WO2020207107A1 - 电机转子及其维护方法、电机、风力发电机组 - Google Patents

电机转子及其维护方法、电机、风力发电机组 Download PDF

Info

Publication number
WO2020207107A1
WO2020207107A1 PCT/CN2020/074542 CN2020074542W WO2020207107A1 WO 2020207107 A1 WO2020207107 A1 WO 2020207107A1 CN 2020074542 W CN2020074542 W CN 2020074542W WO 2020207107 A1 WO2020207107 A1 WO 2020207107A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
motor rotor
connecting portion
support
motor
Prior art date
Application number
PCT/CN2020/074542
Other languages
English (en)
French (fr)
Inventor
刘立坤
李延慧
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to US17/594,334 priority Critical patent/US20220200381A1/en
Priority to EP20787468.6A priority patent/EP3940924B1/en
Priority to AU2020256485A priority patent/AU2020256485B2/en
Publication of WO2020207107A1 publication Critical patent/WO2020207107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application relates to the field of electric motors, in particular to a motor rotor and a maintenance method thereof, a motor, and a wind power generator set.
  • the direct-drive permanent magnet wind turbine is a kind of motor in which the motor and the impeller are directly connected for driving. Because there is no gearbox, direct-drive permanent magnet wind turbines have many advantages compared with doubly-fed wind turbines, such as high power generation efficiency, low noise, high reliability, and low operation and maintenance costs.
  • Direct-drive permanent magnet wind turbines usually have a low number of revolutions. In order to improve power generation efficiency, the size of the motor can only be increased. Therefore, when the power level of the wind generator is high, the diameter of the direct-drive permanent magnet wind generator increases, which increases the difficulty and cost of the motor transportation.
  • the application provides a motor rotor and a maintenance method thereof, a motor, and a wind power generator set, so as to improve the transportation convenience of the motor rotor.
  • the present application provides a motor rotor, which includes: a magnetic yoke, the magnetic yoke is cylindrical, the peripheral surface of the magnetic yoke can fix magnets; and a rotor support, including a shaft connector and a support ring, the shaft connector can It is coaxially connected with the rotating shaft of the motor, the support ring is arranged on the outer circumference of the shaft connector, and the yoke and the support ring are coaxially connected and arranged, wherein at least one of the yoke and the support ring of the rotor bracket is divided in the circumferential direction of itself Multi-segment structure.
  • the support ring is a structure that is divided into multiple sections in the circumferential direction of the support ring, and includes a plurality of support plates, and the plurality of support plates are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the supporting plate is provided with a first connecting portion
  • the outer circumference of the shaft connector is provided with a second connecting portion
  • the plurality of supporting plates can be connected to the second connecting portion of the shaft connecting piece through the first connecting portion.
  • the support plate extends in an arc shape, and has two opposite ends in the arc extending direction, the first connecting portion is located between the two ends of the support plate, and the first One of the connecting portion and the second connecting portion is a convex connecting portion, and the other is a groove connecting portion matching the shape of the convex connecting portion.
  • the support plate extends in an arc shape and has two opposite ends in the arc extending direction, and each support plate is provided with a first connecting portion at both ends, wherein , The two first connecting portions of the adjacent support plates at the same splicing position are correspondingly connected with one second connecting portion of the shaft connector.
  • each first connecting portion is a convex connecting portion
  • each second connecting portion is a groove connecting portion
  • the groove connecting portion is simultaneously connected to two parts at the same splicing position.
  • the shape of the first connecting portion matches; or, each first connecting portion is a groove connecting portion, each second connecting portion is a convex connecting portion, and the convex connecting portion is simultaneously connected to two first connecting portions at the same splicing position Shape matching.
  • one of the first connecting portion and the second connecting portion has at least one slot formed on a surface facing the other, and each slot is inserted with oppositely disposed A pair of wedges.
  • the motor rotor further includes an end cover.
  • the end cover is ring-shaped and is arranged coaxially and spaced apart from the support ring.
  • the support ring and the end cover are respectively arranged at both ends of the yoke in the axial direction .
  • the support ring is a structure that is divided into multiple sections in the circumferential direction of the support ring, and includes a plurality of support plates, and the plurality of support plates are successively spliced into a ring-shaped sheet in the circumferential direction.
  • the support plates are connected by connecting components; and/or, the yoke is a structure divided into multiple sections in the circumferential direction of itself, including multiple yoke sections, and the multiple yoke sections are successively spliced into a cylindrical body along the circumferential direction, Adjacent yoke segments are connected by connecting components; and/or, the end cover is a structure divided into multiple segments in the circumferential direction of itself, including multiple end cover segments, which are successively spliced into a ring shape along the circumferential direction For the sheet-shaped body, adjacent end cap segments are connected by a connecting component; and/or, the shaft connector and the support ring are connected by a connecting component.
  • adjacent support plates, or adjacent yoke segments, or adjacent end cap segments, or shaft connectors and support rings form a first pin hole at the splicing position
  • the connecting component includes: a connecting base plate, connected with an adjacent support plate, or connected with an adjacent yoke section, or connected with an adjacent end cover section, or connected with a shaft connector and a support ring, and the connecting base is provided with A second pin hole corresponding to the position of the first pin hole; and a pin block, which connects the second pin hole with the first pin hole, and is fixed with the connecting substrate.
  • adjacent support plates, or adjacent yoke segments, or adjacent end cap segments, or shaft connectors and support rings respectively have first connections at the splicing position
  • a hole is provided on the connecting substrate with a second connecting hole corresponding to the position of the first connecting hole, and a first bolt passing through the first gasket connects and fixes the second connecting hole on the connecting substrate with the corresponding first connecting hole.
  • the connecting substrate is provided with a third connecting hole on the periphery of the second pin hole
  • the pin block is in a stepped cylindrical shape, and is provided with a fourth connecting hole corresponding to the position of the third connecting hole
  • a second bolt penetrated with a second gasket connects and fixes the third connecting hole on the pin block with the fourth connecting hole on the connecting base plate.
  • the support ring is a structure that is divided into multiple sections in the circumferential direction of the support ring, and includes a plurality of support plates, and the plurality of support plates are successively spliced into a ring-shaped sheet in the circumferential direction.
  • a first splicing surface is formed between the supporting plates of the yoke.
  • the yoke is a structure divided into multiple segments in the circumferential direction of itself, including multiple yoke segments, and the multiple yoke segments are successively spliced into a cylindrical body along the circumferential direction.
  • a second splicing surface is formed between the yoke segments.
  • the end cover is a structure that is divided into multiple segments in the circumferential direction of its own, including multiple end cover segments.
  • the multiple end cover segments are successively spliced into annular sheet-shaped bodies in the circumferential direction, adjacent to each other.
  • a third splicing surface is formed between the end cap segments, wherein at least two of the first splicing surface, the second splicing surface, and the third splicing surface are mutually staggered.
  • the motor rotor further includes a sealant covering at least one of the first splicing surface, the second splicing surface, or the third splicing surface.
  • the support ring is a structure that is divided into multiple segments in the circumferential direction of the support ring, and includes a plurality of support plates, which are successively spliced into annular sheets in the circumferential direction, and the yoke It is a structure that is divided into multiple segments in the circumferential direction of itself, including multiple yoke segments, which are successively spliced into a cylindrical body along the circumferential direction, wherein the number of yoke segments is any positive integer of the number of support plates Times.
  • the shaft connector includes a central connecting part and a plurality of connecting arms radiatingly distributed on the outer periphery of the central connecting part, and the central connecting part is provided with a through hole matching the rotating shaft of the motor.
  • the two connecting arms are connected with the support ring.
  • the central connecting portion is connected to the rotating shaft of the motor through a connecting flange arranged coaxially with the central connecting portion.
  • the plurality of connecting arms divide the space between the central connecting portion and the support ring into a plurality of hollow areas
  • the motor rotor further includes a cover plate, which is arranged to cover the hollow area
  • the plurality of connecting arms divide the space between the central connecting portion and the support ring into a plurality of hollow areas
  • the motor rotor further includes a filter element, which is arranged in the hollow area
  • an embodiment of the present application provides a method for maintaining a motor rotor.
  • the motor rotor includes a yoke and a rotor support. At least one of the support ring of the yoke and the rotor support is a structure divided into multiple sections in the circumferential direction of the motor. At least one of the yoke and the support ring can be split into multiple segment units.
  • the maintenance method of the motor rotor includes: detecting the motor rotor to obtain defective segment units; and separating the defective segment units from the motor rotor so that The motor rotor has a to-be-filled area; a non-defective segment unit with the same function as the defective segment unit is installed in the to-be-filled area of the motor rotor to obtain a repaired motor rotor.
  • the motor rotor further includes an end cover, and at least one of the yoke, the support ring, and the end cover is a structure that is divided into multiple sections in the circumferential direction of itself, so that the yoke, the support At least one of the ring and the end cap can be split into multiple fragment units.
  • an embodiment of the present application provides a motor, which includes: a fixed shaft; a rotating shaft that is coaxially connected to the fixed shaft through a bearing, and the rotating shaft can rotate; a stator that is coaxially fixed with the fixed shaft; and a rotor assembly, and The rotating shaft is coaxially connected, and the rotor assembly includes any one of the above-mentioned motor rotors.
  • the rotor support of the motor rotor is connected with the rotating shaft and can rotate with the rotating shaft relative to the stator.
  • the peripheral surface of the yoke of the motor rotor is provided with magnets.
  • an embodiment of the present application provides a wind power generator set, which includes: an impeller; and a motor according to any one of the foregoing embodiments, wherein the rotating shaft of the motor is coaxially connected with the impeller.
