WO2020207209A1 - 基于多周期差分采样和数字孪生技术的平行控制方法 - Google Patents

基于多周期差分采样和数字孪生技术的平行控制方法 Download PDF

Info

Publication number
WO2020207209A1
WO2020207209A1 PCT/CN2020/079739 CN2020079739W WO2020207209A1 WO 2020207209 A1 WO2020207209 A1 WO 2020207209A1 CN 2020079739 W CN2020079739 W CN 2020079739W WO 2020207209 A1 WO2020207209 A1 WO 2020207209A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
processing
equipment
collider
digital twin
Prior art date
Application number
PCT/CN2020/079739
Other languages
English (en)
French (fr)
Inventor
刘强
宋源
冷杰武
林贵祥
张�浩
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US16/826,205 priority Critical patent/US10921794B2/en
Publication of WO2020207209A1 publication Critical patent/WO2020207209A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to the field of intelligent processing, in particular to a parallel control method based on multi-period differential sampling and digital twin technology.
  • the backlight module of a smart phone is mainly composed of LEDs, light guide plates, reflective sheets, diffusers, light-enhancing sheets, etc.
  • the LED emits light, and the light is reintegrated through the various layers of the backlight module to display content on the phone screen.
  • the main function of the light guide plate is to guide the direction of light, enhance the brightness of the panel and determine the uniformity of light. It is a key component that determines the thickness of the backlight module and the uniformity of optical brightness.
  • the light guide plate is processed by copying the light guide plate mold, and the light guide plate core in the light guide plate mold is processed by a high-speed point-moving impact machine.
  • the processing accuracy of the light guide plate mold microstructure array determines the quality of the light guide plate.
  • the microstructure array processing of the light guide plate core is not only related to precision processing technology, but also closely related to high-precision inspection technology.
  • the processing cycle is too long and the labor input is large. This leads to the problem of high processing costs, parallel control cannot be achieved, and product processing quality cannot be guaranteed.
  • the operator must be in the processing workshop in real time. Due to the high-speed moving processing equipment of the collision machine equipment, the operator conducts the collision machine equipment in real time on site The operation is very dangerous and personal safety cannot be guaranteed.
  • the purpose of the present invention is to propose a parallel control method based on multi-period differential sampling and digital twin technology, which can realize the parallel control of the remote collider equipment, and make the control of the collider equipment by the operator more convenient and accurate , To ensure the product quality, but also to ensure the personal safety of the operators.
  • the present invention adopts the following technical solutions:
  • the parallel control method based on multi-period differential sampling and digital twin technology which is applied to the processing process of the collision machine equipment, includes the following steps:
  • Detection steps a1. Clamp the processing materials for making the mold to the collider equipment, and set the shooting device according to the shooting requirements; a2. Start the collider equipment and the shooting device, and the shooting device will be obtained after multiple processing cycles Take pictures of the processed raw materials to obtain multiple cycles of sampling; a3.
  • the integrated processing module samples multiple cycles and uses the differential sampling technology across reciprocating cycles to integrate a sample image of one cycle to establish a detection model; a4.
  • the image processing module samples the samples The image is processed to obtain a detection image;
  • b. Establish the control model: b1. Simulation modeling of the collision machine equipment, complete the simulation model design of the collision machine equipment, and obtain the collision machine model; b2. Dynamic realization of the collision machine equipment, according to the established design plan, set the processing parameters for the collision machine model, Complete the movement realization of the stand-alone equipment, complete the logistics and movement realization of the work-in-process, compile movement and movement control scripts, and perform offline simulation operation; b3.
  • the collision machine model is integrated with the collision machine equipment, and the virtual and real synchronization technology is used to realize the collision machine with the aid of the simulation platform.
  • the model and the collision machine equipment move synchronously; b4.
  • System integration design build a virtual control network, that is, realize the workshop IOT, use digital twin technology to build a virtual and real synchronization physical simulation platform, so that the stand-alone physical object can be synchronized with the stand-alone digital model. Integrate the upper-level MES system with the digital twin model to realize that the digital twin model runs under the generation of MES instructions, and also feeds back the execution of the digital twin model to the MES to realize online monitoring and simulation operation of the collider equipment;
  • Parallel control control the collider model according to the inspection graphics to complete the parallel control of the collider equipment.
  • the specific steps of using the differential sampling technology across the reciprocating cycle to integrate the sample image into one cycle are as follows: the processing cycle of the same processing unit on the processing path is represented by T (ms), and the industrial camera The sampling period is set to Where n represents the response speed of the industrial camera relative to the processing cycle, m is a number that divides a processing unit cycle equally according to the accuracy requirements of the digital twin synchronization; the n is the ratio of the camera time to the processing cycle and rounded up to get The integer.
  • the setting of m depends on the requirements of digital twin synchronization accuracy.
  • a processing cycle is divided, and a processing cycle is determined by m time point images to indirectly represent the state of the processing equipment and its processing quality.
  • the m-th time point image finally merges the m real-time states collected in a processing process into a periodic sampling state in a time sequence.
  • the step of processing the sample image by the image processing module in step a4 is: converting the sample image into a grayscale image, and then performing noise reduction and contrast adjustment processing.
  • the detection and recognition module recognizes and analyzes the detection image to obtain the detection data, and the judgment device compares the detection data with the processing setting data; when the detection data exceeds the processing setting data When the threshold is set, the judgment result is unqualified, and the operator controls the collider model according to the judgment result to complete the parallel control of the collider equipment; when the detection data does not exceed the threshold set by the processing setting data, the judgment result is qualified , To end the in-position detection operation, the operator does not need to control the collision machine model to perform any operations.
  • the specific operation steps for completing the simulation model design of the collision machine equipment in the step b1 are: firstly use the mechanical 3D modeling platform to complete the simulation model design, and then import the obtained simulation model design into the simulation platform for secondary model processing. Modify the size and layout of the equipment in the simulation model and distinguish between moving parts and fixed parts.
  • the specific operation of performing offline simulation operation in step b2 is: using the secondary development function provided by the simulation platform, using the Jscript script language to realize the process action of the collision machine, and performing offline simulation processing parameters on the platform for drilling Test; the processing parameters set to the impact machine model in step b include: voltage, speed and pressure.
  • the simulation platform is a Demo3D simulation platform.
