WO2020207173A1 - 地面探测方法、地面探测器和自主移动设备 - Google Patents

地面探测方法、地面探测器和自主移动设备 Download PDF

Info

Publication number
WO2020207173A1
WO2020207173A1 PCT/CN2020/078542 CN2020078542W WO2020207173A1 WO 2020207173 A1 WO2020207173 A1 WO 2020207173A1 CN 2020078542 W CN2020078542 W CN 2020078542W WO 2020207173 A1 WO2020207173 A1 WO 2020207173A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
distance
detector
mobile device
autonomous mobile
Prior art date
Application number
PCT/CN2020/078542
Other languages
English (en)
French (fr)
Inventor
高望书
张一茗
陈震
Original Assignee
速感科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 速感科技(北京)有限公司 filed Critical 速感科技(北京)有限公司
Publication of WO2020207173A1 publication Critical patent/WO2020207173A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven

Definitions

  • the invention relates to the technical field of autonomous mobile equipment, in particular to a ground detection method, ground detector and autonomous mobile equipment.
  • Autonomous mobile devices refer to smart mobile devices that autonomously perform preset tasks in a set area.
  • autonomous mobile devices usually include, but are not limited to, cleaning robots (such as smart sweepers, smart floor cleaners, window cleaning robots), and companion mobile Robots (such as smart electronic pets, nanny robots), service mobile robots (such as hospitality robots in hotels, hotels, and meeting places), industrial inspection intelligent equipment (such as electric inspection robots, intelligent forklifts, etc.), security robots (such as home Or commercial intelligent security robot).
  • cleaning robots such as smart sweepers, smart floor cleaners, window cleaning robots
  • companion mobile Robots such as smart electronic pets, nanny robots
  • service mobile robots such as hospitality robots in hotels, hotels, and meeting places
  • industrial inspection intelligent equipment such as electric inspection robots, intelligent forklifts, etc.
  • security robots such as home Or commercial intelligent security robot.
  • the existing autonomous mobile devices provide convenience to people, there are also some problems.
  • the existing autonomous mobile devices must continuously detect the ground conditions in real time during the working process to determine whether the ground has subsidence or steps. , Stairs, steep slopes or other raised obstacles, etc.
  • the existing obstacle judgment logic is more complicated, and there are many judgment parameters, which leads to the need to arrange more sensors on autonomous mobile devices, and the space for sensors on autonomous mobile devices
  • more sensors will not only occupy a lot of installation space, but also increase the load of autonomous mobile devices; most of the existing cliff detection methods use infrared signals for detection, but infrared signals are affected by the color of the ground, the reflective performance of the ground, and the environment.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a ground detection method, ground detector and autonomous mobile equipment.
  • a ground detection method including:
  • the ground material is determined according to the feedback information of the detection signal.
  • the detection signal feedback information includes: echo time and echo strength
  • Determining the ground material according to the detection signal feedback information includes:
  • the ground material corresponding to the echo sound intensity at the distance is obtained.
  • the distance-material-echo sound intensity correspondence relationship chart is obtained by one of the following methods:
  • the ground detection method further includes: determining the undulation state of the ground according to the detection signal feedback information.
  • determining the undulation state of the ground according to the detection signal feedback information includes:
  • the present invention also provides a ground detector, including:
  • Ultrasonic transmitter module used to transmit ultrasonic detection signals to the ground
  • Feedback information receiving module used to receive detection signal feedback information
  • the determining module is used to determine the ground material and ground undulation information according to the detection signal feedback information.
  • the present invention also provides an autonomous mobile device, including:
  • Movement mechanism control unit, drive unit, and ground detector
  • the driving unit is used to drive the movement mechanism
  • the movement mechanism is used to make the autonomous mobile device move on the ground
  • the ground detector is arranged at the front under the autonomous mobile device and is arranged towards the ground;
  • the ground detector includes an ultrasonic transmitter and an ultrasonic receiver; the ultrasonic transmitter is used to transmit ultrasonic detection signals to the ground; the ultrasonic receiver is used to receive detection signal feedback information;
  • the ground detector is electrically connected to the control unit; the control unit is used to determine the material of the surface where the autonomous mobile device is located according to the detection signal feedback information during the movement of the autonomous mobile device.
  • the detection signal feedback information includes: echo time and echo strength
  • the control unit determining the material of the location of the autonomous mobile device according to the detection signal feedback information includes:
  • control unit is further configured to determine the undulating state of the location of the autonomous mobile device according to the detection signal feedback information during the movement of the autonomous mobile device;
  • the control unit determining the undulation state of the location of the autonomous mobile device according to the detection signal feedback information specifically includes:
  • control unit controls the working mode of the autonomous mobile device according to the determined ground material; and/or,
  • an alarm signal is issued and/or the autonomous mobile device is controlled to perform an anti-fall operation.
  • the present invention adopts the above technical solution.
  • the ground detection method includes: transmitting a detection signal to the ground; receiving detection signal feedback information; determining the ground material according to the detection signal feedback information; and determining the ground fluctuations according to the detection signal feedback information status.
  • the ground detection method of the present invention adopts the received detection signal feedback information to simultaneously realize the detection of ground material and ground undulation information.
  • the detection method has a simple processing process; the method can make the corresponding ground detector simple in structure and small in size
  • the method of the present invention will not be affected by environmental factors such as ground color, ground reflective performance, and ambient light intensity, and the detection accuracy is high.
  • FIG. 1 is a schematic flow chart provided by Embodiment 1 of the ground detection method of the present invention.
  • FIG. 2 is a diagram of the correspondence relationship between distance-material-echo sound intensity involved in the first embodiment of the ground detection method of the present invention
  • FIG. 3 is a schematic flow chart provided by Embodiment 2 of the ground detection method of the present invention.
  • FIG. 4 is a schematic diagram of the structural principle provided by Embodiment 1 of the ground detector of the present invention:
  • Embodiment 1 is a schematic diagram of the structural principle provided by Embodiment 1 of an autonomous mobile device of the present invention.
  • Figure 6a is a schematic diagram of the structure provided by the autonomous mobile device of the present invention.
  • Figure 6b is a schematic diagram of the ultrasonic transmitter and ultrasonic receiver in the autonomous mobile device of the present invention.
  • Figure 6c is a schematic structural diagram of an installation position of a ground detector in an autonomous mobile device
  • Figure 6d is a schematic diagram of another installation position of the ground detector in the autonomous mobile device.
  • Ultrasonic transmitter module 1.
  • Feedback information receiving module 2.
  • Determining module 4.
  • Motion mechanism 5.
  • Drive unit 7.
  • Ground detector 400. Chassis; 410.
  • the “cliff” mentioned in the present invention is a special term in the field of autonomous mobile devices, and specifically refers to a state in which the ground in front of the autonomous mobile device is not flat and therefore the ground has ups and downs, for example, if the ground in front has a sunken or sunken ground Status, such as downward steps/stairs, steep downward slopes, etc., or ground status with protrusions lower than the height of the chassis of the autonomous mobile device, such as threshold stones, door bars, floor fans or floor lamp bases, raised upwards Small steps and upward slopes are considered to have “cliffs” in the present invention.
  • "Cliff” is a state of ground undulation; and flat ground is also a state of ground undulation, that is, a ground undulation state with zero undulations.
  • the ground detector detects the ground ups and downs information, that is, the information about the state of ground ups and downs, so as to detect whether there is a ground ups and downs such as the "cliff" on the ground, such as detecting the distance from the ground detector to the ground. Ups and downs information" to determine the undulating state of the ground.
  • Fig. 1 is a schematic flow chart provided by Embodiment 1 of the ground detection method of the present invention.
  • the ground detection method in this embodiment includes:
  • S110 Transmit an ultrasonic detection signal to the ground
  • the detection signal feedback information includes: echo time and echo strength
  • the echo time is the time difference between the ultrasonic detection signal sent by the ultrasonic transmitter set on the ground detector and the detection signal feedback information of the ultrasonic echo received by the ultrasonic receiver;
  • the ultrasonic detection signal emitted by the ultrasonic transmitter to the ground is reflected by the ground and becomes an ultrasonic echo carrying ground material and/or distance information, which is called detection signal feedback information.
  • the echo sound intensity is the sound intensity of the ultrasonic echo received by the ultrasonic receiving end.
  • S130 Determine the ground material according to the detection signal feedback information.
