 本発明の実施形態の1つによれば、光源装置、および光源装置上の液晶表示モジュールを備える表示装置であって、前記光源装置は、収納体と、前記収納体上に位置し、前記収納体内に収容される光源基板と、前記光源基板上の複数の無機発光素子と、前記複数の無機発光素子上に位置し、前記収納体内に収容され、前記光源基板から離隔する光学シートと、および、前記収納体内に収容され、前記光学シートの底面と接するスペーサと、を備え、前記光源基板の上面のうち前記複数の無機発光素子と重なる領域は、前記スペーサと重畳しない、表示装置が提供される。
 本発明の実施形態の1つによれば、光源装置、および光源装置上の液晶表示モジュールを備える表示装置であって、前記光源装置は、収納体と、前記収納体上に位置し、前記収納体内に収容される光源基板と、前記光源基板上の複数の無機発光素子と、および、前記複数の無機発光素子上に位置し、前記収納体内に収容される光学シートと、を備え、前記光学シートは、前記複数の無機発光素子と重なる平坦部、および前記平坦部を挟む一対の側板を有し、前記一対の側板は前記光源基板の方向へ屈曲している、表示装置が提供される。
 本発明の実施形態の1つによれば、光源装置、および光源装置上の液晶表示モジュールを備える表示装置であって、前記光源装置は、収納体と、前記収納体上に位置し、前記収納体内に収容される光源基板と、前記光源基板上の複数の無機発光素子と、および、前記複数の無機発光素子上に位置し、前記収納体内に収容される光学シートとを備え、前記光学シートは、前記複数の無機発光素子と重なる凹部と、前記凹部を囲む側板を有する、表示装置が提供される。
本発明の一実施形態に係る表示装置の模式的展開図。 本発明の一実施形態に係る光源装置の模式的展開図。 本発明の一実施形態に係る光源装置の模式的断面図。 本発明の一実施形態に係る光源装置の模式的展開図と上面図。 本発明の一実施形態に係る光源装置の模式的断面図。 本発明の一実施形態に係る光源装置の模式的断面図。 本発明の一実施形態に係る光源装置の模式的上面図。 本発明の一実施形態に係る光源装置の模式的上面図。 本発明の一実施形態に係る光源装置の模式的断面図。 本発明の一実施形態に係る光源装置の模式的断面図。 本発明の一実施形態に係る光源装置の模式的展開図と上面図。 本発明の一実施形態に係る光源装置の模式的斜視図と断面図。 本発明の一実施形態に係る光源装置の模式的上面図と断面図。 本発明の一実施形態に係る光源装置の模式的上面図と断面図。 本発明の一実施形態に係る光源装置の模式的上面図と断面図。 本発明の一実施形態に係る光源装置の模式的展開図、および光拡散板の模式的斜視図。 本発明の一実施形態に係る光源装置の模式的展開図と上面図。 本発明の一実施形態に係る光源装置の模式的断面図。
 以下、本発明の各実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
 本明細書および請求項において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
 本明細書および請求項において、「ある構造体が他の構造体から露出する」という表現は、ある構造体の一部が他の構造体によって直接または間接的に覆われていない態様を意味し、他の構造体によって覆われていないこの部分は、さらに別の構造体によって直接または間接的に覆われる態様も含む。
 本明細書および請求項において、複数の要素が一体化されるとは、複数の要素は互いに厚さや形状、方向などが異なり異なる機能を有するが、これらは一つの部材から形成されることを意味する。したがって一体化された複数の要素は、互いに同一の材料を含み、同一の組成を有する。
<第1実施形態>
 本実施形態では、本発明の実施形態の1つに係る光源装置110、および光源装置110を備える表示装置100について説明する。
1.全体構成
 図1は、表示装置100の全体構成を示す模式的な展開図である。一例では、第1方向DX、第2方向DY、および、第3方向DZは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向DXおよび第2方向DYは、表示装置100を構成する基板の主面と平行な方向に相当し、第3方向DZは、表示装置100の厚さ方向に相当する。本実施形態においては、第1方向DXおよび第2方向DYで規定されるDX-DY平面を見ることを平面視とする。また第3方向DZを含む平面、例えばDX-DZ平面又はDY-DZ平面を見ることを、断面視とする。
 表示装置100は、光源装置110、および光源装置110と重畳する液晶表示モジュール200を有する。更に表示装置100は、液晶表示モジュール200上にタッチセンサ220を備えてもよい。
 本実施形態においては、光源装置110から液晶表示モジュール200に向かう方向を上方向と定義し、液晶表示モジュール200から光源装置110に向かう方向を下方向と定義する。
 液晶表示モジュール200は、第1基板202、第1基板202に対向する第2基板214、第1基板202と第2基板214を挟持する一対の偏光板216、218、および、第1基板202と第2基板214の間に挟持される液晶層(図示しない)を有する。第1基板202は、複数の画素204、画素204を駆動するための駆動回路(走査線駆動回路208、信号線駆動回路210)、複数の端子212を有する。画素204、駆動回路、端子212は、導電膜、絶縁膜、半導体膜等の積層体を有する。液晶表示モジュール200は、複数の画素204を含む表示領域206、および、表示領域206以外の領域である額縁領域を有する。
 偏光板216、218は、表示領域206と重畳して配置される。液晶表示モジュール200には、端子212を介して外部回路(図示しない)から映像信号を含む種々の信号、および電源が供給される。これらの信号や電源により、駆動回路が動作する。駆動回路が画素204を制御することによって、画素204上の液晶層に含まれる液晶分子の配向が制御される。光源装置110から出射された光が液晶表示モジュール200に入射し、入射した光が画素204ごとに制御され、画像が表示される。
 タッチセンサ220は、表示領域206と重畳して配置される。タッチセンサ220として、例えば図1に示す相互容量方式の静電容量方式タッチセンサを用いることができる。タッチセンサ220は、第1方向DXに延在する複数の第1タッチ電極222、第1タッチ電極222と交差する複数の第2タッチ電極224、およびこれらを互いに電気的に絶縁する絶縁膜(図示しない)を有する。第1タッチ電極222および第2タッチ電極224間に静電容量が形成され、物体、例えばユーザが指などでタッチセンサ220をタッチした際に、静電容量が変化する。静電容量変化を検出することでタッチの有無を判断し、かつ、物体の位置(座標)を特定することができる。これによりユーザは種々の命令をタッチセンサ220に対して入力することができる。本明細書において、タッチとは物体が接触することだけでなく近接することも含む。図1では光源装置110や液晶表示モジュール200、タッチセンサ220は離隔するように描かれているが、これらは互いに接着層や筐体などを用いて固定される。本実施形態のタッチセンサ220は、相互容量方式のタッチセンサに限定されない。タッチセンサ220として、自己容量方式のタッチセンサを用いてもよい。