  • the virtual-real synchronization technology is: firstly ensure the consistency of the design parameters of the collider model and the collider device; use the collider model as the active model, and the collider device as the driven part; The collider model and the collider device are connected to the same PLC control system at the same time to realize the synchronization of the signal of the collider model and the collider device; in step b3, the specific method of connecting the collider model and the collider device to the same PLC control system at the same time is as follows: : Bind the I/O point in Demo3D with the I/O point address in the PLC, the I/O point in the PLC control system controls the motion parameters of the physical object; and the collision machine model mainly triggers the sensor through the workpiece, and through the PLC The I/O points of the control system and internal logic drive the collider to move synchronously.
  • the design parameters include: the size, layout and control logic of the collision machine model; the motion parameters include: the movement direction, movement speed, stroke, start and stop of the collision machine equipment; the implementation of the digital twin model includes: Work order completion information and random failures.
  • the present invention proposes a parallel control method based on multi-period differential sampling and a digital twin model.
  • the parallel control method is aimed at the digital twin model of the collider device, using virtual and real synchronization technology to establish a simulation model and a detection model of the collider device; simulate the collider device It runs synchronously with the physical collision machine to realize real-time detection and corresponding precise parallel control in the collision process of the collision machine equipment; allowing the operator to remotely control the collision machine equipment, one-to-many rapid control, and the control operation is more convenient and accurate.
  • FIG. 1 is a schematic flowchart of a monitoring method based on multi-period differential sampling and digital twin model technology in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of establishing a detection model for detecting the processing result of the collision point during the collision point process of the collision point machine in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the collider model, the PLC control system and the synchronization mode of the collider equipment in an embodiment of the invention.
  • Fig. 4 is a schematic flowchart of the step of establishing a control model in an embodiment of the invention.
  • Digital twin It is to make full use of data such as physical model, sensor update, operation history, and integrate multi-discipline, multi-physical quantity, multi-scale, multi-probability simulation process, complete the mapping in the virtual space, thereby reflecting the full life of the corresponding physical equipment
  • the cycle process is also called “digital mirroring", “digital twins” or “digital mapping”.
  • the digital twin model mainly involves the simulation model and the physical device.
  • the connection between the two is the key to the realization of the digital twin model.
  • the connection of low-speed processing equipment models often uses the binding of PLC points in the Ethernet, and the transmission of cloud router data drives the simulation model and Physical equipment performs coordinated movement.
  • the multi-period differential sampling technology is used to complete real-time sampling of the physical motion equipment status, and the processing equipment position and processing accuracy data obtained from uniformly arranging sampling points in multiple cycles are used to indirectly characterize the processing equipment status and
  • the processing quality is to map the working status of the physical equipment to the virtual simulation model in real time.
  • the performance of the high-speed point motion equipment can be analyzed and fed back to the physical system through the virtual model.
  • the parallel control method based on multi-period differential sampling and digital twin technology which is applied to the processing process of the collision machine equipment, includes the following steps:
  • Detection steps a1. Clamp the processing materials for making the mold to the collider equipment, and set the shooting device according to the shooting requirements; a2. Start the collider equipment and the shooting device, and the shooting device will be obtained after multiple processing cycles Take pictures of the processed raw materials to obtain multiple cycles of sampling; a3.
  • the integrated processing module samples multiple cycles and uses the differential sampling technology across reciprocating cycles to integrate a sample image of one cycle to establish a detection model; a4.
  • the image processing module samples the samples The image is processed to obtain a detection image;
  • b. Establish the control model: b1. Simulation modeling of the collision machine equipment, complete the simulation model design of the collision machine equipment, and obtain the collision machine model; b2. Dynamic realization of the collision machine equipment, according to the established design plan, set the processing parameters for the collision machine model, Complete the movement realization of the stand-alone equipment, complete the logistics and movement realization of the work-in-process, compile movement and movement control scripts, and perform offline simulation operation; b3.
  • the collision machine model is integrated with the collision machine equipment, and the virtual and real synchronization technology is used to realize the collision machine with the aid of the simulation platform.
  • the model and the collision machine equipment move synchronously; b4.
  • System integration design build a virtual control network, that is, realize the workshop IOT, use digital twin technology to build a virtual and real synchronization physical simulation platform, so that the stand-alone physical object can be synchronized with the stand-alone digital model. Integrate the upper-level MES system with the digital twin model to realize that the digital twin model runs under the generation of MES instructions, and also feeds back the execution of the digital twin model to the MES to realize online monitoring and simulation operation of the collider equipment;
  • Parallel control control the collider model according to the inspection graphics to complete the parallel control of the collider equipment.
  • the specific steps of using the differential sampling technology across the reciprocating cycle to integrate the sample image into one cycle are as follows: the processing cycle of the same processing unit on the processing path is represented by T (ms), and the industrial camera The sampling period is set to Where n represents the response speed of the industrial camera relative to the processing cycle, m is a number that divides a processing unit cycle equally according to the accuracy requirements of the digital twin synchronization; the n is the ratio of the camera time to the processing cycle and rounded up to get The integer.
  • the setting of m depends on the requirements of digital twin synchronization accuracy.
  • a processing cycle is divided, and a processing cycle is determined by m time point images to indirectly represent the state of the processing equipment and its processing quality.
  • the m-th time point image finally merges the m real-time states collected in a processing process into a periodic sampling state in a time sequence.
  • the step of processing the sample image by the image processing module in step a4 is: converting the sample image into a grayscale image, and then performing noise reduction and contrast adjustment processing.
  • the detection and recognition module recognizes and analyzes the detection image to obtain the detection data, and the judgment device compares the detection data with the processing setting data; when the detection data exceeds the processing setting data When the threshold is set, the judgment result is unqualified, and the operator controls the collider model according to the judgment result to complete the parallel control of the collider equipment; when the detection data does not exceed the threshold set by the processing setting data, the judgment result is qualified , To end the in-position detection operation, the operator does not need to control the collision machine model to perform any operations.