  • determining the ground material according to the detection signal feedback information includes:
  • the ground material corresponding to the echo sound intensity at the distance is obtained.
  • the distance-material-echo sound intensity correspondence relationship chart can be obtained in one of the following ways:
  • Method 1 Fix the distance from the ground detector to the ground, change the ground material, obtain the echo sound intensity corresponding to different ground materials, and obtain the relationship between the ground material and the echo sound intensity; then change the distance from the ground detector to the ground , To obtain the relationship between the distance from the ground detector to the ground, the ground material and the echo sound intensity; or,
  • Method 2 Under the same ground material, adjust the distance from the ground detector to the ground to obtain the corresponding relationship between the distance from the ground detector to the ground and the echo sound intensity; then change the ground material to obtain the distance from the ground detector to the ground and the ground The relationship between material and echo sound intensity; or,
  • Method 3 Measure the echo sound intensity under changing the ground material and the distance from the ground detector to the ground, and obtain the relationship between the distance from the ground detector to the ground, the ground material and the echo sound intensity.
  • the distance from the ground probe to the floor is measured starting from d; wherein the ground probe is fixedly provided with an ultrasonic transmitter and an ultrasonic receiver.
  • S131 Place the ground detectors on the wooden floor, tiled floor, and carpet-covered ground environment, and set the distance from the ground detector to the ground to d.
  • the ultrasonic transmitter emits ultrasonic signals of the same intensity. After the ground is reflected, it becomes an ultrasonic echo carrying ground material and/or distance information, that is, the detection signal feedback information, which is received by the ultrasonic receiving end, and the echo sound intensity received by the ultrasonic receiving end under each ground material is recorded; Recorded as completing a measurement;
  • the second method is to adjust the distance from the ground detector to the ground under the same ground material to obtain the corresponding relationship between the distance from the ground detector to the ground and the echo sound intensity; then change the ground material to obtain the ground detector to the ground.
  • the third method is to obtain the relationship between the distance from the ground detector to the ground, the ground material and the echo sound intensity under the condition of simultaneously changing the ground material and the distance from the ground detector to the ground. I will not repeat them here.
  • the distance from the ground detector to the ground is determined by the echo time.
  • the echo time and echo sound intensity are obtained, and the distance d'from the bottom of the autonomous mobile device to the ground is calculated according to the echo time.
  • the distance d'and the echo sound intensity after calibration -Material-Echo Sound Intensity Correspondence Chart for comparison if the echo sound intensity is within the echo sound intensity range corresponding to a certain ground material at a distance d', it is determined that the ground detector is located at this time
  • the ground material of is the ground material corresponding to the echo sound intensity range.
  • the ultrasonic ground detector can only measure the surface beyond the error distance threshold D, so it can be as shown in the figure As shown in 6d, the ultrasonic ground detector is arranged in the concave portion recessed inward at the bottom of the autonomous mobile device, so that the depth of the concave portion is greater than the above-mentioned error distance threshold D, so that the range of the distance d'from the bottom of the autonomous mobile device to the ground 200 It is a meaningful measurable distance for ultrasonic ground detectors.
  • the distance d from the ground probe to the ground and the distance d'from the bottom of the autonomous mobile device on which the ground probe is installed to the same ground are only different by one inwardly concave portion of the autonomous mobile device. Depth, and the depth of the recessed part is a certain constant after the ground detector is installed. As long as d is determined, d'is determined, and vice versa, so the "ground detector to ground distance" d It is only numerically different from the "distance from the bottom of the autonomous mobile device to the ground” d', but is exactly the same in the physical sense. Therefore, the technical solution involved in the "ground detector to the ground distance" d of the present invention The range is equivalent to the range of "the distance from the bottom of the autonomous mobile device to the ground” d', and should fall within the protection scope of the present invention.
  • curve 1 is the corresponding relationship between the distance d'from the bottom of the autonomous mobile device to the ground and the echo sound intensity under the tile material
  • curve 2 is the bottom of the autonomous mobile device to the ground under the wooden board material
  • curve 3 is the corresponding relationship between the distance d'from the bottom of the autonomous mobile device to the ground and the echo sound intensity under the carpet material.
  • the echo sound intensity is 0.021w/m 2
  • find the distance d When' 20mm, the echo sound intensity range corresponding to each ground material.
  • the echo sound intensity is 0.021w/m 2 which belongs to the echo sound intensity corresponding to the tile floor material.
  • the sound intensity range of the wave determines that the ground material on which the ground detector is located at this time is a tiled ground.
  • the ground detection method described in this embodiment transmits ultrasonic detection signals to the ground, obtains ultrasonic echo detection signal feedback information carrying ground information through ground reflection, and receives detection signal feedback information, and finally determines according to the detection signal feedback information Ground material; the method described in this embodiment will not be affected by environmental factors such as the color of the ground, the reflective performance of the ground, and the ambient light intensity, and the detection accuracy is high, and the detection method has a simple processing process.
  • Fig. 3 is a schematic flowchart of the second embodiment of the ground detection method of the present invention.
  • the ground detection method described in this embodiment includes:
  • S110 Transmit an ultrasonic detection signal to the ground
  • the detection signal feedback information includes: echo time and echo strength
  • the echo time is the time difference between the ultrasonic detection signal sent by the ultrasonic transmitter set on the ground detector and the detection signal feedback information of the ultrasonic echo received by the ultrasonic receiver;
  • the ultrasonic detection signal emitted by the ultrasonic transmitter to the ground is reflected by the ground and becomes an ultrasonic echo carrying ground material and/or distance information, which is called detection signal feedback information.
  • the echo sound intensity is the sound intensity of the ultrasonic echo received by the ultrasonic receiving end.
  • S130' Determine the ground material according to the echo time and the echo intensity, and determine the undulation information of the ground according to the echo time.
  • determining the ground material according to the echo time and echo intensity includes:
  • the ground material corresponding to the echo sound intensity at the distance is obtained.
  • the method of obtaining the distance-material-echo sound intensity correspondence relationship chart can be found in the foregoing embodiment, and will not be repeated here.
  • determining the undulation information of the ground according to the echo time and echo intensity includes:
  • the ground detector to the ground is within the preset safety threshold range, it is determined that the ground does not have cliffs, such as flat ground or small ground undulations, which does not affect the normal operation of the autonomous mobile device;
  • the ground detector to the ground determines that the ground has a cliff; for example, if the distance d'from the bottom of the autonomous mobile device to the ground exceeds the safety threshold range (such as d '>25mm), it can be determined that the ground in front may have sunken, concave cliffs, such as downward steps/stairs, downward steep slopes and other ground undulations; or if the distance from the bottom of the autonomous mobile device to the ground is d' Below the safety threshold range (such as d' ⁇ 2mm), it can be determined that there are cliffs on the front ground with protrusions lower than the height of the chassis of the autonomous mobile device, such as threshold stones, door bars, floor fans or floor lamp bases, and upwardly protruding cliffs.
  • the safety threshold range such as d '>25mm
  • the safety threshold ranges from 2mm to 25mm.
  • a safety threshold range of 0 mm to 40 mm can also be set. Therefore, the safety threshold range should not be used to limit this The scope of protection of the invention.
  • the echo time and echo sound intensity are obtained, the distance d'from the autonomous mobile device to the ground is calculated according to the echo time, and the calibrated distance according to the distance d'and the echo sound intensity-
  • the material-echo sound intensity correspondence relationship chart is compared. If the echo sound intensity is within the echo sound intensity range corresponding to a certain ground material at a distance d', it is determined that the ground detector is located at this time
  • the ground material is a ground material corresponding to the echo sound intensity range.
  • the echo sound intensity is 0.012w/m 2
  • the echo sound intensity is 0.012w/m 2
  • the ground detector 7 is used to detect ground undulation information on the motion path of the autonomous mobile device.
  • ground detectors used to detect ground undulation information are mostly light detectors that obtain ground undulation information through electromagnetic waves.
  • an infrared pair tube detects the ground through infrared rays
  • TOF time of flight, distance measuring sensor
  • the ground is detected by laser.
  • the basic method of the light detector is to send out the detection light (such as infrared or laser) through the transmitting end, and the receiving end receives the incident light from the detection light to the receiving end after passing through the surface to be measured, and obtains the distance information from the light detector to the ground. Determine whether the ground under test has a rising or falling ground undulation.