 さらに本実施形態のタッチセンサ220は、液晶表示モジュール200とは別に設ける、いわゆるアウトセル型タッチセンサであるが、これに限定されない。タッチセンサ220は、液晶表示モジュール200と一体化されたタッチセンサ、所謂インセル型タッチパネルでもよい。インセル型タッチパネルの場合は、液晶表示モジュール200に含まれる電極や配線が、タッチ電極として機能する。
2.光源装置
 図2に光源装置110の模式的な展開図を示す。光源装置110は、リアベゼル120、およびリアベゼル120と嵌合するフロントカバー180を有する。リアベゼル120およびフロントカバー180の間に、光源基板140、光源基板140上の光学シートが配置される。光学シートには、光拡散板170、光拡散板170上のプリズムシート174、およびプリズムシート174上の偏光シート176が含まれる。光源基板140上には、複数の無機発光素子142が配置される。更に光学シートは、光拡散板170とプリズムシート174の間に波長変換膜172を有してもよい。図2では示されないが、波長変換膜172を光拡散板170とプリズムシート174の間に設けず、光源基板140と光拡散板170の間に設けてもよい。
2-1.リアベゼルとフロントカバー
 リアベゼル120は、光源装置110を構成する光源基板140や光学シート(光拡散板170、プリズムシート174、偏光シート176、波長変換膜172など)を収容する収納体として機能する。リアベゼル120は側板120aから120dを備え、互いに対向する一対の側板(例えば側板120aと120bの対、あるいは側板120cと120dの対)の間に位置する底板を有する。底板は側板120aから120dと一体化されている。側板120aから120dは底板の上面に対して垂直に配置することが好ましい。これにより、無機発光素子142からの光を効率よく利用して液晶表示モジュール200に供給することができる。リアベゼル120がフロントカバー180と嵌合することにより、光源基板140や、光学シート(光拡散板170、プリズムシート174、偏光シート176、波長変換膜172等)が固定される。リアベゼル120には1つ、あるいは複数の開口120eが設けられる。光源基板140と外部回路は、開口120eを介して設けられるフレキシブルプリント回路基板(FPC)などにより電気的に接続される。
 リアベゼル120とフロントカバー180は、アルミニウムや銅、ステンレスなどの金属を含む。リアベゼル120は、例えば厚さが1mm以上3mm以下あるいは1mm以上2mm以下の金属プレートを切削加工、プレス加工して形成することができる。フロントカバー180の厚さは、リアベゼル120の厚さと異なってもよい。フロントカバー180は、例えば0.1mm以上1mm以下あるいは0.1mm以上0.5mm以下、0.1mm以上0.4mm以下の金属板を切削加工、プレス加工して形成してもよい。
 なお、リアベゼル120の底板は必ずしも平坦な形状を有する必要は無く、曲面形状を有していてもよい。この場合、光源基板140や光拡散板170、プリズムシート174などもこの曲面形状に合致するように配置される。
2-2.光源基板と無機発光素子
 光源装置110の一部の模式的断面図を図3に示す。上述したように光源基板140はリアベゼル120内に収容される。光源基板140はリアベゼル120と接していてもよい。
 複数の無機発光素子142は、光源基板140の上に配置され、表示領域206と重なる。無機発光素子142は、例えば格子状に配置する。隣接する無機発光素子142のピッチは、表示装置100の大きさによって任意に設定することができる。隣接する無機発光素子142間のピッチは、例えば1mm以上20mm以下、3mm以上15mm以下、あるいは5mm以上10mm以下の範囲から選択すればよい。表示領域206にわたって均一な輝度の光を供給するため、複数の無機発光素子142は均等なピッチで配置されることが好ましい。
 無機発光素子142は、窒化ガリウム、インジウムを含む窒化ガリウムなどの無機発光体を一対の電極で挟持した発光ダイオード、および当該発光ダイオードを保護する保護膜を有する発光素子である。無機発光素子142は、電界発光(Electroluminescence)によって発光するように構成される。無機発光体としては、例えば400nmから530nmの間に発光ピークを与える無機化合物を選択することができる。無機発光素子142からは、青色の発光が保護膜を介して取り出される。あるいは保護膜中に、無機発光体からの光を変換する色変換材料を分散させた発光ダイオードを用いてもよい。当該発光ダイオードは、無機発光体からの光と色変換材料により変換された光が混合されるため、白色光を発光する。色変換材料として、緑から赤色の領域の蛍光、例えば黄色の蛍光を発する蛍光材料を用いればよい。この場合には、波長変換膜172を設けず、光拡散板170とプリズムシート174が互いに接するように配置することができる。
 各無機発光素子142の大きさに制約はなく、例えばそれぞれの占有面積が1.0×104μm2以上1.0×106μm2以下、4.0×104μm2以上5.0×105μm2以下、あるいは9.0×104μm2以上2.5×105μm2以下の発光ダイオードを用いることができる。一例として大きさが320μm×300μm程度の所謂マイクロLEDを無機発光素子142として用いることができる。
 光源装置110はさらに、無機発光素子142を覆うオーバーコート144を有してもよい。オーバーコート144は光源基板140と接してもよい。オーバーコート144は無機発光素子142を保護し、光源基板140から分離することを防ぐ機能を有するとともに、無機発光素子142に起因する凹凸を吸収して平坦な表面を与える。また、無機発光素子142は比較的指向性の高い光を与えるが、オーバーコート144により無機発光素子142からの光を広げる、あるいは拡散させることができる。
 オーバーコート144は可視光領域の透過率が高いことが好ましい。オーバーコート144は、例えばアクリル系樹脂やポリカーボネート、あるいはポリエチレンテレフタレートなどのポリエステルに例示される高分子材料、あるいは酸化ケイ素などのケイ素含有無機化合物などを含む。オーバーコート144の厚さは、無機発光素子142を覆う程度の厚さが好ましい。オーバーコート144の厚さは、例えば200μm以上1mm以下、400μm以上1mm以下、あるいは500μm以上800μm以下の範囲から選択すればよい。
2-3.光拡散板
