WO2020208768A1 - 効率の高い溶融鉄合金の精錬方法 - Google Patents

効率の高い溶融鉄合金の精錬方法 Download PDF

Info

Publication number
WO2020208768A1
WO2020208768A1 PCT/JP2019/015737 JP2019015737W WO2020208768A1 WO 2020208768 A1 WO2020208768 A1 WO 2020208768A1 JP 2019015737 W JP2019015737 W JP 2019015737W WO 2020208768 A1 WO2020208768 A1 WO 2020208768A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
iron alloy
molten iron
refining
current
Prior art date
Application number
PCT/JP2019/015737
Other languages
English (en)
French (fr)
Inventor
佐々木 直人
充高 松尾
憲一郎 内藤
崇一 新野
浩二 森田
藤 健彦
昌光 若生
大貫 一雄
平田 浩
エス アイ セミキン
V. F. Polyakov (ポラコフ ブイ エフ)
Original Assignee
日本製鉄株式会社
ゼット アイ ネクラゾフ アイロン アンド スチール インスチチュート オブ ナショナル アカデミー オブ サイエンス オブ ウクライナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, ゼット アイ ネクラゾフ アイロン アンド スチール インスチチュート オブ ナショナル アカデミー オブ サイエンス オブ ウクライナ filed Critical 日本製鉄株式会社
Priority to JP2021513108A priority Critical patent/JP7158570B2/ja
Priority to UAA202105664A priority patent/UA128009C2/uk
Priority to PCT/JP2019/015737 priority patent/WO2020208768A1/ja
Priority to CN201980094720.XA priority patent/CN113631729B/zh
Priority to EP19924226.4A priority patent/EP3954787A4/en
Priority to KR1020217029972A priority patent/KR102483106B1/ko
Publication of WO2020208768A1 publication Critical patent/WO2020208768A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5229Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2250/00Specific additives; Means for adding material different from burners or lances
    • C21C2250/06Hollow electrode
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/08Particular sequence of the process steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Definitions