  • the motor rotor includes a rotor support and a magnetic yoke, wherein the rotor support can be coaxially connected with the rotating shaft of the motor through a shaft connector, and the support ring drives the magnetic yoke to rotate, and the inner circumference of the magnetic yoke
  • the surface or the outer peripheral surface can be provided with magnets, so that the magnets can rotate with the rotating shaft of the motor.
  • at least one of the yoke and the support ring of the rotor bracket is a structure that is divided into multiple segments in the circumferential direction of itself, so that the yoke and/or support ring can be split into multiple segment units.
  • the fragment units are spliced with each other to obtain a complete rotor.
  • the transportation and storage of the rotor are facilitated, and it is especially suitable for the transportation of the motor rotor with a larger diameter.
  • the motor rotor can be repaired by replacing the segment unit of the faulty part, thereby saving the maintenance cost of the motor rotor.
  • Fig. 1 is a perspective view of a motor rotor according to a first embodiment of the present application
  • Fig. 2 is a perspective view of a part of a segment unit of a motor rotor according to the first embodiment of the present application;
  • Fig. 3 is a perspective view of a motor rotor according to a second embodiment of the present application.
  • Figure 4 is a perspective view of a motor rotor according to a third embodiment of the present application.
  • Fig. 5 is a perspective view of a part of a segment unit of a motor rotor according to a third embodiment of the present application.
  • Fig. 6 is a perspective view of the connection part between the support plate of the motor rotor and the shaft connector according to the third embodiment of the present application;
  • Fig. 7 is a perspective exploded view of the connection part between the support plate of the motor rotor and the shaft connector according to the third embodiment of the present application;
  • Fig. 8 is a perspective view of a motor rotor according to a fourth embodiment of the present application.
  • Fig. 9 is an exploded perspective view of a connecting component in a motor rotor according to a fourth embodiment of the present application.
  • F1-first splicing surface F2-second splicing surface; F3-third splicing surface;
  • B1-first bolt B2-second bolt
  • G1-first gasket G2-second gasket
  • the embodiment of the present application provides a motor rotor, which can be applied to the motor to rotate relative to the stator of the motor to generate electricity or perform work.
  • FIG. 1 is a perspective view of a motor rotor provided according to a first embodiment of the present application.
  • the motor rotor of this embodiment includes a yoke 100 and a rotor support 200.
  • the yoke 100 has a cylindrical shape, and the peripheral surface of the yoke 100 can fix a magnet.
  • the yoke 100 has an inner circumferential surface and an outer circumferential surface.
  • the magnet can be fixed to the outer circumferential surface of the yoke 100 to form a motor rotor of an inner rotor type motor.
  • the magnet can be It is fixed to the inner peripheral surface of the yoke 100 to form a motor rotor of an outer rotor type motor.
  • the rotor support 200 includes a shaft connector 210 and a support ring 220.
  • the shaft connector 210 can be coaxially connected with the rotating shaft of the motor.
  • the support ring 220 is provided on the outer periphery of the shaft connector 210, and the yoke 100 is coaxially connected with the support ring 220 Set up.
  • the shaft connector 210 rotates accordingly, and drives the support ring 220 and the yoke 100 connected to the support ring 220 to rotate, so that the yoke 100 rotates coaxially with the rotating shaft of the motor.
  • At least one of the yoke 100 and the support ring 220 of the rotor support 200 is a structure that is divided into multiple sections in its own circumferential direction, so that at least one of the yoke 100 and the support ring 220 can be split into multiple sections. If necessary, multiple segment units can be spliced to each other to obtain a complete rotor support 200 and a complete yoke 100, thereby obtaining a complete rotor structure.
  • a structure divided into multiple segments in the circumferential direction of itself refers to a structure formed by dividing into multiple segment units in the circumferential direction of itself, and the multiple segment units are sequentially spliced along the circumferential direction.
  • the volume of the multiple segment units is significantly smaller than the volume of the overall rotor, which makes it easier to transport and store the rotor while ensuring that the complete rotor can meet the power requirements.
  • the rotors of large-volume motors such as high-power direct-drive permanent magnet wind turbines can especially reduce transportation costs.
  • the repair is achieved by replacing the segment unit of the faulty part.
  • the yoke 100 when the yoke 100 is a structure that is divided into multiple segments in the circumferential direction of itself, it may include multiple yoke segments 110 that are spliced with each other.
  • a certain yoke section 110 fails, it is only necessary to replace the faulty yoke section 110 with a new yoke section 110 to continue the stable operation of the motor rotor, thereby saving the maintenance cost of the motor rotor.
  • the shaft connector 210 of this embodiment includes a central connecting portion 211 and a plurality of connecting arms 212 radiatingly distributed on the outer periphery of the central connecting portion 211.
  • the central connecting portion 211 may be in a circular ring shape, and a through hole H9 matching the rotating shaft of the motor is provided inside, and the central connecting portion 211 may be coaxially connected with the rotating shaft of the motor through the through hole H9.
  • the central connecting portion 211 is connected to the rotating shaft of the motor through a connecting flange arranged coaxially with the central connecting portion 211.
  • the plurality of connecting arms 212 are connected to the support ring 220 so that the rotational movement of the central connecting portion 211 can be transmitted to the support ring 220.
  • the plurality of connecting arms 212 divide the space between the central connecting portion 211 and the support ring 220 into a plurality of hollow areas CA, that is, the plurality of connecting arms 212 and the central connecting portion 211 together form a spoke structure, because the spoke structure includes multiple
  • the hollow area CA reduces the weight of the rotor support 200 and saves material costs.
  • the motor rotor may also include other components that cover or fill the hollow area CA.
  • the motor rotor further includes a cover plate, which is arranged to cover the hollow area CA.
  • the cover plate may be a single ring shape and cover multiple hollow areas CA at the same time; there may also be multiple cover plates, for example, corresponding to the number of hollow areas CA, and are arranged to cover the hollow areas CA in a one-to-one correspondence.
  • the motor rotor further includes a filter element.
  • the filter element is, for example, a filter box, which can filter the gas passing through the filter element.
  • the filter element is disposed in the hollow area CA, wherein the filter element can be connected to at least one of the support ring 220, the connecting arm 212, or the central connecting portion 211.
  • the motor rotor further includes an end cover 300.
  • the end cover 300 is ring-shaped and is arranged coaxially and spaced apart from the support ring 220 of the rotor support 200.
  • the support ring 220 and the end cover 300 are respectively arranged on the shaft of the yoke 100. Towards the ends.
  • the stator may include a sealing ring matched with the end cover 300 of the motor rotor, wherein the orthographic projection of the sealing ring on a plane perpendicular to the motor rotor axis and the orthographic projection of the end cover 300 on a plane perpendicular to the motor rotor axis are mutually Overlapping, a structure such as a sealing rubber strip may be arranged between the sealing ring and the end cover 300, so that a dynamic seal is formed between the end cover 300 and the sealing ring of the stator.
  • At least one of the yoke 100, the support ring 220, and the end cover 300 may be a structure that is divided into multiple sections in the circumferential direction of itself.
  • the yoke 100, the support ring 220, and the end cover 300 The structure is divided into multiple segments in the circumferential direction of itself as an example.
  • one of the yoke 100, the support ring 220, and the end cover 300 may be a structure divided into multiple sections in the circumferential direction of the yoke 100, or the yoke 100 2.
  • Any two of the support ring 220 and the end cap 300 are structures that are divided into multiple sections in the circumferential direction.
  • FIG. 1 a part of the segment unit of the motor rotor is exploded and shown
  • FIG. 2 is a perspective view of a part of the segment unit of the motor rotor provided according to the first embodiment of the present application.
  • the yoke 100 is a structure divided into multiple sections in the circumferential direction of the yoke 100, and includes a plurality of yoke sections 110, which are successively spliced into a cylindrical body along the circumferential direction.
  • the support ring 220 is a structure divided into multiple sections in the circumferential direction of the support ring 220, and includes a plurality of support plates 221, which are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the end cap 300 is a structure that is divided into multiple sections in the circumferential direction of the end cap 300, and includes a plurality of end cap sections 310, which are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the yoke section 110 and the support plate 221, and the yoke section 110 and the end cover section 310 can be connected by bolts, welding, or the like.
  • each support plate 221 is provided with a first connecting portion C1, and the outer circumference of the shaft connector 210 is provided with a second connecting portion C2, so that a plurality of support plates 221 can pass through the first connecting portion.
  • C1 is connected to the second connecting portion C2 of the shaft connector 210.
  • each supporting plate 221 extends in an arc shape, and has two opposite ends in the arc extending direction.
  • the first connecting portion C1 is located between the two ends of the supporting plate 221.
  • the shaft connector 210 includes a plurality of connecting arms 212, wherein the second connecting portion C2 is provided at an end of each connecting arm 212 away from the central connecting portion 211, and the number of connecting arms 212 can be equal to the number of supporting plates 221 Similarly, the multiple connecting arms 212 are connected to the multiple supporting plates 221 in a one-to-one correspondence.
  • the first connecting portion C1 is a convex connecting portion
  • the second connecting portion C2 is a groove connecting portion, wherein the groove connecting portion and the convex connecting portion have a shape matching.
  • the second connecting portion C2 may be a convex connecting portion
  • the first connecting portion C1 may be a groove connecting portion that matches the shape of the convex connecting portion.