 光拡散板170は、無機発光素子142からの光を拡散し、均一な発光面を与える。光拡散板170の厚さは、例えば0.5mm以上2mm以下、あるいは0.75mm以上1.5mm以下の範囲から選択することができる。光拡散板170を配置することで指向性の高い無機発光素子142からの光が効果的に拡散され、光拡散板170が配置される面内における輝度の分布が低下する。その結果、プリズムシート174や波長変換膜172に対して均一な輝度で光を提供することができる。
 光拡散板170は、無機発光素子142から離隔して配置される。具体的には、光源基板140の上面(DX-DZ平面のうち液晶表示モジュール200により近い面)から光拡散板170の底面(DX-DZ平面のうち液晶表示モジュール200により遠い面)までの距離(光学距離とも呼ばれる)は、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下とする。従って、光拡散板170と無機発光素子142、あるいは光拡散板170とオーバーコート144は、直接接しない。光拡散板170と無機発光素子142を離隔させるための構造については後述する。
2-4.波長変換膜
 波長変換膜172は、無機発光素子142から出射し、光拡散板170で拡散された光の波長を変換して白色光を生成する機能を有する膜であり、高分子材料中に蛍光体が分散した構造を有する。蛍光体は、無機発光素子142から射出される青色の光を吸収し、緑から赤色の領域の蛍光、例えば黄色の蛍光を発する蛍光物質を含む。蛍光物質としては、上述した色変換材料を用いればよい。あるいは、蛍光体に替わり、粒径が数nmから数十nmの量子ドットを用いてもよい。
 波長変換膜172は、別途作製した1つの独立膜として光拡散板170の上、あるいは下に配置してもよく、あるいは上述した高分子材料またはその前駆体および蛍光体または量子ドットを含む分散液を光拡散板170の上または下に塗布し、その後硬化することで形成してもよい。
2-5.プリズムシート
 プリズムシート174は、光拡散板170や波長変換膜172を通過した後の光を上方向へ効率よく出射させるための光学フィルムであり、表面に複数のプリズム形状が平行に配置された構造を有する。
2-6.偏光シート
 偏光シート176は、例えば異方性反射偏光子である。より具体的には、偏光シート176は、円偏光又は楕円偏光で偏光シート176の透過軸と一致しない光を、偏光シート176内に形成されている多層膜により反射させ、反射成分を繰り返し回収する。光を効率よく反射することで光の損失を防ぎ、出射光の輝度向上が図れる。また、偏光シート176を設けることで、無機発光素子142から出射する指向性の高い光を拡散するという効果を奏する。
2-7.スペーサ
 図4(A)にリアベゼル120、光源基板140、および光拡散板170を含む模式的展開図を、図4(B)にリアベゼル120と無機発光素子142の上面図示す。図4(B)では光源基板140と光拡散板170は図示されていない。上述したように光源装置110では、光拡散板170は無機発光素子142から離隔するように配置され、このための構造としてスペーサ122がリアベゼル120内に配置される。なお他の光学シート、例えば波長変換膜172が無機発光素子142に一番近傍に配置される場合は、下記の説明は光拡散板170を波長変換膜172に置き換えて読めばよい。
(1)スペーサと無機発光素子との位置関係
 スペーサ122は光拡散板170の下に設けられ、スペーサ122の少なくとも一部が平面視で光拡散板170と重なる。スペーサ122は光源基板140の下では無機発光素子142と重なってもよいが、光源基板140の上では無機発光素子142と重ならないように配置されることが好ましい。より具体的には、図4(B)に示すように、光源基板140の上面のうち複数の無機発光素子142と重なる領域を領域142aと定義すると、領域142aがスペーサ122と重畳しないよう、スペーサ122と光源基板140はリアベゼル120内に配置される。換言すると、スペーサ122は、光源基板140上面のうち無機発光素子142が設けられない領域に配置される。このようにスペーサ122を配置することで、無機発光素子142からの光がスペーサ122によって遮られることなく、光拡散板170へ入射する。
(2)スペーサの形状と配置
 スペーサ122の形状や配置の例を図4(A)乃至図10(B)を用いて説明する。図5(A)乃至図5(C)は図4(B)の鎖線A-A´に沿った断面の模式図である。図5(A)乃至図5(C)では見やすさを考慮し、無機発光素子142やオーバーコート144は図示しない。図6(A)乃至図6(C)、図9(A)乃至図9(C)は図5(A)における領域130の拡大図である。図7(A)乃至図8はリアベゼル120とスペーサ122の上面模式図である。
 例えば図4(A)乃至図5(A)に示すように、スペーサ122は光源基板140の上面と平行な面において閉じた形状を有し、平面視で複数の無機発光素子142を囲むように配置する。一例として液晶表示モジュール200の第1基板202が四角形の場合、リアベゼル120やこれに収容される光源基板140なども四角形の形状を有するため、スペーサ122は複数の直線部を有し、当該直線部がリアベゼル120の側板120aから120dに沿うように配置される。
 スペーサ122はリアベゼル120の側板120aから120dのすべて、あるいは一部と接するように配置することができる(図5(A))。スペーサ122はさらに、リアベゼル120の底板の上面と接するように配置してもよい(図5(A))。この場合、スペーサ122と光源基板140は重ならず、光源基板140はスペーサ122によって囲まれる。光源基板140は、図示しない接着剤や両面テープなどを利用してリアベゼル120の底板の上面に固定される。
 図5(A)の例では、スペーサ122は光拡散板170の底面と接するが、上述したように、光拡散板170と光源基板140の間に波長変換膜172を配置することも可能である。この場合には、スペーサ122は波長変換膜172の底面と接するように配置される(図5(B))。波長変換膜172を設けない場合には、プリズムシート174の底面が光拡散板170と接する(図5(C))。
 図6(A)は領域130の拡大図である。図6(A)に示すように、光源基板140がスペーサ122と重ならない場合には、スペーサ122の厚さは光源基板140の厚さよりも大きいほうが好ましい。例えばスペーサ122の厚さt1と光源基板140の厚さとの差Δt1は、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下の範囲である。光学シート(図6(A)では光拡散板170)の底面と光源基板140の上面の間隔は、差Δt1に等しい距離で保持される。