  • the specific operation steps for completing the simulation model design of the collision machine equipment in the step b1 are: firstly use the mechanical 3D modeling platform to complete the simulation model design, and then import the obtained simulation model design into the simulation platform for secondary model processing. Modify the size and layout of the equipment in the simulation model and distinguish between moving parts and fixed parts.
  • the specific operation of performing offline simulation operation in step b2 is: using the secondary development function provided by the simulation platform, using the Jscript script language to realize the process action of the collision machine, and performing offline simulation processing parameters on the platform for drilling Test; the processing parameters set to the impact machine model in step b include: voltage, speed and pressure.
  • the simulation platform is a Demo3D simulation platform.
  • the virtual-real synchronization technology is: firstly ensure the consistency of the design parameters of the collider model and the collider device; use the collider model as the active model, and the collider device as the driven part; The collider model and the collider device are connected to the same PLC control system at the same time to realize the synchronization of the signal of the collider model and the collider device; in step b3, the specific method of connecting the collider model and the collider device to the same PLC control system at the same time is as follows: : Bind the I/O point in Demo3D with the I/O point address in the PLC, the I/O point in the PLC control system controls the motion parameters of the physical object; and the collision machine model mainly triggers the sensor through the workpiece, and through the PLC The I/O points of the control system and the internal logic drive the point collider to move synchronously.
  • the design parameters include: the size, layout and control logic of the collision machine model; the motion parameters include: the movement direction, movement speed, stroke, start and stop of the collision machine equipment; the implementation of the digital twin model includes: Work order completion information and random failures.
  • the collider equipment that applies the parallel control method based on multi-period differential sampling and digital twin technology as described above includes: collider, camera, integrated processing module, image processing module, mechanical 3D modeling platform, and Demo3D simulation platform , PLC control system and SCADA system;
  • the colliding machine is used to perforate processing materials and further process to obtain a light guide plate;
  • the photographing device specifically an industrial camera, is used to take pictures of processing materials obtained after multiple processing cycles to obtain multiple cycles Sampling;
  • the integrated processing module is used to sample multiple periods, using differential sampling technology across reciprocating periods to integrate a sample image of one period;
  • the image processing module is used to process the sample image to obtain a test image;
  • the mechanical three-dimensional modeling platform is used to establish a simulation model design according to the overall mechanical parameters of the impact machine equipment;
  • the Demo3D simulation platform is used to optimize the simulation model design and realize the connection with the PLC control system;
  • the PLC control system is used to realize The collider model and the collider equipment move synchronously and control the movement of the collider model and the collider equipment;
  • the SCADA system can collect the collider model or the processing status of the collider equipment in real time, and check the processing status of the collider equipment in real time the goal of.
  • the differential sampling technology is adopted in the parallel command method, and the proposed digital twin model is directly executed logic verification and control in the digital model of the collider device to quickly locate the cause of the fault and actively check whether the system can meet the quality control requirements. Therefore, after the digital twin is realized, the positioning accuracy of the initial collision point machine tool has been increased from 4.0m to 2.0m.
  • the punching speed has been increased from 20-25 points per second to 20-65 points per second, which is also better than the 20-40 points per second of mainstream machine tools.
  • the results of the machining experiment are consistent with the actual requirements, indicating that the developed digital twin system is suitable for micro-point machining of ultra-precision machine tools.
  • the traditional compensation strategy of dot detection directly determines the displacement output of piezoelectric ceramics through analog input.
  • the nonlinearity of the piezoelectric ceramics is compensated by the online optimization input value of the piezoelectric ceramics.
  • the use of the digital twin model helps the collision machine to make more intelligent control decisions.
  • the digital twin system platform can optimize the dynamic execution mechanism. The performance of the entire collision machine can be virtually analyzed and fed back to the physical system. Once the performance is insufficient, you can adjust and iterate until you get the best state.
  • a device-level context-aware solution is formed, and context analysis methods are used to evaluate and formulate all control decisions of the machine to support online optimization of performance indicators.
  • the proposed collision machine model is relatively flexible. By making the online settings of each collision machine have different personalized processing parameters and quality requirements, this provides a large option variant to meet individual needs.
  • the monitoring method based on the digital twin model is simulated in the light guide plate processing technology: the simulation operation can be carried out based on the steps a and b of the step of establishing the model of the collision machine.
  • the Demo3D platform set the voltage value, speed, force and other processing parameters of the impact machine, observe the hole quality of the light guide plate and repeatedly adjust the voltage value of the impact machine to find the appropriate voltage value.
  • the monitoring method based on the digital twin model is used in the monitoring and synchronization test of the light guide plate processing technology and synchronization optimization: by establishing the digital twin model of the collider, the instructions, actions and information of the collider device and the collider model can be synchronized. Through the feedback of the digital twin model collected by the SCADA system, the operating status and information of the colliding machine can be monitored, such as the operating voltage of the colliding machine, the punching speed and other parameters. If the quality of the mesh processed by the light guide plate is unqualified, the voltage value of the collision machine can be adjusted in time to ensure the processing quality, which has the effect of synchronous testing and optimization of the machining process of the collision point.
  • the invention uses multi-period differential sampling and digital twin technology to build a detection model and simulation model of the collider device; the simulation model integrates real-time and simulated synchronous operation, synchronous testing and synchronously optimized real-time parallel control, and the detection model is used for real-time detection Machining situation of collision point.
  • Use virtual and real synchronization technology to realize the synchronous operation of physical collision machine equipment and simulation collision machine equipment, tracking and 3D visualization of equipment operating information and status, and fusing real-time instruction data and statistical data for visual presentation, realizing the execution process of physical equipment in real time Three-dimensional visualization display and dynamic display of related performance data.
  • the operator controls the simulation model of the collider equipment according to the detection and judgment results, thereby realizing the operation of the collider equipment and the simulation model Synchronous and parallel control with control.