  • the convex connecting portion and the groove connecting portion are matched and connected to each other, and can transmit the tangential load in the rotor structure of the motor, so that the shaft connector 210 can drive the fully spliced support ring 220 to rotate, thereby driving the yoke 100 to rotate.
  • the number of yoke segments 110 included in the motor rotor, the number of support plates 221, and the number of end cover segments 310 are the same. In some other embodiments, the number of yoke segments 110 can also be greater than the number of support plates 221; the number of yoke segments 110 can also be greater than the number of end cap segments 310. In some embodiments, the number of yoke segments 110 may be any positive integer multiple of the number of support plates 221.
  • a plurality of support plates 221 are successively spliced into a circular sheet-shaped body in the circumferential direction, a plurality of yoke sections 110 are successively spliced into a cylindrical body in the circumferential direction, and a plurality of end cap sections 310 are arranged in the circumferential direction. Successively spliced into annular flakes.
  • a first splicing surface F1 is formed between adjacent support plates 221
  • a second splicing surface F2 is formed between adjacent yoke segments 110
  • a third splicing surface F3 is formed between adjacent end cover segments 310.
  • the first splicing surface F1, the second splicing surface F2, and the third splicing surface F3 are aligned with each other.
  • the support plate 221, the yoke section 110, and the end cover section 310 can be The prefabricated segments are connected to each other, and the size of each prefabricated segment is smaller than the size of the complete rotor, thereby facilitating transportation.
  • multiple prefabricated segments are spliced and connected, which can further save the time cost of assembling and splicing the motor rotor and reduce the installation complexity.
  • At least two of the first splicing surface F1, the second splicing surface F2, and the third splicing surface F3 described above may be arranged in an offset manner.
  • FIG. 3 is a perspective view of a motor rotor according to a second embodiment of the present application.
  • the motor rotor includes a yoke 100, a rotor support 200, and an end cover 300.
  • the yoke 100, the rotor support 200, and the end cover 300 The specific structure and connection relationship of is substantially the same as the corresponding structure and connection relationship in the first embodiment.
  • the difference from the first embodiment is that in the second embodiment, the first splicing surface F1 and the second splicing surface F2 described above are arranged in an offset manner, and the second splicing surface F2 and the third splicing surface F3 are also arranged in an offset manner.
  • the force can be differentiated, the force area can be increased, and the friction between the splicing parts can be increased to make the motor
  • the rotor is more robust and stable, which improves the integrity of the motor rotor.
  • the motor rotor further includes a sealant covering at least one of the first splicing surface F1, the second splicing surface F2, or the third splicing surface F3, thereby improving the rotor support 200, the yoke 100, or the end
  • the sealing performance of at least one of the covers 300 For example, the second splicing surface F2 between each adjacent yoke segment 110 is covered with sealant, so as to prevent multiphase flow impurities from entering the motor rotor from the second splicing surface F2, and improve the sealing performance of the yoke 100.
  • the sealant may be a moisture-curing sealant, for example, Terostat-MS 930 sealant is used.
  • the motor rotor of this embodiment includes a yoke 100, a rotor support 200, and an end cover 300.
  • the rotor support 200 includes a shaft connecting member 210 and a support ring 220.
  • the shaft connecting member 210 includes a central connecting portion 211 and a plurality of connecting arms 212 radiatingly distributed on the outer periphery of the central connecting portion 211.
  • the central connecting portion 211 is provided with a through hole H9 matching the rotating shaft of the motor.
  • the plurality of connecting arms 212 are connected to the support ring 220.
  • the yoke 100 is cylindrical, and the end cover 300 is ring-shaped.
  • the end cover 300 and the support ring 220 of the rotor support 200 are coaxially spaced apart, wherein the support ring 220 and the end cover 300 are respectively provided at both ends of the yoke 100 in the axial direction. .
  • the yoke 100, the support ring 220, and the end cover 300 are all structures that are divided into multiple sections in the circumferential direction of the yoke.
  • a part of the segment unit of the motor rotor is exploded and shown
  • Fig. 5 is a perspective view of a part of the segment unit of the motor rotor according to the third embodiment of the present application.
  • the yoke 100 includes a plurality of yoke segments 110, which are successively spliced into a cylindrical body along the circumferential direction.
  • the support ring 220 includes a plurality of support plates 221, and the plurality of support plates 221 are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the end cap 300 includes a plurality of end cap segments 310 which are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the yoke section 110 and the support plate 221, and the yoke section 110 and the end cover section 310 may be connected by bolts, welding, or the like.
  • each support plate 221 is provided with a first connecting portion C1, and the outer circumference of the shaft connector 210 is provided with a second connecting portion C2, so that a plurality of support plates 221 can pass through the first connecting portion.
  • C1 is connected to the second connecting portion C2 of the shaft connector 210.
  • the supporting plate 221 extends in an arc shape and has two opposite ends in the arc extending direction, wherein each supporting plate 221 is provided with a first connecting portion C1 at both ends.
  • first connecting portions C1 of adjacent supporting plates 221 at the same splicing position are correspondingly connected to one second connecting portion C2 of the shaft connector 210.
  • the shaft connecting member 210 includes a plurality of connecting arms 212, wherein the second connecting portion C2 is provided at an end of each connecting arm 212 away from the central connecting portion 211.
  • the number of connecting arms 212 and the support The number of plates 221 is the same.
  • the number of first connecting portions C1 is twice that of second connecting portions C2.
  • Each second connecting portion C2 connects two first connecting portions C1, and one of the two first connecting portions C1 is located
  • One of the supporting plates 221 is located on the other adjacent supporting plate 221, so that every two adjacent supporting plates 221 are connected to the same connecting arm 212.
  • each first connecting portion C1 is a convex connecting portion
  • each second connecting portion C2 is a groove connecting portion
  • the groove connecting portion is simultaneously connected to two first connecting portions C1 at the same splicing position.
  • Shape matching That is, the adjacent support plates 221 are spliced with each other, and the two first connecting portions C1 at the splicing position are also spliced to form a combined shape of the two first connecting portions C1, and the combined shape matches the shape of the second connecting portion C2 .
  • each first connecting portion C1 may also be configured as a groove connecting portion
  • each second connecting portion C2 may be configured as a convex connecting portion
  • the convex connecting portion is simultaneously connected to two parts at the same splicing position.
  • the shapes of the first connecting parts C1 match.
  • Figures 6 and 7 are respectively a perspective view and a perspective exploded view of the connecting part of the support plate of the motor rotor and the shaft connector according to the third embodiment of the present application.
  • one of the first connecting portion C1 and the second connecting portion C2 has at least one slot S1 formed on a surface facing the other, and each slot S1 is inserted with a pair of wedged blocks W1 facing each other.
  • the first connecting portion C1 is a rectangular parallelepiped block-shaped convex connecting portion, and has two corners at the end facing the second connecting portion C2.
  • the second connecting portion C2 is a rectangular parallelepiped groove connecting portion, which penetrates the two axially opposite surfaces of the shaft connecting member 210, so as to have a first wall surface facing the support plate 221 and a first wall surface connected to the first wall surface.
  • the second wall surface and the third wall surface are connected, wherein the second wall surface and the third wall surface are arranged oppositely.
  • the first corner portion is in contact with the first wall surface and the second wall surface, and the second corner portion is in contact with the first wall surface.
  • a wall surface is in contact with the first connecting portion C1 of the adjacent supporting plate 221.
  • the slot S1 is provided at one of the aforementioned first corners.
  • a pair of wedges W1 are inserted into the slot S1 in the axial direction opposite to each other, so that the connecting surfaces of the connecting portion between the supporting plate 221 and the shaft connector 210 are more closely fitted, which can effectively ensure torque transmission and increase structural stability.
  • the motor rotor includes a yoke 100, a rotor support 200, and an end cover 300.
  • the yoke 100, the rotor support 200, and the end cover 300 The specific structure and connection relationship of is substantially the same as the corresponding structure and connection relationship in the third embodiment.
  • the yoke 100 includes a plurality of yoke segments 110 which are successively spliced into a cylindrical body along the circumferential direction.
  • the support ring 220 includes a plurality of support plates 221, and the plurality of support plates 221 are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the end cap 300 includes a plurality of end cap segments 310 which are successively spliced into an annular sheet-shaped body along the circumferential direction.
  • the number of yoke segments 110 is twice the number of support plates 221, and the number of yoke segments 110 is also twice the number of end cover segments 310.
  • the support plates 221 and end cover segments 310 are arranged one-to-one and spaced apart from each other. Two supporting plates 221 are connected between the supporting plate 221 and the end cover section 310 of the slab. By dividing the yoke section 110 with a curved structure into more segments, the convenience of transportation is further improved.
  • the support ring 220 is a structure that is divided into multiple segments in the circumferential direction of the support ring 220, and includes a plurality of support plates 221, which are successively spliced into annular sheets in the circumferential direction. They are connected by the connecting component 400.
  • the yoke 100 is a structure that is divided into multiple sections in the circumferential direction of itself, and includes a plurality of yoke sections 110, which are successively spliced into a cylindrical body along the circumferential direction, and adjacent yokes The segments 110 are connected by a connecting component 400;
  • the end cap 300 is a structure that is divided into multiple segments in the circumferential direction of itself, and includes a plurality of end cap segments 310, which are successively spliced into annular sheets along the circumferential direction, and adjacent ends
  • the cover segments 310 are connected by a connecting assembly 400.
  • the shaft connector 210 and the support ring 220 are connected by a connecting assembly 400.
  • the support ring 220 is a structure that is divided into multiple sections in the circumferential direction of the support ring 220, and includes a plurality of support plates 221.
