WO2020207508A1 - 气体轴承供气装置、电机 - Google Patents

气体轴承供气装置、电机 Download PDF

Info

Publication number
WO2020207508A1
WO2020207508A1 PCT/CN2020/091215 CN2020091215W WO2020207508A1 WO 2020207508 A1 WO2020207508 A1 WO 2020207508A1 CN 2020091215 W CN2020091215 W CN 2020091215W WO 2020207508 A1 WO2020207508 A1 WO 2020207508A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
gas
gas bearing
supply
supply source
Prior art date
Application number
PCT/CN2020/091215
Other languages
English (en)
French (fr)
Inventor
俞国新
刘增岳
韩聪
朱万朋
李思茹
殷纪强
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2020207508A1 publication Critical patent/WO2020207508A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • This application relates to the technical field of power machinery, such as gas bearing gas supply devices and motors.
  • gas bearings can be roughly divided into dynamic pressure gas bearings and static pressure gas bearings.
  • the static pressure gas bearing needs to provide a higher gas pressure to the static pressure gas bearing to support the rotor.
  • the rotor and the bearing are in contact with each other, and the rotor and the bearing frictionally run, which is easy to cause wear. It is often necessary to pass in high-pressure gas to support the rotor first to provide the static pressure gas bearing and the dynamic pressure gas bearing for the startup phase It needs an external refrigerant pressurizing tank to pressurize the refrigerant and increase the pressure of the air supply.
  • the embodiment of the present disclosure provides a gas bearing gas supply device.
  • the gas bearing gas supply device includes a channel placed in the rotatable member, and the channel communicates the gas bearing and the supply source.
  • the centrifugal force generated by the rotation of the rotatable member throws the gas toward the gas bearing, which reduces the demand on the supply source pressure of the gas supply from the gas bearing, that is, reduces the demand for an external refrigerant pressurizing tank and reduces the cost.
  • the channel includes a first channel and a second channel.
  • the first channel is arranged at the center of the rotatable part and is parallel to the rotatable part.
  • the first passage is rotated with the rotatable member, and centrifugal force is generated in the first passage.
  • the first channel is in communication with the supply source
  • the second channel is in communication with the first channel and the gas bearing.
  • a gas flow path through the first channel into the second channel and then into the gas bearing is formed.
  • the gas is subjected to centrifugal force in the first channel and the second channel, which can increase the effect of centrifugal force on the gas. Pressure to reduce the demand for pressure on supply sources.
  • the second channel is provided with one or more outlets, and the outlets are evenly distributed on the surface of the rotatable member.
  • the second channel connects the gas in the first channel with the gas bearing through one or more outlets, so that the gas is more uniform, and the gas supply efficiency to the gas bearing is improved.
  • the angle of air supply can be changed according to different requirements, which improves applicability.
  • the preset included angle is 90 degrees.
  • the direction of the centrifugal force received by the gas in the first channel is the same as the flow direction of the gas in the second channel, which reduces the resistance and increases the air pressure generated by the centrifugal force.
  • a cavity is provided between the channel and the supply source, and the cavity connects the channel with the supply source.
  • the supply source when the channel rotates with the rotatable member, the supply source does not need to be directly connected to the channel through the transition of the cavity, which reduces the difficulty of communication between the supply source and the channel.
  • the supply source passes into the channel through the jet hole.
  • the air flow with pressure is directly injected into the channel through the jet hole, which reduces the difficulty of communication between the supply source and the channel and has higher efficiency.
  • the embodiment of the present disclosure provides a motor.
  • the motor includes the gas bearing gas supply device of any one of the above embodiments.
  • Some technical solutions provided by the embodiments of the present disclosure can achieve the following technical effects: reduce the demand for the supply pressure of the gas bearing gas, that is, reduce the demand for the external refrigerant pressurization tank, reduce the cost, and simplify the gas bearing gas supply Structure, operation is more stable.
  • Figure 1 is a schematic diagram of a gas bearing gas supply device provided by an embodiment of the present disclosure
  • Figure 2 is an enlarged view of A
  • FIG. 3 is a schematic cross-sectional view of an alternative embodiment of a rotatable member provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of another alternative embodiment of a rotatable member provided by an embodiment of the present disclosure
  • Fig. 5 is an enlarged view of an alternative embodiment of the first passage in the rotatable member provided by the embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of an alternative embodiment of the rotatable member outlet provided by the embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of another alternative embodiment of the rotatable member outlet provided by the embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an alternative embodiment of the air supplement device provided by the embodiment of the present disclosure.
  • Fig. 9 is an enlarged view of B.