  • the present invention relates to a method for refining a molten iron alloy by a converter.
  • the present invention particularly relates to a refining method capable of reducing the content of metallic iron in slag and reducing the variation in the content of metallic iron in slag for each charge, thereby improving the efficiency of slag treatment.
  • converter slag Slag (hereinafter also referred to as "converter slag") produced when molten iron alloys such as molten pig iron (hereinafter also referred to as “hot metal”) are refined in a converter contains free CaO, which is water. Volume stability is low because it expands by causing a sum reaction.
  • the slag is related to the treatment method, it usually contains about 1 to 40% by mass of iron oxide and has a black appearance, which makes the appearance uncomfortable when used as an aggregate for concrete.
  • slag is discharged from the converter into a reaction vessel, and a reforming treatment such as coal ash is added to the molten converter slag in the vessel to reduce free CaO.
  • a reforming treatment such as coal ash is added to the molten converter slag in the vessel to reduce free CaO.
  • It is used for upper roadbed materials and aggregates for concrete, which are more advanced applications.
  • the converter slag contains tens of mass% of granular iron as metallic iron in a suspended state. Carbon is present in the suspended granular iron, and when the molten slag is modified, the carbon of the granular iron reacts with iron oxide in the molten slag and oxygen gas for stirring, so that the molten slag There is a problem that bubbles of CO gas are generated (forming) inside, which causes various adverse effects. Further, when the slag is reused due to the presence of the grain iron, the slag strength varies due to the uneven distribution of the grain iron and the oxidative expansion of the grain iron. Further, the grain iron in the slag is a factor of yield loss when focusing on converter blowing, and the lower the content, the more preferable.
  • Patent Document 1 discloses a method in which granular iron in molten slag taken out from a converter is settled in a reaction vessel and then subjected to a slag reforming treatment.
  • the amount of iron grains in the slag varies, the settling time also varies, making it difficult to perform stable treatment.
  • the reaction vessel performs a treatment to reduce the metallic iron content in the slag. Therefore, if there is a variation in the amount of grain iron in the slag, the slag treatment is performed. There was a problem that the time varied.
  • Non-Patent Document 1 in converter refining, an acid feed lance is used as one electrode, and a voltage is applied between the electrode and the other electrode provided on the bottom of the furnace for blowing. Attempts have been made to obtain information such as the distance between the tip of the lance and the molten metal bath surface and the thickness of the slag layer by measuring changes in the current, voltage, and resistance value on the way.
  • An object of the present invention is to provide a highly efficient method for refining a molten iron alloy, which makes it possible to simplify the process of reducing slag.
  • the gist of the present invention is as follows.
  • the first aspect of the present invention is a method of refining a molten iron alloy while sending acid to a molten iron alloy bath in a converter, wherein the molten iron alloy bath is arranged above the molten iron alloy bath. and the electrode, a direct current between the second electrode which are arranged so as to be in contact with the molten iron alloy bath supplies, the average of the magnitude of the DC current in the energization time energizing the direct current I P [a ], wherein the average size of I P of the DC current in the energization time of the last minute to stop the oxygen-flow '[a], the amount of molten steel of the rolling furnace W s [t], the furnace abdomen the furnace cross-sectional area when the a s [m 2], a refining method of molten iron alloy satisfies at least one of the following (1) to (4) below.
  • the converter may have a bottom blowing tuyere.
  • the content of granular iron in the slag and its variation can be reduced, and the efficiency of subsequent slag reforming and metal recovery processing can be improved. Can be improved.
  • the present inventors have studied a method for reducing the content of ferroalloys in slag and its variation when refining a molten iron alloy in a converter, and focused on energizing a slag bath and a metal bath. Then, it was found that the amount of granular iron contained in the slag and its variation are reduced when a specific amount of electric charge is applied during energization.
  • the converter equipment used in the refining method of the present invention will be described with reference to FIG.
  • “%” represents “mass%”
  • “current” represents “direct current”.
  • the "average direct current” indicates the magnitude of the average value of the direct current during the time when the direct current is applied. Strictly speaking, the "average of direct current” is a value obtained by averaging the current values at 10 or more time points at regular time intervals during the time when the direct current is applied.
  • converter refining hot metal from the blast furnace is poured into the converter, slag raw material containing CaO as the main component is added, and blowing for the purpose of desiliconization and / or dephosphorization, and finish dephosphorization. Blasting is performed for the purpose of decarburization and temperature adjustment.
  • the converter facility 1 used in the present invention is installed above the molten iron alloy bath (hereinafter, also referred to as “iron bath”) 12 at a position where the first electrode 21 frequently contacts the slag 11. .. Further, the second electrode 22 is arranged so as to be in contact with the iron bath 12.
  • iron bath molten iron alloy bath
  • an electric circuit is formed by the slag 11, the iron bath 12, the first electrode 21, and the second electrode 22.
  • a voltage can be applied between the electrodes to supply an electric current to the slag 11 and the iron bath 12.
  • the first electrode 21 may also serve as a top-blown acid feed lance 31.
  • Blowing of converters is usually carried out by 1) conventional blowing methods in which desiliconization, dephosphorization and decarburization are performed, 2) blowing for the purpose of desiliconization and / or dephosphorization, and finish dephosphorization.
  • a blowing method that separates the blowing for the purpose of decarburization and temperature adjustment, and 3) after performing desiliconization in a separate process, blowing for the purpose of dephosphorization, finish dephosphorization and decarburization, and There is a separate blowing method for the purpose of adjusting the temperature.
  • the time to energize is either smelting for the purpose of desiliconization and / or dephosphorization, or smelting for the purpose of finish dephosphorization, decarburization and temperature adjustment.
  • smelting for the purpose of desiliconization and / or dephosphorization
  • smelting for the purpose of finish dephosphorization, decarburization and temperature adjustment.
  • One or both are preferable.
  • a larger effect can be obtained especially when applied at the end of the smelting.
  • desiliconization is performed in a separate process, and then the blowing for the purpose of dephosphorization and the blowing for the purpose of finish dephosphorization, decarburization, and temperature adjustment are separated. The results of the method are shown.
  • FIGS. 2A and 2B show a 400-ton converter in which the first electrode 21 on the side in contact with the slag 11 is placed on the furnace belly and the second electrode 22 on the side in contact with the iron bath 12 is placed on the bottom of the furnace. Then, in the case of dephosphorization, a current of 350 A or less is supplied between the electrodes for 24 seconds immediately before the stop of blowing, and in the case of decarburization, a current of 350 A or less is supplied between the electrodes for 24 seconds immediately before the stop of blowing. It is a figure which showed the relationship between the average current value, the amount of grain iron, and the variation between the case of blowing (ON) and the case of not energizing between electrodes (OFF).
  • FIG. 2A shows the effect of the average current value on the metallic iron concentration in the slag after the hot metal dephosphorization treatment in the converter
  • FIG. 2B shows the influence on the metallic iron concentration in the slag after the decarburization treatment. .. In both cases, the higher the current value, the lower the iron content and the variation in the iron content.
  • Tables 1 and 2 show the average value (mass%) of the iron grain content (mass%) contained in the slag shown in FIGS. 2A and 2B, the sample standard deviation, and the relative error.
  • the sample standard deviation is the square root of the variance value obtained by the sum of the squares of the distances between the values of each sample and the mean value.
  • the relative error is a value obtained by dividing the standard deviation by the average value.
  • the average magnitude of the current supplied to the slag 11 is the amount of molten steel in the converter in W s [t], the furnace cross-sectional area of the furnace abdomen as a s [m 2], I p ⁇ 0.125 ⁇ W s [ A] ⁇ (1) formula I p ⁇ 1.5 ⁇ A s [ A] ⁇ (2) type to be controlled to satisfy at least one It turned out to be important.
  • the amount of iron grains in the slag is reduced and the variation is stabilized.
  • the point is the standard deviation of the amount of iron grains and is synonymous with "%" as a unit representing the content), and during the decarburization period. It will be about 1.6 points or less.
  • the required current to flow through the slag is considered to be related to the weight of the molten steel. This is because the weight of the slag inevitably increases as the weight of the molten steel increases, so unless the current value is increased, the amount of iron grains in the slag cannot be reduced within the blowing time, and as a result, the required energization is required. This is because the amount is proportional to the weight of the molten steel.
  • the required current to flow through the slag is considered to be related to the cross-sectional area of the furnace belly of the converter.
  • the controlling factor that actually reduces the current density in the slag is the density of the current flowing in the slag (current density). Since the slag is conductive, current flows through the entire slag. Therefore, the current density flowing in the slag is the value obtained by dividing the current value flowing by the cross-sectional area As in the furnace belly of the converter, and this value becomes the required current density. That is, the current density required will I p / A s. Assuming that the required current density is a constant value, the required current value is proportional to the cross-sectional area of the furnace belly.
  • the required current flowing through the slag is considered to be proportional to the weight of the molten steel and the cross-sectional area in the furnace. Therefore, in order to reduce the amount of iron grains in the slag and further stabilize the variation, the required current derived from the weight of the molten steel (formula (1) above) or the required current derived from the cross-sectional area in the furnace (formula 1) It is preferable to select the smaller current of the above equation (2)).