  • Each support plate 221 is provided with a first connecting portion C1, and the outer circumference of the shaft connector 210
  • a second connecting portion C2 is provided, and the first connecting portion C1 of each support plate (221) is connected to the second connecting portion C2 of the shaft connector 210 through the connecting assembly 400.
  • the adjacent support plates 221 and the adjacent yoke segments 110 are connected by the connecting assembly 400.
  • Each adjacent support plate 221 may be connected by a set of connecting components 400, and each adjacent yoke section 110 may be connected by two sets of connecting components 400.
  • the connecting components are provided between each adjacent yoke section 110, between each adjacent support plate 221, between each adjacent end cover section 310, and between the shaft connector 210 and the support ring 220 The number of 400 can be adjusted as needed.
  • Fig. 9 is an exploded perspective view of a connecting assembly in a motor rotor according to a fourth embodiment of the present application.
  • the connecting assembly 400 connecting adjacent yoke segments 110 is taken as an example for illustration.
  • the connecting assembly 400 connecting the adjacent support plates 221 and the connecting assembly 400 connecting the adjacent end cover segments 310 are similar in structure to the connecting assembly 400. No more details.
  • Adjacent yoke segments 110 form a first pin hole H1 at the splicing position.
  • the first pin hole H1 is jointly formed at the splicing position by the adjacent yoke segments 110, and each yoke segment 110 is in the splicing position.
  • Each has a half structure of the first pin hole H1, so that a complete first pin hole H1 can be formed when the adjacent yoke segments 110 are spliced together.
  • the first pin hole H1 is not limited to being jointly formed by adjacent yoke segments 110. In some other embodiments, it can also be completely formed in at least any one of the adjacent yoke segments 110. The surface, the number and size can be adjusted according to the size of the load.
  • the connecting assembly 400 connects the adjacent support plate 221, or the adjacent end cover section 310, or the shaft connection 210 and the support ring 220, the adjacent support plate 221 or the adjacent end cover
  • the segment 310 or the shaft connecting piece 210 and the support ring 220 may also form the aforementioned first pin hole H1 at the splicing position.
  • connection assembly 400 of the embodiment of the present application includes a connection substrate 410 and a pin block 420. Wherein, the connecting substrate 410 is connected to the adjacent yoke section 110.
  • the adjacent support plate 221, or the adjacent yoke section 110, or the adjacent end cover section 310, or the shaft connector 210 and the support ring 220 respectively have first connecting holes H3 at the splicing position, and the connecting substrate 410 is provided There is a second connecting hole H4 corresponding to the position of the first connecting hole H3, and a first bolt B1 passing through the first gasket G1 connects the second connecting hole H4 on the connecting substrate 410 with the corresponding first connecting hole H3 fixed.
  • the yoke sections 110 respectively have first connecting holes H3, and the connecting substrate 410 is provided with a second connecting hole H4 corresponding to the position of the first connecting hole H3 of the adjacent yoke section 110.
  • the first bolt B1 of a gasket G1 connects and fixes the second connecting hole H4 on the connecting base plate 410 and the first connecting hole H3 of the adjacent yoke section 110 respectively, so as to realize the connection of the adjacent yoke section 110.
  • the connecting base plate 410 may be connected to the adjacent support plate 221 , Or connect with the adjacent end cap section 310, or connect the shaft connector 210 with the support ring 220.
  • the connecting substrate 410 is provided with a second pin hole H2 corresponding to the position of the first pin hole H1, and the pin block 420 connects the second pin hole H2 with the first pin hole H1 and is fixed to the connecting substrate 410.
  • the connecting substrate 410 is provided with a third connecting hole H5 on the periphery of the second pin hole H2, and the pin block 420 is in a stepped cylindrical shape, and is provided with a fourth connecting hole H6 corresponding to the position of the third connecting hole H5 ,
  • the third connecting hole H5 on the pin block 420 and the fourth connecting hole H6 on the connecting base plate 410 are connected and fixed by the second bolt B2 through the second gasket G2, so that the pin block 420 is connected to the connecting base plate 410 fixed.
  • the pin block 420 positions and connects the second pin hole H2 and the first pin hole H1 to each other.
  • the specific number of the first bolt B1 and the pin block 420 in the connecting assembly 400 may be determined by actual conditions.
  • the connecting structure formed by the connecting assembly 400 and the adjacent yoke section 110, or the adjacent support plate 221, or the adjacent end cover section 310 can be effective Withstand axial and tangential loads.
  • the connection process of the above structure is simple and the assembly is convenient.
  • the first pin hole H1 and the first connecting hole H3 may be blind holes opened on the surface of the yoke section 110 facing the connecting substrate 410, so as to prevent the pin block 420 and the first bolt B1 from penetrating the yoke.
  • the blind hole design of the first pin hole H1 and the first connecting hole H3 can avoid interference caused by the pin block 420 and the first bolt B1 when the magnet is installed.
  • the embodiments of the present application also provide a motor, which can be applied to a wind power generator for generating electricity, where the wind power generator is, for example, a direct drive permanent magnet wind power generator.
  • the motor includes a fixed shaft, a rotating shaft, a stator and a rotor assembly.
  • the fixed shaft is fixedly arranged in the nacelle of the wind power generator set, the rotating shaft is coaxially connected with the fixed shaft through a bearing, and the rotating shaft can be connected with the hub and blades of the wind power generator set so as to be able to rotate.
  • the stator is coaxially fixed with the fixed shaft, wherein the stator may include a stator core and a stator winding.
  • the rotor assembly is coaxially connected with the rotating shaft.
  • the rotor assembly may include the motor rotor of any of the above embodiments.
  • the rotor support 200 of the motor rotor is connected to the rotating shaft and can rotate with the rotating shaft relative to the stator.
  • the circumference of the yoke 100 of the motor rotor The surface is provided with a magnet.
  • the magnet is arranged on the inner circumferential surface of the yoke 100 of the motor rotor; when the motor is an inner rotor type motor, the magnet is arranged on the outer circumferential surface of the yoke 100 of the motor rotor.
  • the stator winding included in the stator cuts the magnetic lines of force formed by the magnets on the rotor assembly, thereby generating electricity.
  • the motor rotor includes a rotor support 200 and a magnetic yoke 100.
  • At least one of the magnetic yoke 100 and the support ring 220 of the rotor support 200 is a structure that is divided into multiple segments in the circumferential direction, so that the yoke 100.
  • At least one of the support ring 220 can be split into a plurality of segment units. If necessary, the plurality of segment units can be spliced to each other to obtain a complete rotor support 200 and a complete yoke 100, thereby obtaining a complete rotor assembly.
  • the volume of the multiple segment units is significantly smaller than the volume of the overall rotor, which makes it easier to transport and store the rotor while ensuring that the complete rotor can meet the power requirements.
  • the rotors of large-volume motors such as high-power direct-drive permanent magnet wind turbines can especially reduce transportation costs.
  • the repair is achieved by replacing the segment unit of the faulty part.
  • the yoke 100 when the yoke 100 is a structure that is divided into multiple segments in the circumferential direction of itself, it may include multiple yoke segments 110 that are spliced with each other.
  • a certain yoke section 110 fails, it is only necessary to replace the faulty yoke section 110 with a new yoke section 110 to continue the stable operation of the motor rotor, thereby saving the maintenance cost of the motor rotor.
  • At least one of the yoke 100 and the support ring 220 of the rotor support 200 is a structure that is divided into multiple sections in its own circumferential direction, so that at least one of the yoke 100 and the support ring 220 can be split into multiple sections. Fragment unit.
  • the maintenance process of the motor rotor is, for example: inspecting the motor rotor to obtain defective segment units; then, separating the defective segment units from the motor rotor so that the motor rotor has an area to be filled; then, connecting the defective segment units
  • the non-defective segment unit with the same function is installed in the area to be filled in the motor rotor to obtain the repaired motor rotor.
  • the step of detecting the motor rotor manual detection can be performed, or detection can be performed by a matching detection device.
  • the maintenance process of the motor rotor can be performed on the top of the tower of the wind turbine, without the need to transport the motor rotor to the bottom of the tower (for example, the ground or the sea) for maintenance.
  • wind power generation can be used The conventional hoisting equipment in the aircrew field transports it to the ground or the sea.
  • the weight of the non-defective segment unit is also much lower than the weight of the entire motor rotor, so it can also be transported from the ground or sea to the top of the tower by the conventional hoisting equipment in the field of wind turbines, and the matching positioning equipment will be used to make it non-defective.
  • the segment unit is installed in the to-be-filled area of the motor rotor.
  • the motor rotor further includes an end cover 300.
  • the end cover 300 has a ring shape and is arranged coaxially and spaced apart from the support ring 220 of the rotor support 200, wherein the support ring 220 and the end cover 300 are respectively arranged on the yoke 100 Axial ends.
  • At least one of the yoke 100, the support ring 220, and the end cover 300 may be a structure that is divided into multiple sections in its own circumferential direction, so that at least one of the yoke 100, the support ring 220, and the end cover 300 can be split into multiple Fragment unit.
  • the yoke 100, the support ring 220, and the end cover 300 are all structures that are divided into multiple segments in the circumferential direction of themselves, so that the yoke 100, the support ring 220, and the end cover 300 can all be split into multiple segment units.
  • a certain segment unit fails, it is only necessary to replace the faulty segment unit with a corresponding new segment unit to continue to repair the motor rotor, thereby saving the maintenance cost of the motor rotor.
  • An embodiment of the present application also provides a wind power generator set, which includes an impeller and a motor according to any one of the foregoing embodiments.