  • the embodiment of the present disclosure provides a gas bearing gas supply device.
  • FIGS 1 and 2 show an alternative implementation structure of the gas bearing gas supply device.
  • it includes a channel 200 placed in the rotatable member 100, and the channel 200 communicates with the gas bearing 300 and the supply source.
  • the centrifugal force generated by the rotation of the rotatable member 100 throws the gas toward the gas bearing 300, which reduces the demand for the supply pressure of the gas bearing 300, that is, reduces the demand for the external refrigerant pressurization tank and reduces cost.
  • the channel 200 includes a first channel 201 and a second channel 202.
  • the first channel 201 is disposed at the center of the rotatable element 100 and is parallel to the rotatable element 100.
  • the first channel 201 rotates with the rotatable member 100 to generate centrifugal force in the first channel 201.
  • the center position of the rotatable member 100 refers to the axis of the rotatable member 100 when it rotates, that is, the first channel 201 is provided on the axis of the rotatable member 100.
  • the rotatable member 100 can be understood as a structure supported by the gas bearing 300 to rotate, for example, it can be a rotating shaft connected to a motor rotor, or a whole combination of the rotating shaft and the rotor.
  • the first channel 201 communicates with the supply source
  • the second channel 202 communicates with the first channel 201 and the gas bearing 300.
  • a gas flow path through the first channel 201 into the second channel 202 and then into the gas bearing 300 is formed.
  • the gas is subjected to centrifugal force in the first channel 201 and the second channel 202, which can increase The pressure generated by the centrifugal force on the gas reduces the demand for supply pressure.
  • One or more second passages 202 can be provided and communicate with the first passage 201, and can supply gas to one gas bearing or supply gas to multiple gas bearings, and multiple gas bearings can be understood as two or more than two.
  • the angle of air supply can be changed according to different requirements, which improves applicability. Different requirements can be the location of the gas supply port of the gas bearing.
  • the gas bearing can supply gas from the inside or from the side.
  • the preset included angle is 90 degrees.
  • the direction of the centrifugal force received by the gas in the first channel 201 is the same as the flow direction of the gas in the second channel 202, which reduces the resistance and increases the gas supply pressure.
  • a cavity 400 is provided between the channel 200 and the supply source, and the cavity 400 connects the channel 200 with the supply source.
  • the supply source does not need to be directly connected to the channel 200 through the transition of the cavity 400, which reduces the difficulty of communication between the supply source and the channel 200.
  • a thrust plate 401 is provided on the rotatable member 100, one end of the cavity 400 is connected to the supply source, and the other end is closed by the rotatable member 100 and the thrust plate 101 on the rotatable member 100.
  • One end is located in the cavity 400, so that the channel 200 in the rotatable member 100 can be connected to the cavity 400 without affecting the rotation of the rotatable member 100.
  • the supply source passes through the jet hole 500 into the channel 200.
  • the airflow with pressure is directly injected into the channel 200 through the jet hole 500, which reduces the difficulty of communicating the supply source with the channel 200 and has higher efficiency.
  • the jet hole 500 is in communication with the supply source, and the supply source itself has pressure, or a part of the pressure is added to the supply source, so that the supply source quickly passes through the jet hole 500 to form a high-speed flow column, directly injected into the channel, and can increase the pressure in the channel 200 , Increase the pressure delivered to the gas bearing 300.
  • the gas bearing 300 may be a static pressure gas bearing.
  • the supply source is directly passed into the channel 200 or passed into the channel 200 after proper pressure. Press the air bearing to supply air, and just lift the rotatable part 100.
  • the gas bearing 300 can be a dynamic pressure gas bearing.
  • the supply source is directly passed into the channel 200 or passed into the channel 200 after being appropriately pressurized.
  • Supply air hold up the rotatable part 100, and stop the air supply after the rotatable part 100 rotates and an air film is formed between the rotatable part 100 and the dynamic pressure gas bearing.
  • the supply source may supply gas into the channel 200.
  • gaseous refrigerant For example, direct supply of gaseous refrigerant.
  • liquid can also be passed into the channel 200.
  • the liquid refrigerant is introduced into the channel 200, since the channel 200 is located in the rotatable part 100, as the rotatable part 100 rotates, heat will be generated to vaporize, and the pressure will increase after vaporization, which will vaporize under the action of centrifugal force
  • the gas refrigerant formed later leads to the gas bearing, which can meet the pressure requirements for the gas supply to the gas bearing, and the refrigerant absorbs heat to cool the rotatable member 100 and suppress the temperature rise of the rotatable member 100.
  • Figures 3, 4, 5, 6 and 7 show an alternative implementation structure of the rotatable member.
  • the second channel 202 is arranged in a divergent shape, one end is connected to the first channel, the other end penetrates the rotatable member 100, and an outlet 203 is formed on the surface of the rotatable member 100.