 スペーサ122は必ずしもリアベゼル120の側板120a乃至120dの全てと接する必要は無く、一部、あるいは全ての側板から離隔してもよい。スペーサ122をリアベゼル120の全ての側板120a乃至120dから離隔した例を、図6(B)に示す。あるいはスペーサ122は、光源基板140、あるいはその上に設けられるオーバーコート144と接するよう、光源基板140と重なるように設けてもよい(図6(C))。図6(C)の構成に加えて、光源基板140はリアベゼル120の側板120aから120dの全て、あるいは一部と接してもよい(図6(D))。オーバーコート144を設ける場合、オーバーコート144の厚さとスペーサ122の厚さt1の和は1mm以上3mm以下、あるいは1.5mm以上2.5mm以下とする。オーバーコート144を設けない場合には、スペーサ122の厚さt1は1mm以上3mm以下、あるいは1.5mm以上2.5mm以下とする。スペーサ122の厚さt1が、光拡散板170の底面と光源基板140の上面間の距離となる。
 あるいは図7(A)に示すように、スペーサ122として互いに分離し、対向する一対の直線状ロッド122aおよび122b(第1の直線状ロッド122aおよび122b)を設けてもよい。一対の直線状ロッド122aおよび122bはそれぞれ、互いに対向する2つの側板(ここでは側板120cと120d)に沿って延伸する。このような配置であっても一対の直線状ロッド122aおよび122bによって安定的に光拡散板170を保持し、光源基板140と光拡散板170間の距離を維持することができる。また図7(B)に示すように、スペーサ122は互いに対向するさらに別の一対の直線状ロッド122cおよび122d(第2の直線状ロッド122cおよび122d)を有してもよい。一対の直線状ロッド122cおよび122dは、他の一対の側板(ここでは側板120aと120b)にそれぞれ沿って延伸する。直線状ロッド122cおよび122dの延伸する方向と、一対の直線状ロッド122aおよび122bの延伸する方向が、直交するようにスペーサ122を配置することができる。
 あるいは図8に示すように、スペーサ122として、互いに分離した複数のパッド122eを設けてもよい。少なくとも3つのパッド122eをリアベゼル120内に配置することで、光拡散板170を保持することができる。これにより光源基板140と光学シート間の距離を維持することができる。より安定的に光拡散板170を保持するため、4つ以上のパッド122eを設けてもよい。この場合、4つのパッド122eがリアベゼル120の底板の角部に位置することが好ましい。5つ以上のパッド122eを設ける場合は、そのうちの3つのパッド122eが並ぶ方向が、リアベゼル120の側板(図8では側板120cおよび120d)が延伸する方向と平行、あるいは実質的に平行となるように複数のパッド122eを配列させることが好ましい。
(3)断面形状
 DY-DZ平面におけるスペーサ122の断面形状は、四角形などの多角形に限られず、例えば図9(A)に示すように円でもよく、楕円でもよい。
 あるいは図9(B)に示すように、スペーサ122は断面視で階段形状を有していてもよい。図9(B)に示すスペーサ122には1つ、あるいは複数のステップ122fが形成される。ステップ122fとは、底面と最上面の間に位置する面であり、光源基板140の上面に平行な面(DX-DY平面)である。光拡散板170は、ステップ122f上に、ステップ122fと接するように配置される。ステップ122fを有するスペーサ122は、リアベゼル120の底板の上面と接するように配置する。ステップ122fの高さt2(すなわち、スペーサ122の底面からステップ122fまでの距離)と光源基板140の厚さの差Δt2は、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下の範囲とする。またステップ122fを有するスペーサ122は、光源基板140と重なるように配置してもよい(図9(C))。図9(C)に示す構成では、ステップ122fの高さt2、更にオーバーコート144を設ける場合には高さt2とオーバーコート144の厚さの和、は、上述したΔt2の範囲と同等である。図示しないが、波長変換膜172が光源基板140と光拡散板170の間に配置される場合には、ステップ122fと波長変換膜172が互いに接するように、波長変換膜172がスペーサ122上に配置される。
 あるいは、スペーサ122は複数の層で構成されていてもよい。例えば図10(A)および図10(B)それぞれに示すように、スペーサ122は第1の支持層122g、および第1の支持層122g上に位置し、第1の支持層122gと接する第2の支持層122hを備えてもよい。第1の支持層122gと第2の支持層122hは互いに異なる材料を含んでもよい。第1の支持層122gは第1の材料として例えば金属を含み、第2の支持層122hは第2の材料として例えば高分子材料を含んでもよい。第2の支持層122hは少なくとも一方の面が接着性を有するように構成してもよい。スペーサ122が複数の支持層で構成される場合、スペーサ122の厚さとは、当該複数の支持層の厚さの和である。
(4)材料
 スペーサ122を構成する材料に制約はなく、例えばアルミニウムや銅、亜鉛、鉄、ステンレス、真鍮などの金属や合金でもよく、あるいは高分子材料でも良い。高分子材料としては、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、フェノール樹脂、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリスチレン、ポリアクリロニトリル、ポリブタジエン、ポリイソプレン、ポリエチレンテレフタレートなどのポリエステル、ポリカルボナートなどが挙げられる。
 上述したように光源装置110では、複数の無機発光素子142が配置される光源基板140および光学シート(光拡散板170、プリズムシート174、偏光シート176など)がリアベゼル120とフロントカバー180の間に収容され、互いに固定される。光源装置110の上に液晶表示モジュール200が配置され、表示装置100を構成する。光源装置110内ではスペーサ122が光拡散板170の下に配置され、光源基板140と光学シートとの間に一定の間隔が保持される。従って、無機発光素子142から指向性の高い光が出射されても、光源基板140と光拡散板170の間の空間で出射光が拡散する。また、出射光がこの空間内で反射を繰り返すことで指向性がさらに低下する。その結果、光拡散板170の底面において輝度の高い領域(ホットスポット)の局所的な発生が抑制される。更に、光源基板140と光拡散板170の間の空間によって強度分布が低下した光が光拡散板170によりさらに拡散し、均一な輝度で液晶表示モジュール200へ光が入射される。このため、表示領域206に対して均一な輝度の光が提供され、表示装置100は高品質な表示が可能となる。