  • the rotating shaft of the motor is coaxially connected with the impeller, so that the impeller drives the rotating shaft of the motor to rotate when the impeller rotates in the wind.
  • the impeller may include a hub and a plurality of blades connected to the hub.
  • the wind power generating set also includes a tower and a nacelle arranged on the tower.
  • the motor also includes a fixed shaft, a stator and a rotor assembly.
  • the fixed shaft is fixedly arranged in the nacelle of the wind power generator, and the rotating shaft is coaxially connected with the fixed shaft through a bearing.
  • the stator is coaxially fixed with the fixed shaft, wherein the stator may include a stator core and a stator winding.
  • the rotor assembly is coaxially connected with the rotating shaft.
  • the rotor assembly may include the motor rotor of any of the above embodiments.
  • the rotor support 200 of the motor rotor is connected to the rotating shaft and can rotate with the rotating shaft relative to the stator.
  • the circumference of the yoke 100 of the motor rotor The surface is provided with a magnet.
  • the motor rotor includes a rotor support 200 and a magnetic yoke 100.
  • At least one of the magnetic yoke 100 and the support ring 220 of the rotor support 200 is a structure divided into multiple sections in the circumferential direction of itself, so that At least one of the magnetic yoke 100 and the support ring 220 can be split into multiple segment units.
  • the multiple segment units can be spliced with each other to obtain a complete rotor support 200 and a complete yoke 100, thereby obtaining a complete rotor Components.
  • the volume of the multiple segment units is significantly smaller than the volume of the overall rotor, which makes it easier to transport and store the rotor while ensuring that the complete rotor can meet the power requirements.
  • the rotors of large-volume motors such as high-power direct-drive permanent magnet wind turbines can especially reduce transportation costs.
  • the repair can be achieved by replacing the segmented unit of the faulty part, which results in the maintenance cost of the wind turbine generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本申请公开了一种电机转子及其维护方法、电机、风力发电机组,电机转子包括:磁轭,磁轭呈筒状,磁轭的周面能够固定磁体;以及转子支架,包括轴连接件以及支撑环,轴连接件能够与电机的转动轴同轴连接,支撑环设置于轴连接件的外周,磁轭与支撑环同轴连接设置,其中,磁轭及转子支架的支撑环的至少一者为在自身周向上分为多段的结构体。根据本申请实施例提供的电机转子及其维护方法、电机、风力发电机组,通过对磁轭和/或支撑环拆分,便于转子的运输以及存放。

Description

电机转子及其维护方法、电机、风力发电机组
相关申请的交叉引用
本申请要求了2019年4月12日提交的、申请号为201910293934.1、发明名称为“电机转子及电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机领域,具体涉及一种电机转子及其维护方法、电机、风力发电机组。
背景技术
直驱永磁风力发电机是一种电机与叶轮直接连接进行驱动的电机。由于没有齿轮箱,直驱永磁风力发电机与双馈风力发电机相比具备发电效率高、噪音低、可靠性高、运行维护成本低等诸多优点。
直驱永磁风力发电机通常转数很低,为了提高发电效率,只能增大电机的体积。因此,当风力发电机功率等级很高时,直驱永磁风力发电机的直径随之增大,增大了电机的运输的难度和成本。
发明内容
本申请提供了一种电机转子及其维护方法、电机、风力发电机组,提高电机转子的运输便捷性。
第一方面,本申请提供了一种电机转子,其包括:磁轭,磁轭呈筒状,磁轭的周面能够固定磁体;以及转子支架,包括轴连接件以及支撑环,轴连接件能够与电机的转动轴同轴连接,支撑环设置于轴连接件的外周,磁轭与支撑环同轴连接设置,其中,磁轭及转子支架的支撑环的至少一者为在自身周向上分为多段的结构体。
根据本申请第一方面的前述任一实施方式,支撑环为在自身周向上分为多段的结构体,包括多个支撑板,多个支撑板沿周向相继拼接为环形片状体,每个支撑板设有第一连接部,轴连接件的外周设置有第二连接部,多个支撑板能够通过第一连接部与轴连接件的第二连接部连接。
根据本申请第一方面的前述任一实施方式,支撑板呈弧状延伸,并且在弧状延伸方向上具有相对的两个端部,第一连接部位于支撑板的两个端部之间,第一连接部、第二连接部中的其中一个为凸起连接部,另一个为与凸起连接部形状匹配的凹槽连接部。
根据本申请第一方面的前述任一实施方式,支撑板呈弧状延伸,并且在弧状延伸方向上具有相对的两个端部,每个支撑板在两个端部设有第一连接部,其中,相邻的支撑板在同一拼接位置的两个第一连接部对应与轴连接件的一个第二连接部连接。
根据本申请第一方面的前述任一实施方式,每个第一连接部为凸起连接部,每个第二连接部为凹槽连接部,并且凹槽连接部同时与同一拼接位置的两个第一连接部形状匹配;或者,每个第一连接部为凹槽连接部,每个第二连接部为凸起连接部,并且凸起连接部同时与同一拼接位置的两个第一连接部形状匹配。
根据本申请第一方面的前述任一实施方式,第一连接部、第二连接部中的其中一个在朝向另一个的表面上形成有至少一个插槽,每个插槽内插设相向设置的一对楔形块。
根据本申请第一方面的前述任一实施方式,电机转子还包括端盖,端盖呈环状,与支撑环同轴间隔设置,支撑环、端盖分别设置于磁轭的轴向的两端。
根据本申请第一方面的前述任一实施方式,支撑环为在自身周向上分为多段的结构体,包括多个支撑板,多个支撑板沿周向相继拼接为环形片状体,相邻的支撑板之间通过连接组件连接;和/或,磁轭为在自身周向上分为多段的结构体,包括多个磁轭段,多个磁轭段沿周向相继拼接为筒状体,相邻的磁轭段之间通过连接组件连接;和/或,端盖为在自身周向上分为多段的结构体,包括多个端盖段,多个端盖段沿周向相继拼接为环形片 状体,相邻的端盖段之间通过连接组件连接;和/或,轴连接件与支撑环之间通过连接组件连接。
根据本申请第一方面的前述任一实施方式,相邻的支撑板、或者相邻的磁轭段、或者相邻的端盖段、或者轴连接件与支撑环在拼接位置形成第一销孔,连接组件包括:连接基板,与相邻的支撑板连接、或者与相邻的磁轭段连接、或者与相邻的端盖段连接、或者将轴连接件与支撑环连接,连接基板设有与第一销孔位置对应的第二销孔;以及销块,将第二销孔与第一销孔连接,并且与连接基板固定。
根据本申请第一方面的前述任一实施方式,相邻的支撑板、或者相邻的磁轭段、或者相邻的端盖段、或者轴连接件与支撑环在拼接位置分别具有第一连接孔,连接基板上设置有与第一连接孔位置对应的第二连接孔,穿设有第一垫片的第一螺栓将连接基板上的第二连接孔与对应第一连接孔连接固定。
