WO2020207360A1 - 光频率梳光源和产生光频率梳的方法 - Google Patents

光频率梳光源和产生光频率梳的方法 Download PDF

Info

Publication number
WO2020207360A1
WO2020207360A1 PCT/CN2020/083394 CN2020083394W WO2020207360A1 WO 2020207360 A1 WO2020207360 A1 WO 2020207360A1 CN 2020083394 W CN2020083394 W CN 2020083394W WO 2020207360 A1 WO2020207360 A1 WO 2020207360A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
output
optical
coupler
amplifier
Prior art date
Application number
PCT/CN2020/083394
Other languages
English (en)
French (fr)
Inventor
桂成程
赵家霖
宋小鹿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20786919.9A priority Critical patent/EP3944014A4/en
Publication of WO2020207360A1 publication Critical patent/WO2020207360A1/zh
Priority to US17/498,335 priority patent/US11914268B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3511Self-focusing or self-trapping of light; Light-induced birefringence; Induced optical Kerr-effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3542Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • This application relates to the field of optical devices, in particular to an optical frequency comb light source and a method for generating an optical frequency comb.
  • Multi-wavelength channel communication technology means that a link supports multiple wavelength channels, and each wavelength channel loads high-speed signals. This technology can greatly increase the link capacity to meet the needs of large-capacity transmission.
  • a key technology in the research of multi-wavelength channel communication technology is multi-wavelength light source.
  • Kerr light frequency comb technology is considered as an alternative to provide multi-wavelength light sources.
  • This technology can generate an optical frequency comb (ie multiple wavelengths) based on the Kerr nonlinear effect of a single microring cavity.
  • the output optical power of the solution provided by this technology is relatively low, which cannot meet the power requirements for multi-wavelength light sources in actual large-capacity transmission applications.
  • Q quality factor
  • the embodiments of the present application provide an optical frequency comb light source and a method for generating an optical frequency comb, so as to achieve the purpose of increasing the output power of the optical frequency comb light source and meeting the power requirements of the light source for actual large-capacity multi-wavelength transmission.
  • an embodiment of the present application provides an optical frequency comb light source.
  • the light source includes a laser, a coupler, a Kerr nonlinear device, an optical beam splitter and a phase shifter, wherein: the laser is connected to one input end of the coupler, and the other input end of the coupler is connected to the The output end of the phase shifter is connected; the output end of the coupler is connected to the input end of the Kerr nonlinear device; the output end of the Kerr nonlinear device is connected to the input end of the optical beam splitter One output end of the optical beam splitter is connected to the input end of the phase shifter, and the other output end of the optical beam splitter is used to output an optical frequency comb.
  • the light source can superimpose the output multi-wavelength light beams through multiple occurrences of Kerr nonlinear effects, thereby effectively increasing the output power of the light source.
  • the light source further includes an optical amplifier (first amplifier); the optical amplifier is placed on the coupler and the Kerr nonlinear device. That is, the output terminal of the coupler is connected to the input terminal of the first amplifier, and the output terminal of the first amplifier is connected to the input terminal of the Kerr nonlinear device.
  • first amplifier optical amplifier
  • Placing an optical amplifier between the coupler and the Kerr nonlinear device can increase the optical power of the single-wavelength beam output from the laser, so as to better generate the Kerr nonlinear device.
  • power amplification can be realized for multiple wavelengths coming from the feedback path, which further improves the output power of the light source.
  • the light source further includes a polarization controller; the output terminal of the first amplifier is connected to the input terminal of the Kerr nonlinear device, Specifically, it includes: the output terminal of the first amplifier is connected with the input terminal of the polarization controller; the output terminal of the polarization controller is connected with the output terminal of the Kerr nonlinear device.
  • the polarization controller is added to keep the polarization state of the beam input to the Kerr nonlinear device consistent with the polarization state of the device, thereby improving the light conversion efficiency of the light source.
  • the first optical amplifier is a baited fiber amplifier or a semiconductor optical amplifier.
  • the light source further includes an optical amplifier (second optical amplifier); the amplifier is placed between the laser and the coupler. That is, the laser is connected to the input end of the second amplifier; the output end of the second amplifier is connected to one input end of the coupler.
  • second optical amplifier optical amplifier
  • the second amplifier amplifies the light source output by the laser, which can further increase the output power of the light source.
  • the light source further includes a polarization controller; the output end of the coupler and the input end of the Kerr nonlinear device are connected, specifically including: The output end of the coupler is connected to the input end of the polarization controller; the output end of the polarization controller is connected to the output end of the Kerr nonlinear device.
  • the polarization controller is added to keep the polarization state of the beam input to the Kerr nonlinear device consistent with the polarization state of the device, thereby improving the light conversion efficiency of the light source.
  • the first optical amplifier is a baited fiber amplifier or a semiconductor optical amplifier.
  • the light source further includes a third optical amplifier; the other input end of the coupler and the The output terminal connection of the phase shifter specifically includes: the other input terminal of the coupler is connected to the output terminal of the third amplifier; the input terminal of the third optical amplifier and the output terminal of the phase shifter connection.
  • the output power of the phase shifter can be increased, thereby further increasing the power of the feedback beam entering the Kerr nonlinear device, which is beneficial to further increasing the output power of the light source.
  • the third optical amplifier is a baited fiber amplifier or a semiconductor optical amplifier.
  • the light source further includes a filter; the filter is used to connect the optical beam splitter and the The phase shifter; or, the filter is used to connect the phase shifter and the coupler.
  • the filter can be used to flexibly adjust the number of wavelengths contained in the output optical frequency comb, so as to realize light sources supporting different numbers of wavelengths.
  • the Kerr nonlinear device is a microring, a highly nonlinear optical fiber, a photonic crystal microcavity or a microdisk .
  • the material of the microring includes silicon carbide, lithium niobate film or silicon dioxide.
  • this embodiment provides a light emitting device.
  • the light emitting device includes the light source, the wavelength division multiplexer, multiple modulators, and the wavelength division multiplexer according to the first aspect of the claim or any specific implementation manner thereof, wherein: the light source and the wave division multiplexer The input ends of the multiplexer are connected; the multiple output ends of the wavelength division multiplexer are connected to the input ends of the multiple modulators; the output ends of the multiple modulators are connected to the wavelength division multiplexer Multiple input terminals are connected; the wavelength division multiplexer is used to output a multi-wavelength optical signal.
  • this embodiment provides a method for generating an optical frequency comb.
  • the method includes:
  • a fourth light beam is output, wherein the fourth light beam has multiple wavelengths
  • the fourth beam to generate a fifth beam and a sixth beam; wherein, the fifth beam is an output beam (also called an output optical frequency comb); after performing phase control on the sixth beam, the output The second light beam.
  • the fifth beam is an output beam (also called an output optical frequency comb); after performing phase control on the sixth beam, the output The second light beam.
  • the first beam or the second beam or the two beams can be amplified at the same time to further increase the output optical frequency comb power.
  • the third beam can be amplified and then input to a Kerr nonlinear device.
  • the third light beam can be polarized and then input into a Kerr nonlinear device.
  • polarization control the polarization state of the input beam and the device are consistent, and the light conversion efficiency is improved.
  • the sixth beam or the second beam can be filtered to flexibly control the number of wavelengths of the output optical frequency comb.
  • FIG. 1 is a schematic structural diagram of an optical frequency comb light source provided by this application.
  • FIG. 2 is a schematic structural diagram of a possible optical frequency comb light source provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of another possible optical frequency comb light source provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another possible optical frequency comb light source provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a fourth possible optical frequency comb light source provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a fifth possible optical frequency comb light source provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a possible light emitting device provided by an embodiment of this application.
  • FIG. 8 is a method for generating an optical frequency comb provided by an embodiment of the application.
  • the device forms and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation on the technical solutions provided by the embodiments of the present invention.
  • a person of ordinary skill in the art knows that with the evolution of device forms and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the technical solution proposed in this application may be applicable to multi-wavelength channel transmission scenarios.
  • optical backbone transmission network For example, optical backbone transmission network, optical access network, data center optical transmission, short-distance optical interconnection, and wireless service fronthaul/backhaul.
  • the technical solution proposed in the present application may be used for the sending side device and/or the receiving side device corresponding to the above-mentioned different networks.