  • Light detectors are often interfered by factors such as ground color, light intensity, light source changes, etc. For example, dark floors will misjudge the light detector as a "cliff"; and too bright light enters the receiving end after being reflected by the mirror. The receiving end of the light detector will be saturated and the ground state cannot be judged.
  • the ground detection method described in this embodiment transmits ultrasonic detection signals to the ground, obtains ultrasonic echo detection signal feedback information carrying ground information through ground reflection, and receives the detection signal feedback information, and finally determines the ground based on the detection signal feedback information.
  • the material and ground undulation information can detect the ground material and the ground undulation state at the same time by using only a set of ultrasonic sensors.
  • the detection method is simple; this method can make the corresponding ground detector simple in structure, small in size, and mobile
  • the installation space requirement at the bottom of the device is low; in addition, the method described in this embodiment can effectively avoid the interference of light on the ground detector, and will not be affected by environmental factors such as ground color, ground reflection performance, and ambient light intensity, and the detection is accurate The rate is high.
  • Figure 4 is a schematic diagram of the structural principle provided by the first embodiment of the ground detector of the present invention.
  • the ground detector in this embodiment includes:
  • Ultrasonic transmitter module used to transmit ultrasonic detection signals to the ground
  • Feedback information receiving module 2 for receiving detection signal feedback information
  • the determining module 3 is used to determine the ground material and ground undulation information according to the detection signal feedback information.
  • the ground detector described in this embodiment adopts the working principle of the second embodiment of the ground detection method described above, that is: in the detection process, the ultrasonic transmitter module 1 transmits an ultrasonic detection signal to the ground, and the feedback information is received
  • the module 2 receives the echo time and the echo intensity
  • the determination module 3 determines the ground material and the undulation information of the ground according to the echo time and the echo intensity.
  • the determining module 3 determines the ground material according to the echo time and echo intensity, including:
  • the ground material corresponding to the echo sound intensity at the distance is obtained.
  • the determining module 3 determines the undulating state of the ground according to the detection signal feedback information, including:
  • the ground detector described in this embodiment transmits a detection signal to the ground, obtains feedback information of an ultrasonic echo detection signal carrying ground information through ground reflection, receives the detection signal feedback information, and determines the ground material based on the detection signal feedback information And ground undulation information; the ground detector in this embodiment uses only a set of ultrasonic sensors to detect the ground material and ground undulation state at the same time.
  • the ground detector has a simple structure and small size, which requires installation space at the bottom of autonomous mobile devices Low; In addition, the ground detector described in this embodiment will not be affected by environmental factors such as ground color, ground reflection performance, and ambient light intensity, and the detection accuracy is high.
  • FIG. 5 is a schematic diagram of the structural principle provided by Embodiment 1 of an autonomous mobile device of the present invention.
  • the autonomous mobile device described in this embodiment includes:
  • Movement mechanism 4 control unit 5, drive unit 6, and ground detector 7;
  • the driving unit 6 is used to drive the movement mechanism 4;
  • the movement mechanism 4 is used to make the autonomous mobile device move on the ground
  • the ground detector 7 is arranged at the front under the autonomous mobile device and faces the ground, as shown in Fig. 6a;
  • the ground detector 7 includes an ultrasonic transmitter 201 and an ultrasonic receiver 202; the ultrasonic transmitter 201 transmits an ultrasonic detection signal 221 to the ground; the ultrasonic detection signal 221 is reflected by the ground and becomes a ground material And/or the ultrasonic echo of the distance information is called the detection signal feedback information 222; the ultrasonic receiving end 202 receives the detection signal feedback information 222;
  • the ultrasonic transmitter 201 and the ultrasonic receiver 202 may be separate ultrasonic sensors or the same ultrasonic sensor.
  • the ground detector 7 is electrically connected to the control unit 5 and can transmit the detection signal feedback information 222 collected by the ultrasonic receiving terminal 202 to the control unit 5.
  • the control unit 5 is configured to determine the material of the location of the autonomous mobile device according to the detection signal feedback information 222 during the movement of the autonomous mobile device.
  • the control unit 5 is also electrically connected to the drive unit 6, and the control unit 5 controls the movement state of the movement mechanism 4 through the drive unit 6.
  • the control unit 5 judges the ground material and/or the undulating state of the ground according to the detection signal feedback information collected by the ground detector 7, and controls the state of the motion mechanism 4, for example, when it is judged that the ground is rising or falling In the case of a steep change, the control unit 5 controls the motion mechanism 4 to decelerate or steer.
  • the motion mechanism 4 may be in various forms such as a wheel set, a crawler belt, a bipedal or multi-legged form, or a combination of the foregoing forms.
  • the autonomous mobile device may be a cleaning robot.
  • the motion mechanism 4 may include two driving wheels 410 and one auxiliary wheel 420.
  • the two driving wheels 410 are symmetrically arranged, and one auxiliary wheel 420 is arranged between the two driving wheels 410, and the three are distributed in a triangle.
  • each driving wheel 410 is correspondingly connected with a driving motor (that is, the driving unit 6), and the driving motor is electrically connected with the control unit 5.
  • the control unit 5 can control the driving motor according to the detection signal feedback information collected by the ground detector 7.
  • the rotation speed enables the two driving wheels 410 to realize turning or synchronous rotation and linear movement through differential speed.
  • the ground detector 7 is arranged under the autonomous mobile device (such as the chassis 400 shown in FIG. 6a) at the front and facing the ground. As shown in FIG. 6b, the ground detector 7 includes an ultrasonic transmitter 201 and an ultrasonic receiver 202. The ultrasonic transmitter 201 sends out an ultrasonic detection signal 221 toward the ground. The ultrasonic detection signal 221 is reflected and/or scattered by the ground 200. Part or all of the detection signal feedback information 222 containing ground undulation information is received by the ultrasonic receiver 202, and the ground detector 7 then determines the ground undulation state according to the received detection signal feedback information 222.
  • the autonomous mobile device refers to a smart mobile device that performs a predetermined task in a set area, including but not limited to: Robot Vacuum Cleaner (RVC), such as: smart sweeper, smart floor cleaner, window cleaner, etc. ; Logistics robots, handling robots, etc.; weeding robots, ice shoveling robots, etc.; companion mobile robots, such as: intelligent electronic pets, nanny robots; service-oriented mobile robots, such as: hospitality robots in hotels, hotels, and meeting places; industrial inspections Intelligent equipment, such as electric power inspection robots, smart forklifts, etc.; security robots, such as household or commercial smart guard robots, etc.
  • RVC Robot Vacuum Cleaner
  • RVC Robot Vacuum Cleaner
  • smart sweeper such as: smart sweeper, smart floor cleaner, window cleaner, etc.
  • weeding robots ice shoveling robots, etc.
  • companion mobile robots such as: intelligent electronic pets, nanny robots
  • control unit 5 can control the working mode of the driving unit 6 according to the determined ground material.
  • the autonomous mobile device when the autonomous mobile device is a smart sweeper, when the detected floor material is carpet, control the smart sweeper to clean in carpet working mode; when the detected floor material is tile, control the smart sweeper to work with tiles Mode for cleaning.
  • the drive unit 6 is controlled to switch to a working mode corresponding to the tile.
  • the motor torque of the wheel set can be controlled to make the motor torque and autonomous Suitable for the ground material on which the mobile device is located.
  • Existing autonomous mobile devices all output a fixed amount of motor torque on different material grounds, which makes the cleaning effect on some grounds with relatively large resistances poor, and affects user satisfaction.
  • the driving unit 6 is controlled to switch to the working mode corresponding to the ceramic tile. Since the resistance of the ceramic tile is small, the torque of the wheel set motor is also relatively small in this working mode.
  • the power of the wheel set motor can be reduced, the speed of the main brush and the side brushes, and the power of the vacuum equipment can be reduced; when it is judged that the ground material is carpet, the drive unit 6 is controlled to switch to the working mode corresponding to the carpet, because The resistance of the carpet is large.
  • the torque of the wheel set motor is also large in this working mode, so it can increase the wheel set motor power, increase the main brush and side brush speed, increase the power of the vacuum equipment, etc., and activate the anti-skid mode and anti-winding mode. mode.