  • one or more second channels 202 and outlets 203 are provided, and the outlets 203 are evenly distributed on the surface of the area where the gas bearing 300 is installed on the rotatable member 100.
  • the second passage 202 connects the first passage 201 with the gas bearing 300 through one or more outlets 203, so that the gas supply is more uniform and the gas supply efficiency to the gas bearing 300 is improved.
  • one or more second passages 202 and outlets 203 are provided, and the outlets 203 are irregularly distributed on the surface of the area where the gas bearing 300 is installed on the rotatable member 100.
  • one or more second passages 202 and outlets 203 are provided, and the outlets 203 are irregularly distributed on the surface of the area where the gas bearing 300 is installed on the rotatable member 100.
  • the second channel 202 is linear.
  • the second channel 202 has an arc shape.
  • a guide fan blade 204 is provided in the first channel 201, and the guide fan blade 204 can guide the airflow to the second channel 202 as the rotatable member rotates.
  • the airflow can be conveyed in the direction of the second channel 202 by the rotation of the guide fan blade 204, and the air supply pressure to the gas bearing 300 can be increased.
  • the guide fan blade 204 is directly fixed in the first passage 202, and the fixing method may be welding, screw fixing and other fixing connection methods.
  • the embodiment of the present disclosure provides an air supplement device.
  • FIGS 8 and 9 show an alternative implementation structure of the air supplement device.
  • it includes a primary impeller 600 and a secondary impeller 700 placed on the rotatable part 100, the primary impeller 600 and the secondary impeller 700 are in communication with each other through a flow passage 800; it also includes The channel 200 in 100 communicates with the flow channel 800 and the supply source.
  • the flow passage 800 between the first-stage impeller 600 and the second-stage impeller 700 is supplemented through the channel 200 inside the rotatable part 100, and the space between the rotatable part 100 and the flow passage 200 is sufficient. It can simplify the air supplement structure and reduce the difficulty of installation.
  • the rotatable member 100 can be understood as a structure that can drive the first impeller 600 and the second impeller 700 to rotate.
  • it can be a rotating shaft connected to a motor rotor, or a combination of the rotating shaft and the rotor.
  • the angle of supplementary air can be changed according to different requirements, and the applicability can be improved. Different requirements may be based on different requirements of the gas flow direction in the flow channel 800, the gas supplement can be vertical, or the gas flow of the supplement gas can be biased to the gas flow direction in the flow channel 800.
  • the preset included angle is 90 degrees.
  • the direction of the centrifugal force received by the gas in the first channel 201 is the same as the flow direction of the gas in the second channel 202, which reduces resistance and increases the pressure of supplemental gas.
  • the preset included angle is 45 degrees.
  • the flow direction of the supplementary air in the second channel 202 is deflected to one side of the airflow direction in the flow channel 800, so that the supplementary air is more smooth.
  • the direction of the air flow in the flow channel 800 is from the first impeller 600 to the second impeller 700, and the angle of 45 degrees is the direction biased to the side of the second impeller 700, which is convenient for the second impeller 700 to absorb the air flow of the supplementary air and improve the supplementary air.
  • the stability is convenient for the second impeller 700 to absorb the air flow of the supplementary air and improve the supplementary air.
  • the channel 200 has a spiral shape.
  • the spiral structure is used to generate a pushing force to one side when the rotatable body rapidly rotates, thereby increasing the pressure of supplementary air.
  • the channel 200 has a cylindrical shape with a smooth inner wall. With this optional embodiment, the resistance generated by the channel 200 is reduced.
  • the flow channel 800 is a part between the first impeller 600 and the second impeller 700 that communicates with the air inlet end and the air outlet end.
  • the air outlet end of the first impeller 600 communicates with the air inlet end of the second impeller 700 through the flow passage 800, and the flow direction of the gas in the flow passage 800 is from the side of the first impeller 600 to the side of the second impeller 700.
  • the gas enters the part of the flow passage 800 through the compression of the first impeller 600, and the supplemental gas flow is supplemented into the flow passage 800 through the channel 200 located inside the rotatable part 100, and is together by the second impeller. 700 is sucked in and discharged after two-stage compression.
  • the embodiment of the present disclosure also provides a motor including the above-mentioned gas bearing gas supply device.
  • the embodiment of the present disclosure also provides a compressor, which includes the above-mentioned air supplement device and, or, or the above-mentioned motor.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates otherwise, the singular forms of "a” (a), “one” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element. In this article, each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种气体轴承供气装置和一种电机,属于动力机械领域。该装置包括,置于可旋转件(100)内的通道(200),通道(200)连通气体轴承(300)和供应源。采用该装置,降低对气体轴承(300)供气的供应源压力的需求,即降低对外置冷媒加压罐的需求,减少成本,且简化对气体轴承(300)供气的结构,运行更稳定。