  • the slag composition before starting energization preferably has a basicity of 0.5 or more and an iron oxide concentration of 5% or more. Since SiO 2 in the slag has a strong bonding force with each other, it inhibits conductivity. On the other hand, CaO has an action of breaking the bond of SiO 2 , so that the conductivity is improved. Iron oxide also improves conductivity.
  • the basicity can be estimated by calculating from the ratio of the charged material.
  • the iron oxide concentration can be calculated from the amount of acid sent, the amount of oxygen contained in the exhaust gas, and the amount of oxygen contained in the molten steel. Since these values are stored as actual values, these values can be estimated before blowing.
  • the composition of the molten iron alloy to be treated is not limited to a specific composition, but it is preferable to treat the molten pig iron having a silicon concentration (Si amount) of 0.25% or less.
  • Si amount silicon concentration
  • SiO 2 concentration in the slag increases. Since SiO 2 is a factor that deteriorates conductivity, it becomes difficult for current to flow through the slag, and it acts in a direction that hinders the reduction of the amount of iron grains.
  • the amount of Si when the amount of Si is 0.25% or less, the amount of slag required for blowing is reduced. Since the amount of iron granules generated is determined by the energy input into the furnace (heavy top blowing) and the amount of decarburization, when the amount of slag is small, the concentration of iron grains in the slag is relatively high. If the concentration of granular iron in the slag increases before energization, the effect of reducing the energization increases, so that the amount of sedimentation of the granular iron increases. Therefore, when the silicon concentration of the molten pig iron is 0.25% or less, a remarkable effect can be obtained.
  • the slag density when energized is preferably 1.0 kg / m 3 or less, and more preferably 0.8 kg / m 3 or less. This is because when the density of the slag is lowered, the sedimentation rate of the grain iron increases, and the effect of the present invention can be further obtained.
  • the slag density means the weight per unit volume of slag when energized in a converter.
  • the slag is energized for 10 seconds or more out of 1 minute before the end of the preset blowing time. That is, it is desirable that the time during which no current is flowing at the end of blowing (after 1 minute before the stop of acid feeding) is set to 50 seconds or less. Furthermore, the shorter the interval between the end of energization and the stop of blowing, the better.
  • the reason for this is as follows. 1) If the power is turned off before the end of slag, the grain iron may be mixed again and the grain iron in the slag may increase. 2) Before the end of blowing, the density of slag is often 1.0 kg / m 3 or less, and the slag tends to settle. 3) The amount of iron granules in the slag tends to increase at the end of the slag when the input auxiliary materials are sufficiently dissolved and the reaction products are sufficiently produced, and if energization is started in this state, the amount of iron granules tends to decrease. ..
  • the size of I P of the average of the DC current in the energization time of the last minute to stop the oxygen-flow '[A] is the amount of molten steel in the converter in W s [t], the furnace abdomen the furnace cross-sectional area as a s [m 2], it is important to be controlled to satisfy at least one of the following (3) and (4).
  • the effect of the present invention can be obtained by controlling the current so as to satisfy at least one of the above equations (1) to (4).
  • the electrode arranged above the molten iron alloy bath in the converter is a hollow top-blown lance.
  • the height of the top-blown lance is determined by the weight of the residual slag in the furnace, the weight of the input auxiliary material, the weight of the reaction product, the slag density, and the cross-sectional area of the furnace belly. It is preferable to control based on. Specifically, it is preferable to control the height H of the top blowing lance between 0.1 times and 10 times the slag height.
  • the slag height (H) can be calculated by the following formula.
  • H (m) (total weight of residual slag in the furnace, input auxiliary materials and reaction products (kg)) / (slag density (kg / m 3 ) x cross-sectional area of the furnace abdomen (m 2 ))
  • the amount of residual slag in the furnace can be obtained from the past operation data, and the input auxiliary raw material and the reaction product can be appropriately obtained by using the weighed value and the component value.
  • the slag density is not limited to 1.0 kg / m 3 or less, and a value of 2.0 to 3.0 kg / m 3 may be used depending on the composition.
  • the slag is considered to expand about 10 times including the generated gas, there is a possibility that energization can be obtained even if the lance position is about 10 times the slag height required by the above equation. On the other hand, if there is no problem of metal adhesion to the lance or cooling, lowering the lance to about 0.1 times the slag height stabilizes the energization.
  • the degree of expansion of the selection from the range of 0.1 to 10 times changes depending on the blowing conditions and the progress of blowing, so theoretically or empirically depending on the time when the effect is desired. Can be decided.
  • the lance height By setting the lance height in this way, it is possible to adjust the current to flow in the slag only when the slag density is about 1.0 kg / m 3 or less, so that the reduction of the amount of iron grains can be promoted. it can.
  • stable operation is possible because the lance does not come into contact with molten steel during operation.
  • the converter is preferably a converter having a bottom blowing tuyere. Since bottom blowing strengthens the agitation of the slag, the reduction of the amount of iron grains in the slag is promoted. In addition, the chances of contact between the slag and the molten steel are increased, which promotes the transfer of grain iron from the slag to the molten steel.
  • the flow rate of the bottom blowing gas is preferably in the range of 0.01 to 0.2 Nm 3 / min / ton in the case of an inert gas and 0.1 to 0.4 Nm 3 / min / ton in the case of oxygen blowing.
  • the refining method includes the first step of performing smelting for the purpose of desiliconization and / or dephosphorization in the same converter, the second step of discharging a part of slag, finish dephosphorization, decarburization and temperature.
  • the third process of refining for the purpose of adjustment the fourth process of discharging the steel that has been adjusted to the target components and temperature, and the fifth process of discharging part of the slag remaining in the furnace.
  • the acid feeding time in the first step and the third step is a state in which the density of grain iron in the slag is increased, and the amount of grain iron is reduced.
  • the ferroalloys are likely to settle in the molten iron alloy layer, so that the metallic iron content in the slag can be easily reduced.
  • the amount of grain iron is large in the first step, the variation of grain iron can be effectively reduced.
  • first electrode 21 of the converter equipment for example, an electrode made of carbon-containing bricks such as MgOC bricks can be arranged on the furnace belly of the converter.
  • an upper blown acid lance 31 may be used as shown in FIG.
  • a carbon-containing brick or the like can be used for the second electrode 22.
  • the second electrode 22 is preferably provided on the bottom or belly of the converter equipment 1.
  • the first electrode 21 When the first electrode 21 is arranged on the furnace belly, it is preferably provided 200 to 4000 mm above, preferably 200 to 400 mm above, with reference to the static molten metal surface of the iron bath 12 estimated from the volume of the converter. It is more preferable to provide.
  • the tip When the upper blown acid lance 31 is used as the first electrode 21, the tip may be moved up and down, and the position may be moved up and down by the current flowing between the electrodes so that the magnitude of the flowing current can be controlled. ..
  • the power supply device 40 supplies a current when the resistance value between the first electrode 21 and the second electrode 22 is equal to or greater than the preset current value for a preset time after the start of blowing. It is preferable to provide a mechanism for blocking the current.
  • the current value is obtained by inputting a signal from the current detecting means 41 to the control device 42. Then, if the obtained current value is equal to or higher than the preset current value within the preset time after the start of blowing, the output of the power supply device 40 is stopped and the current supply is cut off. ..
  • the power supply device 40 has a function of controlling so that a current of a certain magnitude or more does not flow.
  • the carbon concentration at the refining end point of the dephosphorization treatment is 2.5% by mass or more. This is because refining in such a region is often performed with a relatively low basicity, and since the treatment is completed at a low temperature, the viscosity of the slag before energization is high and the amount of iron grains contained in the slag is large. This is because the amount of iron grains can be easily reduced when energized.
  • the bottom blowing tuyere 50 made of porous brick is provided on the bottom of the furnace, and the iron bath 12 is agitated by blowing gas into the iron bath 12 from the bottom of the furnace during refining.
  • the number of bottom blowing tuyere 50 may be one, but it is preferable to provide a plurality of bottom blowing tuyere 50s.
  • FIG. 1 shows an example in which the bottom blowing tuyere 50 is provided at two locations.
  • the gas flowing from the tuyere is not particularly limited, and any single gas such as oxygen, carbon dioxide, nitrogen, Ar, LPG, or a mixed gas of two or more types can be selected, and the piping itself can be a single tube, a multiple tube, You can use a collecting pipe or the like.
  • the electrode 22 can also be used as the tuyere. However, in that case, it is necessary to properly insulate the tuyere and piping of the conductive path to eliminate the possibility of a large current flowing through the iron shell of the furnace body or the trunnion shaft.
  • the inner diameter of the furnace belly of the converter was 6 m. That is, the value of 0.125 ⁇ W s 37.5, the value of 1.5 ⁇ A s is 42.4.
  • MgOC electrodes are installed on the furnace belly and bottom, and conductor connecting mechanisms are provided on the furnace body side and the operating floor side so that they can be connected at the furnace hanging position, and a current of 500 A or more does not flow to the operating floor.
  • a power supply that can be controlled is installed.
  • the electrode of the furnace belly was set 250 mm above the static molten metal surface when 300 tons of the main raw material was inserted.
  • the slag was received in a slag pan, discharged into a yard and cooled, and then fist-sized lumps were randomly collected from 10 locations and analyzed to obtain the average value of the metallic iron content.
  • the slag was subjected to 5 charges, and the average value of the amount of iron grains in the slag at that time was calculated, and the standard deviation of 5 charges was calculated.
  • the results of Experimental Examples 1 to 15 are shown in Table 3.
  • the granular iron contained in the slag can be coarsened and dissolved in the metal bath, and the slag having a lower metallic iron content than the conventional one can be stably obtained.
  • the efficiency of the reforming treatment of slag can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