Abstract

一种基于多周期差分采样和数字孪生技术的平行控制方法,其包括如下步骤:a.利用多周期差分采样技术检测撞点机设备加工情况步骤;b.建立数字孪生控制模型;c.根据检测判断结果控制撞点机设备的仿真模型,进而平行控制撞点机设备。平行控制方法针对撞点机设备的数字孪生模型,利用虚实同步技术建立撞点机设备的仿真模型和检测模型;仿真撞点机设备与实物撞点机设备同步运行,实现对撞点机设备撞点工艺中实时检测及对应的精准平行控制;让操作人员可以对撞点机设备进行远程控制,一对多快速控制,控制操作更加方便精准。

Description

基于多周期差分采样和数字孪生技术的平行控制方法 技术领域
本发明涉及智能加工领域,特别是一种基于多周期差分采样和数字孪生技术的平行控制方法。
背景技术
随着手机行业的发展,手机生产行业之间的竞争越来越激烈,如何提高生产效率和质量成为各个生产企业提高自身竞争力的主要研发方向之一。智能手机的背光模组主要由LED、导光板、反射片、扩散片、增光片等组成,LED发出光照,通过背光模组中各层结构对光线重新整合,使手机屏幕显示内容。导光板的主要作用是指引光线的方向,增强面板的光亮强度和决定光线的均匀性,它是决定背光模组厚度和光学亮度均匀性的关键组件。导光板的加工是利用导光板模具复印加工的,而导光板的模具中导光板模芯是用高速点运动的撞点机进行加工的,导光板模具微结构阵列的加工精度决定导光板质量,一块智能手机导光板上有上百万个微结构密集阵列网点,为使导光板均匀发光,必须保证微结构阵列微点的加工质量和尺寸精度。导光板模芯的微结构阵列加工除了和精密加工工艺相关,还和高精密的检测技术密切相关。
现有技术中利用对撞点机设备在原材料上加工微结构阵列时,都是需要人工实时观察加工情况,然后人工调整控制撞点机设备的加工操作和参数以保证加工的顺利进行。这样就需要撞点机设备周边时刻配有操作人员,撞点机设备的操作完全由人工在其周边进行操作,无法实现远程平行控制;由于上述原因现有技术中必须每个撞点机配备对应操作人员,操作人员无法远程同时对多个撞点机设备进行快速平行控制,因此导致现有技术中利用撞点机设备在原材料上加工微结构阵列时,操作复杂,甚至出现频繁停机加工周期 过长,人力投入多导致了加工成本高的问题,无法实现平行控制,产品加工质量无法得到保证,操作人员必须实时处于加工车间内,由于撞点机设备时高速运动的加工设备,操作人员在现场实时对撞点机设备进行操作很危险,人身安全无法得到保证。
发明内容
针对上述缺陷,本发明的目的在于提出一种基于多周期差分采样和数字孪生技术的平行控制方法,其能实现远程对撞点机设备的平行控制,让操作人员对撞点机设备的控制更加方便精准,保证了产品质量的同时也保证了操作人员的人身安全。
为达此目的,本发明采用以下技术方案:
基于多周期差分采样和数字孪生技术的平行控制方法,其应用于撞点机设备的加工过程,其包括如下步骤:
a.检测步骤:a1.将制作模具的加工原料装夹至撞点机设备上,并将拍摄装置按照拍摄要求设置;a2.启动撞点机设备和拍摄装置,拍摄装置将经过多个加工周期后得到的加工原料进行拍照,得到多个周期采样;a3.整合处理模块将多个周期采样,利用跨往复周期的差分采样技术整合为一个周期的样本图像,建立检测模型;a4.图像处理模块对样本图像进行处理,得到检测图像;
b.建立控制模型:b1.撞点机设备仿真建模,完成撞点机设备的仿真模型设计,得到撞点机模型;b2.撞点机设备动态实现,根据既定设计方案,给撞点机模型设置加工参数,完成单机设备的动作实现,完成在制品物流与运动实现,编制运动与动作控制脚本,并进行离线模拟运行;b3.撞点机模型与撞点机设备集成,利用虚实同步技术借助仿真平台,实现撞点机模型与撞点机 设备同步运动;b4.系统集成设计,搭建虚拟控制网络,即实现车间物联,运用数字孪生技术,构建虚实同步的实物仿真平台,使得单机实物可以与单机数字化模型实现动作同步化;将上层MES系统与数字孪生模型进行集成,实现数字孪生模型在生成MES指令下运行,同时也将数字孪生模型执行情况反馈回MES,实现对撞点机设备在线监测和模拟运行;
c.平行控制:根据检测图形控制撞点机模型,完成对撞点机设备的平行控制。
更优的,所述步骤a中,利用跨往复周期的差分采样技术整合为一个周期的样本图像的具体步骤如下:把加工路径上相同处理单元处理周期用T(ms)表示,把工业相机的采样周期设置为
Figure PCTCN2020079739-appb-000001
其中n表示该工业相机相对于加工周期的响应速度,m是根据数字孪生同步的精度要求对一个处理单元周期进行均分的数字;所述n为相机时间与加工周期的比值并向上取整得到的整数。
更优的,m的设置取决于数字孪生同步精度的要求,对一个加工周期进行划分,确定一个加工周期由m个时间点图像来间接表征加工设备状态及其加工质量,对相似的多个周期分别进行图像数据采集,每个周期采集一个时间点的图像,第一个周期内采集第一个时间点图像,第二个周期内采集第二个时间点图像,依次类推,最后一个周期内采集第m个时间点图像,最终把一个加工过程中采集到的m个实时状态按时间序列进行合并为一个周期的采样状态。
更优的,所述步骤a4中图像处理模块对样本图像进行处理的步骤为:将样本图像转化为灰阶图像,再进行降噪、调节对比度处理。
更优的,所述步骤b4后还有判断步骤b5,检测识别模块对检测图像进行识别和分析得到检测数据,判断装置将检测数据和加工设定数据进行对比;当检测数据超出加工设定数据设定的阈值时,判断结果为不合格,操作人员根据判断结果控制撞点机模型,完成对撞点机设备的平行控制;当检测数据未超出加工设定数据设定的阈值时,判断结果为合格,结束在位检测操作,操作人员无需控制撞点机模型进行任何操作。