  • first and second in this application are used to distinguish similar objects, and not necessarily used to describe a specific sequence or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments described herein can be implemented in a sequence not described in this application.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships. For example, A and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the specific operation method in the method embodiment can also be applied to the device embodiment. Conversely, the component function description in the device embodiment is also applicable to the related description in the method embodiment.
  • the specific description of some technical features in one embodiment can also be used to explain the corresponding technical features in other embodiments.
  • the specific description of the Kerr nonlinear device in one embodiment may be applicable to the corresponding Kerr nonlinear device in other embodiments.
  • the specific implementation of the phase shifter in one embodiment may be applicable to the phase shifter in other embodiments.
  • the present application uses the same or similar figure numbers to represent components with the same or similar functions in different embodiments.
  • connection in this application may be a direct connection or an indirect connection.
  • connection relationships refer to the description of the subsequent corresponding embodiments. Unless otherwise specified, "connection” should not be interpreted too restrictively.
  • Kerr nonlinear devices also known as Kerr nonlinear optical devices
  • Kerr nonlinear optical devices can cause the input single-wavelength light to have a Kerr nonlinear effect, and generate a Kerr optical frequency comb (that is, output multi-wavelength light) to provide multiple Wavelength light source.
  • the output power of the current multi-wavelength light source solution is low, which cannot meet the requirements of actual network applications.
  • this application provides a new optical frequency comb light source.
  • the device can superimpose multi-wavelength light multiple times before outputting, and can realize the output of a higher-power multi-wavelength light source, thereby meeting the power requirements for multi-wavelength light sources in actual network applications.
  • optical communication equipment can realize large-capacity transmission.
  • the device has a simple structure and low cost.
  • FIG. 1 is an optical frequency comb light source provided by this application.
  • the device 100 includes a laser (Laser Diode, LD) 101, a coupler 102, a Kerr nonlinear device 103, an optical beam splitter 104, and a phase shifter 105.
  • LD Laser Diode
  • the LD 101 is connected to an input terminal of the coupler 102.
  • the other input terminal of the coupler 102 is connected to the output terminal of the phase shifter 105.
  • the output terminal of the coupler 102 is connected to the input terminal of the Kerr nonlinear device 103.
  • the output end of the Kerr nonlinear device 103 is connected to the input end of the optical beam splitter 104.
  • One output end of the optical beam splitter 104 is connected to the input end of the phase shifter 105.
  • the other output end of the optical beam splitter 104 (104a in FIG. 1) is the output end of the optical frequency comb light source for outputting the optical frequency comb. It should be noted that the optical frequency comb is an alternative term for multiple wavelengths.
  • the coupler includes three ports (two input ports and one output port); the optical beam splitter includes three ports (one input port and two output ports).
  • LD 101 is used to generate single-wavelength light.
  • the coupler 102 is used to combine the light of its two input ports and output it from its output port.
  • Kerr nonlinear device refers to a device that can convert a single output wavelength into multiple wavelength outputs.
  • the optical beam splitter 104 is used to split the light input from its input end into two parts, and output the light from its two output ports respectively.
  • one output port of the optical beam splitter 104 serves as the multi-wavelength output port of the device 100; while the other port feeds back part of the light into the Kerr nonlinear device again, thereby reoccurring the Kerr effect, and then interacts with the LD via the non-linear device.
  • the optical frequency comb output from the linear device is superimposed.
  • the phase shifter 105 is used to adjust the phase of the light passing through the component, so as to realize that the phase of the part of the light input and the phase of the optical frequency comb output by the LD through the nonlinear device meet or basically meet the phase matching condition, thereby achieving
  • the optical frequency comb generated by the Kerr effect is added to the power of the optical frequency comb output by the LD through the nonlinear device.
  • the phase matching condition means that the phase difference between the two beams is 0 or an integer multiple of 2 ⁇ .
  • Basic satisfaction means that the phase difference of the two beams is approximately 0 or an integer multiple of 2 ⁇ , and the output power of the two beams can still be increased after the optical power of the two beams are superimposed. It should be noted that when the phase matching condition is met, the power of the superimposed output of the two beams of light is the largest.
  • the LD may be of fixed frequency (that is, output a single fixed wavelength of light).
  • the LD can also be wavelength tunable (that is, the output wavelength can be changed). If the latter is the case, the device 100 can be a multi-wavelength light source that can provide different wavelength bands, that is, a tunable multi-wavelength light source.
  • the Kerr nonlinear effect may be a microring resonator (hereinafter referred to as a microring), a highly nonlinear optical fiber (for example, a highly nonlinear photonic crystal fiber), a microdisk or a photonic crystal microcavity, etc.
  • part of the multi-wavelength light is split by the optical beam splitter, and the phase of the part of the multi-wavelength light is adjusted by the phase shifter, so that the phase of the multi-wavelength light is the same as the single output from the LD.
  • the phase of the multi-wavelength light generated by the wavelength light input to the Kerr nonlinear device 103 meets the phase matching condition.
  • the multi-wavelength light is combined by the coupler and then input into the Kerr nonlinear device again, and part of the light is output through the optical beam splitter, and the other part continues the above-mentioned superposition process. Through one or more superpositions, the power of the multi-wavelength light output by the optical beam splitter is greatly improved, which can meet the actual application requirements.
  • the optical frequency comb light source shown in FIG. 1 may be a system constructed by discrete devices.
  • the light source may also be a Photonic Integrated Circuit (PIC).
  • PIC Photonic Integrated Circuit
  • the light source provided in the embodiments of the present application can also be a PIC of a new material.
  • the specific form of the optical frequency comb light source is not limited in this application.
  • FIG. 2 is a schematic structural diagram of a possible optical frequency comb light source provided by an embodiment of the application.
  • the multi-wavelength light source 200 specifically includes: an LD 101, a coupler 102, an optical amplifier 201, a micro ring 202, an optical beam splitter 104 and a phase shifter 105.
  • the LD 101 is connected to an input terminal of the coupler 102.
  • the other input terminal of the coupler 102 is connected to the output terminal of the phase shifter 105.
  • the output terminal of the coupler 102 and the input terminal of the microring 202 are connected through an optical amplifier 201. That is, the output end of the coupler 102 is connected to the input end of the optical amplifier 201; the output end of the optical amplifier 201 is connected to the input end of the micro ring 202.
  • the output end of the microring 202 is connected to the input end of the optical beam splitter 104.
  • One output end of the optical beam splitter 104 is connected to the input end of the phase shifter 105.
  • the other output end (104a) of the optical beam splitter 104 is the output end of the optical frequency comb light source, which is used to output the optical frequency comb.
  • the Kerr nonlinear device is specifically a microring in this embodiment; secondly, an optical amplifier 201 is added in this embodiment.
  • the component is used to amplify the light input to it, so that the power of the light entering the microring 202 is large enough to produce a Kerr nonlinear effect.
  • the optical amplifier 201 can also amplify the feedback of the multi-wavelength light, further increasing the output power of the optical comb light source.
  • the material used for the microring may specifically be silicon carbide, lithium niobate film or silicon dioxide.
  • the phase shifter may be a commercially available phase shifter or phase modulator capable of changing the phase of the beam.
  • the phase shifter may be an optical heater or a titanium nitride (TiN) phase shifter. It should be understood that with the development of optical device technology, devices capable of realizing the aforementioned functions are also considered to belong to the specific examples of phase shifters mentioned in this application.
  • the optical amplifier may be an Erbium-doped Optical Fiber Amplifier (EDFA).
  • EDFA Erbium-doped Optical Fiber Amplifier
  • the optical amplifier may be a semiconductor optical amplifier. Compared with EDFA, semiconductor optical amplifiers are smaller in size and can achieve power amplification in multiple bands.
  • microring 202 can also be replaced with other Kerr nonlinear devices mentioned in FIG. 1.
  • optical frequency comb light source 200 shown in FIG. 2 can achieve high-power multi-wavelength output.
  • the output power of the optical frequency comb light source can be further improved.
  • FIG. 3 is a schematic structural diagram of another possible optical frequency comb light source provided by an embodiment of the application.
  • the light source 300 specifically includes: an LD 101, a coupler 102, a microdisk 301, an optical beam splitter 104, a filter 302, and a phase shifter 105.
  • connection relationship of these components is basically the same as the connection relationship shown in FIG. 1, and will not be repeated.
  • the main difference between the two is: the phase shifter 105 and the coupler 102 are not directly connected, but are connected through the filter 302. That is, the output terminal of the phase shifter 105 is connected to the input terminal of the filter 302; the output terminal of the filter 302 is connected to the other input terminal of the coupler 102.