 さらに本実施形態の表示装置100では、光源として機能する無機発光素子142は、平面視で表示領域206と重畳して配置することができる。光源を額縁領域に配置する構成と比較すると、光を液晶表示モジュール200側へ反射させるための反射板が不要となる。よって光源装置を構成する部品数を低減することができる。このことは表示装置の薄型化に寄与する。さらに、額縁領域に光源を配置する必要がないため、額縁領域を小さくし、表示装置100全体に対する表示領域206の面積を大きくすることが可能となる。このため、本実施形態を適用することで、デザイン性に優れた表示装置を提供することが可能となる。
<第2実施形態>
 本実施形態では、第1実施形態の光源装置110と異なる構造を有する光源装置112について説明する。第1実施形態で述べた構造と同一、あるいは類似する構造については説明を割愛することがある。
 第2実施形態の光源装置112は、光学シート(光拡散板170又は波長変換膜172)に凹部、貫通孔、切り欠き、又は溝が設けられ、スペーサ122の少なくとも一部が当該凹部、貫通孔、切り欠き、又は溝内に位置する点で、第1実施形態の光源装置110と異なる。具体的な構造を図11(A)乃至図15(B)を用いて以下に説明する。
 図11(A)は光源装置112に含まれるリアベゼル120、スペーサ122、光源基板140、光学シートのうち光拡散板170を展開した模式図であり、図11(B)はリアベゼル120とスペーサ122の上面模式図である。図11(A)に示すように光源装置112は、リアベゼル120内に配置されるスペーサ122として支持ピン122jを有する。支持ピン122jの数に制約はないが、少なくとも3つ以上であればよく、4つ以上が好ましい。4つの支持ピン122jを配置する場合、支持ピン122jはリアベゼル120の4つのコーナーに設置することが好ましい。4つ以上の支持ピン122jを配置する場合、パッド122eと同様、そのうちの3つが並ぶ方向がリアベゼル120の側板が延伸する方向と平行、あるいは実質的に平行となるように支持ピン122jを配列させることが好ましい。なお他の光学シート、例えば波長変換膜172が無機発光素子142に一番近傍に配置される場合は、下記の説明は本実施形態の光拡散板170を波長変換膜172に置き換えて読めばよい。
 支持ピン122jは、領域142aと重ならないように配置される。換言すると、平面視で、光源基板140の上面のうち複数の無機発光素子142と重なる領域142a(図4(B)参照)が支持ピン122jと重畳しない(図11(B))。
 一方、光拡散板170には支持ピン122jの位置に対応するように複数の貫通孔170aが設けられる(図11(A))。各支持ピン122jの少なくとも一部が対応する貫通孔170a内に配置する。例えば図12(A)に示すように、各支持ピン122jは下部122j-1と上部122j-2を有し、上部122j-2が貫通孔170aを貫通し、下部122j-1が貫通孔170aを貫通しない。従って、上部122j-2の断面(光源基板140の上面に平行な断面)の面積は、下部122j-1の面積よりも小さい。
 図12(B)に図11(B)の鎖線B-B´に沿った模式的断面図を示す。図12(B)に示すように、上部122j-2は貫通孔170aを貫通してもよい。また図示しないが、上部122j-2が貫通孔170aを完全に貫通しなくてもよい。
 このような構成では、下部122j-1の厚さ(第3方向DZの長さ)t3が光源基板140と光拡散板170との離隔に寄与する。具体的には、支持ピン122jが光源基板140と重ならない場合には、下部122j-1の厚さt3と光源基板140の厚さの差Δt3は、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下の範囲とする。厚さの差Δt3が光源基板140と光拡散板170との距離となる。一方、支持ピン122jが光源基板140上に配置される場合には、下部122j-1の厚さt3、更にオーバーコート144上に支持ピン122jを配置する場合には厚さt3とオーバーコート144の厚さの和、が上述した範囲と同等である。
 あるいは図12(C)に示すように、光拡散板170には貫通孔170aに替わって凹部170bを形成し、凹部170b内に支持ピン122jの一部を収納してもよい。図12(C)に示す構成では、支持ピン122jが光源基板140と平面視で重ならない場合には、支持ピン122jの凹部170bから露出した部分の長さLと光源基板140の厚さの差が、光源基板140と光拡散板170間の距離となる。一方、支持ピン122jが光源基板140上に配置される場合には、長さL、更にオーバーコート144を配置する場合には長さLとオーバーコート144の厚さの和、が、上述した範囲とする。
 あるいは図13(A)に示すように、貫通孔170aや凹部170bに替わって、光拡散板170の角部に切り欠き170cを形成してもよい。切り欠き170cと支持ピン122jの一部は互いに重畳して配置する。図13(A)の鎖線C-C´に沿った断面の模式図(図13(B))に示すように、支持ピン122jの上部122j-2が切り欠き170cと重なり、下部122j-1の上面が光拡散板170の底面と接する。
 あるいは図14(A)に示すように、スペーサ122として一対のレール122kを設けてもよい。一対のレール122kは互いに対向する側板(図14(A)に示した例では側板120cおよび120d)に沿うよう、これらの側板と平行に延伸させる。また一対のレール122kは平面視で領域142aを挟持するように配置される。一方、光拡散板170には、一対のレール122kと対応する位置に一対の溝170dが設けられる(図14(B))。各レール122kは、少なくとも一部が溝170dに収容される。例えば図14(A)の鎖線D-D´に沿った断面の模式図(14(C))に示すように、各レール122kは、側板と平行に延伸し、溝170dの幅よりも小さい幅を有する上部122k-2、および側板と平行に延伸し、溝170dの幅よりも大きい下部122k-1を有する。光拡散板170の底面は下部122k-1の上面と接する。溝170dは光拡散板170を貫通していてもよく、図示しないが光拡散板170を貫通しない有底溝でもよい。
 あるいは図15(A)に示すように、スペーサ122として一対のレール122kを設ける場合、溝170dに替わって、光拡散板170の長辺又は短辺に沿った、即ち第1方向DX又は第2方向DYに沿った直線状の一対の切り欠き170eを形成してもよい。図15(A)の鎖線E-E´に沿った断面の模式図(図15(B))に示すように、一対の切り欠き170eに挟まれる領域の長さWは、一対のレール122kの上部122k-2間の距離よりも短く、下部122k-1間の距離よりも長い。これにより、一対のレール122kによって光源基板140と光拡散板170間の空間が保持される。
 図示しないが、スペーサ122として二対のレール122kを設けてもよい。この場合、一対のレール122kが延伸する方向が他の一対のレール122kが延伸する方向と垂直になるようにレール122kを配置することが好ましい。具体的には、スペーサ122として、第1方向DXに延伸する一対のレール122k並びに第2方向DYに沿った一対のレール122kを設ければよい。光拡散板170には、二対のレール122kに対応する二対の溝170d、あるいは二対の切り欠き170eが形成される。