  • the autonomous mobile device may slip, which affects the effective movement of the autonomous mobile device, the cleaning effect is poor, and it is not conducive to the cleaning robot to handle the carpet environment Types of obstacles and specific problems under the specific obstacles; if the motor torque of the wheel set remains at the motor torque of the carpet floor when the ground material is ceramic tiles, the motor torque of the autonomous mobile device exceeds the required value at this time, resulting in electrical energy The waste, and at the same time, the triggered escape mode will not adapt to the current environment. Therefore, adapting the working mode of the autonomous mobile device to the material of the local surface as described in this embodiment is beneficial to ensure a better cleaning effect, reduce power consumption, and have greater adaptability to the actual working environment .
  • control unit 5 can also control the alarm module to issue an alarm signal, and control the drive unit 6 to perform anti-fall operations, for example, change the current running route and move in the opposite direction with a certain curvature Or, take anti-fall actions such as backing.
  • the autonomous mobile device described in this embodiment can detect the ground material and ground undulation state by using the ground detector 7 installed at the bottom of the autonomous mobile device; the autonomous mobile device has different ground colors, different ground reflective properties and different environments. Under the interference of environmental factors such as light intensity, it can complete the detection of ground material and ground undulation state, and the detection accuracy is high, which is beneficial to avoid falling of autonomous mobile devices, affecting the normal use of autonomous mobile devices, and improving autonomous mobile devices.
  • the intelligentization of the device improves the user experience; in addition, because the ground detector device is simple and requires a small installation space, space on the autonomous mobile device can be saved for integrating more functions.
  • any process or method description in the flowchart or described in other ways herein can be understood as including one or more steps for implementing a specific logical function or process Modules, fragments, or parts of codes of executable instructions, and the scope of the preferred embodiments of the present invention includes additional implementations, which may not be in the order shown or discussed, including in a substantially simultaneous manner according to the functions involved Or perform functions in the reverse order, which should be understood by those skilled in the art to which the embodiments of the present invention belong.
  • each part of the present invention can be implemented by hardware, software, firmware or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit for implementing logic functions on data signals
  • PGA programmable gate array
  • FPGA field programmable gate array
  • the functional units in the various embodiments of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

提供了一种地面探测方法、地面探测器和自主移动设备,地面探测方法包括:向地面发射超声波探测信号(S110);接收探测信号反馈信息(S120);根据探测信号反馈信息确定地面材质(S130);以及,根据探测信号反馈信息确定地面的起伏状态(S130')。该方法采用接收的探测信号反馈信息能够同时实现对地面材质和地面起伏状态的探测,探测方法处理过程简单;该方法能够使得与其相对应的地面探测器结构简单,体积小;此外,该方法不会受地面颜色、地面反光性能以及环境光照强度等环境因素的影响,探测准确率高,有利于提高自主移动设备的智能化,提高用户体验。

Description

地面探测方法、地面探测器和自主移动设备 技术领域
本发明涉及自主移动设备技术领域,具体涉及一种地面探测方法、地面探测器和自主移动设备。
背景技术
自主移动设备是指在设定区域内自主执行预设任务的智能移动设备,目前自主移动设备通常包括但不限于清洁机器人(例如智能扫地机、智能擦地机、擦窗机器人)、陪伴性移动机器人(例如智能电子宠物、保姆机器人)、服务型移动机器人(例如酒店、旅馆、会晤场所的接待机器人)、工业巡检智能设备(例如电力巡检机器人、智能叉车等)、安防机器人(例如家用或商用智能警卫机器人)。这些服务类机器人具有省时省力、操作方便的优点,使人们摆脱了繁琐的劳动,为人们赢得了更多的休息和娱乐时间,提升了人们的生活舒适度。
但是,现有的自主移动设备在提供给人们便利的同时,也存在着一些问题,如现有的自主移动设备在工作过程中要实时不断的检测地面情况,判断地面是否有下陷,是否有台阶、楼梯、陡坡或其他凸起障碍物等,现有的障碍物判断逻辑较为复杂,判断参数较多,导致在自主移动设备上需要布置较多的传感器,而自主移动设备上可布置传感器的空间有限,较多的传感器不仅会占据大量的安装空间,还会增加自主移动设备的负荷;现有的悬崖检测方法大多使用红外信号进行检测,然而红外信号受地面的颜色、地面的反光性能以及环境光照强度的影响较大,容易发生误判;此外,现有的自主移动设备如扫地机器人,在不同材质地面上均输出固定大小的电机扭矩,使得对一些阻力较大的地面的清洁效果差,影响用户的使用满意度。
发明内容
有鉴于此,本发明的目的在于克服现有技术的不足,提供一种地面探测方法、地面探测器和自主移 动设备。
为实现以上目的,本发明采用如下技术方案:一种地面探测方法,包括:
向地面发射超声波探测信号;
接收探测信号反馈信息;
根据所述探测信号反馈信息确定地面材质。
可选的,所述探测信号反馈信息包括:回波时间和回波强度;
根据所述探测信号反馈信息确定地面材质,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