Description

气体轴承供气装置、电机
本申请基于申请号为201910281298.0、申请日为2019年04月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及动力机械技术领域,例如涉及气体轴承供气装置、电机。
背景技术
目前,气体轴承大体可分为动压气体轴承和静压气体轴承,静压气体轴承为使转子起浮,需要对静压气体轴承提供较高的气体压力来托起转子,同样在动压气体轴承启动工作阶段,转子与轴承相接触,转子与轴承相互摩擦运行,容易造成磨损,往往也需要先通入高压气体将转子托起来,为给静压气体轴承以及动压气体轴承启动工作阶段供气,需要外置冷媒加压罐来对冷媒进行加压,提高供气的压力。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:增加了系统复杂性,且增加了成本。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例,提供了一种气体轴承供气装置。
在一些可选实施例中,气体轴承供气装置,包括置于可旋转件内的通道,通道连通气体轴承和供应源。
采用该可选实施例,通过可旋转件转动产生的离心力将气体甩向气体轴承,降低对气体轴承供气的供应源压力的需求,即降低对外置冷媒加压罐的需求,减少成本。
可选地,通道包括第一通道和第二通道。
可选地,第一通道设置于可旋转件的中心位置,且平行与可旋转件。采用该可选实施例,使第一通道随着可旋转件转动,在第一通道内产生离心力。
可选地,第一通道与供应源连通,第二通道连通第一通道与气体轴承。采用该可选实施例,形成一个气体经过第一通道进入第二通道,再进入气体轴承的气流通路,气体在第一通道和第二通道内均受到离心力的作用,可增加离心力对气体产生的压力,降低对供应源压力的需求。
可选地,第二通道设有一个或多个出口,且出口均匀分布在可旋转件的表面。采用该 可选实施例,第二通道通过一个或多个出口将第一通道内的气体与气体轴承连通,使气体更加均匀,提高对气体轴承的供气效率。
可选地,第一通道和第二通道之间具有预设夹角。采用该可选实施例,根据不同的需求可改变供气的角度,提高适用性。
可选地,预设夹角为90度。采用该可选实施例,预设夹角为90度时,第一通道内气体受到的离心力方向与第二通道内气体的流动方向相同,降低阻力,提高离心力产生的气压。
可选地,通道与供应源之间设有腔体,腔体将通道与供应源连通。采用该可选实施例,在通道随着可旋转件转动时,通过腔体的过渡,使供应源不需要直接与通道连通,降低供应源与通道连通的难度。
可选地,供应源通过射流孔通入通道内。采用该可选实施例,通过射流孔,将带有压力的气流直接射入通道内,降低供应源与通道连通的难度,且效率更高。
本公开实施例,提供了一种电机。
在一些可选实施例中,电机包括:上述任一项实施例的气体轴承供气装置。
本公开实施例提供的一些技术方案可以实现以下技术效果:降低对气体轴承供气的供应源压力的需求,即降低对外置冷媒加压罐的需求,减少成本,且简化对气体轴承供气的结构,运行更稳定。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的气体轴承供气装置示意图;
图2是A的放大图;
图3是本公开实施例提供的可旋转件的一个可选实施例截面示意图;
图4是本公开实施例提供的可旋转件的另一个可选实施例截面示意图;
图5是本公开实施例提供的可旋转件内第一通道的一个可选实施例放大图;
图6是本公开实施例提供的可旋转件出口的一个可选实施例示意图;
图7是本公开实施例提供的可旋转件出口的另一个可选实施例示意图;
图8是本公开实施例提供的补气装置的一个可选实施例示意图;
图9是B的放大图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实 施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例,提供了一种气体轴承供气装置。