  • the Kerr nonlinear device is specifically a microdisk in this embodiment; secondly, a filter 302 is added in this embodiment.
  • the filter 302 is used to filter the inputted multi-wavelength light to control the number of wavelengths output by the optical frequency comb light source.
  • the filter 302 can be used to realize the output of any number of multi-wavelength light sources such as four channels and eight channels.
  • the functions of other components refer to the related description in FIG. 1, which will not be repeated here.
  • the material used for the microdisk may specifically be silicon carbide, lithium niobate film or silicon dioxide.
  • the filter can also be placed in other positions.
  • the filter can be placed between the optical beam splitter and the phase shifter.
  • the filter can be placed on the output port of the optical beam splitter.
  • the first two methods can better increase the power of the output multi-wavelength light source by filtering and then amplifying.
  • the filter can be a wavelength selective switch (Wavelength Selective Switch, WSS), a waveguide array grating (Arrayed Waveguide Gratings), or a diffraction grating, etc., which can implement a filtering function.
  • WSS wavelength selective switch
  • Arrayed Waveguide Gratings Arrayed Waveguide Gratings
  • diffraction grating etc.
  • microdisk 301 can also be replaced with other Kerr nonlinear devices mentioned in FIG. 1.
  • optical frequency comb light source 300 shown in FIG. 3 high-power multi-wavelength output can be realized.
  • the number of output wavelengths of the optical frequency comb light source can be further controlled, so as to meet the demand for the number of light sources required for actual use of the network.
  • FIG. 4 is a schematic structural diagram of another possible optical frequency comb light source provided by an embodiment of the application.
  • the multi-wavelength light source 400 specifically includes: an LD 101, a coupler 102, an optical amplifier 401, a Kerr nonlinear device 103, an optical beam splitter 104, and a phase shifter 105.
  • connection relationship of these components is basically the same as the connection relationship shown in FIG. 1, and will not be repeated.
  • the main difference between the two is that the laser 101 and the coupler 102 are not directly connected, but are connected through an optical amplifier 401. That is, the output end of the laser 101 is connected to the input end of the optical amplifier 401; the output end of the optical amplifier 401 is connected to one input end of the coupler 102.
  • an optical amplifier 401 is added in this embodiment. This component is used to amplify the light output by the laser so that the power of the light entering the Kerr nonlinear device 103 is large enough to produce the Kerr nonlinear effect.
  • a laser with a lower power can be used with an optical amplifier to realize a multi-wavelength light source.
  • FIG. 1 For the functions of other components, refer to the related description in FIG. 1, which will not be repeated here.
  • the optical frequency comb light source shown in FIG. 4 may further include filters.
  • filters For specific related descriptions, refer to the description of FIG. 3, which will not be repeated here.
  • optical frequency comb light source shown in Figure 4
  • high-power multi-wavelength output can be achieved.
  • the cost of the light source can be controlled.
  • FIG. 5 is a schematic structural diagram of a fourth possible optical frequency comb light source provided by an embodiment of the application.
  • the multi-wavelength light source 500 specifically includes: LD 101, coupler 102, optical amplifier 501, Kerr nonlinear device 103, optical beam splitter 104 and phase shifter 105.
  • connection relationship of these components is basically the same as the connection relationship shown in FIG. 1, and will not be repeated.
  • the main difference between the two is: the phase shifter 105 and the coupler 102 are not directly connected, but are connected through the optical amplifier 501. That is, the output terminal of the phase shifter 105 is connected to the input terminal of the optical amplifier 501; the output terminal of the optical amplifier 501 is connected to the other input terminal of the coupler 102.
  • an optical amplifier 501 is added in this embodiment. This component is used to amplify the light split from the optical beam splitter and fed back into the Kerr nonlinear device, so that the power of the light output from the optical beam splitter is greater. In other words, the use of the optical amplifier 501 can further increase the output power of the optical frequency comb light source.
  • the optical frequency comb light source shown in FIG. 5 may further add a filter.
  • a filter For specific related descriptions, refer to the description of FIG. 3, which will not be repeated here.
  • the coupler 102, the optical amplifier 501, the filter, and the phase shifter 105 may be connected in sequence.
  • the coupler 102, the filter, the optical amplifier 501, and the phase shifter may be connected in sequence.
  • the connection mode can be similarly modified according to specific needs.
  • the optical frequency light source shown in FIG. 5 may further include another optical amplifier.
  • another optical amplifier For specific related description, refer to the description of FIG. 4, which is not repeated here.
  • optical frequency comb light source 500 shown in FIG. 5 high-power multi-wavelength output can be realized.
  • the optical power of the optical frequency comb light source can be further increased.
  • FIG. 6 is a schematic structural diagram of a sixth possible optical frequency comb light source provided by an embodiment of the application.
  • the multi-wavelength light source 600 specifically includes: an LD 101, a coupler 102, a polarization controller 601, a Kerr nonlinear device 103, an optical beam splitter 104, and a phase shifter 105.
  • connection relationship of these components is basically the same as the connection relationship shown in FIG. 1, and will not be repeated.
  • the main difference between the two is that the coupler 102 and the Kerr nonlinear device 103 are not directly connected, but are connected through the polarization controller 601. That is, the output end of the coupler 102 is connected to the input end of the polarization controller 601; the output end of the polarization controller 601 is connected to the input end of the Kerr nonlinear device 103.
  • a polarization controller 601 is added to the light source 600 in this embodiment.
  • the component is used to control the polarization state of the light entering it, so that the polarization state of the light entering the Kerr nonlinear device 103 is consistent with the polarization state of the device, thereby improving the light conversion efficiency.
  • the polarization controller 601 is used, and other devices can be non-polarization maintaining devices, and the price is relatively low.
  • the coupler 102 may adopt a non-polarization maintaining coupler.
  • the optical frequency comb light source shown in FIG. 5 can also be added with a filter or an optical amplifier.
  • a filter or an optical amplifier for specific related description, please refer to the description in Figure 2-4, which will not be repeated here.
  • optical frequency comb light source 600 shown in FIG. 6 can achieve high-power multi-wavelength output.
  • the conversion efficiency can be improved and the cost of the optical frequency comb light source can be reduced.
  • FIG. 7 is a schematic structural diagram of a possible light emitting device provided by an embodiment of this application.
  • the light emitting device 700 includes an optical frequency comb light source 100, a wavelength division multiplexer 701, a modulator (702a-702c), and a wavelength division multiplexer 703.
  • the light emitting device is a multi-wavelength emitting device.
  • the optical frequency comb light source provides multiple wavelengths, and the multiple wavelengths are separated by the wavelength division multiplexer 701 and input into the corresponding modulators respectively.
  • the modulator can load the data to be transmitted on the corresponding wavelength.
  • the wavelength division multiplexer 703 combines multiple wavelengths loaded with data and transmits them through optical fibers. It should be noted that the wavelength loaded with data is also called an optical signal.
  • optical frequency comb light source 100 can be replaced with the structure of any one of the aforementioned optical frequency comb light sources in FIGS. 2 to 6, or an optional specific implementation manner provided in the foregoing description.
  • the number of modulators is not greater than the number of wavelengths provided by the optical frequency comb light source.
  • the light emitting device 700 may be the aforementioned transmitting-side device and/or receiving-side device.
  • the optical transmitting device 700 may also be an optical module, such as an optical transmitter or an optical transceiver.
  • FIG. 8 is a method for generating an optical frequency comb provided by an embodiment of the application. Specifically, the method includes:
  • Step 801 Receive a first light beam, where the first light beam has a single wavelength
  • Step 802 After combining the first light beam and the second light beam, output a third light beam;
  • the first light beams are amplified and then combined.
  • Step 803 After inputting the third light beam into the Kerr nonlinear device, output a fourth light beam, wherein the fourth light beam has multiple wavelengths;
  • the third beam is amplified, it is input to a Kerr nonlinear device.
  • the third light beam After performing polarization control on the third light beam, it is input to a Kerr nonlinear device.
  • the fourth light beam may also be called a frequency comb.
  • Step 804 split the fourth beam to generate a fifth beam and a sixth beam; wherein the fifth beam is an output beam; after performing phase control on the sixth beam, output the second beam .
  • the fifth light beam may also become an output optical frequency comb or output a multi-wavelength light beam.
  • filtering processing may also be performed, and then the second light beam is output.
  • amplification processing may be performed, and then the second light beam is output.
  • the above-mentioned light beams are all continuous light energy.
  • the beam processing steps mentioned in the method described in FIG. 8 correspond to the related description of the optical frequency comb light source mentioned in FIGS. 1-6, and will not be repeated here.
  • the above method for generating an optical frequency comb can provide a high-power multi-wavelength light source. It should be noted that one or more of the above steps may be performed multiple times, so as to achieve the output of a higher power multi-wavelength light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Plasma & Fusion (AREA)