更优的,所述步骤b1中完成撞点机设备的仿真模型设计的具体操作步骤为:首先利用机械三维建模平台完成仿真模型设计,再将得到仿真模型设计导入仿真平台进行模型二次处理,对仿真模型中设备的大小、布局进行修改以及区分动件与不动件。
更优的,所述步骤b2中进行离线模拟运行的具体操作为:利用仿真平台提供的二次开发功能,利用Jscript脚本语言实现撞点机工艺动作,同时在平台上进行离线模拟加工参数进行打孔测试;所述步骤b中给撞点机模型设置的加工参数包括:电压、速度和压力。
具体的,所述仿真平台为Demo3D仿真平台。
更优的,所述步骤b3中,所述虚实同步技术为:首先确保撞点机模型与撞点机设备的设计参数的一致性;以撞点机模型作为主动模型,撞点机设备作为从动部分;通过撞点机模型与撞点机设备同时连接同一PLC控制系统实现撞点机模型与撞点机设备的信号的同步;所述步骤b3中,将撞点机模型与撞点机设备同时连接同一PLC控制系统的具体方式为:将Demo3D里面的I/O点与PLC中的I/O点地址进行绑定,PLC控制系统中的I/O点控制实物的运动参数;而撞点机模型主要是通过工件触发传感器,通过PLC控制系统的I/O 点以及内部逻辑驱动撞点机设备进行同步运动。
更优的,所述设计参数包括:撞点机模型的尺寸、布局和控制逻辑;所述运动参数包括:撞点机设备的运动方向、运动速度、行程、启动和停止;数字孪生模型执行情况包括:工单完成信息和随机故障。
本发明提出基于多周期差分采样和数字孪生模型的平行控制方法,所述平行控制方法针对撞点机设备的数字孪生模型,利用虚实同步技术建立撞点机设备的仿真模型和检测模型;仿真撞点机设备与实物撞点机设备同步运行,实现撞点机设备撞点工艺中实时检测及对应的精准平行控制;让操作人员可以对撞点机设备进行远程控制,一对多快速控制,控制操作更加方便精准。
附图说明
图1是本发明的一个实施例中所述基于多周期差分采样和数字孪生模型技术的监测方法的流程示意图;
图2本发明的一个实施例中撞点机撞点工艺过程中,建立检测模型用于检测撞点加工结果时的示意图;
图3发明的一个实施例中撞点机模型、PLC控制系统和撞点机设备关联同步方式的示意图。
图4发明的一个实施例中所述建立控制模型步骤的流程示意图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
数字孪生:是充分利用物理模型、传感器更新、运行历史等数据,集成 多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程,又称“数字镜像”,“数字双胞胎”或“数字化映射”。
数字孪生模型主要涉及仿真模型与物理设备,两者的对接是实现数字孪生模型的关键,低速加工设备模型对接常采用以太网中PLC点位的绑定,云路由器数据的传输以驱动仿真模型与物理设备进行协同运动。针对高速点位运动装备,采用多周期差分采样技术完成对物理运动装备状态的实时采样,利用从多个周期内均匀布置采样点位得到的加工设备位置与加工精度数据来间接表征加工装备状态及其加工质量,即把物理设备的工作状态实时映射到虚拟仿真模型上去,高速点位运动装备的性能即可以通过虚拟模型的分析并反馈给物理系统。这样就建立起了针对高速点位运动装备的数字孪生模型。在此数字孪生模型基础上,可以进行生产线的快速定制,高逼真的半实物仿真,透明化监控,根据现场信息实时反馈到模型与系统,实现整线与其数字孪生模型作业同步全视角、跨粒度的实时监控。智能化运维,模拟投放与生产过程,采集过程数据,对制造过程中设备稼动率、生产平衡率、瓶颈工序等进行统计和分析,对制造周期与制造成本进行预测。
如图1至4示,基于多周期差分采样和数字孪生技术的平行控制方法,其应用于撞点机设备的加工过程,其包括如下步骤:
a.检测步骤:a1.将制作模具的加工原料装夹至撞点机设备上,并将拍摄装置按照拍摄要求设置;a2.启动撞点机设备和拍摄装置,拍摄装置将经过多个加工周期后得到的加工原料进行拍照,得到多个周期采样;a3.整合处理模块将多个周期采样,利用跨往复周期的差分采样技术整合为一个周期的样本 图像,建立检测模型;a4.图像处理模块对样本图像进行处理,得到检测图像;
b.建立控制模型:b1.撞点机设备仿真建模,完成撞点机设备的仿真模型设计,得到撞点机模型;b2.撞点机设备动态实现,根据既定设计方案,给撞点机模型设置加工参数,完成单机设备的动作实现,完成在制品物流与运动实现,编制运动与动作控制脚本,并进行离线模拟运行;b3.撞点机模型与撞点机设备集成,利用虚实同步技术借助仿真平台,实现撞点机模型与撞点机设备同步运动;b4.系统集成设计,搭建虚拟控制网络,即实现车间物联,运用数字孪生技术,构建虚实同步的实物仿真平台,使得单机实物可以与单机数字化模型实现动作同步化;将上层MES系统与数字孪生模型进行集成,实现数字孪生模型在生成MES指令下运行,同时也将数字孪生模型执行情况反馈回MES,实现对撞点机设备在线监测和模拟运行;
c.平行控制:根据检测图形控制撞点机模型,完成对撞点机设备的平行控制。
更优的,所述步骤a中,利用跨往复周期的差分采样技术整合为一个周期的样本图像的具体步骤如下:把加工路径上相同处理单元处理周期用T(ms)表示,把工业相机的采样周期设置为
Figure PCTCN2020079739-appb-000002
其中n表示该工业相机相对于加工周期的响应速度,m是根据数字孪生同步的精度要求对一个处理单元周期进行均分的数字;所述n为相机时间与加工周期的比值并向上取整得到的整数。
更优的,m的设置取决于数字孪生同步精度的要求,对一个加工周期进行划分,确定一个加工周期由m个时间点图像来间接表征加工设备状态及其加工质量,对相似的多个周期分别进行图像数据采集,每个周期采集一个时间 点的图像,第一个周期内采集第一个时间点图像,第二个周期内采集第二个时间点图像,依次类推,最后一个周期内采集第m个时间点图像,最终把一个加工过程中采集到的m个实时状态按时间序列进行合并为一个周期的采样状态。