この溶融鉄合金の精錬方法は、転炉内の溶融鉄合金浴に送酸しながら溶融鉄合金を精錬する方法であって、前記溶融鉄合金浴の上方に配置された第一の電極と、前記溶融鉄合金浴に接するように配置された第二の電極との間に直流電流を供給し、前記直流電流を通電した通電時間における直流電流の平均の大きさをI[A]、前記送酸を停止する直前の1分間のうちの通電時間における前記直流電流の平均の大きさをI'[A]、前記転炉内の溶鋼量をW[t]、炉腹部の炉内断面積をA[m]としたとき、下記(1)式~(4)式の少なくとも一つを満たす。 I≧0.125×W・・・(1)式 I≧1.5×A・・・(2)式 I'≧0.125×W・・・(3)式 I'≧1.5×A・・・(4)式

Description

効率の高い溶融鉄合金の精錬方法
 本発明は、転炉による溶融鉄合金の精錬方法に関する。本発明は特に、スラグ中の金属鉄分の含有量を低減するとともに、チャージ毎のスラグ中の金属鉄分の含有量のバラツキを低減することができ、スラグ処理の効率を高めた精錬方法に関する。
 溶融銑鉄(以下「溶銑」ともいう)などの溶融鉄合金を転炉精錬する際に生成されるスラグ(以下「転炉スラグ」ともいう)には、遊離CaOが含まれており、それが水和反応を起こして膨張するので体積安定性が低い。
 さらに、スラグには、処理方法にも関係するが通常、1~40質量%程度の酸化鉄が含まれ、外観が黒色となり、コンクリート用骨材などに使用すると、外観上違和感がある。
 そのため、スラグの利用は、道路の地盤改良材や下層路盤材等の低級用途に限られ、上層路盤材、コンクリート用骨材、石材原料等には用いられにくい。
 そこで、従来から、転炉からスラグを反応容器に排出し、該容器内で、溶融状態の転炉スラグに石炭灰等の改質材を添加して遊離CaOを低減させる改質処理を施して、より高級用途である上層路盤材やコンクリート用骨材等に利用されている。
 また、転炉スラグには、金属鉄分として、数十質量%程度の粒鉄が、懸濁した状態で含まれる。懸濁した粒鉄には炭素が存在しており、溶融スラグの改質の際に、粒鉄の炭素と、溶融スラグ中の酸化鉄や撹拌用の酸素ガスとが反応することによって、溶融スラグ中においてCOガスの気泡が発生(フォーミング)し、種々の悪影響をもたらすという問題がある。
 また、粒鉄が存在することでスラグを再利用する際に、粒鉄の偏在や粒鉄の酸化膨張などが起因となり、スラグの強度のバラツキが生じる。
 さらに、スラグ中の粒鉄は、転炉吹錬に主眼をおいた場合は歩留ロスの要因であり、その含有量は低いほど好ましい。
 スラグ中の粒鉄量にバラツキがあると、スラグ中の粒鉄量を直接瞬時に測定することは難しく、そのため、溶融スラグの処理や冷却後のスラグから粒鉄を回収する際に重処理側の処理を選択せざるを得ず、効率が悪化する。また、溶融改質処理時のフォーミングにも処理時間にバラツキが発生して、安定した処理ができにくい。
 また、例えば、特許文献1には、転炉から取り出した溶融スラグ中の粒鉄を反応容器内で沈降させた後に、スラグ改質処理を施す方法が開示されている。しかし、この場合においてもスラグ中の粒鉄量にバラツキがあると沈降時間にバラツキが生じ、安定した処理ができにくい。
 このように、従来は、転炉スラグを反応容器に排出した後、反応容器でスラグ中の金属鉄分を低減する処理を行っているので、スラグ中の粒鉄量にバラツキがあると、スラグ処理時間にバラツキが生じるという問題があった。
 ところで、近年、非特許文献1で報告されているように、転炉精錬において、送酸ランスを一方の電極とし、炉底に設けた他方の電極との間に電圧を印加して、吹錬途中の電流、電圧及び抵抗値の変化を測定することにより、ランス先端と溶融金属浴面との間の距離、スラグ層の厚さなどの情報を得る試みがなされている。
 しかし、通電による溶融スラグの性状への影響については、特に検討されていない。
日本国特開2006-199984号公報
溶鋼に電位印加する際、転炉浴中の電流分布特性,C.I.セムイキン、V.F.ポリャコフ,E.V.セムキナ,2003
 本発明は、転炉で溶融鉄合金を精錬する際に、従来よりもスラグ中の金属鉄分の含有量とそのバラツキが小さいスラグを得て、その後のスラグの改質処理において、スラグ中の鉄分を低減する処理を簡便化することを可能とする効率の高い溶融鉄合金の精錬方法の提供を課題とする。
 本発明の要旨は、以下のとおりである。
(1)本発明の第一の態様は、転炉内の溶融鉄合金浴に送酸しながら溶融鉄合金を精錬する方法であって、前記溶融鉄合金浴の上方に配置された第一の電極と、前記溶融鉄合金浴に接するように配置された第二の電極との間に直流電流を供給し、前記直流電流を通電した通電時間における直流電流の平均の大きさをI[A]、前記送酸を停止する直前の1分間のうちの通電時間における前記直流電流の平均の大きさをI’[A]、前記転炉内の溶鋼量をW[t]、炉腹部の炉内断面積をA[m]としたとき、下記(1)式~(4)式の少なくとも一つを満たす溶融鉄合金の精錬方法である。
≧0.125×W・・・(1)式
≧1.5×A・・・(2)式
’≧0.125×W・・・(3)式
’≧1.5×A・・・(4)式
(2)上記(1)に記載の溶融鉄合金の精錬方法では、前記溶融鉄合金の精錬に用いるスラグ組成が、塩基度:0.5以上、酸化鉄濃度:5%以上であってもよい。
(3)上記(1)又は(2)に記載の溶融鉄合金の精錬方法では、前記溶融鉄合金の精錬で処理する前の溶融銑鉄の珪素濃度が、0.25質量%以下であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の溶融鉄合金の精錬方法では、前記溶融鉄合金の精錬に用いるスラグの密度が1.0kg/m以下であってもよい。
(5)上記(1)~(4)のいずれか一項に記載の溶融鉄合金の精錬方法では、あらかじめ設定した吹錬時間の終了前の1分間のうち10秒間以上はスラグに通電してもよい。
(6)上記(1)~(5)のいずれか一項に記載の溶融鉄合金の精錬方法では、中空の上吹きランスを前記第一の電極として用い、前記上吹きランスの高さを、炉内残留スラグの重量、投入副原料の重量、及び反応生成物の重量と、スラグ密度と、炉腹部の断面積とに基づき制御してもよい。
(7)上記(1)~(6)のいずれか一項に記載の溶融鉄合金の精錬方法では、前記転炉が底吹き羽口を有してもよい。
 本発明によれば、転炉で溶融鉄合金を精錬する際に、スラグ中の粒鉄の含有量とそのバラツキを低減することができ、その後のスラグの改質や地金回収処理の効率を向上させることができる。
本発明に係る転炉設備の一例の概略を示す図である。 溶銑脱りん期における、平均電流値とスラグ中粒鉄の含有量との関係を示す図である。 脱炭期における、平均電流値とスラグ中粒鉄の含有量との関係を示す図である。 本発明に係る転炉設備の他の例の概略を示す図である。
 本発明者らは、転炉で溶融鉄合金を精錬する際に、スラグ中の粒鉄の含有量とそのバラツキを低減する方法について検討し、スラグ浴及び金属浴に通電することに着目した。
 そして、通電の際に特定量の電荷を与えた場合には、スラグ中に含まれる粒鉄量とそのバラツキが減少することを知見した。
 以下、上述の知見に基づきなされた本発明について、図面を参照しながら説明する。
 はじめに、図1を参照して、本発明の精錬方法に用いる転炉設備について説明する。なお、本明細書において、特に説明が無い限り「%」は、「質量%」をあらわし、「電流」は「直流電流」をあらわす。また、「直流電流の平均」とは、直流電流を通電した時間の直流電流の平均値の大きさを示す。より厳密には、「直流電流の平均」とは、直流電流を通電した時間のうち、一定の時間間隔で10点以上の時間点における電流値を平均化した値である。
 転炉精錬では、高炉から出銑された溶銑が転炉内に流しこまれ、CaOを主成分としたスラグ原料を加え、脱珪及び/又は脱燐を目的とした吹錬と、仕上げ脱燐と脱炭及び温度の調整を目的とした吹錬が行われる。 
 本発明で用いる転炉設備1は、溶融鉄合金浴(以下「鉄浴」ともいう)12の上方に第一の電極21が、スラグ11に接触する頻度が多くなるような位置に設置される。また、鉄浴12に接するように、第二の電極22が配置される。
 このように電極を配置し、転炉の外部に設けた電源装置40と接続することで、スラグ11、鉄浴12、第一の電極21、第二の電極22とで電気回路を形成し、精錬中に、電極間に電圧を印加し、スラグ11及び鉄浴12に電流を供給することが可能となる。第一の電極21は上吹き送酸ランス31を兼用してもよい。
 転炉の吹錬には、通常、1)脱珪、脱燐、脱炭を行う、従来の吹錬方法と、2)脱珪及び/又は脱燐を目的とした吹錬と、仕上げ脱燐と脱炭及び温度の調整を目的とした吹錬を分離した吹錬方法と、3)脱珪を別工程で行った後、脱燐を目的とした吹錬と、仕上げ脱燐と脱炭及び温度の調整を目的とした吹錬を分離した吹錬方法がある。
 上記2)、3)の場合、通電を行う時期は、脱珪及び/又は脱燐を目的とした吹錬と、仕上げ脱燐と脱炭及び温度の調整を目的とした吹錬の、いずれか一方、又は双方とするのが好ましい。上記1)~3)のそれぞれの吹錬において、特に吹錬末期に印加する場合、さらに大きな効果が得られる。