Abstract

本申请揭示了一种光频率梳光源和产生光频率梳的方法。该光源包括激光器、耦合器、克尔非线性器件、光分束器和相移器。其中,激光器和耦合器的一个输入端连接,耦合器的另一个输入端和相移器的输出端连接。耦合器的输出端和克尔非线性器件的输入端连接。克尔非线性器件的输出端和光分束器的输入端连接。光分束器的一个输出端和相移器的输入端连接。光分束器的另一个输出端用于输出多个光频率梳。通过采用该装置,可以提供功率较大的多波长光源,满足网络实际部署针对多波长光源输出功率的相关要求。

Description

光频率梳光源和产生光频率梳的方法
本申请要求于2019年4月9日提交中国专利局、申请号201910280566.7、发明名称为“光频率梳光源和产生光频率梳的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光器件领域,尤其涉及光频率梳光源和产生光频率梳的方法。
背景技术
随着通信需求的不断增加,单波长通道传输的数据量也不断增加。但是,单波长通道最高只能提高到几百个吉比特(Gbit)量级,并不能满足日益增长的大容量需求。多波长通道通信技术指的是,一条链路支持多个波长通道,每个波长通道加载高速信号。该技术可以使得链路容量大幅提升,从而满足大容量传输的需求。多波长通道通信技术研究中的一个关键技术是多波长光源。
克尔光频率梳技术被认为是提供多波长光源的一个备选方案。该技术可基于单个微环谐振腔的克尔非线性效应产生光频率梳(即多个波长)。但是,该技术提供的方案输出的光功率较低,还不能满足实际大容量传输应用中对多波长光源的功率要求。目前有一些相关研究通过改善微环谐振腔的质量因子(Quality,Q)值,以提升光频率梳的转换效率,但效果不佳。
发明内容
本申请实施例提供一种光频率梳光源和产生光频率梳的方法,以达到提升光频率梳光源的输出功率,满足实际大容量多波长传输对光源功率要求的目的。
第一方面,本申请实施例提供了一种光频率梳光源。该光源包括激光器、耦合器、克尔非线性器件、光分束器和相移器,其中:所述激光器和所述耦合器的一个输入端连接,所述耦合器的另一个输入端和所述相移器的输出端连接;所述耦合器的输出端和所述克尔非线性器件的输入端连接;所述克尔非线性器件的输出端和所述光分束器的输入端连接;所述光分束器的一个输出端和所述相移器的输入端连接,所述光分束器的另一个输出端用于输出光频率梳。
通过采用反馈结构,该光源可以通过多次发生克尔非线性效应,叠加输出的多波长光束,有效地提升了光源的输出功率。
结合第一方面,在第一种具体的实现方式中,该光源还包括一个光放大器(第一放大器);该光放大器放置在所述耦合器和所述克尔非线性器件。也就是说,耦合器的输出端连接第一放大器的输入端,第一放大器的输出端连接所述克尔非线性器件的输入端。
在耦合器和克尔非线性器件之间放置光放大器,可以提升从激光器输出的单波长光束的光功率,从而更好地发生克尔非线性器件。此外,还可以对从反馈路径过来的多波长实现功率放大,进一步提高了光源输出功率。
结合第一种具体的实现方式中,在第二种具体的实现方式中,所述光源还包括偏振控制器;所述第一放大器的输出端和所述克尔非线性器件的输入端连接,具体包括:所述第一放大器的输出端和所述偏振控制器的输入端连接;所述偏振控制器的输出端和所述克尔 非线性器件的输出端连接。
增加偏振控制器,使得输入克尔非线性器件的光束的偏振态和该器件的偏振态保持一致,从而提升光源的光转换效率。
结合第一种或第二种具体的实现方式,在第三种具体的实现方式中,所述第一光放大器为掺饵光纤放大器或半导体光放大器。
结合第一方面,在第四种具体实现方式中,所述光源还包括一个光放大器(第二光放大器);该放大器放置于激光器和耦合器之间。也就是说,所述激光器和所述第二放大器的输入端连接;所述第二放大器的输出端和所述耦合器的一个输入端连接。
通过第二放大器,放大激光器输出的光源,能够进一步提升光源的输出功率。
结合第四种具体实现方式,在第五种具体实现方式中,所述光源还包括偏振控制器;所述耦合器的输出端和所述克尔非线性器件的输入端连接,具体包括:所述耦合器的输出端和所述偏振控制器的输入端连接;所述偏振控制器的输出端和所述克尔非线性器件的输出端连接。增加偏振控制器,使得输入克尔非线性器件的光束的偏振态和该器件的偏振态保持一致,从而提升光源的光转换效率。
结合第四种或第五种具体的实现方式,在第六种具体的实现方式中,所述第一光放大器为掺饵光纤放大器或半导体光放大器。
结合第一方面或者第四至第六种具体的实现方式任意一种,在第七种具体的实现方式中,所述光源还包括第三光放大器;所述耦合器的另一个输入端和所述相移器的输出端连接,具体包括:所述耦合器的另一个输入端和所述第三放大器的输出端连接;所述第三光放大器的输入端和所述相移器的输出端连接。
通过使用第三放大器,可以提升相移器输出功率,从而进一步提升进入克尔非线性器件的反馈光束的功率,有利于进一步提升光源额输出功率。
结合第七种具体的实现方式中,在第八种具体的实现方式中,所述第三光放大器为掺饵光纤放大器或半导体光放大器。
结合第一方面或上述第一方面的任意一种具体的实现方式,在第九种具体的实现方式中,所述光源还包括滤波器;所述滤波器用于连接所述光分束器和所述相移器;或,所述滤波器用于连接所述相移器和所述耦合器。
采用滤波器可以灵活的调整输出的光频率梳包含的波长个数,实现支持不同波长数量的光源。
结合第一方面或上述第一方面的任意一种具体的实现方式,在第十种具体的实现方式中,所述克尔非线性器件为微环、高非线性光纤、光子晶体微腔或微盘。具体地,当所述克尔非线性器件为微环时,所述微环的材料包括碳化硅、铌酸锂薄膜或二氧化硅。
第二方面,本实施例提供了一种光发射装置。该光发射装置包括如权利要求第一方面或者其任意一种具体的实现方式所述的光源、波分解复用器、多个调制器和波分复用器,其中:所述光源与波分解复用器的输入端连接;所述波分解复用器的多个输出端和所述多个调制器的输入端连接;所述多个调制器的输出端和所述波分复用器的多个输入端连接;所述波分复用器用于输出一个多波长光信号。
第三方面,本实施例提供了一种产生光频率梳的方法。该方法包括:
接收第一光束,所述第一光束为单波长;
将所述第一光束和第二光束进行合并后,输出第三光束;
将所述第三光束输入克尔非线性器件后,输出第四光束,其中,所述第四光束为多波长;
将所述第四光束进行分束,生成第五光束和第六光束;其中,所述第五光束为输出光束(又称输出光频率梳);对所述第六光束进行相位控制后,输出所述第二光束。
可选地,在进行合并之前,可以对第一光束或者第二光束或者同时对这两个光束进行放大,以进一步提升输出的光频率梳功率。或者,可选地,可以对第三光束进行放大后,再输入克尔非线性器件。
可选地,可以对第三光束进行偏振控制后,再输入克尔非线性器件。通过偏振控制,实现输入的光束和该器件的偏振态一致,提升光转换效率。
可选地,可以对第六光束或者第二光束进行滤波,以灵活控制输出光频率梳的波长数量。
通过采用本申请揭示的光频率梳光源技术,实现了较大功率的多波长输出,可以满足实际应用中对多波长光源的功率要求。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述:
图1为本申请提供的一种光频率梳光源的结构示意图;
图2为本申请实施例提供的一种可能的光频率梳光源的结构示意图;
图3为本申请实施例提供的另一种可能的光频率梳光源的结构示意图;
图4为本申请实施例提供的又一种可能的光频率梳光源的结构示意图;
图5为本申请实施例提供的第四种可能的光频率梳光源的结构示意图;
图6为本申请实施例提供的第五种可能的光频率梳光源的结构示意图;
图7为本申请实施例提供的一种可能的光发射装置的结构示意图;
图8为本申请实施例提供的一种产生光频率梳的方法。
具体实施方式
本申请实施例描述的设备形态以及业务场景是为了更加清楚地说明本发明实施例的技术方案,并不构成对本发明实施例提供的技术方案的限制。本领域普通技术人员可知,随着设备形态的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
本申请提出的技术方案可以适用于多波长通道传输场景。例如,光骨干传输网络、光接入网络、数据中心光传输、短距离光互联和无线业务前传/回传等。具体地,本申请提出的技术方案可以用于上述不同网络对应的发送侧设备和/或接收侧设备。
需要说明的是,本申请的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以本申请未描述的顺序实施。“和/或”用于描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。方法实施例中的具体操作方法也可以应用于装置实施例中。反之,装 置实施例中的组件功能描述也适用于方法实施例中的相关描述。
还需要说明的是,除非特殊说明,一个实施例中针对一些技术特征的具体描述也可以应用于解释其他实施例提及对应的技术特征。例如,在一个实施例中关于克尔非线性器件的具体描述,可以适用于其他实施例中对应的克尔非线性器件。又如,在一个实施例中关于相移器的具体实现方式,可以适用于其他实施例中的相移器。此外,为了更加明显地体现不同实施例中的组件的关系,本申请采用相同或相似的附图编号来表示不同实施例中功能相同或相似的组件。
此外,本申请提及的连接可以是直接连接或间接连接。具体的连接关系参考后续对应实施例的描述。除非特殊说明,否则不应将“连接”做过于限定的理解。
当前,克尔非线性器件(又称克尔非线性光器件)可以使输入的单波长光发生克尔非线性效应,产生克尔光频率梳(即输出多波长光),以用来提供多波长光源。但是,当前的多波长光源方案的输出功率较低,无法满足实际网络应用的需求。
为此,本申请提供了一种新的光频率梳光源。该装置可以将多波长光进行多次叠加后再输出,可以实现较高功率的多波长光源输出,从而可以满足实际网络应用中针对多波长光源的功率要求。通过采用该装置,光通信设备可以实现大容量传输。此外,该装置结构简单,成本较低。
图1为本申请提供的一种光频率梳光源。该装置100包括激光器(Laser Diode,LD)101、耦合器102、克尔非线性器件103、光分束器104和相移器105。
这些组件的连接关系描述如下:
LD 101和耦合器102的一个输入端连接。耦合器102的另一个输入端和相移器105的输出端连接。耦合器102的输出端和克尔非线性器件103的输入端连接。克尔非线性器件103的输出端和光分束器104的输入端连接。光分束器104的一个输出端和相移器105的输入端连接。光分束器104的另一个输出端(图1中的104a)为光频率梳光源的输出端,用于输出光频率梳。需要说明的是,光频率梳是多个波长的替代说法。
在装置100中,耦合器包括三个端口(两个输入端口和一个输出端口);光分束器包括三个端口(一个输入端口和两个输出端口)。LD 101用于产生单波长光。耦合器102用于将其两个输入端口的光进行合并后从其输出端口输出。克尔非线性器件指的是可以将输出的单个波长转换为多个波长输出的器件。光分束器104用于将从其输入端输入的光拆分为两份,从其两个输出端口分别输出。具体地,光分束器104的一个输出端口作为装置100的多波长输出端口;而另一个端口则将部分光反馈再次进入克尔非线性器件,从而再次发生克尔效应,然后与LD经由非线性器件输出的光频率梳进行叠加。相移器105用于实现对经过该组件的光的相位进行调控,以实现反馈输入的部分光的相位和LD经由非线性器件输出的光频率梳的相位满足或基本满足相位匹配条件,从而实现再次发生克尔效应产生的光频率梳与LD经由非线性器件输出的光频率梳的功率相加。相位匹配条件指的是两束光的相位差为0或2π的整数倍。基本满足指的是两束光的相位差近似为0或2π的整数倍,且依然能达到两束光的光功率叠加后输出功率有较大增加的效果。需要说明的是,满足相位匹配条件时,两束光功率叠加输出的功率最大。
具体地,LD可以是固定频率的(即输出单一固定波长的光)。或者,LD也可以是波长 可调谐的(即输出的波长可以改变)。如果是后者,那么,装置100可以为一个可提供不同波段的多波长光源,即可调谐的多波长光源。
需要说明的是,当前,单波长转换多波长的现象被本领域技术人员克尔非线性效应或简称为克尔效应。但是,随着光器件技术的发展,可能光器件的其他效应也能够实现单波长转换为多波长。应理解,具备这些其他效应的器件也属于本申请描述的克尔非线性器件。具体地,克尔非线性器件可以为微环谐振器(后续简称为微环)、高非线性光纤(例如:高非线性光子晶体光纤)、微盘或光子晶体微腔等。
在光频率梳光源100中,通过光分束器分出部分的多波长光,经由相移器对该部分的多波长光进行相位调节后,使得该多波长光的相位和由LD输出的单波长光输入到克尔非线性器件103产生的多波长光的相位满足相位匹配条件。然后,该多波长光经耦合器合并后再次输入到克尔非线性器件中,通过光分束器一部分输出,另一部分继续进行上述叠加过程。通过一次或多次叠加,使得光分束器输出的多波长光的功率得到了大大提升,能够满足实际应用需求。
下面将基于上面描述的涉及光频率梳光源的共性方面,结合更多的附图,对本申请实施例进一步详细说明。需要说明的是,图1所示的光频率梳光源可以是分立器件搭建成的系统。或者,该光源也可以是光集成芯片(Photonic Integrated Circuit,PIC)。例如,硅光集成芯片、砷化镓集成芯片、磷化铟集成芯片或铌酸锂集成芯片等。随着PIC技术的发展,本申请实施例中提供的光源还可以为新型材料的PIC。对光频率梳光源的具体形态,本申请不做限定。
图2为本申请实施例提供的一种可能的光频率梳光源的结构示意图。该多波长光源200具体包括:LD 101、耦合器102、光放大器201、微环202、光分束器104和相移器105。
这些组件的连接关系描述如下:
LD 101和耦合器102的一个输入端连接。耦合器102的另一个输入端和相移器105的输出端连接。耦合器102的输出端和微环202的输入端通过光放大器201连接。也就是说,耦合器102的输出端和光放大器201的输入端连接;光放大器201的输出端和微环202的输入端连接。微环202的输出端和光分束器104的输入端连接。光分束器104的一个输出端和相移器105的输入端连接。光分束器104的另一个输出端(104a)为光频率梳光源的输出端,用于输出光频率梳。