根据所述地面探测器至所述地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到在该距离下,所述回波声强所对应的地面材质。
可选的,所述距离-材质-回波声强对应关系图表,是通过如下方式之一获得的:
固定所述地面探测器至地面的距离,改变地面材质,并获取与不同地面材质相对应的回波声强,获取地面材质与回波声强的关系;然后改变地面探测器至地面的距离,获取地面探测器至地面距离、地面材质与回波声强的关系;或,
在相同地面材质下,调节地面探测器至地面的距离大小,获取地面探测器至地面的距离与回波声强的对应关系;然后改变地面材质,获取地面探测器至地面距离、地面材质与回波声强的关系;或,
在改变地面材质和改变地面探测器至地面距离下测量回波声强,获取地面探测器至地面距离、地面材质与回波声强的关系。
可选的,所述地面探测方法还包括:根据所述探测信号反馈信息确定地面的起伏状态。
可选的,根据所述探测信号反馈信息确定地面的起伏状态,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
判断所述地面探测器至所述地面的距离是否在预设的安全阈值范围内;
如果所述地面探测器至所述地面的距离在预设的安全阈值范围外,则判断该地面具有悬崖。
本发明还提供了一种地面探测器,包括:
超声波发射模块,用于向地面发射超声波探测信号;
反馈信息接收模块,用于接收探测信号反馈信息;
确定模块,用于根据所述探测信号反馈信息确定地面材质和地面的起伏信息。
本发明还提供了一种自主移动设备,包括:
运动机构、控制单元、驱动单元,以及地面探测器;
所述驱动单元用于驱动运动机构;
所述运动机构用于使自主移动设备在地面上运动;
所述地面探测器设置在所述自主移动设备下面的前部,且朝向地面设置;
所述地面探测器包括超声波发射端和超声波接收端;所述超声波发射端用于向地面发射超声波探测信号;所述超声波接收端用于接收探测信号反馈信息;
所述地面探测器与所述控制单元电连接;所述控制单元用于在所述自主移动设备移动过程中,根据所述探测信号反馈信息确定所述自主移动设备所在地面的材质。
可选的,所述探测信号反馈信息包括:回波时间和回波强度;
所述控制单元根据所述探测信号反馈信息确定所述自主移动设备所在地面的材质,包括:
根据所述回波时间确定地面探测器至所述地面的距离或自主移动设备的底部至地面的距离;
根据所述地面探测器至所述地面的距离或自主移动设备的底部至地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到在该距离下,所述回波声强所对应的地面材质。
可选的,所述控制单元还用于在所述自主移动设备移动过程中,根据所述探测信号反馈信息确定所述自主移动设备所在地面的起伏状态;
所述控制单元根据所述探测信号反馈信息确定所述自主移动设备所在地面的起伏状态,具体包括:
根据所述回波时间确定地面探测器至所述地面的距离或自主移动设备的底部至地面的距离;
判断所述地面探测器至所述地面的距离或自主移动设备的底部至地面的距离是否在预设的安全阈值范围内;
如果所述地面探测器至所述地面的距离或自主移动设备的底部至地面的距离在预设的安全阈值范围外,则判断该地面具有悬崖。
可选的,所述控制单元根据判断出的地面材质控制所述自主移动设备的工作模式;和/或,
当判断出所述自主移动设备所在地面具有悬崖后,发出报警信号和/或控制所述自主移动设备执行防跌落操作。
本发明采用以上技术方案,所述地面探测方法包括:向地面发射探测信号;接收探测信号反馈信息;根据所述探测信号反馈信息确定地面材质,以及,根据所述探测信号反馈信息确定地面的起伏状态。本发明所述的地面探测方法采用接收的探测信号反馈信息能够同时实现对地面材质和地面起伏信息的探测,探测方法处理过程简单;该方法能够使得与其相对应的地面探测器结构简单,体积小;此外,本发明所述的方法不会受地面颜色、地面反光性能以及环境光照强度等环境因素的影响,探测准确率高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明地面探测方法实施例一提供的流程示意图;
图2是本发明地面探测方法实施例一中所涉及的距离-材质-回波声强对应关系图;
图3是本发明地面探测方法实施例二提供的流程示意图;
图4是本发明地面探测器实施例一提供的结构原理示意图:
图5是本发明自主移动设备实施例一提供的结构原理示意图;
图6a是本发明自主移动设备提供的结构示意图;
图6b是本发明自主移动设备中的超声波发射端和超声波接收端的原理示意图;
图6c是地面探测器在自主移动设备中的一种安装位置结构示意图;
图6d是地面探测器在自主移动设备中的另一种安装位置结构示意图。
图中:1、超声波发射模块;2、反馈信息接收模块;3、确定模块;4、运动机构;5、控制单元;6、驱动单元;7、地面探测器;400、底盘;410、主动轮;420、辅助轮;430、边刷;200、地面;201、超声波发射端;202、超声波接收端;203、地面探测器下端面;221、超声波探测信号;222、探测信号反馈信息。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
本发明所说的“悬崖”是自主移动设备领域的专用术语,特指自主移动设备在运行方向前方的地面不平坦因此地面具有起伏的一种状态,比如前方地面若具有下陷、下凹的地面状态,例如向下的台阶/楼梯、向下的陡坡等,或者具有低于自主移动设备底盘高度的凸起物的地面状态,例如门槛石、过门条、落地扇或落地灯底座、向上凸起的小台阶、向上的斜坡,在本发明中都被认为是具有“悬崖”。“悬崖”是一种地面起伏状态;而平坦地面也是一种地面起伏状态,即一种起伏为零的地面起伏状态。在本发明中,是通过地面探测器检测地面起伏信息,即地面起伏状态的信息,从而检测地面是否存在所述“悬崖”这样的地面起伏状态,比如检测地面探测器至地面的距离这个“地面起伏信息”来确定地面起伏状态。
图1是本发明地面探测方法实施例一提供的流程示意图。
如图1所示,本实施例所述的地面探测方法包括:
S110:向地面发射超声波探测信号;
S120:接收探测信号反馈信息;
进一步的,所述探测信号反馈信息包括:回波时间和回波强度;
其中,所述回波时间为由设置在地面探测器上的超声波发射端发出超声波探测信号与超声波接收端接收到超声回波的探测信号反馈信息的时间差;
超声波发射端向地面发射的超声波探测信号经地面反射后,成为携带地面材质和/或距离信息的超声回波,称为探测信号反馈信息。所述回波声强为所述超声波接收端接收到的超声回波的声强。
S130:根据所述探测信号反馈信息确定地面材质。
进一步的,根据所述探测信号反馈信息确定地面材质,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
根据所述地面探测器至所述地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到 在该距离下,所述回波声强所对应的地面材质。
进一步的,所述距离-材质-回波声强对应关系图表,可以通过如下方式之一获得:
方式一:固定所述地面探测器至地面距离,改变地面材质,并获取与不同地面材质相对应的回波声强,获取地面材质与回波声强的关系;然后改变地面探测器至地面距离,获取地面探测器至地面距离、地面材质与回波声强的关系;或,
方式二:在相同地面材质下,调节地面探测器至地面的距离大小,获取地面探测器至地面的距离与回波声强的对应关系;然后改变地面材质,获取地面探测器至地面距离、地面材质与回波声强的关系;或,
方式三:在改变地面材质和改变地面探测器至地面距离下测量回波声强,获取地面探测器至地面距离、地面材质与回波声强的关系。
在实际操作中,方式一的具体过程为:
将地面探测器至地板的距离从d开始,进行测量;其中,所述地面探测器上固定设置有超声波发射端和超声波接收端。
S131:将地面探测器分别放置在木质地板地面、瓷砖地面、地毯覆盖地面环境下,并分别将地面探测器至地面的距离设置为d,超声波发射端发射相同强度的超声波信号,该超声波信号经地面反射后成为携带地面材质和/或距离信息的超声回波,即探测信号反馈信息,并被超声波接收端接收,分别记录每种地面材质下超声波接收端接收到的回波声强;此时记为完成一次测量;
S132:改变地面探测器至地面距离,即将d=d+Δd,按照步骤S131方式进行下一次测量,获取到每种地面材质下,距离-材质-回波声强的对应关系;
S133:当d≤s时,重复执行步骤S132,其中s为标定的最大距离值;
S134:将获取的每一种地面材质下,距离-回波声强对应关系制成图表。
需要说明的是,为了保证图表的准确性,在对每种地面材质在不同距离下,测量回波声强时,可以采取多次测量取平均值的方式,最终确定回波声强,然后再确定距离-材质-回波声强对应关系,以形成标定后的距离-材质-回波声强对应关系图表。
类似的,方式二是在相同地面材质下,调节地面探测器至地面的距离大小,获取地面探测器至地面 的距离与回波声强的对应关系;然后再改变地面材质,获取地面探测器至地面距离、地面材质与回波声强的关系。方式三是在同时改变地面材质和地面探测器至地面距离的条件下,获取地面探测器至地面距离、地面材质与回波声强的关系。在此不再赘述。
可以理解的是,所述地面探测器至所述地面的距离是由所述回波时间确定出的,本实施例在实施时,完全可以参照上述过程,建立回波时间-材质-回波声强对应关系图表。
在实际地面探测过程中,获取回波时间和回波声强,根据回波时间计算出自主移动设备底部至所述地面的距离d',根据距离d'和回波声强在标定后的距离-材质-回波声强对应关系图表进行对比,如果所述回波声强在某一种地面材质在距离d'时所对应的回波声强范围内,则判断出此时地面探测器所在的地面材质是与所述回波声强范围相对应的地面材质。