更优的,所述步骤a4中图像处理模块对样本图像进行处理的步骤为:将样本图像转化为灰阶图像,再进行降噪、调节对比度处理。
更优的,所述步骤b4后还有判断步骤b5,检测识别模块对检测图像进行识别和分析得到检测数据,判断装置将检测数据和加工设定数据进行对比;当检测数据超出加工设定数据设定的阈值时,判断结果为不合格,操作人员根据判断结果控制撞点机模型,完成对撞点机设备的平行控制;当检测数据未超出加工设定数据设定的阈值时,判断结果为合格,结束在位检测操作,操作人员无需控制撞点机模型进行任何操作。
更优的,所述步骤b1中完成撞点机设备的仿真模型设计的具体操作步骤为:首先利用机械三维建模平台完成仿真模型设计,再将得到仿真模型设计导入仿真平台进行模型二次处理,对仿真模型中设备的大小、布局进行修改以及区分动件与不动件。
更优的,所述步骤b2中进行离线模拟运行的具体操作为:利用仿真平台提供的二次开发功能,利用Jscript脚本语言实现撞点机工艺动作,同时在平台上进行离线模拟加工参数进行打孔测试;所述步骤b中给撞点机模型设置的加工参数包括:电压、速度和压力。
具体的,所述仿真平台为Demo3D仿真平台。
更优的,所述步骤b3中,所述虚实同步技术为:首先确保撞点机模型与 撞点机设备的设计参数的一致性;以撞点机模型作为主动模型,撞点机设备作为从动部分;通过撞点机模型与撞点机设备同时连接同一PLC控制系统实现撞点机模型与撞点机设备的信号的同步;所述步骤b3中,将撞点机模型与撞点机设备同时连接同一PLC控制系统的具体方式为:将Demo3D里面的I/O点与PLC中的I/O点地址进行绑定,PLC控制系统中的I/O点控制实物的运动参数;而撞点机模型主要是通过工件触发传感器,通过PLC控制系统的I/O点以及内部逻辑驱动撞点机设备进行同步运动。
更优的,所述设计参数包括:撞点机模型的尺寸、布局和控制逻辑;所述运动参数包括:撞点机设备的运动方向、运动速度、行程、启动和停止;数字孪生模型执行情况包括:工单完成信息和随机故障。
应用了如上所述的基于多周期差分采样和数字孪生技术的平行控制方法的撞点机设备,其包括:撞点机、拍摄装置、整合处理模块、图像处理模块、械三维建模平台、Demo3D仿真平台、PLC控制系统和SCADA系统;
所述撞点机,用于在加工原料上打孔,并进一步加工得到导光板;所述拍摄装置,具体为工业相机,用于对多个加工周期后得到的加工原料进行拍照,得到多个周期采样;所述整合处理模块,用于将多个周期采样,利用跨往复周期的差分采样技术整合为一个周期的样本图像;所述图像处理模块,用于对样板图像进行处理,得到检测图像;机械三维建模平台,用于根据撞点机设备整体机械参数建立仿真模型设计;Demo3D仿真平台,用于对仿真模型设计进行优化处理,同时实现与PLC控制系统的联接;PLC控制系统,用于实现撞点机模型与撞点机设备同步运动,并控制撞点机模型与撞点机设备的运动;SCADA系统,可实时采集撞点机模型或撞点机设备的加工情况,对撞点 机设备的加工状态起到实时检测的目的。
在平行指控方法中采用差分采样技术,提出的数字孪生模型直接在撞点机设备的数字模型中进行执行逻辑验证和控制,快速定位故障原因,主动检查系统是否能满足质量控制要求。因此,在实现数字孪生后,初始撞点机床的定位精度从4.0m提高到2.0m。冲压速度从20-25点秒提高到20-65点秒,也优于主流机床的20-40点秒。加工实验结果与实际要求相吻合,说明所研制的数字孪生系统适用于超精密机床的微点加工。网点检测传统的补偿策略通过模拟输入直接决定压电陶瓷的位移输出。然而,在所提出的数字孪生工艺补偿中,压电陶瓷的非线性通过压电陶瓷的在线优化输入值进行补偿,采用数字孪生模型有助于撞点机做出更智能的控制决策。数字孪生系统平台可以优化动态执行机制。整个撞点机的性能可以虚拟分析并反馈给物理系统。一旦性能不足,就可以调整和迭代操作,直到获得最佳状态。形成设备级的上下文感知解决方案,并使用上下文分析方法对机器的所有控制决策进行评估和制定,支持在线优化性能指标。所提出的撞点机模型是相对灵活的,通过使每个撞点机的在线设置具有不同的个性化加工参数和质量要求,这提供了一个大的选项变体,以满足个性化的需求。
所述平行控制方法应用于所述撞点机设备的方式:
基于数字孪生模型的监测方法在导光板加工工艺中模拟运行:在撞点机模型建立步骤的步骤a和步骤b基础即可进行模拟运行。在Demo3D平台,模拟设置撞点机的电压值、速度以及力等加工参数,观察导光板打孔质量反复调整撞点机的电压值,寻找合适电压值。
基于数字孪生模型的监测方法在导光板加工工艺监控与同步测试及同步 优化:通过建立撞点机的数字孪生模型,即可实现撞点机设备与撞点机模型的指令、动作以及信息同步。通过SCADA系统采集的数字孪生模型的反馈,即可监控撞点机设备的运行状态和信息,比如撞点机运行的电压、打孔速度等参数。如果导光板加工的网孔质量不合格,可以及时的调剂撞点机的电压值,保证加工质量,起到撞点机加工工艺同步测试与优化的效果。
本发明利用多周期差分采样和数字孪生技术,搭建一个撞点机设备的检测模型和仿真模型;仿真模型集成实物和仿真的同步运行、同步测试以及同步优化的实时平行控制,检测模型用于实时检测撞点机加工情况。利用虚实同步技术,实现实物撞点机设备与仿真撞点机设备同步运行,对设备运行信息与状态进行跟踪与三维可视化呈现,同时融合实时指令数据与统计数据进行可视化呈现,将实物设备执行过程进行实时三维可视化展示以及相关执行性能数据动态显示。通过将加工现场检测到的信息实时反馈到检测模型进而显示到撞点机设备的仿真模型,操作人员根据检测判断结果,对撞点机设备的仿真模型进行控制,从而实现撞点机设备与仿真模型的作业和控制同步平行控制。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (6)