 なお、波長変換膜172が光源基板140と光拡散板170の間に設けられる場合、貫通孔170a、凹部170b、切り欠き170c、溝170dは波長変換膜172に形成すればよい。
 本実施形態の光源装置112においても、支持ピン122jやレール122kを含むスペーサ122によって、無機発光素子142と光学シートを互いに離隔することができ、また、無機発光素子142と光学シートの間の距離を一定に保つことができる。このため、第1実施形態と同様の効果を奏する。
<第3実施形態>
 本実施形態では、光源装置110や112と異なる構造を有する光源装置114について、図16(A)から図18(C)を用いて説明する。第1および第2実施形態で述べた構造と同一、あるいは類似する構造については説明を割愛することがある。
 光源装置114では、光学シートが第1および第2実施形態で述べたスペーサ122としても同時に機能する点で、第1実施形態の光源装置110および第2実施形態の光源装置112と相違する。具体的な構成を図16(A)に示す。図16(A)では見やすさを考慮し、光源基板140が光拡散板170の上に位置するように描かれている。従って図16(A)では、無機発光素子142やオーバーコート144は光源基板140の下に位置する。図16(A)に示すように、光源装置114の光拡散板170は、凹部170fを有する。凹部170fは、光源基板140の上面のうち複数の無機発光素子142と重なる領域であり、領域142aの全体と重なる。換言すると、光拡散板170は、光源基板140の上面と平行な面において閉じた形状を有する側板170gを有する。側板170gに囲まれた領域170hが凹部170fの底板として機能し、領域142aの全体と重なる。底板は側板170gと一体化されている。
 図17(A)に光源装置114が有するリアベゼル120、光源基板140、および光拡散板170が展開された状態を、図17(B)にこれらの模式的上面図を、図17(B)の鎖線D-D´に沿った断面の模式図を図18(A)に示す。図17(A)、図17(B)および図18(A)に示すように、光拡散板170の凹部170fの開口側がリアベゼル120側に位置する。光源基板140、およびその上に設けられる無機発光素子142は、リアベゼル120と光拡散板170の間に位置し、凹部170fが領域142aを覆う。図18(A)に示すように、光拡散板170の側板170gはリアベゼル120と接し、凹部170fの底板は光源基板140から離隔する。従って側板170gが光源装置110や112のスペーサ122としても機能する。
 側板170gの高さh1(すなわち、側板170gの厚さと底板の厚さの差)と光源基板140の厚さの差h2が、光源基板140と光学シート間の距離GPに相当する。差h2は1mm以上3mm以下、又は1.5mm以上2.5mm以下、光拡散板170の底板の厚さが0.5mm以上2mm以下、又は0.75mm以上1.5mm以下が好ましい。
 あるいは図18(B)に示すように、側板170gは光源基板140と平面視で重なるように配置してもよい。この場合、側板170gと光源基板140、あるいは側板170gとオーバーコート144が互いに接し、底板は領域142aの全体を覆う。側板170gの高さh1、更にオーバーコート144を設ける場合にはオーバーコート144の厚さと側板170gの高さh1の和、は、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下とする。なお、波長変換膜172を光源基板140と光拡散板170の間に配置する場合、光拡散板170に凹部170fを設けず、波長変換膜172に凹部を形成すればよい(図18(C))。この場合も、波長変換膜172の凹部は、領域142aの全体を覆う。
 光拡散板170の側板170gは、光源基板140の上面と平行な面において閉じた形状を必ずしも有する必要は無い。例えば図16(B)に示すように、光拡散板170の端部のうち互いに対向する端部は、光源基板140の方向へ屈曲してもよい。光拡散板170は、互いに分離した一対の側板170g、および、側板170gの間に位置する平坦部170jを有してもよい。一対の側板170gは、光拡散板170の長辺に沿って、即ち第1方向DXに沿って配置されていてもよく(図16(B))、短辺に沿って、即ち第2方向DYに沿って配置されていてもよい(図16(C))。図16(B)および(C)に示す場合でも、平坦部170jが領域142aの全体を覆う。図示しないが、光源基板140と光拡散板170の間に波長変換膜172を配置し、波長変換膜172が上述した光拡散板170と同様の構造を有していてもよい。
 本実施形態に示した光源装置114では、側板170gが光源基板140と光学シートの間隔を保持するスペーサ122として機能する。従って、光拡散板170のうち光拡散を主に担う部分(例えば底板や平坦部170j)と光源基板140を互いに離隔することができる。このため、第1実施形態と同様の効果を奏する。
 なお本実施形態では、光拡散板又は波長変換膜を屈曲させる例について述べたが、本実施形態はこれに限定されない。光拡散板又は波長変換膜に代えて、光学シートのうち無機発光素子142に一番近傍のものを屈曲させてもよい。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、または、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 100:表示装置、110:光源装置、112:光源装置、114:光源装置、120:リアベゼル、120a:側板、120b:側板、120c:側板、120d:側板、120e:開口、122:スペーサ、122a:第1の直線状ロッド、122b:第1の直線状ロッド、122c:第2の直線状ロッド、122d:第2の直線状ロッド、122e:パッド、122f:ステップ、122g:第1の支持層、122h:第2の支持層、122j:支持ピン、122j-1:下部、122j-2:上部、122k:レール、122k-1:下部、122k-2:上部、130:領域、140:光源基板、142:無機発光素子、142a:領域、144:オーバーコート、170:光拡散板、170a:貫通孔、170b:凹部、170c:切り欠き、170d:溝、170e:切り欠き、170f:凹部、170g:側板、170h:領域、170j:平坦部、172:波長変換膜、174:プリズムシート、176:偏光シート、180:フロントカバー、200:液晶表示モジュール、202:第1基板、204:画素、206:表示領域、208:走査線駆動回路、210:信号線駆動回路、212:端子、214:第2基板、216:偏光板、218:偏光板、220:タッチセンサ、222:第1タッチ電極、224:第2タッチ電極