需要说明的是,地面探测器至地面的距离d与自主移动设备底部至所述地面的距离d'既可以相同也可以不同。若地面探测器安装在自主移动设备底部且地面探测器下端面203(即超声波发射端201和/或超声波接收端202下端面)与自主移动设备底部下表面相齐平,如图6c所示,则d=d';否则,若地面探测器安装在自主移动设备底部向内凹入的凹部,如图6d所示,则地面探测器下端面203至地面的距离d大于自主移动设备底部下表面(即底盘400下表面)至地面的距离d',即d>d'。
由于超声波无法对近距离的表面进行探测(比如通常的超声波探测器无法检测2cm之内的表面),即超声波地面探测器只能对大于误差距离阈值D之外的表面进行测量,因此可以如图6d所示将超声波地面探测器设置于自主移动设备底部向内凹入的凹部,使凹入部分的深度大于上述误差距离阈值D,从而使得自主移动设备底部至地面200的距离d'内的范围对于超声波地面探测器都是有意义的可测距离。当然,本领域技术人员应该理解,地面探测器至地面的距离d与安装该地面探测器的自主移动设备的底部至同一块地面的距离d'仅相差一个自主移动设备底部向内凹入部分的深度,而且该凹入部分的深度在地面探测器安装好以后即为确定的常数,只要确定了d,即确定了d',反之亦然,因此本发明的“地面探测器至地面距离”d与“自主移动设备的底部至地面的距离”d'仅有数值上的差别,而在物理意义上是完全相同的,因此本发明的“地面探测器至地面距离”d所涉及的技术方案的范围等价于“自主移动设备的底部至地面的距离”d'的范围,都应在本发明的权利要求保护范围之内。
例如,如图2所示,曲线1为在瓷砖材质下,自主移动设备底部至地面的距离d'与回波声强的对应 关系图;曲线2为在木板材质下,自主移动设备底部至地面的距离d'与回波声强的对应关系图;曲线3为在地毯材质下,自主移动设备底部至地面的距离d'与回波声强的对应关系图。比如探测到的自主移动设备底部至所述地面的距离d'=20mm,回波声强为0.021w/m 2,则根据图2中距离-材质-回波声强对应关系图表,找到距离d'=20mm时,各个地面材质所对应的回波声强范围,从图2中,可知,当距离d'=20mm时,回波声强为0.021w/m 2属于瓷砖地面材质所对应的回波声强范围,则判断出此时地面探测器所在的地面材质是瓷砖地面。
本实施例所述的地面探测方法通过向地面发射超声波探测信号,经地面反射得到携带地面信息的超声回波探测信号反馈信息,并接收探测信号反馈信息,最终根据所述探测信号反馈信息确定出地面材质;本实施例所述的方法不会受地面的颜色、地面的反光性能以及环境光照强度等环境因素的影响,探测准确率高,且探测方法处理过程简单。
图3是本发明地面探测方法实施例二提供的流程示意图。
如图3所示,本实施例所述的地面探测方法包括:
S110:向地面发射超声波探测信号;
S120:接收探测信号反馈信息;
进一步的,所述探测信号反馈信息包括:回波时间和回波强度;
其中,所述回波时间为由设置在地面探测器上的超声波发射端发出超声波探测信号与超声波接收端接收到超声回波的探测信号反馈信息的时间差;
超声波发射端向地面发射的超声波探测信号经地面反射后,成为携带地面材质和/或距离信息的超声回波,称为探测信号反馈信息。所述回波声强为所述超声波接收端接收到的超声回波的声强。
S130':根据所述回波时间和回波强度确定地面材质,并根据所述回波时间确定地面的起伏信息。
根据所述回波时间和回波强度确定地面材质如上述实施例所述,此处不再赘述。
进一步的,根据所述回波时间和回波强度确定地面材质,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
根据所述地面探测器至所述地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到在该距离下,所述回波声强所对应的地面材质。所述距离-材质-回波声强对应关系图表的获取方式参见上 述实施例,此处不再赘述。
进一步的,根据所述回波时间和回波强度确定地面的起伏信息,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
判断所述地面探测器至所述地面的距离是否在预设的安全阈值范围内;
如果所述地面探测器至所述地面的距离在预设的安全阈值范围内,则判断出该地面不具有悬崖,比如地面平坦,或地面起伏小,不影响自主移动设备的正常运行;
如果所述地面探测器至所述地面的距离在预设的安全阈值范围外,则判断出该地面具有悬崖;比如若自主移动设备底部至所述地面的距离d'超过安全阈值范围(比如d'>25mm),则可以确定前方地面可能具有下陷、下凹的悬崖,比如向下的台阶/楼梯、向下的陡坡等地面起伏状态;或者若自主移动设备底部至所述地面的距离d'低于安全阈值范围(比如d'<2mm),则可以确定前方地面具有低于自主移动设备底盘高度的凸起物的悬崖,比如门槛石、过门条、落地扇或落地灯底座、向上凸起的小台阶、向上的斜坡等地面起伏状态。则该种情况下,安全阈值范围为2mm~25mm。本领域技术人员应当理解,对于不同应用场景或自主移动设备类型,可以设置不同的安全阈值范围,比如对于清洁机器人,还可以设置0mm~40mm的安全阈值范围,因此不应以安全阈值范围限制本发明的保护范围。
在实际地面探测过程中,获取回波时间和回波声强,根据回波时间计算出自主移动设备至所述地面的距离d',根据距离d'和回波声强在标定后的距离-材质-回波声强对应关系图表进行对比,如果所述回波声强在某一种地面材质在距离d'时所对应的回波声强范围内,则判断出此时地面探测器所在的地面材质是与所述回波声强范围相对应的地面材质。例如,如图2所示,比如探测到的自主移动设备至所述地面的距离d'=20mm,回波声强为0.012w/m 2,则根据图2中距离-材质-回波声强对应关系图表,找到距离d'=20mm时,各个地面材质所对应的回波声强范围,从图2中,可知,当距离d'=20mm时,回波声强为0.012w/m 2所在的位置属于地毯地面材质所对应的回波声强范围,则判断出此时地面探测器下方的地面材质是地毯覆盖的地面。并进一步判断距离d'=20mm是否在预设的安全阈值范围(0-40mm)内,此时,距离d'=20mm在预设的安全阈值范围内(0-40mm),所以判断出该地面不具有悬崖。本领域技术人员应当理解,上述识别木板、瓷砖、地毯等多种地面材质的实施例仅是对本发明技术方案的解释说明,不应认为是对本发明技术方案的限制。
如图6a所示,地面探测器7用于检测自主移动设备运动路径上的地面起伏信息。现有技术中用于检测地面起伏信息的地面探测器大多属于通过电磁波获取地面起伏信息的光线探测器,比如红外对管是通过红外线检测地面、而TOF(time of flight,飞行时间测距传感器)通过激光检测地面。光线探测器的基本方式都是通过发射端发出探测光线(比如红外线或激光),由接收端接收探测光线经过待测表面后入射到接收端的入射光线,获取光线探测器至地面的距离信息,从而判断被测地面是否出现升起或下降的地面起伏状态。光线探测器经常会受到地面颜色、光线强度、光源变化等因素的干扰,比如深色地板会使光线探测器误判为出现“悬崖”;而过于明亮的光线在镜面反射后射入接收端,会使光线探测器的接收端达到饱和从而无法判断地面状态。
本实施例所述的地面探测方法通过向地面发射超声波探测信号,经地面反射得到携带地面信息的超声回波探测信号反馈信息,并接收探测信号反馈信息,最终根据所述探测信号反馈信息确定地面材质和地面的起伏信息,仅使用一组超声波传感器即能够同时探测地面材质和地面起伏状态,探测方法处理过程简单;该方法能够使得与其相对应的地面探测器结构简单,体积小,对自主移动设备底部的安装空间要求低;此外,本实施例所述的方法可以有效地避免光线对于地面探测器的干扰,不会受地面颜色、地面反光性能以及环境光照强度等环境因素的影响,探测准确率高。
图4是本发明地面探测器实施例一提供的结构原理示意图。
如图4所示,本实施例所述的地面探测器包括:
超声波发射模块1,用于向地面发射超声波探测信号;
反馈信息接收模块2,用于接收探测信号反馈信息;
确定模块3,用于根据所述探测信号反馈信息确定地面材质和地面的起伏信息。
本实施例所述的地面探测器采用上文所述的地面探测方法实施例二的工作原理,即:在探测过程中,所述超声波发射模块1向地面发射超声波探测信号,所述反馈信息接收模块2接收回波时间和回波强度,所述确定模块3再根据所述回波时间和回波强度确定地面材质和地面的起伏信息。
进一步的,所述确定模块3根据所述回波时间和回波强度确定地面材质,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
根据所述地面探测器至所述地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到 在该距离下,所述回波声强所对应的地面材质。
进一步的,所述确定模块3根据所述探测信号反馈信息确定地面的起伏状态,包括:
根据所述回波时间确定地面探测器至所述地面的距离;
判断所述地面探测器至所述地面的距离是否在预设的安全阈值范围内;
如果所述地面探测器至所述地面的距离在预设的安全阈值范围外,则判断该地面具有悬崖。
本实施例所述的地面探测器通过向地面发射探测信号,经地面反射得到携带地面信息的超声回波探测信号反馈信息,接收探测信号反馈信息,并根据所述探测信号反馈信息确定出地面材质和地面的起伏信息;本实施例所述的地面探测器仅使用一组超声波传感器即能够同时探测地面材质和地面起伏状态,地面探测器结构简单,体积小,对自主移动设备底部的安装空间要求低;此外,本实施例所述的地面探测器不会受地面颜色、地面反光性能以及环境光照强度等环境因素的影响,探测准确率高。
图5是本发明自主移动设备实施例一提供的结构原理示意图。
如图5所示,本实施例所述的自主移动设备包括:
运动机构4、控制单元5、驱动单元6,以及地面探测器7;
所述驱动单元6用于驱动运动机构4;
所述运动机构4用于使自主移动设备在地面上运动;
所述地面探测器7设置在所述自主移动设备下面的前部,且朝向地面设置,如图6a所示;
所述地面探测器7如图6b所示,包括超声波发射端201和超声波接收端202;所述超声波发射端201向地面发射超声波探测信号221;超声波探测信号221经地面反射后,成为携带地面材质和/或距离信息的超声回波,称为探测信号反馈信息222;所述超声波接收端202接收探测信号反馈信息222;