图1和图2示出了气体轴承供气装置的一个可选实施结构。
该可选实施例中,包括,置于可旋转件100内的通道200,通道200连通气体轴承300和供应源。
采用该可选实施例,通过可旋转件100转动产生的离心力将气体甩向气体轴承300,降低对气体轴承300供气的供应源压力的需求,即降低对外置冷媒加压罐的需求,减少成本。
可选地,通道200包括第一通道201和第二通道202。
可选地,第一通道201设置于可旋转件100的中心位置,且平行与可旋转件100。采用该可选实施例,使第一通道201随着可旋转件100转动,在第一通道201内产生离心力。可旋转件100的中心位置是指可旋转件100旋转时的轴线,即第一通道201设置在可旋转件100的轴线上。
可选地,可旋转件100可以理解为由气体轴承300支撑可旋转的结构,例如,可以是与电机转子连接的转轴,也可以是转轴和转子组合的整体。
可选地,第一通道201与供应源连通,第二通道202连通第一通道201与气体轴承300。采用该可选实施例,形成一个气体经过第一通道201进入第二通道202,再进入气体轴承300的气流通路,气体在第一通道201和第二通道202内均受到离心力的作用,可增加离心力对气体产生的压力,降低对供应源压力的需求。第二通道202可设置一个或多个,且与第一通道201连通,可以对一个气体轴承供气,或者对多个气体轴承供气,多个可理解为两个或者两个以上。
可选地,第一通道201和第二通道202之间具有预设夹角。采用该可选实施例,根据不同的需求可改变供气的角度,提高适用性。不同的需求可以是气体轴承供气口位置的需求,气体轴承可以从内部供气也可以由侧面供气。
可选地,预设夹角为90度。采用该可选实施例,预设夹角为90度时,第一通道201内气体受到的离心力方向与第二通道202内气体的流动方向相同,降低阻力,提高供气压力。
可选地,通道200与供应源之间设有腔体400,腔体400将通道200与供应源连通。采用该可选实施例,在通道200随着可旋转件100转动时,通过腔体400的过渡,使供应源不需要直接与通道200连通,降低供应源与通道200连通的难度。
可选地,可旋转件100上设有止推盘401,腔体400一端与供应源连通,另一端由可旋转件100和可旋转件100上的止推盘101封闭,可旋转件100的一端位于腔体400内, 可在不影响可旋转件100的转动情况下,使可旋转件100内的通道200且与腔体400连通。
可选地,供应源通过射流孔500通入通道200内。采用该可选实施例,通过射流孔500,将带有压力的气流直接射入通道200内,降低供应源与通道200连通的难度,且效率更高。射流孔500与供应源连通,供应源自身带有压力,或者对供应源增加一部分压力,使供应源快速经过射流孔500形成一个高速流柱,直接射入通道内,可增加通道200内的压力,提高输送到气体轴承300的压力。
可选地,气体轴承300可以是静压气体轴承,根据静压气体轴承对供气压力的需求,将供应源直接通入通道200内或者经适当的加压后通入通道200内,对静压气体轴承供气,将可旋转件100托起即可。
可选地,气体轴承300可以使动压气体轴承,在动压气体轴承启动工作前,将供应源直接通入通道200内或者经适当的加压后通入通道200内,对动压气体轴承供气,将可旋转件100托起,待可旋转件100旋转起来并与动压气体轴承之间产生气膜后,停止供气即可。
可选地,供应源可向通道200内供应气体。例如直接供应气态的冷媒。
可选地,还可以向通道200内通入液体。例如,将液体冷媒通入通道200内,由于通道200位于可旋转件100内,随着可旋转件100的旋转会产生热量气化,气化后压力增大,在离心力的作用下将气化后形成的气体冷媒通向气体轴承,可满足对气体轴承供气的压力要求,并且冷媒吸收热量对可旋转件100降温,抑制可旋转件100温度的上升。