  1. 基于多周期差分采样和数字孪生技术的平行控制方法,其应用于撞点机设备的加工过程,其特征在于,包括如下步骤:
    a.检测步骤:a1.将制作模具的加工原料装夹至撞点机设备上,并将拍摄装置按照拍摄要求设置;a2.启动撞点机设备和拍摄装置,拍摄装置将经过多个加工周期后得到的加工原料进行拍照,得到多个周期采样;a3.整合处理模块将多个周期采样,利用跨往复周期的差分采样技术整合为一个周期的样本图像,建立检测模型;a4.图像处理模块对样本图像进行处理,得到检测图像;
    b.建立控制模型:b1.撞点机设备仿真建模,完成撞点机设备的仿真模型设计,得到撞点机模型;b2.撞点机设备动态实现,根据既定设计方案,给撞点机模型设置加工参数,完成单机设备的动作实现,完成在制品物流与运动实现,编制运动与动作控制脚本,并进行离线模拟运行;b3.撞点机模型与撞点机设备集成,利用虚实同步技术借助仿真平台,实现撞点机模型与撞点机机设备同步运动;b4.系统集成设计,搭建虚拟控制网络,即实现车间物联,运用数字孪生技术,构建虚实同步的实物仿真平台,使得单机实物可以与单机数字化模型实现动作同步化;将上层MES系统与数字孪生模型进行集成,实现数字孪生模型在生成MES指令下运行,同时也将数字孪生模型执行情况反馈回MES,实现对撞点机设备在线监测和模拟运行;
    C.平行控制:根据检测图形控制撞点机模型,完成对撞点机设备的平行控制;
    所述步骤a中,利用跨往复周期的差分采样技术整合为一个周期的样本图像的具体步骤如下:
    把加工路径上相同处理单元处理周期用T(ms)表示,把工业相机的采样周 期设置为
    Figure PCTCN2020079739-appb-100001
    其中n表示该工业相机相对于加工周期的响应速度,m是根据数字孪生同步的精度要求对一个处理单元周期进行均分的数字;所述n为相机时间与加工周期的比值并向上取整得到的整数;
    m的设置取决于数字孪生同步精度的要求,对一个加工周期进行划分,确定一个加工周期由m个时间点图像来间接表征加工设备状态及其加工质量,对相似的多个周期分别进行图像数据采集,每个周期采集一个时间点的图像,第一个周期内采集第一个时间点图像,第二个周期内采集第二个时间点图像,依次类推,最后一个周期内采集第m个时间点图像,最终把一个加工过程中采集到的m个实时状态按时间序列进行合并为一个周期的采样状态;
    所述步骤a4中图像处理模块对样本图像进行处理的步骤为:将样本图像转化为灰阶图像,再进行降噪、调节对比度处理;
    所述步骤b4后还有判断步骤b5,检测识别模块对检测图像进行识别和分析得到检测数据,判断装置将检测数据和加工设定数据进行对比;
    当检测数据超出加工设定数据设定的阈值时,判断结果为不合格,操作人员根据判断结果控制撞点机模型,完成对撞点机设备的平行控制;
    当检测数据未超出加工设定数据设定的阈值时,判断结果为合格,结束在位检测操作,操作人员无需控制撞点机模型进行任何操作。
  2. 根据权利要求1所述的基于多周期差分采样和数字孪生技术的平行控制方法,其特征在于,所述步骤b1中完成撞点机设备的仿真模型设计的具体操作步骤为:首先利用机械三维建模平台完成仿真模型设计,再将得到仿真模型设计导入仿真平台进行模型二次处理,对仿真模型中设备的大小、布局进行修改以及区分动件与不动件。
  3. 根据权利要求1所述的基于多周期差分采样和数字孪生技术的平行控制方法,其特征在于,所述步骤b2中进行离线模拟运行的具体操作为:利用仿真平台提供的二次开发功能,利用Jscript脚本语言实现撞点机工艺动作,同时在平台上进行离线模拟加工参数进行打孔测试;所述步骤b中给撞点机模型设置的加工参数包括:电压、速度和压力。
  4. 根据权利要求1或2或3所述的基于多周期差分采样和数字孪生技术的平行控制方法,其特征在于,所述仿真平台为Demo3D仿真平台。
  5. 根据权利要求4所述的基于多周期差分采样和数字孪生技术的平行控制方法,其特征在于,所述步骤b3中,所述虚实同步技术为:首先确保撞点机模型与撞点机设备的设计参数的一致性;以撞点机模型作为主动模型,撞点机设备作为从动部分;通过撞点机模型与撞点机设备同时连接同一PLC控制系统实现撞点机模型与撞点机设备的信号的同步;
    所述步骤b3中,将撞点机模型与撞点机设备同时连接同一PLC控制系统的具体方式为:将Demo3D里面的I/O点与PLC中的I/O点地址进行绑定,PLC控制系统中的I/O点控制实物的运动参数;而撞点机机模型主要是通过工件触发传感器,通过PLC控制系统的I/O点以及内部逻辑驱动撞点机机设备进行同步运动。
  6. 根据权利要求5所述的基于多周期差分采样和数字孪生技术的平行控制方法,其特征在于,所述设计参数包括:撞点机模型的尺寸、布局和控制逻辑;所述运动参数包括:撞点机设备的运动方向、运动速度、行程、启动和停止;数字孪生模型执行情况包括:工单完成信息和随机故障。
PCT/CN2020/079739 2019-04-10 2020-03-17 基于多周期差分采样和数字孪生技术的平行控制方法 WO2020207209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/826,205 US10921794B2 (en) 2019-04-10 2020-03-21 Parallel control method based on multi-period differential sampling and digital twinning technologies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910285327.0A CN109991918B (zh) 2019-04-10 2019-04-10 基于多周期差分采样和数字孪生技术的平行控制方法
CN201910285327.0 2019-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/826,205 Continuation US10921794B2 (en) 2019-04-10 2020-03-21 Parallel control method based on multi-period differential sampling and digital twinning technologies