所述超声波发射端201和超声波接收端202可以分别是单独的超声传感器,也可以是同一个超声传感器。
所述地面探测器7与所述控制单元5电连接,可将其超声波接收端202采集的探测信号反馈信息222传输至控制单元5。所述控制单元5用于在所述自主移动设备移动过程中,根据所述探测信号反馈信息222判断所述自主移动设备所在地面的材质。
所述控制单元5还与所述驱动单元6电连接,所述控制单元5通过所述驱动单元6控制所述运动机 构4的运动状态。所述控制单元5根据所述地面探测器7采集的探测信号反馈信息判断地面材质和/或地面的起伏状态,并控制所述运动机构4的状态,比如在判断出地面有升起或下降的陡变时,所述控制单元5控制所述运动机构4进行减速或者转向。
所述运动机构4例如可以是轮组、履带、双足或多足等多种形式,也可以是上述几种形式的组合。
本实施例所述的自主移动设备在实际应用中,所述自主移动设备可以是:清洁型机器人,如图6a所示,所述运动机构4可以是包括两个主动轮410和一个辅助轮420,两个主动轮410对称设置,且一个辅助轮420设置在两个主动轮410之间,三者呈三角形分布。其中,每个主动轮410对应连接有一个驱动电机(即驱动单元6),且驱动电机与控制单元5电连接,控制单元5可根据地面探测器7采集的探测信号反馈信息分别控制驱动电机的转速,使两个主动轮410通过差速实现转弯或者同步转动以及直线运动等。所述清洁型机器人的底盘400上还设有两个边刷430。所述地面探测器7设置在所述自主移动设备下面(如图6a所示的底盘400)的前部,且朝向地面设置。如图6b所示,所述地面探测器7包括超声波发射端201和超声波接收端202,超声波发射端201向地面方向发出超声波探测信号221,该超声波探测信号221经地面200反射和/或散射后,将含有地面起伏信息的探测信号反馈信息222部分或全部地被超声波接收端202接收到,所述地面探测器7再根据接收到的探测信号反馈信息222确定地面的起伏状态。
所述自主移动设备是指在设定区域内执行预定任务的智能移动设备,包括但不限于:清洁机器人(Robot Vacuum Cleaner,RVC),例如:智能扫地机、智能擦地机、擦窗机器人等;物流机器人、搬运机器人等;除草机器人、铲冰机器人等;陪伴型移动机器人,例如:智能电子宠物、保姆机器人;服务型移动机器人,例如:酒店、旅馆、会晤场所的接待机器人;工业巡检智能设备,例如电力巡检机器人、智能叉车等;安防机器人,例如:家用或商用智能警卫机器人等。需要说明的是,所述自主移动设备并不仅限于上面提到的这几种,任何具有自主移动功能的设备都应该属于本实施例所述的自主移动设备。
进一步的,所述控制单元5能够根据判断出的地面材质控制所述驱动单元6的工作模式。
比如:当自主移动设备是智能扫地机时,当探测出的地面材质是地毯时,控制智能扫地机以地毯工作模式进行清扫;当探测出的地面材质是瓷砖时,控制智能扫地机以瓷砖工作模式进行清扫。
具体的,在判断出自主移动设备所在的地面材质是瓷砖地面之后,控制所述驱动单元6切换到与瓷砖相对应的工作模式,该工作模式下能够控制轮组电机扭矩,使电机扭矩与自主移动设备所在的地面材 质相适应。现有的自主移动设备在不同材质地面上均输出固定大小的电机扭矩,使得对一些阻力较大的地面的清洁效果差,影响用户的使用满意度。本实施例中,当判断出地面材质是瓷砖时,控制所述驱动单元6切换到与瓷砖相对应的工作模式,由于瓷砖的阻力小,相应的该工作模式下轮组电机扭矩也较小,因此可以降低轮组电机功率、降低主刷及边刷转速、降低抽真空设备的功率等;当判断出地面材质是地毯时,控制所述驱动单元6切换到与地毯相对应的工作模式,由于地毯的阻力大,相应的该工作模式下轮组电机扭矩也较大,因此可以提高轮组电机功率、提高主刷及边刷转速、提高抽真空设备的功率等,同时启动防滑模式和防缠绕模式。如果在地面材质为地毯时,轮组电机扭矩仍然保持在瓷砖地面的电机扭矩,则自主移动装置有可能发生打滑,影响自主移动装置的有效移动,清洁效果差,也不利于清洁机器人处理地毯环境下的特定障碍物类型和特定困扰问题;如果在地面材质为瓷砖时,轮组电机扭矩仍然保持在地毯地面的电机扭矩,则此时自主移动装置的电机扭矩超出了所需值,造成了电能的浪费,同时会使触发的脱困模式不适应当前环境。因此,通过本实施例所述的将自主移动设备的工作模式与所在地面材质相适应,有利于在保证实现较好清洁效果的同时,降低电能消耗,并对实际工作环境有更强的适应性。
进一步的,当检测到悬崖后,所述控制单元5还可以控制报警模块发出报警信号,并控制所述驱动单元6执行防跌落操作,比如,改变当前运行路线,以一定的曲率朝相反方向移动,或者,采取后退等防跌落动作。
本实施例所述的自主移动设备利用安装在自主移动设备底部的地面探测器7能够实现对地面材质和地面起伏状态的探测;所述自主移动设备在不同地面颜色、不同地面反光性能以及不同环境光照强度等环境因素干扰下,均能完成对地面材质和地面起伏状态的探测,并且探测准确率高,有利于避免自主移动设备发生跌落,影响自主移动设备的正常使用,有利于提高自主移动设备的智能化,提高用户体验;此外,由于所述地面探测器器件简单、需要的安装空间小,因此可以节省出自主移动设备上的空间用于集成更多的功能。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本发明的描述中,流程图中或在此以其他方式描述的任何过程或方法描述可以被 理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种地面探测方法,其特征在于,包括:
    向地面发射超声波探测信号;
    接收探测信号反馈信息;
    根据所述探测信号反馈信息确定地面材质。
  2. 根据权利要求1所述的地面探测方法,其特征在于,
    所述探测信号反馈信息包括:回波时间和回波强度;
    根据所述探测信号反馈信息确定地面材质,包括:
    根据所述回波时间确定地面探测器至所述地面的距离;
    根据所述地面探测器至所述地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到在该距离下,所述回波声强所对应的地面材质。
  3. 根据权利要求2所述的地面探测方法,其特征在于,所述距离-材质-回波声强对应关系图表,是通过如下方式之一获得的:
    固定所述地面探测器至地面距离,改变地面材质,并获取与不同地面材质相对应的回波声强,获取地面材质与回波声强的关系;然后改变地面探测器至地面距离,获取地面探测器至地面距离、地面材质与回波声强的关系;或,
    在相同地面材质下,调节地面探测器至地面的距离大小,获取地面探测器至地面的距离与回波声强的对应关系;然后改变地面材质,获取地面探测器至地面距离、地面材质与回波声强的关系;或,
    在改变地面材质和改变地面探测器至地面距离下测量回波声强,获取地面探测器至地面距离、地面材质与回波声强的关系。
  4. 根据权利要求1-3任一项所述的地面探测方法,其特征在于,还包括:根据所述探测信号反馈信息确定地面的起伏状态。
  5. 根据权利要求4所述的地面探测方法,其特征在于,根据所述探测信号反馈信息确定地面的起伏状态,包括:
    根据所述回波时间确定地面探测器至所述地面的距离;
    判断所述地面探测器至所述地面的距离是否在预设的安全阈值范围内;
    如果所述地面探测器至所述地面的距离在预设的安全阈值范围外,则判断该地面具有悬崖。
  6. 一种地面探测器,其特征在于,包括:
    超声波发射模块,用于向地面发射超声波探测信号;
    反馈信息接收模块,用于接收探测信号反馈信息;
    确定模块,用于根据所述探测信号反馈信息确定地面材质和地面的起伏信息。
  7. 一种自主移动设备,其特征在于,包括:
    运动机构、控制单元、驱动单元,以及地面探测器;
    所述驱动单元用于驱动运动机构;
    所述运动机构用于使自主移动设备在地面上运动;
    所述地面探测器设置在所述自主移动设备下面的前部,且朝向地面设置;
    所述地面探测器包括超声波发射端和超声波接收端;所述超声波发射端用于向地面发射超声波探测信号;所述超声波接收端用于接收探测信号反馈信息;
    所述地面探测器与所述控制单元电连接;所述控制单元用于在所述自主移动设备移动过程中,根据所述探测信号反馈信息确定所述自主移动设备所在地面的材质。
  8. 根据权利要求7所述的自主移动设备,其特征在于,
    所述探测信号反馈信息包括:回波时间和回波强度;
    所述控制单元根据所述探测信号反馈信息确定所述自主移动设备所在地面的材质,包括:
    根据所述回波时间确定地面探测器至所述地面的距离或自主移动设备的底部至地面的距离;
    根据所述地面探测器至所述地面的距离或自主移动设备的底部至地面的距离在预先标定的距离-材质-回波声强对应关系图表中,获取到在该距离下,所述回波声强所对应的地面材质。
  9. 根据权利要求7或8所述的自主移动设备,其特征在于,所述控制单元还用于在所述自主移动设备移动过程中,根据所述探测信号反馈信息确定所述自主移动设备所在地面的起伏状态;
    所述控制单元根据所述探测信号反馈信息确定所述自主移动设备所在地面的起伏状态,具体包括:
    根据所述回波时间确定地面探测器至所述地面的距离或自主移动设备的底部至地面的距离;
    判断所述地面探测器至所述地面的距离或自主移动设备的底部至地面的距离是否在预设的安全阈值范围内;
    如果所述地面探测器至所述地面的距离或自主移动设备的底部至地面的距离在预设的安全阈值范围外,则判断该地面具有悬崖。
  10. 根据权利要求9所述的自主移动设备,其特征在于,所述控制单元根据判断出的地面材质控制所述自主移动设备的工作模式;和/或,
    当判断出所述自主移动设备所在地面具有悬崖后,发出报警信号和/或控制所述自主移动设备执行防跌落操作。
