WO2020207619A1 - Procédé de détermination de capacités de condensateurs de dérivation dans un câble de charge - Google Patents

Procédé de détermination de capacités de condensateurs de dérivation dans un câble de charge Download PDF

Info

Publication number
WO2020207619A1
WO2020207619A1 PCT/EP2020/025021 EP2020025021W WO2020207619A1 WO 2020207619 A1 WO2020207619 A1 WO 2020207619A1 EP 2020025021 W EP2020025021 W EP 2020025021W WO 2020207619 A1 WO2020207619 A1 WO 2020207619A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching means
switched
energy source
capacitors
ground potential
Prior art date
Application number
PCT/EP2020/025021
Other languages
German (de)
English (en)
Inventor
Karsten Hähre
Marija JANKOVIC
Raoul Heyne
Original Assignee
Dr. Ing. H.C. F. Porsche Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Ing. H.C. F. Porsche Aktiengesellschaft filed Critical Dr. Ing. H.C. F. Porsche Aktiengesellschaft
Publication of WO2020207619A1 publication Critical patent/WO2020207619A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for determining capacities of
  • the IEC 61851-23 and SAE J1772 standards specify limit values for the maximum energy that may be present in the capacitors. This also results in a limitation of the permitted capacitance for the bypass capacitors depending on the applied voltage.
  • DE 10 2015 016 000 A1 discloses a circuit arrangement for a motor vehicle which enables the Y discharge capacitors to be discharged. The capacities are not monitored during the charging process.
  • the insulation resistances are often determined using a resistance bridge.
  • a measuring resistor is alternately switched between the positive and negative output potential of the energy source. This creates an asymmetry in the
  • the present invention is based on the object of creating a method with which a better compatibility of an energy storage device
  • Motor vehicle can be reached with different charging stations.
  • a system is to be created which is designed to carry out such a method.
  • a chargeable energy store preferably of a motor vehicle
  • the energy source can include, for example, a public power grid or a charging station for an electronically operated motor vehicle.
  • the charging cable can be connecting elements, e.g. Include plugs and / or sockets which are designed to be connected to the motor vehicle and to the energy source.
  • a first output of the energy source is electrically connected to a ground potential via a first bypass capacitor.
  • a second output of the energy source is electrically connected to the ground potential via a second bypass capacitor.
  • a first test resistor and a first switching means are parallel to the first
  • Switching means connected one behind the other in series.
  • a second test resistor and a second switching means are connected in parallel to the second bypass capacitor.
  • the second test resistor and the second switching means are connected in series.
  • a parallel circuit is understood to mean a parallel circuit in the electrical sense. It is not necessary, but possible, that the relevant components are also arranged parallel to one another in the geometric sense. The same applies accordingly to the connection in series.
  • the first and the second switching means can be switched on and off. In the switched-on state, electrical current can flow through the switching means, while in the switched-off state, no current can flow through the switching means.
  • the first switching means is switched on. In this state, the first output of the energy source is connected to the ground potential via the first test resistor.
  • the second switching means is switched on. In this state, the second output of the energy source is connected to the ground potential via the second test resistor.
  • a time profile of a first electrical voltage between the first output of the energy source and the ground potential is measured.
  • the first output can for example be the positive output of the energy source.
  • the second output can be, for example, the negative output of the energy source.
  • the capacitances of the bypass capacitors are determined using the measured time profile of the first electrical voltage. If the time course of the second electrical voltage was measured, this can also be used to determine the capacitances of the bypass capacitors. With this monitoring, in the event of an asymmetry of the voltage between the outputs compared to the
  • Discharge capacitor are discharged.
  • the discharge capacitors can be designed as Y discharge capacitors.
  • this is understood to mean, in particular, a class Y leakage capacitor in accordance with the IEC 60384-1 standard. They are connected between a phase or neutral conductor of the energy source and touchable and protective earthed components and bridge the insulation.
  • Y discharge capacitors have a verifiable increased electrical and mechanical safety, as their use can endanger people in the event of a failure due to a short circuit.
  • the capacitances of the bypass capacitors each exceed a threshold value.
  • the threshold value is exceeded by at least one of the two discharge capacitors, the
  • the second switching means can be switched off when the first switching means is switched on. This can take place in particular while the time profile of the first voltage is measured.
  • the first switching means can be switched off while the second switching means is switched on. This can take place in particular while the time profile of the first voltage is measured.
  • the first and the second switching means can be switched on simultaneously before the first switching means is switched off. This can take place in particular while the time profile of the first voltage is measured.
  • the second switching means can initially be switched off when the first switching means is switched on. After that it will second switching means switched on, while the first switching means remains switched on. The first switching means is then switched off while the second switching means remains switched on. These steps can in particular be carried out while the time profile of the first voltage is measured.
  • the first bypass capacitor can be arranged parallel to a first insulation resistor.