 図2A、図2Bに、3)脱珪を別工程で行った後、脱燐を目的とした吹錬と、仕上げ脱燐と脱炭及び温度の調整を目的とした吹錬を分離した吹錬方法での結果を示す。
 図2A、図2Bは、400トンの転炉で、スラグ11に接する側の第一の電極21を炉腹に、また、鉄浴12に接する側の第二の電極22を炉底にそれぞれ配置して、脱燐吹錬の場合で吹錬停止直前の24秒間、350A以下の電流を、脱炭吹錬の場合で吹錬停止直前の24秒間、350A以下の電流を電極間に供給して吹錬した場合(ON)と、電極間に通電しなかった場合(OFF)の場合について、その間の平均電流値と粒鉄量とそのバラツキの関係を示した図である。
 それぞれの場合において、吹錬後のスラグを5チャージ分取り出し、縮分法でサンプリングして、粒鉄の全量及びバラツキの量を調べた。
 図2Aは、転炉における溶銑脱燐処理後のスラグ中の金属鉄濃度に及ぼす平均電流値の影響であり、図2Bは、同じく脱炭処理後のスラグ中の金属鉄濃度への影響である。双方とも電流値が高くなるほど鉄分量が減少するとともに鉄分量のバラツキが減少している。
 図2A、図2Bに示したスラグ中に含まれる粒鉄の含有量(質量%)の平均値、標本標準偏差、及び相対誤差を、表1、表2に示す。ここで標本標準偏差は、各サンプルの値と平均値との距離の二乗の和で求められる分散の値の平方根である。また、相対誤差とは、標準偏差を平均値で割った値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2に示す通り、電流値がOFFの場合と比較し、電流値が高くなるほど鉄分量の平均値、標本標準偏差、相対誤差のいずれも低減していくことがわかる。しかしながら、電流値が50A以上である場合に、その低減効果が特に顕著であることがわかる。
 通常、改質処理後のスラグは、粉砕されて、金属鉄分を磁力選別で回収する。上記の表1、表2に示す結果は、スラグ11中に電流を供給することにより金属鉄分の含有量自体が低減することに加え、金属鉄分のバラツキが少なくなる結果、磁力選別が安定して、スラグ中の金属鉄分を更に低減できるという大きな効果があることを示している。
 吹錬途中に、スラグ11中に電流を供給することにより、上記のような効果が得られる理由については、不明であるが、スラグ中に滞留する粒鉄への通電により粒鉄の凝集粗大化が起こり、その粒鉄が自重により沈降するためであると推察される。
 本発明者らは、この試験結果に基づき、さらに必要な条件を鋭意検討した。その結果、粒鉄の低減効果を十分に得るためには、スラグ11中に供給する電流の平均の大きさ、すなわち、直通電流を通電した通電時間における直流電流の大きさであるI[A]が、転炉内の溶鋼量をW[t]、炉腹部の炉内断面積をA[m]として、
≧0.125×W[A]・・・(1)式
≧1.5×A[A]・・・(2)式
の少なくとも一方を満たすように制御されることが重要であることが分かった。
 電流の平均の大きさが上記の条件を満たすことにより、スラグ中の粒鉄量が低減すると共に、そのバラツキが安定化する効果がある。例えば、400トン転炉の場合には、Wの値が400であるので、Iが0.125×400=50A以上になると、スラグ中の粒鉄量のバラツキが標本標準偏差で、図2Aに示す脱燐期には9ポイント程度以下(ここでポイントとは粒鉄量の標準偏差のことであり、含有量を表す単位としての「%」と同義である)、脱炭期には1.6ポイント程度以下になる。
 脱燐期で9ポイント程度に粒鉄量のバラツキが小さくなると、後工程で鉄分を回収するのに安定して回収ができる。また、脱炭期においては、脱燐期に比べると粒鉄分布が異なるが、1.6ポイント程度以下になると、後工程で鉄分を回収するのに安定して回収ができる。
 Iが0.125×W未満になると、粒鉄量のバラツキが1.1%を超えて大きくなり、スラグの粒鉄量のバラツキが不安定になる。また、Iが1.5×A未満になると、同様に粒鉄量のバラツキが大きくなる。
 上述したように、スラグ中に流す必要電流は溶鋼の重量と関係があると考えられる。これは、溶鋼の重量が増えると必然的にスラグの重量は増えるので、電流値を増加させないと、吹錬時間内にスラグ中の粒鉄量を減少させることができず、その結果、必要通電量は溶鋼重量と比例するためである。
 また、スラグ中に流す必要電流は、転炉の炉腹部の炉内断面積に関係すると考えられる。実際にスラグ中電流密度を低減させる支配因子は、スラグ中に流れる電流の密度(電流密度)である。スラグは導電性であるので、スラグ全体に電流が流れる。したがって、スラグ中に流れる電流密度は転炉の炉腹部の炉内断面積Asで流れる電流値を割った値になり、この値が必要電流密度になる。すなわち、必要な電流密度はI/Aになる。この必要な電流密度を一定の値とすると、必要な電流値は炉腹部の炉内断面積に比例する。
 上述したとおり、スラグ中に流れる必要電流は、溶鋼の重量及び炉内の断面積に比例すると考えられる。したがって、スラグ中の粒鉄量を低減し、そのバラツキをより安定化するためには、溶鋼の重量から導かれる必要電流(上記(1)式)か炉内の断面積から導かれる必要電流(上記(2)式)のどちらか小さいほうの電流を選択することが好ましい。
 さらに、通電を開始する前のスラグ組成は、塩基度:0.5以上、酸化鉄濃度:5%以上であることが好ましい。スラグ中のSiOは、互いに結合力が強いので、導電性を阻害する。一方、CaOは、SiOの結合を切断する作用があるので、導電性を向上させる。また、酸化鉄は導電性を向上させる。
 実験的に、通電を開始する前の好ましいスラグ組成を調べた結果、スラグの塩基度は0.5以上、酸化鉄濃度は5%以上とすることにより、粒鉄のバラツキがより低減することが分かった。
 塩基度は、装入物の割合から計算して推定することが可能である。また、酸化鉄の濃度は、送酸量と排気中に含まれる酸素量、及び溶鋼中に含まれる酸素量から計算ができる。これらの値は、実績値として蓄えられているので、吹錬前にこれらの値を推定することができる。
 処理する溶融鉄合金の組成は、特定の組成に限定されるものではないが、珪素濃度(Si量)を0.25%以下とした溶融銑鉄を処理するのが好ましい。Si量が高いと、スラグ中のSiO濃度が増加する。SiOは導電性を悪くする因子であるので、スラグ中に電流が流れにくくなり、粒鉄量の低減を阻害する方向に作用する。
 また、Si量を0.25%以下にすると、吹錬に必要なスラグの量が低減する。発生する粒鉄の量は、炉内投入エネルギー(重に上吹き)や脱炭量によって決まるので、スラグ量が少ない場合は、スラグ中の粒鉄含有濃度が相対的に高まる。スラグ中の粒鉄含有濃度が通電前に高まると、通電した際の低減効果が増えるので、粒鉄の沈降量が増加する。したがって、溶融銑鉄の珪素濃度を0.25%以下にすると、著しい効果が得られる。
 通電する際のスラグ密度は、1.0kg/m以下にすることが好ましく、0.8kg/m以下であることが更に好ましい。スラグの密度が低くなると、粒鉄の沈降速度が増加し、本発明の効果がより得られるためである。尚、本明細書において、スラグ密度とは、転炉内において通電する際のスラグの単位体積辺りの重量を意味する。
 本発明の溶融鉄合金の精錬方法においては、あらかじめ設定した吹錬時間の終了前の1分間のうち10秒間以上は、スラグに通電していることが好ましい。すなわち、吹錬末期(送酸停止1分前以降)で電流が流れていない時間を、50秒以内にすることが望ましい。さらには通電終了と吹錬停止の間隔は、短いほどよい。
 この理由は、以下のとおりである。1)吹錬終了前に通電を切ると、再び粒鉄の混入が起こり、スラグ中の粒鉄が増加する恐れがある。2)吹錬終了前は、スラグの密度が1.0kg/m以下であることが多く、スラグが沈降しやすい。3)投入副原料が十分に溶解し、また反応生成物が十分に生成する吹錬末期にはスラグ中の粒鉄は増加しやすく、この状態で通電をはじめると粒鉄量の低減が起こりやすい。
 従って、送酸を停止する直前の1分間のうちの通電時間における直流電流の平均の大きさであるI’[A]が、転炉内の溶鋼量をW[t]、炉腹部の炉内断面積をA[m]として、下記(3)式と(4)式の少なくとも一方を満たすように制御されることが重要である。
’≧0.125×W・・・(3)式
’≧1.5×A・・・(4)式
 すなわち、上記(1)式~(4)式の少なくとも一つを満たすように電流を制御することにより、本発明の効果を得ることができる。
 さらに、前記転炉内の溶融鉄合金浴の上方に配置された電極を中空の上吹きランスとすることが好ましい。
 この場合、安定した通電を得るために、上吹きランスの高さは、炉内残留スラグの重量、投入副原料の重量、及び反応生成物の重量と、スラグ密度と、炉腹部の断面積とに基づき制御することが好ましい。
 具体的には、上吹きランスの高さHは、スラグ高さの0.1倍から10倍の間に制御することが好ましい。スラグ高さ(H)は、以下の式で求めることができる。