根据本申请第一方面的前述任一实施方式,连接基板在第二销孔的周边设有第三连接孔,销块呈阶梯圆柱状,并且设有与第三连接孔位置对应的第四连接孔,穿设有第二垫片的第二螺栓将销块上的第三连接孔与连接基板上的第四连接孔连接固定。
根据本申请第一方面的前述任一实施方式,支撑环为在自身周向上分为多段的结构体,包括多个支撑板,多个支撑板沿周向相继拼接为环形片状体,相邻的支撑板之间形成第一拼接面,磁轭为在自身周向上分为多段的结构体,包括多个磁轭段,多个磁轭段沿周向相继拼接为筒状体,相邻的磁轭段之间形成第二拼接面,端盖为在自身周向上分为多段的结构体,包括多个端盖段,多个端盖段沿周向相继拼接为环形片状体,相邻的端盖段之间形成第三拼接面,其中,第一拼接面、第二拼接面、第三拼接面中至少两种相互错位设置。
根据本申请第一方面的前述任一实施方式,电机转子还包括覆盖第一拼接面、第二拼接面、或第三拼接面中的至少一者的密封胶。
根据本申请第一方面的前述任一实施方式,支撑环为在自身周向上分为多段的结构体,包括多个支撑板,多个支撑板沿周向相继拼接为环形片 状体,磁轭为在自身周向上分为多段的结构体,包括多个磁轭段,多个磁轭段沿周向相继拼接为筒状体,其中,磁轭段的数量是支撑板的数量的任意正整数倍。
根据本申请第一方面的前述任一实施方式,轴连接件包括中心连接部以及辐射分布于中心连接部外周的多个连接臂,中心连接部设有与电机的转动轴匹配的通孔,多个连接臂与支撑环连接。
根据本申请第一方面的前述任一实施方式,中心连接部通过与中心连接部同轴设置的连接法兰与电机的转动轴连接。
根据本申请第一方面的前述任一实施方式,多个连接臂将中心连接部与支撑环之间的空间分隔为多个镂空区域,电机转子还包括:盖板,盖板覆盖镂空区域设置。
根据本申请第一方面的前述任一实施方式,多个连接臂将中心连接部与支撑环之间的空间分隔为多个镂空区域,电机转子还包括:过滤件,过滤件设置于镂空区域。
第二方面,本申请实施例提供一种电机转子的维护方法,电机转子包括磁轭及转子支架,磁轭及转子支架的支撑环的至少一者为在自身周向上分为多段的结构体,使得磁轭、支撑环的至少一者能够拆分为多个片段单元,电机转子的维护方法包括:检测电机转子,得到存在缺陷的片段单元;将存在缺陷的片段单元从电机转子上分离,使得电机转子具有待填补区;将与存在缺陷的片段单元功能相同的无缺陷片段单元安装于电机转子的待填补区,得到修复的电机转子。
根据本申请第二方面的前述任一实施方式,电机转子还包括端盖,磁轭、支撑环、端盖中的至少一者为在自身周向上分为多段的结构体,使得磁轭、支撑环、端盖的至少一者能够拆分为多个片段单元。
第三方面,本申请实施例提供一种电机,其包括:固定轴;转动轴,通过轴承与固定轴同轴连接,转动轴能够转动;定子,与固定轴同轴固定;以及转子组件,与转动轴同轴连接,转子组件包括上述任一项的电机转子,电机转子的转子支架与转动轴连接,能够随转动轴相对定子转动,电机转子的磁轭的周面设有磁体。
第四方面,本申请实施例提供一种风力发电机组,其包括:叶轮;以及根据前述任一实施方式的电机,电机的转动轴与叶轮同轴连接。
根据本申请实施例提供的电机转子,电机转子包括转子支架以及磁轭,其中转子支架能够通过轴连接件与电机的转动轴同轴连接,并且通过支撑环带动磁轭转动,磁轭的内周面或外周面可以设置磁体,使得磁体能够随电机的转动轴转动。其中,磁轭及转子支架的支撑环的至少一者为在自身周向上分为多段的结构体,使得磁轭和/或支撑环能够拆分为多个片段单元,在需要时,可以将多个片段单元相互拼接得到完整的转子。通过对磁轭和/或支撑环拆分,便于转子的运输以及存放,其尤其适用于直径较大的电机转子的运输。电机转子在后期维护过程中,通过替换故障部位的片段单元实现维修,从而节省电机转子的维护成本。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是根据本申请第一实施例提供的电机转子的立体图;
图2是根据本申请第一实施例提供的电机转子的一部分片段单元的立体图;
图3是根据本申请第二实施例提供的电机转子的立体图;
图4是根据本申请第三实施例提供的电机转子的立体图;
图5是根据本申请第三实施例提供的电机转子的一部分片段单元的立体图;
图6是根据本申请第三实施例提供的电机转子的支撑板与轴连接件相连接部位的立体图;
图7是根据本申请第三实施例提供的电机转子的支撑板与轴连接件相连接部位的立体分解图;
图8是根据本申请第四实施例提供的电机转子的立体图;
图9是根据本申请第四实施例提供的电机转子中连接组件的立体分解 图。
图中:
100-磁轭;
110-磁轭段;
200-转子支架;
210-轴连接件;211-中心连接部;212-连接臂;
220-支撑环;221-支撑板;
300-端盖;
310-端盖段;
400-连接组件;
410-连接基板;420-销块;
C1-第一连接部;C2-第二连接部;
S1-插槽;
W1-楔形块;
F1-第一拼接面;F2-第二拼接面;F3-第三拼接面;
H1-第一销孔;H2-第二销孔;H3-第一连接孔;H4-第二连接孔;H5-第三连接孔;H6-第四连接孔;H9-通孔;
B1-第一螺栓;B2-第二螺栓;
G1-第一垫片;G2-第二垫片;
CA-镂空区域CA。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者 暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请实施例提供一种电机转子,其可以应用于电机中相对电机的定子转动以进行发电或做功。
图1是根据本申请第一实施例提供的电机转子的立体图,本实施例的电机转子包括磁轭100以及转子支架200。其中,磁轭100呈筒状,磁轭100的周面能够固定磁体。可以理解的是,磁轭100具有内周面和外周面,在一些实施例中,磁体可以固定于磁轭100的外周面,从而形成内转子型电机的电机转子,本实施例中,磁体可以固定于磁轭100的内周面,从而形成外转子型电机的电机转子。
转子支架200包括轴连接件210以及支撑环220,其中轴连接件210能够与电机的转动轴同轴连接,支撑环220设置于轴连接件210的外周,磁轭100与支撑环220同轴连接设置。当电机的转动轴转动时,轴连接件210随之转动,并且带动支撑环220以及与支撑环220连接的磁轭100转动,使得磁轭100与电机的转动轴同轴转动。
在本实施例中,磁轭100及转子支架200的支撑环220的至少一者为在自身周向上分为多段的结构体,使得磁轭100、支撑环220的至少一者能够拆分为多个片段单元,在需要时,可以将多个片段单元相互拼接得到完整的转子支架200以及完整的磁轭100,进而得到完整的转子结构。
本文中,“在自身周向上分为多段的结构体”即在自身周向上分为多个片段单元,多个片段单元沿周向依次拼接形成的结构体。
通过对磁轭100和/或支撑环220拆分,多个片段单元的体积明显小于整体转子的体积,从而在保证完整转子能够满足功率要求的前提下,更便于转子的运输以及存放,对于大功率的直驱永磁风力发电机组等大体积电 机的转子,尤其能够降低运输成本。
电机转子在后期维护过程中,通过替换故障部位的片段单元实现维修,例如,磁轭100为在自身周向上分为多段的结构体时,其可以包括多个相互拼接的磁轭段110,如果其中某个磁轭段110发生故障,仅需要采用新的磁轭段110替换该故障磁轭段110即可继续实现电机转子的稳定运转,从而节省电机转子的维护成本。
如图1,本实施例的轴连接件210包括中心连接部211以及辐射分布于中心连接部211外周的多个连接臂212。中心连接部211可以呈圆环状,其内部设有与电机的转动轴匹配的通孔H9,中心连接部211可以通过该通孔H9与电机的转动轴同轴连接。在一些实施例中,中心连接部211通过与中心连接部211同轴设置的连接法兰与电机的转动轴连接。多个连接臂212与支撑环220连接,使得中心连接部211的转动运动可以传动至支撑环220。多个连接臂212将中心连接部211与支撑环220之间的空间分隔为多个镂空区域CA,即多个连接臂212与中心连接部211共同形成轮辐式结构,由于轮辐式结构包括多个镂空区域CA,从而减轻转子支架200的重量并且节省材料成本。
根据电机或电机转子的不同设计,电机转子还可以包括覆盖或填充上述镂空区域CA的其它部件。例如,电机转子还包括盖板,盖板覆盖镂空区域CA设置。盖板可以是环状的单个,并且同时覆盖多个镂空区域CA;盖板也可以是多个,例如是与镂空区域CA的数量对应,并且一一对应覆盖镂空区域CA设置。通过设置盖板,提高对电机转子内的磁体等部件的保护作用。再例如,电机转子还包括过滤件,该过滤件例如是滤盒,能够对经过过滤件的气体进行过滤。过滤件设置于镂空区域CA,其中过滤件可以与支撑环220、连接臂212、或中心连接部211中的至少一者连接。过滤件可以是多个,例如是与镂空区域CA一一对应设置。通过设置过滤件,使得电机转子内部能够与外界通风的同时,对外界流向电机转子内部的气体进行过滤,提高对电机转子内的磁体等部件的保护作用。
本实施例中,电机转子还包括端盖300,端盖300呈环状,并且与转子支架200的支撑环220同轴间隔设置,其中支撑环220、端盖300分别设 置于磁轭100的轴向的两端。
电机转子在应用于电机中时,可以相对电机的定子转动以进行发电或做功。定子可以包括与电机转子的端盖300匹配的密封环,其中,密封环在垂直于电机转子轴向的平面上的正投影与端盖300在垂直于电机转子轴向的平面上的正投影相互交叠,密封环与端盖300之间可以设有密封胶条等结构,使得端盖300与定子的密封环之间形成动密封。
磁轭100、支撑环220、端盖300中的至少一者可以为在自身周向上分为多段的结构体,在本申请第一实施例中,以磁轭100、支撑环220、端盖300均为在自身周向上分为多段的结构体为例进行说明。然而可以理解的是,在其它一些实施例的电机转子中,也可以是磁轭100、支撑环220、端盖300中的其中一个为在自身周向上分为多段的结构体,或者磁轭100、支撑环220、端盖300中的其中任意两个为在自身周向上分为多段的结构体。