图2所示的实施例与图1所示结构的区别在于:首先,克尔非线性器件在本实施例中具体为微环;其次,本实施例中增加了光放大器201。该组件用于对输入其的光进行放大,使得进入微环202的光功率足够大,以产生克尔非线性效应。此外,光放大器201还可以对反馈回来的多波长光进行放大,进一步提高了光梳光源的输出功率。其他组件的功能参见图1的相关描述,此处不再赘述。
需要说明的是,微环采用的材料具体可以为碳化硅、铌酸锂薄膜或二氧化硅。相移器可以是现有商用的能够进行改变光束相位的相移器或者相位调制器。或者,如果是光频率梳光源是集成芯片,相移器则可以为光加热器或者氮化钛(TiN)相移器。应理解,随着光器件技术的发展,能够实现前述功能的器件也被认为属于本申请提及的相移器的具体例子。
具体地,光放大器可以是参铒光纤放大器(Erbium-doped Optical Fiber Amplifier, EDFA)。或者,光放大器可以是半导体光放大器。相较于EDFA,半导体光放大器体积更小,而且可以实现多个波段的功率放大。
可选地,微环202也可以替换为图1中提及的其他的克尔非线性器件。
采用图2所示的光频率梳光源200,可以实现大功率的多波长输出。此外,通过增加光放大器这个组件,可以进一步提高光频率梳光源的输出功率。
图3为本申请实施例提供的另一种可能的光频率梳光源的结构示意图。该光源300具体包括:LD 101、耦合器102、微盘301、光分束器104、滤波器302和相移器105。
这些组件的连接关系和图1所示的连接关系基本相同,不再赘述。两者主要的区别在于:相移器105和耦合器102不直接连接,而是通过滤波器302连接。也就是说,相移器105的输出端和滤波器302的输入端连接;滤波器302的输出端和耦合器102的另一个输入端连接。
图3所示的实施例与图1所示结构的区别在于:首先,克尔非线性器件在本实施例中具体为微盘;其次,本实施例中增加了滤波器302。滤波器302用于对输入其的多波长光进行滤波,以控制光频率梳光源输出的波长数量。具体地,可以通过滤波器302实现四通道、八通道等任意数量的多波长光源输出。其他组件的功能参见图1的相关描述,此处不再赘述。
需要说明的是,微盘用的材料具体可以为碳化硅、铌酸锂薄膜或二氧化硅。
还需要说明的是,除了图3所示的方式外,滤波器还可以放置在其他位置。例如,滤波器可以放置在光分束器和相移器之间。或者,滤波器可以放置在光分束器的输出端口上。相较于第三种方式,前两种方式通过先滤波再放大,可以更好地提升输出多波长光源的功率。
根据实际设计的需要,滤波器可以为波长选择开关(Wavelength Selective Switch,WSS),波导阵列光栅(Arrayed Waveguide Gratings)或者衍射光栅等可以实现滤波功能的器件。
可选地,微盘301也可以替换为图1中提及的其他的克尔非线性器件。例如,替换为图2所示的微环。
采用图3所示的光频率梳光源300,可以实现大功率的多波长输出。此外,通过增加滤波器这个组件,可以进一步控制光频率梳光源的输出的波长数量,从而提供满足网络实际使用需要的光源数量的需求。
图4为本申请实施例提供的又一种可能的光频率梳光源的结构示意图。该多波长光源400具体包括:LD 101、耦合器102、光放大器401、克尔非线性器件103、光分束器104和相移器105。
这些组件的连接关系和图1所示的连接关系基本相同,不再赘述。两者主要的区别在于:激光器101和耦合器102不直接连接,而是通过光放大器401连接。也就是说,激光器101的输出端和光放大器401的输入端连接;光放大器401的输出端和耦合器102的一个输入端连接。
相较于图1的光源结构,本实施例中增加了光放大器401。该组件用于对激光器输出的光进行放大,使得进入克尔非线性器件103的光的功率足够大,以产生克尔非线性效应。 也就是说,可以采用功率较低的激光器,配合光放大器来实现多波长光源。其他组件的功能参见图1的相关描述,此处不再赘述。
可选地,图4所示的光频率梳光源还可以增加滤波器。具体相关描述参考图3的描述,此处不予赘述。
采用图4所示的光频率梳光源,可以实现大功率的多波长输出。具体地,采用光放大器和成本较低的低功率激光器的结构,光源的成本得以控制。
图5为本申请实施例提供的第四种可能的光频率梳光源的结构示意图。该多波长光源500具体包括:LD 101、耦合器102、光放大器501、克尔非线性器件103、光分束器104和相移器105。
这些组件的连接关系和图1所示的连接关系基本相同,不再赘述。两者主要的区别在于:相移器105和耦合器102不直接连接,而是通过光放大器501连接。也就是说,相移器105的输出端和光放大器501的输入端连接;光放大器501的输出端和耦合器102的另一个输入端连接。
相较于图1的光源结构,本实施例中增加了光放大器501。该组件用于对从光分束器分出来反馈进入克尔非线性器件的光进行放大,使得从光分束器输出的光的功率更大。也就是说,采用光放大器501可以进一步提升光频率梳光源的输出功率。
可选地,图5所示的光频率梳光源还可以增加滤波器。具体相关描述参考图3的描述,此处不予赘述。需要说明的是,如果光放大器501和滤波器都用于连接耦合器102和相移器105。对于具体连接关系,本申请不做限定。例如,可以是耦合器102、光放大器501、滤波器和相移器105依次连接。或者,可以是耦合器102、滤波器、光放大器501和相移器依次连接。对于类似的情况,除非具体说明,否则连接方式可以根据具体需要做类似的变形。
可选地,图5所示的光频率光源还可以包括另一光放大器。具体相关描述参考图4的描述,此处不予赘述。
采用图5所示的光频率梳光源500,可以实现大功率的多波长输出。通过进一步放大反馈回路上的光,可以进一步提升光频率梳光源的光功率。
图6为本申请实施例提供的第六种可能的光频率梳光源的结构示意图。该多波长光源600具体包括:LD 101、耦合器102、偏振控制器601、克尔非线性器件103、光分束器104和相移器105。
这些组件的连接关系和图1所示的连接关系基本相同,不再赘述。两者主要的区别在于:耦合器102和克尔非线性器件103不直接连接,而是通过偏振控制器601连接。也就是说,耦合器102的输出端和偏振控制器601的输入端连接;偏振控制器601的输出端和克尔非线性器件103的输入端连接。
相较于图1的光源结构,本实施例中光源600增加了偏振控制器601。该组件用于对进入其的光进行偏振态控制,使得进入克尔非线性器件103的光的偏振态和该器件的偏振态保持一致,从而提升光转换效率。此外,采用了偏振控制器601,其他器件可以采用非保偏的器件,价格相对比较低。例如,耦合器102可以采用非保偏耦合器。
可选地,图5所示的光频率梳光源还可以增加滤波器或光放大器。具体相关描述参考 图2-4的描述,此处不予赘述。
采用图6所示的光频率梳光源600,可以实现大功率的多波长输出。通过采用偏振控制器,可以提升转换效率,降低光频率梳光源的成本。