  • the second bypass capacitor can be arranged parallel to a second insulation resistor.
  • the insulation resistances can be used to determine the capacitance of the discharge capacitors.
  • Insulation resistances can be determined. The resistance values can be used to determine the capacitance of the discharge capacitors.
  • the system of claim 10 includes a motor vehicle having the rechargeable
  • the motor vehicle comprises a control device which is designed to implement a method according to one of the preceding
  • Fig. 1 shows a schematic circuit diagram of a device for determining the
  • FIG. 2 shows a schematic diagram of a time profile of two measured electrical potentials.
  • An energy source 100 outputs a voltage VDC via a positive and a negative output, which is used for charging an energy store
  • the positive output is electrically connected to the capacitance C y + , a first insulation resistor R S0 + and a first test resistor Rt es t + to a ground potential PE via a first Y leakage capacitor.
  • Insulation resistance R S0 + and the first test resistance Rt es t + are connected in parallel to one another.
  • a first switching means Si is in series with the first
  • Test resistor Rt es t + switched so that the connection of the positive output to the ground potential PE can be switched on and off via the first test resistor.
  • the negative output is electrically connected to the capacitance C y , a second insulation resistor R S0 and a second test resistor Rtest- to a ground potential PE via a second Y leakage capacitor.
  • the second bypass capacitor, the second insulation resistor R S0 and the second test resistor Rtest are connected in parallel to one another.
  • a second switching means S2 is in series with the second
  • Test resistor Rtest switched so that the connection of the positive output to the ground potential PE can be switched on and off via the second test resistor.
  • the voltage between the positive output and the ground potential PE can be measured by means of a first measuring device and is referred to as vi.
  • the voltage between the negative output and the ground potential PE can be measured by means of a second measuring device and is designated as V2.
  • the switching means Si and S2 are switched as follows. First will the first switching means Si switched on, so that the positive output is connected to the ground potential via the first test resistor Rt es t +. The second switching means S2 is then switched on, while the first switching means Si remains switched on. In this state, the negative output is connected to the ground potential via the second test resistor Rtest. The first switching means Si is then switched off, while the second switching means S2 remains switched on.
  • the first switching means Si and the second switching means S2 are both switched on.
  • the first switching means Si is switched off and the second switching means S2 is switched on.
  • the third period 3 is followed by the first period 1 again.
  • each period recharging takes place, after the end of which a constant voltage is established within the respective period.
  • the period of time required for the reloading during the transition from the first period 1 to the second period 2 is denoted by 5x2.
  • the period of time required for the reloading during the transition from the second period 2 to the third period 3 is denoted by 5x 3 .
  • the period of time required for the reloading during the transition from the third period 3 to the first period 1 is denoted by 5xi.
  • the resistance values of the two test resistors Rt es t + and Rtest are known.
  • S0 can be calculated using the following formulas:
  • vi (x) denotes the constant voltage in the period x between the positive output and the ground potential PE.
  • the effective capacitance C e is reloaded from all resistors by the parallel connection. This explains the formula for calculating the second time period 12.
  • the effective capacitance C e is reloaded via the parallel connection from R S0 + , Rtest Riso. This explains the formula for calculating the third time period 13.
  • the capacities C y + and C y of the two Y leakage capacitors can then be determined from the effective capacitance C e .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un procédé de détermination de capacités de condensateurs de dérivation dans un câble de charge pendant une opération de charge, dans lequel un accumulateur d'énergie est chargé par une source d'énergie (100) par l'intermédiaire du câble de charge. Une première sortie de la source d'énergie (100) est reliée électriquement à un potentiel de masse (PE) par l'intermédiaire d'un premier condensateur de dérivation. Une deuxième sortie de la source d'énergie (100) est reliée électriquement au potentiel de masse (PE) par l'intermédiaire d'un deuxième condensateur de dérivation. Une première résistance de test et un premier moyen de commutation (S1) sont branchés en parallèle par rapport au premier condensateur de dérivation. Une deuxième résistance de test et un deuxième moyen de commutation (S2) sont branchés en parallèle par rapport au deuxième condensateur de dérivation. Le procédé comprend des étapes suivantes consistant à : activer le premier moyen de commutation (S1) de sorte que la première sortie de la source d'énergie (100) est reliée au potentiel de masse (PE) par l'intermédiaire de la première résistance de test ; activer le deuxième moyen de commutation (S2) de sorte que la deuxième sortie de la source d'énergie (100) est reliée au potentiel de masse (PE) par l'intermédiaire de la deuxième résistance de test ; mesurer une évolution dans le temps d'une tension électrique (v1) entre la première sortie de la source d'énergie (100) et le potentiel de masse (PE) ; déterminer les capacités des condensateurs de dérivation en utilisant l'évolution dans le temps mesurée.
PCT/EP2020/025021 2019-04-12 2020-01-21 Procédé de détermination de capacités de condensateurs de dérivation dans un câble de charge WO2020207619A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019109720.7 2019-04-12
DE102019109720.7A DE102019109720A1 (de) 2019-04-12 2019-04-12 Verfahren zur Ermittlung von Kapazitäten von Ableitkondensatoren in einem Ladekabel

Publications (1)

Publication Number Publication Date
WO2020207619A1 true WO2020207619A1 (fr) 2020-10-15