PCT/CN2020/078542 2019-04-08 2020-03-10 地面探测方法、地面探测器和自主移动设备 WO2020207173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910276304.3A CN111796290B (zh) 2019-04-08 2019-04-08 地面探测方法、地面探测器和自主移动设备
CN201910276304.3 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020207173A1 true WO2020207173A1 (zh) 2020-10-15

Family

ID=72750605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078542 WO2020207173A1 (zh) 2019-04-08 2020-03-10 地面探测方法、地面探测器和自主移动设备

Country Status (2)

Country Link
CN (1) CN111796290B (zh)
WO (1) WO2020207173A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008982A (zh) * 2021-02-08 2021-06-22 中科传启(苏州)科技有限公司 一种地面材质识别方法、装置及智能清洁装置
CN114237243A (zh) * 2021-12-16 2022-03-25 杭州图灵视频科技有限公司 移动机器人的防跌落方法、装置、电子设备及存储介质
CN114747980A (zh) * 2022-03-31 2022-07-15 苏州三六零机器人科技有限公司 扫地机器人出水量确定方法、装置、设备及存储介质
WO2022170715A1 (zh) * 2021-02-10 2022-08-18 北京石头创新科技有限公司 清洁机器人脱困方法及装置、介质及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112704437B (zh) * 2020-12-23 2021-11-12 炬星科技(深圳)有限公司 扫地机器人控制方法、设备及存储介质
CN112764033B (zh) * 2020-12-24 2024-03-08 珠海格力电器股份有限公司 距离检测方法、装置及移动机器人
CN115047869A (zh) * 2020-12-30 2022-09-13 速感科技(北京)有限公司 自主移动设备的运动参数确定方法和装置
CN114625117A (zh) * 2021-05-06 2022-06-14 北京石头世纪科技股份有限公司 一种智能移动设备及其控制方法、电子设备、存储介质
CN113812889B (zh) * 2021-09-30 2022-11-29 深圳银星智能集团股份有限公司 一种自移动机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130270459A1 (en) * 2012-04-16 2013-10-17 Alex Fontani Autonomous cleaning robot
CN105595913A (zh) * 2014-11-13 2016-05-25 沃维克股份有限公司 具有支撑轮的吸嘴
CN105786005A (zh) * 2016-05-10 2016-07-20 广西升禾环保科技股份有限公司 扫地机械人控制系统
CN106344357A (zh) * 2016-10-21 2017-01-25 张磊 一种电子导盲推车及导盲方法
CN108319266A (zh) * 2018-01-18 2018-07-24 安徽三弟电子科技有限责任公司 基于形状识别清扫机器的扫行方法及其控制系统
CN109581390A (zh) * 2018-11-27 2019-04-05 北京纵目安驰智能科技有限公司 基于超声波雷达的地形检测方法、系统、终端和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830700B2 (ja) * 1988-02-29 1996-03-27 松下電器産業株式会社 床質判定器
JP5868198B2 (ja) * 2012-01-30 2016-02-24 株式会社日立製作所 溶接部の超音波探傷装置及び超音波探傷方法
CN107625486A (zh) * 2017-09-20 2018-01-26 江苏美的清洁电器股份有限公司 材质测量的方法、装置及吸尘器的控制方法和吸尘器
CN109375224A (zh) * 2018-09-30 2019-02-22 小狗电器互联网科技(北京)股份有限公司 一种悬崖检测方法、装置和扫地机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130270459A1 (en) * 2012-04-16 2013-10-17 Alex Fontani Autonomous cleaning robot
CN105595913A (zh) * 2014-11-13 2016-05-25 沃维克股份有限公司 具有支撑轮的吸嘴
CN105786005A (zh) * 2016-05-10 2016-07-20 广西升禾环保科技股份有限公司 扫地机械人控制系统
CN106344357A (zh) * 2016-10-21 2017-01-25 张磊 一种电子导盲推车及导盲方法
CN108319266A (zh) * 2018-01-18 2018-07-24 安徽三弟电子科技有限责任公司 基于形状识别清扫机器的扫行方法及其控制系统
CN109581390A (zh) * 2018-11-27 2019-04-05 北京纵目安驰智能科技有限公司 基于超声波雷达的地形检测方法、系统、终端和存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008982A (zh) * 2021-02-08 2021-06-22 中科传启(苏州)科技有限公司 一种地面材质识别方法、装置及智能清洁装置
CN113008982B (zh) * 2021-02-08 2024-04-26 中科传启(苏州)科技有限公司 一种地面材质识别方法、装置及智能清洁装置
WO2022170715A1 (zh) * 2021-02-10 2022-08-18 北京石头创新科技有限公司 清洁机器人脱困方法及装置、介质及电子设备
CN114237243A (zh) * 2021-12-16 2022-03-25 杭州图灵视频科技有限公司 移动机器人的防跌落方法、装置、电子设备及存储介质
CN114747980A (zh) * 2022-03-31 2022-07-15 苏州三六零机器人科技有限公司 扫地机器人出水量确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN111796290A (zh) 2020-10-20
CN111796290B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2020207173A1 (zh) 地面探测方法、地面探测器和自主移动设备
AU2017306255B2 (en) Mobile robot and control method therefor
KR102035018B1 (ko) 청소 기능 제어 장치 및 이를 구비하는 청소 로봇
KR102329614B1 (ko) 청소기 및 그 제어방법
KR101649665B1 (ko) 이동 로봇 및 그 제어방법
CN112493924B (zh) 清洁机器人及其控制方法
KR102015325B1 (ko) 청소 로봇 및 그 제어 방법
EP3287242B1 (en) Proximity sensor for a mobile robot
CN111526768A (zh) 用于清洁的移动装置及其控制方法
KR20140011216A (ko) 로봇 청소기 및 이의 제어 방법
US11666194B2 (en) Ultrasonic sensor and robot cleaner equipped therewith
US11733379B2 (en) Surface type detection
TWI716957B (zh) 清潔機器人及其材質辨識方法
CN113303733B (zh) 清洁机器人
CN113303707B (zh) 清洁机器人地毯识别方法
KR20220021980A (ko) 청소 로봇 및 그 제어 방법
KR102226360B1 (ko) 이물질 끼임 또는 가림 상태를 검출하는 거리 측정 센서 및 이동 로봇
EP3942330B1 (en) Distance measurement sensor which detects error state in accordance with foreign substance and mobile robot
KR20190134871A (ko) 청소기 및 그 제어방법
KR20150020346A (ko) 적외선 센서 모듈 및 이를 이용한 로봇 청소기
JP7497425B2 (ja) 掃除ロボット及びその制御方法
KR102023993B1 (ko) 청소기 및 그 제어방법
KR20050108894A (ko) 로봇 청소기
JP2018142153A (ja) 環境地図作成装置、これを備える自律走行装置、および、これを備える自律走行ユニット
AU2015201973A1 (en) Proximity sensing on mobile robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788617

Country of ref document: EP

Kind code of ref document: A1