H(m)=(炉内残留スラグと投入副原料と反応生成物の合計重量(kg))/(スラグ密度(kg/m)×炉腹部の断面積(m))
 ここで、炉内残留スラグ量は、過去の運転データから求めることができるものであり、投入副原料及び反応生成物については、秤量値や成分値を用いて、適宜求めることができる。スラグ密度は、1.0kg/m以下に限定されるものではなく、組成に応じて2.0~3.0kg/mの値を用いてもよい。
 スラグは生成ガスを含んで10倍程度に膨張することが考えられるため、ランス位置は上式で求められるスラグ高さの10倍程度の高さでも通電が得られる可能性がある。一方、ランスへの地金付着や冷却の問題がない場合は、スラグ高さの0.1倍程度までランスを下げたほうが、通電が安定する。
 0.1倍から10倍の範囲の中からの選択は、吹錬条件及び吹錬の進行状況によって、この膨張度合いが変わるため、効果を得たい時期に応じて、理論的、あるいは経験的に決定することができる。このように、ランス高さを設定すると、スラグの密度が1.0kg/m程度以下になった時のみスラグ中に電流が流れるように調整できるので、粒鉄量の低減を促進することができる。また、操業上、ランスが溶鋼に接することがないので安定操業ができる。
 前記転炉は、底吹き羽口を有する転炉であることが好ましい。底吹きを行うことでスラグの撹拌が強くなるので、スラグ内の粒鉄量の低減が促進する。また、スラグと溶鋼の接触機会が増えるのでスラグから溶鋼への粒鉄の移行が促進される。底吹きガスの流量は、不活性ガスの場合には0.01~0.2Nm/分/トン、酸素吹き込みの場合には0.1~0.4Nm/分/トンの範囲が好ましい。
 精錬方法としては、同一の転炉において、脱珪及び/又は脱燐を目的とした吹錬を行う第一工程、スラグの一部を排出する第二工程、仕上げ脱燐、脱炭及び温度の調整を目的とした吹錬を行う第三工程、目的の成分及び温度に調整し終えた鋼を排出する第四工程、及び、炉内に残留したスラグのうち一部を排出する第五工程、を順に行う。
 このとき、第一工程及び第三工程の送酸時間の一方又は双方に、少なくとも10秒以上の間、通電を行い、直流電流を通電した通電時間における直流電流の平均の大きさをI[A]、送酸を停止する直前の1分間のうちの通電時間における前記直流電流の平均の大きさをI’[A]、転炉内の溶鋼量をW[t]、炉腹部の炉内断面積をA[m]としたとき、下記(1)式~(4)式の少なくとも一つを満たすように制御すると効果的である。
≧0.125×W・・・(1)式
≧1.5×A・・・(2)式
’≧0.125×W・・・(3)式
’≧1.5×A・・・(4)式
 これは、第一工程及び第三工程の送酸時間は、スラグ中の粒鉄の密度が増加した状態であり、粒鉄量の低減が進むためである。これにより、粒鉄が溶融鉄合金層へ沈降しやすくなるため、スラグ中の金属鉄含有量を低減しやすくなる。特に、前記第一工程では粒鉄の量が多いので、効果的に粒鉄のバラツキを低減できる。
 転炉設備1の第一の電極21としては、例えば、MgO-C質煉瓦等の炭素含有煉瓦からなる電極を、転炉の炉腹に配することができる。第一の電極21として、図3に示すように、上吹送酸ランス31を用いてもよい。第二の電極22には、炭素含有煉瓦などが使用できる。第二の電極22は転炉設備1の炉底又は炉腹に設けるのが好適である。
 炉腹に第一の電極21を配する場合には、転炉の容積から想定される鉄浴12の静止湯面を基準にして、200~4000mm上方に設けるのが好ましく、200~400mm上方に設けるのが更に好ましい。
 第一の電極21として上吹送酸ランス31を用いる場合には、先端が上下できるようにし、電極間を流れる電流によって、その位置を上下させ、流れる電流の大きさを制御できるようにしてもよい。
 電源装置40は、第一の電極21と第二の電極22の間の抵抗値が、吹錬開始後からあらかじめ設定された時間、あらかじめ設定された電流値以上である場合には、電流の供給を遮断する機構を備えることが好ましい。電流値は、電流検出手段41からの信号を制御装置42に入力して求める。そして、求められた電流値が、吹錬開始後からあらかじめ設定された時間内で、あらかじめ設定された電流値以上である場合には、電源装置40の出力を停止し、電流の供給を遮断する。
 吹錬開始直後は、反応生成物がなく、投入副原料が溶解していないため、スラグが形成されず、したがってスラグ11内に電流が安定して流れる状況が整っていない。しかし、炉内付着物や鉄浴の乱れ、あるいは設備的な不具合で本来絶縁されるべき箇所の漏電などにより、スラグ中を介さずに電流が流れる場合がある。そのような場合、電流値によっては、発熱により設備が損傷する恐れがある。電流の供給を遮断する機構を備えることにより、このような場合に、電流を遮断し、事故を回避することができる。
 スラグ中に流れている電流か、そうではない電流かを見極めるためには、電流が流れる時期と、その時点の抵抗値を考慮する必要がある。上述したように、吹錬開始後10秒~30秒以内で、かつ、電極間抵抗が1Ω~0.1Ωの範囲となる場合、スラグを介さずに通電している可能性が高く、この条件に見合う電流が観察された場合、回路を遮断する機構を設けることが望ましい。
 加えて、何らかのトラブルにより、迷走電流が転炉外に流れた場合などにも、電流の供給を遮断することができるので、安全に設備を運転させることができる。
 電源装置40が、一定の大きさ以上の電流を流さないように制御する機能を有するものであれば、さらに好ましい。
 さらに、脱燐処理の精錬終点の炭素濃度を2.5質量%以上とするのが好ましい。これは、このような領域の精錬では比較的低塩基度で処理を行うことが多く、また低温で終了するために、通電前のスラグの粘性が高く、スラグ中に含まれる粒鉄量が多いために通電すると粒鉄量の低減しやすいためである。
 炉底には、ポーラス煉瓦よりなる底吹き羽口50を設け、精錬中に、炉底より鉄浴12内にガスを吹き込むことにより、鉄浴12を撹拌するのが好ましい。底吹き羽口50は1つでもよいが、複数設けるのが好ましい。
 図1は、底吹き羽口50を2箇所に設けた場合の例を示している。羽口から流す気体は特に限定されるものではなく、酸素、二酸化炭素、窒素、Ar、LPGなどいずれの単体ガス及び2種類以上の混合ガスでも選択でき、また配管自体も単管、多重管、集合管などを使うことができる。さらには、電極22を、この羽口と兼用することも可能である。ただし、その場合は、羽口及び配管を導電経路の絶縁を適切に行い、炉体鉄皮やトラニオン軸などに大電流が流れる可能性を排除しておく必要がある。
 以下、本発明の転炉設備を用いた精錬方法を、より具体的な例をあげて説明する。
 底吹機能を有する上吹転炉設備において、溶銑と冷鉄源を計300t吹錬した。転炉の炉腹部の炉内径は6mであった。即ち、0.125×Wの値は37.5であり、1.5×Aの値は42.4である。
 炉腹と炉底にMgO-C電極を設置し、炉垂位置で接続できるように、炉体側と操業床側に導体連結機構を設け、かつ、操業床に、500A以上の電流が流れないように制御することが可能な電源を設置した。
 炉腹の電極は、主原料を300t挿入した際の静止湯面から250mm上方とした。吹錬開始後、炉内の音響状態から溶融状態のスラグが生成したことが推定できたタイミングで、通電が開始し、電流が上昇しはじめた。その後、吹錬終了まで通電を行った。
 実験例1~15として、上記の実験条件を基に、通電タイミングを変更し、吹錬を行った。吹錬は、途中一度も中断せず、鋼を所定の成分、温度に制御して出鋼し、排滓した。また、それぞれの実験例において、送酸時間は、全体で20分とした。
 スラグはスラグパンに受け、ヤードに放流して冷却したのち、ランダムに10か所から、拳大の塊を採取し、それぞれを分析し、金属鉄含有量の平均値を求めた。吹錬は5チャージ行い、その際のスラグ内の粒鉄量の平均値を求め、5チャージの標準偏差を求めた。
 実験例1~15の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 発明例に係る実験例1~4では、適切な条件により精錬が行われたため、粒鉄量の標準偏差を小さくすることができた。
 比較例に係る実験例5では、電流I、’電流I’のいずれも低かったために、(1)~(4)式のいずれも満たすことができず、粒鉄量の標準偏差を小さくすることができなかった。
 本発明によれば、スラグ中に含まれる粒鉄を粗大化して金属浴中に溶解させることができ、従来よりも金属鉄分の含有量が減少したスラグを安定して得ることができるので、スラグの改質処理の効率を向上させることができる。その結果、道路の地盤改良材や下層路盤材のみならず、上層路盤材、コンクリート用骨材、石材原料等に用いるスラグを得ることができるので、産業上の利用可能性は大きい。
 1  転炉設備
 11  スラグ
 12  鉄浴
 21  第一の電極
 22  第二の電極
 31  上吹送酸ランス
 40  電源装置
 41  電流検出手段
 42  制御装置
 50  底吹き羽口