图3、图4、图5、图6和图7示出了可旋转件的一个可选实施结构。
可选地,第二通道202呈发散状设置,一端与第一通道连通,另一端贯穿可旋转件100,在可旋转件100的表面形成出口203。
可选地,第二通道202和出口203设有一个或多个,且出口203均匀分布在可旋转件100上安装气体轴承300的区域表面。采用该可选实施例,第二通道202通过一个或多个出口203将第一通道201与气体轴承300连通,使供气更加均匀,提高对气体轴承300的供气效率。
可选地,第二通道202和出口203设有一个或多个,且出口203无规律分布在可旋转件100上安装气体轴承300的区域表面。
可选地,第二通道202和出口203设有一个或多个,且出口203无规律分布在可旋转件100上安装气体轴承300的区域表面。
可选地,第二通道202为直线形。
可选地,第二通道202为弧形。
可选地,第一通道201内设有导风扇叶204,导风扇叶204随着可旋转件的旋转,可将气流导向第二通道202。采用该可选实施例,可通过导风扇叶204的旋转,将气流向第二通道202的方向输送,提高给气体轴承300的供气压力。
可选地,导风扇叶204直接固定在第一通道202内,固定方式可为焊接,螺丝固定连 接等多种固定连接方式。
本公开实施例,提供一种补气装置。
图8和图9示出了补气装置的一个可选实施结构。
该可选实施例中,包括,置于可旋转件100上的一级叶轮600和二级叶轮700,一级叶轮600和二级叶轮700中间通过流道800连通;还包括置于可旋转件100内的通道200,通道200连通流道800和供应源。
采用该可选实施例,经过可旋转件100内部的通道200对一级叶轮600和二级叶轮700中间的流道800进行补气,可旋转件100与流道200之间的空间较为充足,可简化补气结构,降低安装难度。
可选地,可旋转件100可以理解为可带动第一叶轮600和第二叶轮700旋转的结构,例如,可以是与电机转子连接的转轴,也可以是转轴和转子组合的整体。
可选地,第一通道201和第二通道202之间具有预设夹角。采用该可选实施例,根据不同的需求可改变补气的角度,提高适用性。不同的需求可以是根据流道800内气体流动方向不同的需求,可以垂直补气,也可以使补气的气流偏向流道800内气体流动方向。
可选地,预设夹角为90度。采用该可选实施例,预设夹角为90度时,第一通道201内气体受到的离心力方向与第二通道202内气体的流动方向相同,降低阻力,提高补气的压力。
可选地,预设夹角为45度。采用该可选实施例,使第二通道202补气的流向偏转,使其偏向于流道800内气流方向的一侧,使补气更顺畅。例如,流道800内的气流方向为从第一叶轮600流向第二叶轮700,45度夹角为偏向第二叶轮700一侧的方向,便于第二叶轮700吸取补气的气流,提高补气的稳定性。
可选地,通道200为螺旋形。采用该可选实施例,利用螺旋结构随着可旋转体快速转动时,产生向一侧推动的力,增加补气的压力。
可选地,通道200为内壁光滑的圆柱形。采用该可选实施例,降低通道200产生的阻力。
可选的,流道800为第一叶轮600与第二叶轮700之间进风端与出风端连通的部分。例如,第一叶轮600的出风端通过流道800与第二叶轮700的进风端连通,流道800内气体的流向为,从第一叶轮600一侧流向第二叶轮700一侧。此时启动可旋转件100转动时,气体经过第一叶轮600的压缩进入流道800部分,补气的气流经过位于可旋转件100内部的通道200补充到流道800内,一起被第二叶轮700吸入,并经过二级压缩后排出。
本公开实施例还提供了一种电机,包含上述的气体轴承供气装置装置。
本公开实施例还提供了一种压缩机,包含上述的补气装置和,或者,或上述的电机。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变 化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