Family

ID=69192020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/025021 WO2020207619A1 (fr) 2019-04-12 2020-01-21 Procédé de détermination de capacités de condensateurs de dérivation dans un câble de charge

Country Status (2)

Country Link
DE (1) DE102019109720A1 (fr)
WO (1) WO2020207619A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005534B3 (de) 2021-11-09 2023-03-30 Daimler Truck AG Verfahren zum Bestimmen zumindest eines aktuellen Kapazitätswerts einer Y-Kapazität eines elektrischen Bordnetzes, sowie elektrischen Bordnetz

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026191A1 (fr) 2014-09-22 2016-03-25 Renault Sas Procede de mesure d’une resistance d’isolation et dispositif de mesure correspondant
DE102015016000A1 (de) 2015-12-10 2016-08-11 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug und Verfahren zur Entladung von Y-Kapazitäten in Fahrzeugen mit Hochvoltbordnetz
CN107238758A (zh) * 2017-05-08 2017-10-10 北京长城华冠汽车科技股份有限公司 新能源汽车高压系统y电容检测系统、方法和新能源汽车

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120221269A1 (en) * 2011-02-28 2012-08-30 Kent David Wanner Method and system for determining dc bus leakage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026191A1 (fr) 2014-09-22 2016-03-25 Renault Sas Procede de mesure d’une resistance d’isolation et dispositif de mesure correspondant
DE102015016000A1 (de) 2015-12-10 2016-08-11 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug und Verfahren zur Entladung von Y-Kapazitäten in Fahrzeugen mit Hochvoltbordnetz
CN107238758A (zh) * 2017-05-08 2017-10-10 北京长城华冠汽车科技股份有限公司 新能源汽车高压系统y电容检测系统、方法和新能源汽车

Also Published As

Publication number Publication date
DE102019109720A1 (de) 2020-10-15

Similar Documents

Publication Publication Date Title
DE102018221621A1 (de) Masseschluss-Erfassungsvorrichtung
DE102016122115B3 (de) Schaltzustand eines mechanischen schalters
DE102010042750A1 (de) Verfahren und Vorrichtung zum Erkennen eines Kurzschlusses
DE102018217003A1 (de) Vorrichtung zur Erfassung eines Erdungsfehlers
DE102009018601A1 (de) Erdschluss-Erfassungssystem für Fahrzeuge mit einem Hochspannungs-Stromnetz
DE102016211387A1 (de) Ladevorrichtung
WO2010118909A1 (fr) Détermination de la résistance interne d'un élément d'une batterie de traction en cas d'équilibrage résistif des éléments
WO2014005674A1 (fr) Système de diagnostic servant à contrôler une ligne de signal de commande
DE102017107160A1 (de) Verfahren zur Überprüfung des Schaltzustandes einer Trennschalteranordnung
WO2017194263A1 (fr) Procédé et dispositif pour faire fonctionner une cellule de stockage d'énergie, module de batterie et véhicule
DE102015214732A1 (de) Verfahren zum Betrieb einer Energiespeichereinrichtung sowie Kraftfahrzeug mit einer Energiespeichereinrichtung
DE102020007868A1 (de) Verfahren zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs unter Berücksichtigung einer elektrischen Isolation einer Ladestation, sowie Ladevorrichtung und Fahrzeug
EP3774434A1 (fr) Procédé et dispositif destiné à commander un véhicule automobile
DE102021003180A1 (de) Elektrisches Bordnetz für ein elektrisch betreibbares Fahrzeug und Verfahren zum Betreiben eines elektrischen Bordnetzes
EP2750922A2 (fr) Procédé et dispositif permettant de charger un accumulateur d'énergie dans un véhicule
DE102016109074A1 (de) Verfahren und Anordnung zum Laden einer Fahrzeugbatterie
DE102020206987A1 (de) Verfahren und Vorrichtung zum Laden eines Zwischenkreiskondensators in einem Hochvoltnetz
DE102019200510A1 (de) Messanordnung, Hochvoltbatterie, Kraftfahrzeug und Verfahren zum Bestimmen einer komplexen Impedanz
WO2020207619A1 (fr) Procédé de détermination de capacités de condensateurs de dérivation dans un câble de charge
WO2021048002A1 (fr) Procédé de fonctionnement d'un véhicule électrique et véhicule électrique
DE102020110190A1 (de) Verfahren zum Überwachen eines elektrischen Potentials eines elektrisch betriebenen Fahrzeugs, sowie elektronisches Überwachungssystem
WO2023006339A1 (fr) Dispositif de surveillance d'isolation et procédé de fonctionnement de celui-ci
DE102018111536B3 (de) Verfahren zur Steuerung eines Ladevorgangs eines Elektrofahrzeugs und Ladekabel
DE102016222271A1 (de) Schaltungsanordnung zur Ansteuerung einer Ladedose eines Elektro- oder Hybridfahrzeugs und Ladestecker
WO2021069240A1 (fr) Procédé de surveillance d'au moins un condensateur y d'un système électrique embarqué d'un véhicule et système électrique embarqué

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20701912

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20701912

Country of ref document: EP

Kind code of ref document: A1