Claims (19)

  1.  収納体と、
     前記収納体上に位置し、前記収納体内に収容される光源基板と、
     前記光源基板上の複数の無機発光素子と、
     前記複数の無機発光素子上に位置し、前記収納体内に収容され、前記光源基板から離隔する光学シートと、および
     前記収納体内に収容され、前記光学シートの底面と接するスペーサと、
     を備え、
     前記光源基板の上面のうち前記複数の無機発光素子と重なる領域は、前記スペーサと重畳しない、光源装置。
  2.  前記スペーサは前記光源基板を囲む、請求項1に記載の光源装置。
  3.  前記スペーサは前記複数の無機発光素子を囲む、請求項1に記載の光源装置。
  4.  前記スペーサは前記光源基板と平面視で重なる、請求項1に記載の光源装置。
  5.  前記複数の無機発光素子を覆い、前記光源基板と接するオーバーコートをさらに有し、
     前記スペーサは前記オーバーコートと接する、請求項1に記載の光源装置。
  6.  前記スペーサは前記収納体の側板と接する、請求項1に記載の光源装置。
  7.  前記収納体は、互いに対向する第1の側板および第2の側板を有し、
     一対の前記スペーサは、前記第1の側板および第2の側板それぞれに沿って延伸する、請求項1に記載の光源装置。
  8.  前記収納体は、互いに対向する第3の側板と第4の側板を有し、
     別の一対の前記スペーサは、前記第3の側板および第4の側板それぞれに沿って延伸し、
     前記一対のスペーサが延伸する方向と前記別の一対のスペーサが延伸する方向が直交する、請求項7に記載の光源装置。
  9.  少なくとも3つの前記スペーサを有する、請求項1に記載の光源装置。
  10.  前記スペーサは、前記光学シートと接するステップを有する、請求項1に記載の光源装置。
  11.  前記スペーサは、
      第1の支持層と、および
      前記第1の支持層上に位置し、前記第1の支持層と接する第2の支持層と、
      を有し、
     前記第1の支持層および前記第2の支持層はそれぞれ、互いに異なる第1の材料および第2の材料を含む、請求項1に記載の光源装置。
  12.  前記スペーサは下部および上部を有し、
     前記光学シートは複数の凹部又は複数の貫通孔を備え、
     前記スペーサの上部は、複数の貫通孔のそれぞれの前記凹部又は前記貫通孔内に位置する、請求項1に記載の光源装置。
  13.  前記収納体は、互いに対向する第1の側板および第2の側板を有し、
     一対の前記スペーサは、前記第1の側板および第2の側板にそれぞれに沿って延伸し、
     前記光学シートは一対の溝を有し、
     前記一対のスペーサはそれぞれ、対応する前記溝内に少なくとも一部が位置する、請求項1に記載の光源装置。
  14.  収納体と、
     前記収納体上に位置し、前記収納体内に収容される光源基板と、
     前記光源基板上の複数の無機発光素子と、および
     前記複数の無機発光素子上に位置し、前記収納体内に収容される光学シートと、
     を備え、
     前記光学シートは、前記複数の無機発光素子と重なる平坦部、および前記平坦部を挟む一対の側板を有し、
     前記一対の側板は前記光源基板の方向へ屈曲している、光源装置。
  15.  前記一対の側板は前記収納体と接する、請求項14に記載の光源装置。
  16.  前記一対の側板は前記光源基板と重なる、請求項14に記載の光源装置。
  17.  収納体と、
     前記収納体上に位置し、前記収納体内に収容される光源基板と、
     前記光源基板上の複数の無機発光素子と、および
     前記複数の無機発光素子上に位置し、前記収納体内に収容される光学シートと
     を備え、
     前記光学シートは、前記複数の無機発光素子と重なる凹部と、前記凹部を囲む側板を有する、光源装置。
  18.  前記側板は前記収納体と接する、請求項17に記載の光源装置。
  19.  前記光源基板は前記光学シートの前記凹部に収容される、請求項17に記載の光源装置。
PCT/JP2020/015029 2019-04-12 2020-04-01 光源装置 WO2020209157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/449,822 US11573453B2 (en) 2019-04-12 2021-10-04 Light source device
US18/068,206 US11852918B2 (en) 2019-04-12 2022-12-19 Light source device
US18/508,477 US20240085737A1 (en) 2019-04-12 2023-11-14 Light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076284 2019-04-12
JP2019076284A JP7373293B2 (ja) 2019-04-12 2019-04-12 光源装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/449,822 Continuation US11573453B2 (en) 2019-04-12 2021-10-04 Light source device

Publications (1)

Publication Number Publication Date
WO2020209157A1 true WO2020209157A1 (ja) 2020-10-15

Family

ID=72750629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015029 WO2020209157A1 (ja) 2019-04-12 2020-04-01 光源装置

Country Status (3)

Country Link
US (3) US11573453B2 (ja)
JP (2) JP7373293B2 (ja)
WO (1) WO2020209157A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339151A (ja) * 2005-05-30 2006-12-14 Lg Electronics Inc 発光ダイオードを備えたバックライトユニット及びその製造方法
JP2010197845A (ja) * 2009-02-26 2010-09-09 Sony Corp 光学素子積層体、バックライトおよび液晶表示装置
JP2010212060A (ja) * 2009-03-10 2010-09-24 Victor Co Of Japan Ltd バックライト装置および液晶表示装置