图7为本申请实施例提供的一种可能的光发射装置的结构示意图。具体地,该光发射装置700包括光频率梳光源100、波分解复用器701、调制器(702a-702c)和波分复用器703。该光发射装置是一个多波长发射装置。其中,光频率梳光源提供多个波长,通过波分解复用器701将多个波长分开后,分别输入对应的调制器。调制器可以将待传输的数据加载到对应的波长上。最后,通过波分复用器703将多个加载了数据的波长合并通过光纤传输出去。需要说明的是,加载了数据的波长也被称为光信号。
需要说明的是,光频率梳光源100可以替换为前述图2-图6任意一个光频率梳光源的结构,或者是前述描述中提供的可选的具体实现方式。调制器的个数不大于光频率梳光源提供的波长数量。
具体地,光发射装置700可以为前述的发送侧设备和/或接收侧设备。或者,光发射装置700也可以为光模块,例如:光发射机或者光收发机。
图8为本申请实施例提供的一种产生光频率梳的方法。具体地,该方法包括:
步骤801:接收第一光束,所述第一光束为单波长;
步骤802:将所述第一光束和第二光束进行合并后,输出第三光束;
可选地,对所述第一光束进行放大后再合并。
步骤803:将所述第三光束输入克尔非线性器件后,输出第四光束,其中,所述第四光束为多波长;
可选地,对所述第三光束进行放大后,再输入克尔非线性器件。
可选地,对所述第三光束进行偏振控制后,再输入克尔非线性器件。
需要说明的是,所述第四光束也可以被称为频率梳。
步骤804:将所述第四光束进行分束,生成第五光束和第六光束;其中,所述第五光束为输出光束;对所述第六光束进行相位控制后,输出所述第二光束。
需要说明的是,第五光束也可以成为输出光频率梳或者输出多波长光束。
可选地,在相位控制之前或之后,还可以进行滤波处理,再输出所述第二光束。
可选地,在所述相位控制之后,还可以进行放大处理,再输出所述第二光束。
需要说明的是,上述光束都是连续的光能。此外,图8所述的方法中提及的光束处理步骤和前述图1-6中提及的光频率梳光源的相关描述对应,在此不予赘述。
通过设计反馈路径,上述产生光频率梳的方法可以提供功率较高的多波长光源。需要说明的是,上述一个或多个步骤可能会执行多次,从而可以达到较高功率的多波长光源的输出。
最后应说明的是:以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种光频率梳光源,其特征在于,所述光源包括激光器、耦合器、克尔非线性器件、光分束器和相移器,其中:
    所述激光器和所述耦合器的一个输入端连接,所述耦合器的另一个输入端和所述相移器的输出端连接;
    所述耦合器的输出端和所述克尔非线性器件的输入端连接;
    所述克尔非线性器件的输出端和所述光分束器的输入端连接;
    所述光分束器的一个输出端和所述相移器的输入端连接,所述光分束器的另一个输出端用于输出光频率梳。
  2. 如权利要求1所述的光源,其特征在于,所述光源还包括第一光放大器;所述耦合器的输出端和所述克尔非线性器件的输入端连接,具体包括:
    所述耦合器的输出端和所述第一放大器的输入端连接;
    所述第一放大器的输出端和所述克尔非线性器件的输入端连接。
  3. 如权利要求2所述的光源,其特征在于,所述光源还包括偏振控制器;所述第一放大器的输出端和所述克尔非线性器件的输入端连接,具体包括:
    所述第一放大器的输出端和所述偏振控制器的输入端连接;
    所述偏振控制器的输出端和所述克尔非线性器件的输出端连接。
  4. 如权利要求2或3所述的光源,其特征在于,所述第一光放大器为掺饵光纤放大器或半导体光放大器。
  5. 如权利要求1所述的光源,其特征在于,所述光源还包括第二光放大器;所述激光器和所述耦合器的一个输入端连接,具体包括:
    所述激光器和所述第二放大器的输入端连接;
    所述第二放大器的输出端和所述耦合器的一个输入端连接。
  6. 如权利要求5所述的光源,其特征在于,所述光源还包括偏振控制器;所述耦合器的输出端和所述克尔非线性器件的输入端连接,具体包括:
    所述耦合器的输出端和所述偏振控制器的输入端连接;
    所述偏振控制器的输出端和所述克尔非线性器件的输出端连接。
  7. 如权利要求5或6所述的光源,其特征在于,所述第二光放大器为掺饵光纤放大器或半导体光放大器。
  8. 如权利要求1或5-7任一所述的光源,其特征在于,所述光源还包括第三光放大器;所述耦合器的另一个输入端和所述相移器的输出端连接,具体包括:
    所述耦合器的另一个输入端和所述第三放大器的输出端连接;
    所述第三光放大器的输入端和所述相移器的输出端连接。
  9. 如权利要求8所述的光源,其特征在于,所述第三光放大器为掺饵光纤放大器或半导体光放大器。
  10. 如权利要求1-9任一所述的光源,其特征在于,所述光源还包括滤波器;所述滤波器用于连接所述光分束器和所述相移器;或,所述滤波器用于连接所述相移器和所述耦合器。
  11. 如权利要求1至10任一所述的光源,其特征在于,所述克尔非线性器件为微环、高非线性光纤、光子晶体微腔或微盘。
  12. 如权利要求11所述的光源,其特征在于,所述克尔非线性器件为微环时,所述微环的材料包括碳化硅、铌酸锂薄膜或二氧化硅。
  13. 一种光发射装置,其特征在于,所述光发射装置包括波分解复用器、多个调制器、波分复用器和如权利要求1-12任意一项所述的光源,其中:
    所述光源与所述波分解复用器的输入端连接;
    所述波分解复用器的多个输出端和所述多个调制器的输入端连接;
    所述多个调制器的输出端和所述波分复用器的多个输入端连接;
    所述波分复用器用于输出一个多波长光信号。
PCT/CN2020/083394 2019-04-09 2020-04-05 光频率梳光源和产生光频率梳的方法 WO2020207360A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20786919.9A EP3944014A4 (en) 2019-04-09 2020-04-05 OPTICAL FREQUENCY COMB LIGHT SOURCE AND METHOD OF GENERATION OF OPTICAL FREQUENCY COMB
US17/498,335 US11914268B2 (en) 2019-04-09 2021-10-11 Optical frequency comb light source and optical frequency comb generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910280566.7A CN111796469B (zh) 2019-04-09 2019-04-09 光频率梳光源和产生光频率梳的方法
CN201910280566.7 2019-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/498,335 Continuation US11914268B2 (en) 2019-04-09 2021-10-11 Optical frequency comb light source and optical frequency comb generation method