图1中,将电机转子的一部分片段单元分解示出,图2是根据本申请第一实施例提供的电机转子的一部分片段单元的立体图。本实施例中,磁轭100为在自身周向上分为多段的结构体,包括多个磁轭段110,多个磁轭段110沿周向相继拼接为筒状体。支撑环220为在自身周向上分为多段的结构体,包括多个支撑板221,多个支撑板221沿周向相继拼接为环形片状体。端盖300为在自身周向上分为多段的结构体,包括多个端盖段310,多个端盖段310沿周向相继拼接为环形片状体。
其中磁轭段110与支撑板221之间、磁轭段110与端盖段310之间可以采用螺栓、焊接等方式进行连接。
如图1和图2,本实施例中每个支撑板221设有第一连接部C1,轴连接件210的外周设置有第二连接部C2,使得多个支撑板221能够通过第一连接部C1与轴连接件210的第二连接部C2连接。
具体地,每个支撑板221呈弧状延伸,并且在弧状延伸方向上具有相对的两个端部,本实施例中,第一连接部C1位于支撑板221的两个端部之间。本实施例中,轴连接件210包括多个连接臂212,其中每个连接臂212的远离中心连接部211的一端设置该第二连接部C2,连接臂212的数量可 以和支撑板221的数量相同,多个连接臂212与多个支撑板221一一对应连接。
本实施例中,第一连接部C1为凸起连接部,第二连接部C2为凹槽连接部,其中该凹槽连接部与该凸起连接部形状匹配。在其它一些实施例中,也可以是第二连接部C2为凸起连接部,第一连接部C1为与该凸起连接部形状匹配的凹槽连接部。凸起连接部与凹槽连接部相互匹配连接,能够传递电机转子结构中的切向载荷,使得轴连接件210能够带动拼接完整的支撑环220转动,进而带动磁轭100转动。
在一些实施例中,电机转子包括的磁轭段110的数量、支撑板221的数量、端盖段310的数量相同。在其它一些实施例中,磁轭段110的数量也可以大于支撑板221的数量;磁轭段110的数量也可以大于端盖段310的数量。而在一些实施例中,磁轭段110的数量可以是支撑板221的数量的任意正整数倍。
如图1,如前所述,多个支撑板221沿周向相继拼接为环形片状体,多个磁轭段110沿周向相继拼接为筒状体,多个端盖段310沿周向相继拼接为环形片状体。其中,相邻的支撑板221之间形成第一拼接面F1,相邻的磁轭段110之间形成第二拼接面F2,相邻的端盖段310之间形成第三拼接面F3。
在本实施例中,第一拼接面F1、第二拼接面F2、第三拼接面F3相互对齐设置,电机转子在拆分状态下,可以将支撑板221、磁轭段110、端盖段310相互连接得到预制片段,每个预制片段的尺寸小于完整转子的尺寸,从而方便运输。在组合得到完整电机转子的过程中,将多个预制片段进行拼接连接,能够进一步节省电机转子组装拼接的时间成本,降低安装复杂度。
在其它一些实施例中,上述的第一拼接面F1、第二拼接面F2、第三拼接面F3中至少两种可以相互错位设置。
图3是根据本申请第二实施例提供的电机转子的立体图,该电机转子包括磁轭100、转子支架200以及端盖300,其中第二实施例中磁轭100、转子支架200以及端盖300的具体结构以及连接关系与第一实施例中相应 结构和连接关系大致相同。与第一实施例不同的是,在第二实施例中,上述的第一拼接面F1与第二拼接面F2相互错位设置,第二拼接面F2与第三拼接面F3也相互错位设置。通过对第一拼接面F1、第二拼接面F2、第三拼接面F3进行有规律地错位设置,可以分化受力,增大受力面积,增大各拼接部分之间的摩擦力,使电机转子更加坚固稳定,提高电机转子的整体性。
在一些实施例中,电机转子还包括覆盖第一拼接面F1、第二拼接面F2、或第三拼接面F3中的至少一者的密封胶,从而提高转子支架200、磁轭100、或端盖300的至少一者的密封性能。例如,每相邻磁轭段110之间的第二拼接面F2处覆盖有密封胶,从而避免多相流杂质从第二拼接面F2处进入电机转子内部,提高磁轭100的密封性能。密封胶可以是湿气固化式密封胶,例如,采用Terostat-MS 930密封胶。
图4是根据本申请第三实施例提供的电机转子的立体图,本实施例的电机转子包括磁轭100、转子支架200以及端盖300。
转子支架200包括轴连接件210以及支撑环220,轴连接件210包括中心连接部211以及辐射分布于中心连接部211外周的多个连接臂212。中心连接部211内部设有与电机的转动轴匹配的通孔H9。多个连接臂212与支撑环220连接。
磁轭100呈筒状,端盖300呈环状,端盖300与转子支架200的支撑环220同轴间隔设置,其中支撑环220、端盖300分别设置于磁轭100的轴向的两端。
本实施例中,磁轭100、支撑环220、端盖300均为在自身周向上分为多段的结构体。图4中,将电机转子的一部分片段单元分解示出,图5是根据本申请第三实施例提供的电机转子的一部分片段单元的立体图。
其中,磁轭100包括多个磁轭段110,多个磁轭段110沿周向相继拼接为筒状体。支撑环220包括多个支撑板221,多个支撑板221沿周向相继拼接为环形片状体。端盖300包括多个端盖段310,多个端盖段310沿周向相继拼接为环形片状体。磁轭段110与支撑板221之间、磁轭段110与端盖段310之间可以采用螺栓、焊接等方式进行连接。
如图4和图5,本实施例中每个支撑板221设有第一连接部C1,轴连接件210的外周设置有第二连接部C2,使得多个支撑板221能够通过第一连接部C1与轴连接件210的第二连接部C2连接。
与第一实施例不同的是,支撑板221呈弧状延伸,并且在弧状延伸方向上具有相对的两个端部,其中每个支撑板221在两个端部设有第一连接部C1。其中,相邻的支撑板221在同一拼接位置的两个第一连接部C1对应与轴连接件210的一个第二连接部C2连接。
在本实施例中,轴连接件210包括多个连接臂212,其中每个连接臂212的远离中心连接部211的一端设置该第二连接部C2,本实施例中连接臂212的数量与支撑板221的数量相同,第一连接部C1的数量是第二连接部C2的两倍,每个第二连接部C2连接两个第一连接部C1,两个第一连接部C1中的一个位于一个支撑板221上,另一个位于相邻的另一个支撑板221上,使得每相邻两个支撑板221与同一连接臂212连接。
本实施例中,每个第一连接部C1为凸起连接部,每个第二连接部C2为凹槽连接部,并且该凹槽连接部同时与同一拼接位置的两个第一连接部C1形状匹配。即相邻支撑板221相互拼接,在该拼接位置处的两个第一连接部C1也进行拼接,形成两个第一连接部C1的组合形状,该组合形状与第二连接部C2的形状匹配。
在其它一些实施例中,每个第一连接部C1也可以设置为凹槽连接部,每个第二连接部C2可以设置为凸起连接部,并且凸起连接部同时与同一拼接位置的两个第一连接部C1形状匹配。
图6、图7分别是根据本申请第三实施例提供的电机转子的支撑板与轴连接件相连接部位的立体图、立体分解图。进一步地,第一连接部C1、第二连接部C2中的其中一个在朝向另一个的表面上形成有至少一个插槽S1,每个插槽S1内插设相向设置的一对楔形块W1。
本实施例中,第一连接部C1为长方体块状的凸起连接部,并在朝向第二连接部C2的一端具有两个拐角部,为方便说明,第一连接部C1的两个拐角部记为第一拐角部和第二拐角部。第二连接部C2为长方体状的凹槽连接部,该凹槽连接部贯穿轴连接件210在轴向上相对的两个表面,从 而具有面向支撑板221的第一壁面以及与该第一壁面连接的第二壁面和第三壁面,其中第二壁面和第三壁面相对设置。支撑板221与轴连接件210相连时,每个第一连接部C1中,上述的第一拐角部分别与上述的第一壁面和第二壁面接触,上述的第二拐角部分别与上述的第一壁面以及相邻的支撑板221的第一连接部C1接触。其中在本实施例中,插槽S1设置在其中一个上述的第一拐角部处。一对楔形块W1在轴向上相向插入该插槽S1,使得支撑板221与轴连接件210相连接部位处的各连接面更加贴合,可以有效保证扭矩的传递,增加结构稳定性。
图8是根据本申请第四实施例提供的电机转子的立体图,该电机转子包括磁轭100、转子支架200以及端盖300,其中第四实施例中磁轭100、转子支架200以及端盖300的具体结构以及连接关系与第三实施例中相应结构和连接关系大致相同。
与第三实施例不同的是,磁轭100包括多个磁轭段110,多个磁轭段110沿周向相继拼接为筒状体。支撑环220包括多个支撑板221,多个支撑板221沿周向相继拼接为环形片状体。端盖300包括多个端盖段310,多个端盖段310沿周向相继拼接为环形片状体。其中磁轭段110的数量是支撑板221数量的两倍,磁轭段110的数量也是端盖段310数量的两倍,支撑板221与端盖段310一一对应相隔设置,每对相隔设置的支撑板221、端盖段310之间连接有两个支撑板221。通过将呈曲面结构的磁轭段110进行更多片段的拆分,进一步提高运输的便利性。
此外,在一些实施例中,支撑环220为在自身周向上分为多段的结构体,包括多个支撑板221,多个沿周向相继拼接为环形片状体,相邻的支撑板221之间通过连接组件400连接。
在一些实施例中,磁轭100为在自身周向上分为多段的结构体,包括多个磁轭段110,多个磁轭段110沿周向相继拼接为筒状体,相邻的磁轭段110之间通过连接组件400连接;
在一些实施例中,端盖300为在自身周向上分为多段的结构体,包括多个端盖段310,多个端盖段310沿周向相继拼接为环形片状体,相邻的端盖段310之间通过连接组件400连接。
此外在一些实施例中,轴连接件210与支撑环220之间通过连接组件400连接。进一步地,在一些实施例中,支撑环220为在自身周向上分为多段的结构体,包括多个支撑板221,每个支撑板221设有第一连接部C1,轴连接件210的外周设置有第二连接部C2,每个支撑板(221)的第一连接部C1通过连接组件400与轴连接件210的第二连接部C2连接。