Claims (7)

  1.  転炉内の溶融鉄合金浴に送酸しながら溶融鉄合金を精錬する方法であって、
     前記溶融鉄合金浴の上方に配置された第一の電極と、前記溶融鉄合金浴に接するように配置された第二の電極との間に直流電流を供給し、
     前記直流電流を通電した通電時間における直流電流の平均の大きさをI[A]、前記送酸を停止する直前の1分間のうちの通電時間における前記直流電流の平均の大きさをI’[A]、前記転炉内の溶鋼量をW[t]、炉腹部の炉内断面積をA[m]としたとき、下記(1)式~(4)式の少なくとも一つを満たす
    ことを特徴とする溶融鉄合金の精錬方法。
    ≧0.125×W・・・(1)式
    ≧1.5×A・・・(2)式
    ’≧0.125×W・・・(3)式
    ’≧1.5×A・・・(4)式
  2.  前記溶融鉄合金の精錬に用いるスラグ組成が、塩基度:0.5以上、酸化鉄濃度:5%以上である
    ことを特徴とする請求項1に記載の溶融鉄合金の精錬方法。
  3.  前記溶融鉄合金の精錬で処理する前の溶融銑鉄の珪素濃度が、0.25質量%以下である
    ことを特徴とする請求項1又は2に記載の溶融鉄合金の精錬方法。
  4.  前記溶融鉄合金の精錬に用いるスラグの密度が1.0kg/m以下である
    ことを特徴とする請求項1~3のいずれか1項に記載の溶融鉄合金の精錬方法。
  5.  あらかじめ設定した吹錬時間の終了前の1分間のうち10秒間以上はスラグに通電する
    ことを特徴とする請求項1~4のいずれか1項に記載の溶融鉄合金の精錬方法。
  6.  中空の上吹きランスを前記第一の電極として用い、
     前記上吹きランスの高さを、炉内残留スラグの重量、投入副原料の重量、及び反応生成物の重量と、スラグ密度と、炉腹部の断面積とに基づき制御する
    ことを特徴とする請求項1~5のいずれか1項に記載の溶融鉄合金の精錬方法。
  7.  前記転炉が底吹き羽口を有する
    ことを特徴とする請求項1~6のいずれか1項に記載の溶融鉄合金の精錬方法。
PCT/JP2019/015737 2019-04-11 2019-04-11 効率の高い溶融鉄合金の精錬方法 WO2020208768A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021513108A JP7158570B2 (ja) 2019-04-11 2019-04-11 効率の高い溶融鉄合金の精錬方法
UAA202105664A UA128009C2 (uk) 2019-04-11 2019-04-11 Спосіб рафінування розплавленого залізного сплаву
PCT/JP2019/015737 WO2020208768A1 (ja) 2019-04-11 2019-04-11 効率の高い溶融鉄合金の精錬方法
CN201980094720.XA CN113631729B (zh) 2019-04-11 2019-04-11 高效的熔融铁合金的精炼方法
EP19924226.4A EP3954787A4 (en) 2019-04-11 2019-04-11 HIGHLY EFFICIENT MELTED IRON ALLOY REFINING PROCESS
KR1020217029972A KR102483106B1 (ko) 2019-04-11 2019-04-11 효율이 높은 용해철 합금의 정련 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015737 WO2020208768A1 (ja) 2019-04-11 2019-04-11 効率の高い溶融鉄合金の精錬方法

Publications (1)

Publication Number Publication Date
WO2020208768A1 true WO2020208768A1 (ja) 2020-10-15

Family

ID=72751161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015737 WO2020208768A1 (ja) 2019-04-11 2019-04-11 効率の高い溶融鉄合金の精錬方法

Country Status (6)