Claims (10)

  1. 一种气体轴承供气装置,其特征在于,包括置于可旋转件内的通道,所述通道连通气体轴承和供应源。
  2. 根据权利要求1所述的装置,其特征在于,所述通道包括第一通道和第二通道。
  3. 根据权利要求2所述的装置,其特征在于,所述第一通道设置于所述可旋转件的中心位置,且平行与所述可旋转件。
  4. 根据权利要求2所述的装置,其特征在于,所述第一通道与供应源连通,所述第二通道连通所述第一通道与气体轴承。
  5. 根据权利要求4所述的装置,其特征在于,所述第二通道设有一个或多个出口,且所述出口均匀分布在所述可旋转件的表面。
  6. 根据权利要求2所述的装置,其特征在于,所述第一通道和所述第二通道之间具有预设夹角。
  7. 根据权利要求6所述的装置,其特征在于,所述预设夹角为90度。
  8. 根据权利要求1所述的装置,其特征在于,所述通道与供应源之间设有腔体,所述腔体将所述通道与供应源连通。
  9. 根据权利要求1-8任一项所述的装置,其特征在于,供应源通过射流孔通入所述通道内。
  10. 一种电机,其特征在于,包括如权利要求1至9任一项所述的装置。
PCT/CN2020/091215 2019-04-09 2020-05-20 气体轴承供气装置、电机 WO2020207508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910281298.0 2019-04-09
CN201910281298.0A CN111795072B (zh) 2019-04-09 2019-04-09 气体轴承供气装置、电机

Publications (1)

Publication Number Publication Date
WO2020207508A1 true WO2020207508A1 (zh) 2020-10-15

Family

ID=72750985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091215 WO2020207508A1 (zh) 2019-04-09 2020-05-20 气体轴承供气装置、电机

Country Status (2)

Country Link
CN (1) CN111795072B (zh)
WO (1) WO2020207508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251364A (zh) * 2021-11-19 2022-03-29 青岛海尔空调电子有限公司 压缩机及用于压缩机轴承-转子系统的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154752A (ja) * 2005-12-05 2007-06-21 Nidec Copal Electronics Corp 送風機
CN102494025A (zh) * 2011-12-28 2012-06-13 元亮科技有限公司 一种静压气浮轴承
CN103047288A (zh) * 2012-12-31 2013-04-17 浙江工业大学 一种无气管弯曲扰动影响的旋转供气装置
CN203730559U (zh) * 2014-02-19 2014-07-23 日本精工株式会社 静压气体轴承
CN106979227A (zh) * 2017-05-17 2017-07-25 西安工业大学 多孔集成节流的整体式气体静压轴承