Publications (1)

Publication Number Publication Date
WO2020207360A1 true WO2020207360A1 (zh) 2020-10-15

Family

ID=72750963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083394 WO2020207360A1 (zh) 2019-04-09 2020-04-05 光频率梳光源和产生光频率梳的方法

Country Status (4)

Country Link
US (1) US11914268B2 (zh)
EP (1) EP3944014A4 (zh)
CN (1) CN111796469B (zh)
WO (1) WO2020207360A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383363A (zh) * 2020-10-29 2021-02-19 中国科学院半导体研究所 一种基于混频技术的大带宽相控阵接收装置
US11506953B2 (en) * 2015-11-13 2022-11-22 Halliburton Energy Services, Inc. Downhole telemetry system using frequency combs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799601A (zh) * 2022-03-17 2023-09-22 华为技术有限公司 一种光频梳生成设备、方法、光发射设备和光通信系统
US11906875B2 (en) 2022-07-25 2024-02-20 Honeywell International Inc. Systems, devices, and methods for optical frequency combs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877614A (zh) * 2010-06-24 2010-11-03 北京邮电大学 基于超连续谱的毫米波wdm-rof系统和方法
CN102223340A (zh) * 2011-06-20 2011-10-19 电子科技大学 基于光梳的太比特传输速率相干光正交频分复用系统
US20120243880A1 (en) * 2011-03-25 2012-09-27 Fujitsu Limited Multi-wavelength light source
CN105071210A (zh) * 2015-07-24 2015-11-18 中国科学院半导体研究所 基于微腔孤子实现的多波长光源
US20150372447A1 (en) * 2014-06-19 2015-12-24 Electronics And Telecommunications Research Institute Apparatus and method for generating pulse laser

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471666B2 (ja) * 2004-01-05 2010-06-02 独立行政法人科学技術振興機構 光フーリエ変換装置及び方法
JP5883503B2 (ja) * 2011-05-16 2016-03-15 オーイーウェイブス,インコーポレーテッド 非線形光共振器に基づいた単一の光トーン、rf発振信号およびトリプル発振器デバイス内の光コムの生成
CN102608825B (zh) * 2012-03-02 2015-04-29 北京航空航天大学 一种实现多频光梳的方法和系统
WO2015012915A2 (en) * 2013-04-22 2015-01-29 Cornell University Parametric comb generation via nonlinear wave mixing in high-q optical resonator coupled to built-in laser resonator
JP2015075614A (ja) * 2013-10-09 2015-04-20 日本電信電話株式会社 光周波数コム生成装置
CN103838055A (zh) * 2014-03-03 2014-06-04 北京航空航天大学 一种基于梳齿反馈调控的光学微腔光频梳产生系统
CN104777697A (zh) * 2015-04-21 2015-07-15 电子科技大学 一种随机偏振反馈系统光频梳产生器
WO2018089075A1 (en) * 2016-08-18 2018-05-17 The Regents Of The University Of California All-microwave stabilization of microresonator-based optical frequency combs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877614A (zh) * 2010-06-24 2010-11-03 北京邮电大学 基于超连续谱的毫米波wdm-rof系统和方法
US20120243880A1 (en) * 2011-03-25 2012-09-27 Fujitsu Limited Multi-wavelength light source
CN102223340A (zh) * 2011-06-20 2011-10-19 电子科技大学 基于光梳的太比特传输速率相干光正交频分复用系统
US20150372447A1 (en) * 2014-06-19 2015-12-24 Electronics And Telecommunications Research Institute Apparatus and method for generating pulse laser
CN105071210A (zh) * 2015-07-24 2015-11-18 中国科学院半导体研究所 基于微腔孤子实现的多波长光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944014A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506953B2 (en) * 2015-11-13 2022-11-22 Halliburton Energy Services, Inc. Downhole telemetry system using frequency combs
CN112383363A (zh) * 2020-10-29 2021-02-19 中国科学院半导体研究所 一种基于混频技术的大带宽相控阵接收装置
CN112383363B (zh) * 2020-10-29 2023-05-30 中国科学院半导体研究所 一种基于混频技术的大带宽相控阵接收装置

Also Published As

Publication number Publication date
EP3944014A1 (en) 2022-01-26
US20220026780A1 (en) 2022-01-27
EP3944014A4 (en) 2022-05-25
CN111796469A (zh) 2020-10-20
CN111796469B (zh) 2022-08-19
US11914268B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2020207360A1 (zh) 光频率梳光源和产生光频率梳的方法
Tan et al. Optical data transmission at 44 terabits/s with a Kerr soliton crystal microcomb
US8488978B2 (en) Optical signal processor
WO2013179467A1 (ja) 光送受信装置および光出力値制御方法
CN103346469B (zh) 一种光电振荡器
US8280255B2 (en) Transmitter photonic integrated circuit
US9837788B2 (en) Optical phase-sensitive amplifier with raman amplifier intermediate stage
CN110324144B (zh) 量子密钥分配发送端芯片,封装结构和设备
JP6733407B2 (ja) 光伝送システム、光伝送方法及び複素共役光生成部
Kobayashi et al. Coherent Optical Transceivers Scaling and Integration Challenges
US9843410B2 (en) Low-noise optical phase sensitive amplifier using a semiconductor nonlinear optical device
US20030081285A1 (en) Transmission device having wavelength-band-specific optical amplifiers provided commonly for all transmission lines
JP2014183514A (ja) 光ノード
Zhao et al. Low-noise phase-sensitive parametric amplifiers based on integrated silicon-nitride-waveguides for optical signal processing
US10050738B1 (en) Low noise colorless, directionless, contentionless reconfigurable optical add/drop multiplexer
Parmigiani et al. PSA-based all-optical multi-channel phase regenerator
US20240103338A1 (en) Wavelength converter and optical transmission system
US20220337018A1 (en) Parallel o-band amplifier
Koos et al. Terabit/s data transmission using optical frequency combs
Moss Ultrahigh bandwidth data transmission at 44Tb/s over single fibre with a soliton crystal microcomb
Corcoran et al. Optical data transmission at 44Tb/s and 10 bits/s/Hz over the C-band with standard fibre and a single micro-comb source
Corcoran et al. Optical data transmission beyond 40Tb/s with a soliton crystal micro-comb
CN101587277A (zh) 一种基于复合谐振腔的全光波长转换器
Moss s with a single integrated chip source
Moss Ultra-high bandwidth fiber-optic data transmission with a single chip source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020786919

Country of ref document: EP

Effective date: 20211021