Country Link
EP (1) EP3954787A4 (ja)
JP (1) JP7158570B2 (ja)
KR (1) KR102483106B1 (ja)
CN (1) CN113631729B (ja)
UA (1) UA128009C2 (ja)
WO (1) WO2020208768A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597561U (ja) * 1978-12-27 1980-07-07
JPH06108133A (ja) * 1992-09-29 1994-04-19 Kawasaki Heavy Ind Ltd 溶融精錬炉の原料投入方法および装置
JPH073323A (ja) * 1993-06-21 1995-01-06 Voest Alpine Ind Anlagen Gmbh 鋼の生産のための転炉
JPH09227918A (ja) * 1996-02-20 1997-09-02 Nippon Steel Corp ステンレス鋼溶製方法
JPH10219333A (ja) * 1997-02-05 1998-08-18 Nisshin Steel Co Ltd 電気アーク炉スラグの還元方法
JP2000073111A (ja) * 1998-06-18 2000-03-07 Nkk Corp 低燐溶銑の製造方法
JP2002371311A (ja) * 2001-04-13 2002-12-26 Osaka Koukai Kk 溶湯の脱燐法とそれに用いられる低温滓化性脱燐剤およびその製造法
JP2006199984A (ja) 2005-01-18 2006-08-03 Nippon Steel Corp スラグの処理方法
JP2008266669A (ja) * 2007-04-16 2008-11-06 Jfe Steel Kk 竪型炉内の溶融物レベル計測方法及び計測装置
WO2012108529A1 (ja) * 2011-02-10 2012-08-16 新日本製鐵株式会社 溶銑の脱珪・脱リン方法
JP2013044029A (ja) * 2011-08-25 2013-03-04 Jfe Steel Corp 製鋼スラグからの鉄及び燐の回収方法
CN103408013A (zh) * 2013-08-03 2013-11-27 石家庄新华能源环保科技股份有限公司 一种氧电结合电石炉
JP2015218338A (ja) * 2014-05-14 2015-12-07 Jfeスチール株式会社 転炉型精錬炉による溶鉄の精錬方法
JP2016108575A (ja) * 2014-12-02 2016-06-20 新日鐵住金株式会社 直流アーク式電気炉による高純度鋼の製造方法
CN109097651A (zh) * 2018-08-09 2018-12-28 徐州宏阳新材料科技有限公司 一种低磷高碳铬铁及其冶炼方法
CN109097522A (zh) * 2018-09-30 2018-12-28 武钢集团昆明钢铁股份有限公司 一种中高锰高磷低硅铁水提高终点钢水残锰的转炉冶炼方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165196B (zh) * 2006-10-19 2010-12-08 中国恩菲工程技术有限公司 一种采用氧气底吹炉连续炼铜的工艺及其装置
EP3557170A4 (en) * 2016-12-16 2020-05-13 Nippon Steel Corporation ELECTRIC OVEN

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597561U (ja) * 1978-12-27 1980-07-07
JPH06108133A (ja) * 1992-09-29 1994-04-19 Kawasaki Heavy Ind Ltd 溶融精錬炉の原料投入方法および装置
JPH073323A (ja) * 1993-06-21 1995-01-06 Voest Alpine Ind Anlagen Gmbh 鋼の生産のための転炉
JPH09227918A (ja) * 1996-02-20 1997-09-02 Nippon Steel Corp ステンレス鋼溶製方法
JPH10219333A (ja) * 1997-02-05 1998-08-18 Nisshin Steel Co Ltd 電気アーク炉スラグの還元方法
JP2000073111A (ja) * 1998-06-18 2000-03-07 Nkk Corp 低燐溶銑の製造方法
JP2002371311A (ja) * 2001-04-13 2002-12-26 Osaka Koukai Kk 溶湯の脱燐法とそれに用いられる低温滓化性脱燐剤およびその製造法
JP2006199984A (ja) 2005-01-18 2006-08-03 Nippon Steel Corp スラグの処理方法
JP2008266669A (ja) * 2007-04-16 2008-11-06 Jfe Steel Kk 竪型炉内の溶融物レベル計測方法及び計測装置
WO2012108529A1 (ja) * 2011-02-10 2012-08-16 新日本製鐵株式会社 溶銑の脱珪・脱リン方法
JP2013044029A (ja) * 2011-08-25 2013-03-04 Jfe Steel Corp 製鋼スラグからの鉄及び燐の回収方法
CN103408013A (zh) * 2013-08-03 2013-11-27 石家庄新华能源环保科技股份有限公司 一种氧电结合电石炉
JP2015218338A (ja) * 2014-05-14 2015-12-07 Jfeスチール株式会社 転炉型精錬炉による溶鉄の精錬方法
JP2016108575A (ja) * 2014-12-02 2016-06-20 新日鐵住金株式会社 直流アーク式電気炉による高純度鋼の製造方法
CN109097651A (zh) * 2018-08-09 2018-12-28 徐州宏阳新材料科技有限公司 一种低磷高碳铬铁及其冶炼方法
CN109097522A (zh) * 2018-09-30 2018-12-28 武钢集团昆明钢铁股份有限公司 一种中高锰高磷低硅铁水提高终点钢水残锰的转炉冶炼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954787A4

Also Published As

Publication number Publication date
JPWO2020208768A1 (ja) 2020-10-15
CN113631729A (zh) 2021-11-09
KR102483106B1 (ko) 2023-01-02
JP7158570B2 (ja) 2022-10-21
EP3954787A4 (en) 2022-11-30
CN113631729B (zh) 2022-09-20
EP3954787A1 (en) 2022-02-16
UA128009C2 (uk) 2024-03-06
KR20210127986A (ko) 2021-10-25

Similar Documents

Publication Publication Date Title
CN104039987B (zh) 炼钢炉渣还原处理方法
EP3464653B1 (en) Method for the production of cast iron
JP6164151B2 (ja) 転炉型精錬炉による溶鉄の精錬方法
JP6421634B2 (ja) 溶鋼の製造方法
PL180143B1 (pl) Sposób i urzadzenie do wytwarzania cieklych stopów zelaza, zwlaszcza cieklej stali PL PL PL PL PL PL PL
WO2020208768A1 (ja) 効率の高い溶融鉄合金の精錬方法
TWI704231B (zh) 轉爐設備
JP2003119511A (ja) 製鋼プロセスにおける製鋼炉操作方法
TWI704232B (zh) 高效率的熔融鐵合金之精煉方法
JP7150149B2 (ja) 転炉設備
RU2786760C1 (ru) Способ рафинирования расплавленного железного сплава
JP4419594B2 (ja) 溶銑の精錬方法
JP4630031B2 (ja) 酸化鉄含有鉄原料の還元・溶解方法
JP2006328519A (ja) 鋼の製造方法
RU2776342C1 (ru) Система конвертерной печи
JPH03183719A (ja) 製鋼工程におけるマンガン鉱石の還元促進方法
JP7248195B2 (ja) 転炉製鋼方法
WO2023204069A1 (ja) 直接還元鉄の溶解方法、固体鉄および固体鉄の製造方法ならびに土木建築用資材および土木建築用資材の製造方法
JP5289907B2 (ja) スラグのフォーミングを抑制するための酸化鉄源の投入方法
JP5386972B2 (ja) 溶銑の脱珪脱りん方法
JPS6169944A (ja) フエロクロムの溶融還元による製造方法
JP2004010935A (ja) 溶鋼の製造方法
JP6468083B2 (ja) 転炉排滓方法
US1527088A (en) Method of making iron-chromium alloys
JPS602605A (ja) 土建用材料に用いることのできるスラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513108

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217029972

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924226

Country of ref document: EP

Effective date: 20211111