JP2013510402A (ja) * 2009-11-05 2013-03-21 エルジー・ケム・リミテッド バックライトユニット
KR20140089058A (ko) * 2013-01-02 2014-07-14 희성전자 주식회사 백라이트 장치
WO2017154050A1 (ja) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 バックライト装置及び液晶表示装置
JP2018106971A (ja) * 2016-12-27 2018-07-05 大日本印刷株式会社 Ledバックライト装置およびled画像表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367011B1 (ko) * 2000-08-21 2003-01-09 엘지.필립스 엘시디 주식회사 액정표시장치
KR20060058554A (ko) * 2004-11-25 2006-05-30 삼성전자주식회사 백라이트 어셈블리 및 이를 갖는 액정표시장치
US20100208161A1 (en) 2009-02-19 2010-08-19 Victor Company Of Japan, Limited Backlight device and liquid crystal display
JP5472748B2 (ja) 2010-11-12 2014-04-16 株式会社デンソー 液晶表示装置
JP5848612B2 (ja) 2012-01-10 2016-01-27 シャープ株式会社 面光源装置およびそれを備えた液晶表示装置
WO2014196235A1 (ja) * 2013-06-07 2014-12-11 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
US9817179B2 (en) * 2013-06-14 2017-11-14 Sakai Display Products Corporation Light source unit, display apparatus and lighting apparatus
US20190025651A1 (en) * 2016-01-21 2019-01-24 Sharp Kabushiki Kaisha Lighting device and display device
JP6198910B1 (ja) 2016-03-18 2017-09-20 シャープ株式会社 表示装置及びテレビジョン受像機
CN207992649U (zh) * 2018-04-18 2018-10-19 京东方科技集团股份有限公司 一种背光源、显示模组及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339151A (ja) * 2005-05-30 2006-12-14 Lg Electronics Inc 発光ダイオードを備えたバックライトユニット及びその製造方法
JP2010197845A (ja) * 2009-02-26 2010-09-09 Sony Corp 光学素子積層体、バックライトおよび液晶表示装置
JP2010212060A (ja) * 2009-03-10 2010-09-24 Victor Co Of Japan Ltd バックライト装置および液晶表示装置
JP2013510402A (ja) * 2009-11-05 2013-03-21 エルジー・ケム・リミテッド バックライトユニット
KR20140089058A (ko) * 2013-01-02 2014-07-14 희성전자 주식회사 백라이트 장치
WO2017154050A1 (ja) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 バックライト装置及び液晶表示装置
JP2018106971A (ja) * 2016-12-27 2018-07-05 大日本印刷株式会社 Ledバックライト装置およびled画像表示装置

Also Published As

Publication number Publication date
JP2023181299A (ja) 2023-12-21
US11573453B2 (en) 2023-02-07
JP7373293B2 (ja) 2023-11-02
US11852918B2 (en) 2023-12-26
US20220026765A1 (en) 2022-01-27
US20240085737A1 (en) 2024-03-14
US20230118649A1 (en) 2023-04-20
JP2020174009A (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
US9488772B2 (en) Display device, electronic apparatus and illumination device
CN110908177B (zh) 反射片、照明装置及显示装置
WO2014042063A1 (ja) 照明装置、表示装置、及びテレビ受信装置
CN110908178A (zh) 照明装置以及显示装置
KR20190085195A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2019012793A1 (ja) 発光装置、表示装置および照明装置
JP5576503B2 (ja) 光源装置及び表示装置
JP5576504B2 (ja) 光源装置及び表示装置
WO2020209157A1 (ja) 光源装置
US9128229B2 (en) Backlight device and liquid display device including the same
WO2020209160A1 (ja) 光源装置、および光源装置を有する表示装置
TW202125032A (zh) 配光控制元件
WO2020209023A1 (ja) 光源装置、及び光源装置を有する表示装置
JP7134126B2 (ja) 光源装置、および光源装置を有する表示装置
US20190179191A1 (en) Display device including a light-emitting diode package
KR102582503B1 (ko) 액정 표시 장치
KR20150125120A (ko) 표시 장치 및 그 제조 방법
TW202024694A (zh) 背光模組
KR20210085802A (ko) 백 라이트 유닛 및 이를 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788371

Country of ref document: EP

Kind code of ref document: A1