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147218A (ja) * 1984-12-20 1986-07-04 Ricoh Co Ltd 静圧空気軸受による光偏向器
US5938343A (en) * 1995-10-31 1999-08-17 Seagate Technology, Inc. Oil filling seal for hydrodynamic motor utilizing a movable sealing element
JP2000104736A (ja) * 1998-09-29 2000-04-11 Ntn Corp 静圧空気軸受支持ガイドローラ
US6352431B1 (en) * 2000-08-03 2002-03-05 Jakel Incorporated Furnace inducer motor cooling system
CN2558003Y (zh) * 2002-02-22 2003-06-25 富准精密工业(深圳)有限公司 电脑送风装置组合
CN101123380B (zh) * 2007-05-25 2010-10-27 中国科学院电工研究所 转子空冷定子蒸发冷却的汽轮发电机
TWM408435U (en) * 2011-02-18 2011-08-01 Ming Jing Co Ltd Improved spindle structure
DE102011117183B4 (de) * 2011-10-28 2014-10-16 Ruhrpumpen Gmbh Teilstromführung, insbesondere einer Magnetkupplungspumpe
DE102013217261A1 (de) * 2013-08-29 2015-03-05 Robert Bosch Gmbh Kompressor
JP2015183568A (ja) * 2014-03-24 2015-10-22 株式会社豊田自動織機 流体機械
CN107504066B (zh) * 2017-08-14 2019-05-17 武汉科技大学 一种向高压圆盘气体轴承供气的一体式轴对称射流稳压腔
CN107664143B (zh) * 2017-10-16 2023-10-27 珠海格力电器股份有限公司 压缩机及具有其的空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154752A (ja) * 2005-12-05 2007-06-21 Nidec Copal Electronics Corp 送風機
CN102494025A (zh) * 2011-12-28 2012-06-13 元亮科技有限公司 一种静压气浮轴承
CN103047288A (zh) * 2012-12-31 2013-04-17 浙江工业大学 一种无气管弯曲扰动影响的旋转供气装置
CN203730559U (zh) * 2014-02-19 2014-07-23 日本精工株式会社 静压气体轴承
CN106979227A (zh) * 2017-05-17 2017-07-25 西安工业大学 多孔集成节流的整体式气体静压轴承

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251364A (zh) * 2021-11-19 2022-03-29 青岛海尔空调电子有限公司 压缩机及用于压缩机轴承-转子系统的控制方法
CN114251364B (zh) * 2021-11-19 2023-11-24 青岛海尔空调电子有限公司 压缩机及用于压缩机轴承-转子系统的控制方法

Also Published As

Publication number Publication date
CN111795072A (zh) 2020-10-20
CN111795072B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
KR101810430B1 (ko) 축 확장형 냉각방식 공기압축기 및 연료전지 차량
US10753372B2 (en) Direct drive type dual turbo blower cooling structure
US20130129488A1 (en) Foil bearing supported motor-driven blower
US7891958B2 (en) Impeller pump with reflux passages and apparatus using same
JP6552851B2 (ja) 圧縮機駆動用モータおよびその冷却方法
EP2644893A2 (en) Vacuum evacuation apparatus
KR101841117B1 (ko) 터보 블로워의 모터 냉각구조
US20180073521A1 (en) Compressor driving motor and cooling method for same
CN105684274A (zh) 具有轴向推力补偿的风扇冷却的电机
KR20060081791A (ko) 터보압축기를 구비한 냉동장치
WO2020207508A1 (zh) 气体轴承供气装置、电机
EP3058182B1 (en) Sealing clearance control in turbomachines
EP3141759A1 (en) Turbo pump
US10895264B2 (en) Motorcompressor and method to improve the efficiency of a motorcompressor
WO2020207509A1 (zh) 补气装置、压缩机
US20200392900A1 (en) High-speed turbo machine enabling cooling thermal equilibrium
JP3648335B2 (ja) キャンドモータポンプ
US20060245948A1 (en) Fan system
US7690886B2 (en) Pump and liquid supply apparatus having the pump
US11339791B2 (en) High-speed dual turbo machine enabling cooling thermal equilibrium
US7447019B2 (en) Computer having an axial duct fan
JP2002332990A (ja) ターボ形回転機器
KR20200054983A (ko) 드래그 펌프 및 드래그 펌프를 포함하는 진공 펌프 세트
US6672828B2 (en) Vacuum pump
CN217582526U (zh) 一种高压鼓风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786942

Country of ref document: EP

Kind code of ref document: A1