Publications (1)

Publication Number Publication Date
WO2020207209A1 true WO2020207209A1 (zh) 2020-10-15

Family

ID=67132760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079739 WO2020207209A1 (zh) 2019-04-10 2020-03-17 基于多周期差分采样和数字孪生技术的平行控制方法

Country Status (2)

Country Link
CN (1) CN109991918B (zh)
WO (1) WO2020207209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116823233A (zh) * 2023-08-30 2023-09-29 青岛巨商汇网络科技有限公司 一种基于全周期运维的用户数据处理方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991918B (zh) * 2019-04-10 2019-11-12 广东工业大学 基于多周期差分采样和数字孪生技术的平行控制方法
IT201900015953A1 (it) 2019-09-10 2021-03-10 Gd Spa Procedimento per la risoluzione di un malfunzionamento ignoto di almeno una parte di una macchina automatica per la produzione o l’impacchettamento di prodotti di consumo
CN111399462B (zh) * 2020-04-01 2021-03-09 浙江大学 离散连续混合的产品作业控制逻辑数字孪生虚实同步方法
CN112859789B (zh) * 2021-01-29 2024-02-06 重庆邮电大学 一种基于cfd构建数据中心数字孪生体的方法及系统
CN113538993A (zh) * 2021-06-02 2021-10-22 上海贽匠智能科技有限公司 一种基于数字孪生技术的实训一体机
CN115859700B (zh) * 2023-03-02 2023-05-05 国网湖北省电力有限公司电力科学研究院 一种基于数字孪生技术的电网建模方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145769A (ja) * 2007-12-17 2009-07-02 Toshiba Matsushita Display Technology Co Ltd 平面表示装置
CN107861478A (zh) * 2017-10-17 2018-03-30 广东工业大学 一种智能车间平行控制方法及系统
CN108919760A (zh) * 2018-07-05 2018-11-30 长安大学 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
CN108983729A (zh) * 2018-08-15 2018-12-11 广州易行信息技术有限公司 一种工业生产线数字孪生方法及系统
CN109359507A (zh) * 2018-08-24 2019-02-19 南京理工大学 一种车间人员数字孪生体模型快速构建方法
CN109991918A (zh) * 2019-04-10 2019-07-09 广东工业大学 基于多周期差分采样和数字孪生技术的平行控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109571476A (zh) * 2018-12-14 2019-04-05 南京理工大学 工业机器人数字孪生实时作业控制、监控与精度补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145769A (ja) * 2007-12-17 2009-07-02 Toshiba Matsushita Display Technology Co Ltd 平面表示装置
CN107861478A (zh) * 2017-10-17 2018-03-30 广东工业大学 一种智能车间平行控制方法及系统
CN108919760A (zh) * 2018-07-05 2018-11-30 长安大学 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
CN108983729A (zh) * 2018-08-15 2018-12-11 广州易行信息技术有限公司 一种工业生产线数字孪生方法及系统
CN109359507A (zh) * 2018-08-24 2019-02-19 南京理工大学 一种车间人员数字孪生体模型快速构建方法
CN109991918A (zh) * 2019-04-10 2019-07-09 广东工业大学 基于多周期差分采样和数字孪生技术的平行控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116823233A (zh) * 2023-08-30 2023-09-29 青岛巨商汇网络科技有限公司 一种基于全周期运维的用户数据处理方法及系统
CN116823233B (zh) * 2023-08-30 2023-11-07 青岛巨商汇网络科技有限公司 一种基于全周期运维的用户数据处理方法及系统

Also Published As

Publication number Publication date
CN109991918B (zh) 2019-11-12
CN109991918A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2020207209A1 (zh) 基于多周期差分采样和数字孪生技术的平行控制方法
US10921794B2 (en) Parallel control method based on multi-period differential sampling and digital twinning technologies
JP6892704B2 (ja) スマート工場並列制御方法及びシステム
JP5455896B2 (ja) テストベンチのための開発設備のシミュレーション装置および方法
US20170308057A1 (en) Computer-implemented method for part analytics of a workpiece machined by at least one cnc machine
CN110008605A (zh) 基于数字孪生模型的监测方法及应用其的撞点机设备
CN109840900B (zh) 一种应用于智能制造车间的故障在线检测系统及检测方法
EP3693312A1 (en) Elevator system component analysis
CN113246122A (zh) 一种工业机器人的数字孪生实训方法及系统
CN113909996B (zh) 一种基于数字孪生的高端装备加工状态监测方法及系统
CN108693822A (zh) 控制装置、存储介质、控制系统及控制方法
KR101328224B1 (ko) 철강공정용 가상설비 시스템 및 그의 동작 방법
TWM597425U (zh) 邊緣運算裝置及製品瑕疵檢測系統
CN107972036B (zh) 基于TensorFlow的工业机器人动力学控制系统及方法
CN116125914A (zh) 基于真实生产线的仿真方法、仿真系统和仿真软件
Lipinski et al. System for monitoring and optimization of micro-and nano-machining processes using intelligent voice and visual communication
NL2025771B1 (en) Hardware-in-loop simulation system and method for ultra-precision motion platform
CN110987926A (zh) 一种基于机器视觉的显示屏缺陷自动检测方法
CN106774178A (zh) 一种自动化控制系统及方法、机械设备
CN115972303B (zh) 一种基于数字孪生的全自动裁断机协同系统、介质及终端
CN115527409A (zh) 一种应用于数字孪生工业机器人的实训执行终端
CN205843625U (zh) 三维轮廓测量仪
WO2021111936A1 (ja) 予測システム、情報処理装置および情報処理プログラム
CN110006630A (zh) 基于多周期差分采样的在位检测方法及高速点运动设备
De Argandoña et al. Forming processes control by means of artificial intelligence techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788014

Country of ref document: EP

Kind code of ref document: A1