例如在本实施例中,相邻的支撑板221之间以及相邻的磁轭段110之间通过连接组件400连接。其中每相邻支撑板221之间可以通过一组连接组件400相连接,每相邻磁轭段110之间可以通过两组连接组件400相连接。在其它一些实施例中,每相邻磁轭段110之间、每相邻支撑板221之间、每相邻端盖段310之间、轴连接件210与支撑环220之间设置的连接组件400的数目可以根据需要调整设置。
图9是根据本申请第四实施例提供的电机转子中连接组件的立体分解图。图9中以连接相邻磁轭段110的连接组件400为例进行说明,连接相邻支撑板221的连接组件400、连接相邻端盖段310的连接组件400与该连接组件400结构类似,不再详述。
相邻的磁轭段110在拼接位置形成第一销孔H1,本实施例中,第一销孔H1通过相邻的磁轭段110在拼接位置共同形成,每个磁轭段110在拼接位置处各具有第一销孔H1一半的结构,使得相邻磁轭段110拼接时能够形成完整的第一销孔H1。需要说明的是,第一销孔H1不限于通过相邻的磁轭段110共同形成,在其它一些实施例中,也可以完整形成于相邻磁轭段110中的至少任一个磁轭段110的表面,并且数量和尺寸可以根据所承受载荷的大小进行调整设计。
可以理解的是,当连接组件400连接相邻的支撑板221、或者相邻的端盖段310、或者轴连接件210与支撑环220时,相邻的支撑板221、或者相邻的端盖段310、或者轴连接件210与支撑环220在拼接位置处也可以形成上述的第一销孔H1。
本申请实施例的连接组件400包括连接基板410以及销块420。其中,连接基板410与相邻的磁轭段110连接。
相邻的支撑板221、或者相邻的磁轭段110、或者相邻的端盖段310、 或者轴连接件210与支撑环220在拼接位置分别具有第一连接孔H3,连接基板410上设置有与第一连接孔H3位置对应的第二连接孔H4,穿设有第一垫片G1的第一螺栓B1将连接基板410上的所述第二连接孔H4与对应第一连接孔H3连接固定。
本实施例中,磁轭段110分别具有第一连接孔H3,连接基板410上设置有与相邻磁轭段110的第一连接孔H3位置对应的第二连接孔H4,通过穿设有第一垫片G1的第一螺栓B1将连接基板410上的第二连接孔H4与相邻磁轭段110的第一连接孔H3分别连接固定,实现相邻磁轭段110的连接。
可以理解的是,当连接组件400连接相邻的支撑板221、或者相邻的端盖段310、或者轴连接件210与支撑环220时,可以是连接基板410与相邻的支撑板221连接、或者与相邻的端盖段310连接、或者将轴连接件210与支撑环220连接。
连接基板410设有与第一销孔H1位置对应的第二销孔H2,销块420将第二销孔H2与第一销孔H1连接,并且与连接基板410固定。
在本实施例中,连接基板410在第二销孔H2的周边设有第三连接孔H5,销块420呈阶梯圆柱状,并且设有与第三连接孔H5位置对应的第四连接孔H6,通过穿设有第二垫片G2的第二螺栓B2将销块420上的第三连接孔H5与连接基板410上的第四连接孔H6连接固定,实现销块420连接与连接基板410的固定。同时,销块420将第二销孔H2与第一销孔H1相互定位并连接。
连接组件400中第一螺栓B1以及销块420的具体数量可以由实际情况决定。通过在连接组件400中设置第一螺栓B1以及销块420,使得连接组件400与相邻磁轭段110、或者相邻的支撑板221、或者相邻的端盖段310形成的连接结构能够有效承受沿轴向和切向的载荷。同时上述结构连接工艺简单,组装方便。
在一些实施例中,第一销孔H1、第一连接孔H3可以是在磁轭段110的朝向连接基板410的表面开设的盲孔,从而避免销块420以及第一螺栓B1穿透磁轭段110,当磁轭100的内表面设置磁体时,第一销孔H1、第一 连接孔H3采用盲孔设计可以避免销块420以及第一螺栓B1对磁体安装时造成的干涉。
本申请实施例还提供一种电机,该电机可以应用于风力发电机组中用于发电,其中风力发电机组例如是直驱永磁风力发电机组。该电机包括固定轴、转动轴、定子以及转子组件。固定轴在风力发电机组的机舱内固定设置,转动轴通过轴承与该固定轴同轴连接,转动轴可以与风力发电机组的轮毂及叶片连接,从而能够转动。定子与固定轴同轴固定,其中定子可以包括定子铁芯以及定子绕组。转子组件与转动轴同轴连接,其中转子组件可以包括上述任一实施例的电机转子,电机转子的转子支架200与转动轴连接,能够随转动轴相对定子转动,电机转子的磁轭100的周面设置有磁体。当电机为外转子型电机时,磁体设置于电机转子的磁轭100的内周面;当电机为内转子型电机时,磁体设置于电机转子的磁轭100的外周面。电机转子相对定子转动时,定子包括的定子绕组切割转子组件上的磁体形成的磁力线,从而发电。
根据本申请实施例的电机,其电机转子包括转子支架200以及磁轭100,磁轭100及转子支架200的支撑环220的至少一者为在自身周向上分为多段的结构体,使得磁轭100、支撑环220的至少一者能够拆分为多个片段单元,在需要时,可以将多个片段单元相互拼接得到完整的转子支架200以及完整的磁轭100,进而得到完整的转子组件。通过对磁轭100和/或支撑环220拆分,多个片段单元的体积明显小于整体转子的体积,从而在保证完整转子能够满足功率要求的前提下,更便于转子的运输以及存放,对于大功率的直驱永磁风力发电机组等大体积电机的转子,尤其能够降低运输成本。
电机转子在后期维护过程中,通过替换故障部位的片段单元实现维修,例如,磁轭100为在自身周向上分为多段的结构体时,其可以包括多个相互拼接的磁轭段110,如果其中某个磁轭段110发生故障,仅需要采用新的磁轭段110替换该故障磁轭段110即可继续实现电机转子的稳定运转,从而节省电机转子的维护成本。
在本实施例中,磁轭100及转子支架200的支撑环220的至少一者为 在自身周向上分为多段的结构体,使得磁轭100、支撑环220的至少一者能够拆分为多个片段单元。电机转子的维护过程例如是:检测电机转子,得到存在缺陷的片段单元;之后,将存在缺陷的片段单元从电机转子上分离,使得电机转子具有待填补区;接着,将与存在缺陷的片段单元功能相同的无缺陷片段单元安装于电机转子的待填补区,得到修复的电机转子。
检测电机转子的步骤中,可以是人工检测,也可以通过匹配的检测装置进行检测。当电机转子是风力发电机组的电机转子时,电机转子的维护过程可以在风力发电机组的塔筒顶部进行,而无需将电机转子运送至塔筒底部(例如地面或海面)进行维护。具体地,在塔筒顶部完成前述检测电机转子的步骤、将存在缺陷的片段单元从电机转子上分离的步骤后,由于存在缺陷的片段单元重量远低于整个电机转子的重量,可以采用风力发电机组领域常规的吊装设备将其运送至地面或海面。并且,无缺陷片段单元重量也远低于整个电机转子的重量,从而也可以采用风力发电机组领域常规的吊装设备将其从地面或海面运送至塔筒顶部,再通过匹配的定位设备将无缺陷片段单元安装于电机转子的待填补区。
在一些实施方式中,电机转子还包括端盖300,端盖300呈环状,并且与转子支架200的支撑环220同轴间隔设置,其中支撑环220、端盖300分别设置于磁轭100的轴向的两端。磁轭100、支撑环220、端盖300中的至少一者可以为在自身周向上分为多段的结构体,使得磁轭100、支撑环220、端盖300的至少一者能够拆分为多个片段单元。例如,磁轭100、支撑环220、端盖300均为在自身周向上分为多段的结构体,使得磁轭100、支撑环220、端盖300均能够拆分为多个片段单元。在其中某个片段单元发生故障时,仅需要采用对应的新的片段单元替换该故障片段单元即可继续实现电机转子的修复,从而节省电机转子的维护成本。
本申请实施例还提供一种风力发电机组,其包括叶轮以及根据前述任一实施方式的电机,该电机的转动轴与叶轮同轴连接,使得叶轮在迎风转动时带动电机的转动轴转动。
叶轮可以包括轮毂以及连接在轮毂上的多个叶片。风力发电机组还包括塔筒以及设置在塔筒上的机舱。电机还包括固定轴、定子以及转子组件。 固定轴在风力发电机组的机舱内固定设置,转动轴通过轴承与该固定轴同轴连接。定子与固定轴同轴固定,其中定子可以包括定子铁芯以及定子绕组。转子组件与转动轴同轴连接,其中转子组件可以包括上述任一实施例的电机转子,电机转子的转子支架200与转动轴连接,能够随转动轴相对定子转动,电机转子的磁轭100的周面设置有磁体。
根据本申请实施例的风力发电机组,其电机转子包括转子支架200以及磁轭100,磁轭100及转子支架200的支撑环220的至少一者为在自身周向上分为多段的结构体,使得磁轭100、支撑环220的至少一者能够拆分为多个片段单元,在需要时,可以将多个片段单元相互拼接得到完整的转子支架200以及完整的磁轭100,进而得到完整的转子组件。通过对磁轭100和/或支撑环220拆分,多个片段单元的体积明显小于整体转子的体积,从而在保证完整转子能够满足功率要求的前提下,更便于转子的运输以及存放,对于大功率的直驱永磁风力发电机组等大体积电机的转子,尤其能够降低运输成本。当风力发电机组的电机转子需要维护时,通过替换故障部位的片段单元即可实现维修,从而风力发电机组的维护成本。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (22)

  1. 一种电机转子,包括:
    磁轭(100),所述磁轭(100)呈筒状,所述磁轭(100)的周面能够固定磁体;以及
    转子支架(200),包括轴连接件(210)以及支撑环(220),所述轴连接件(210)能够与电机的转动轴同轴连接,所述支撑环(220)设置于所述轴连接件(210)的外周,所述磁轭(100)与所述支撑环(220)同轴连接设置,
    其中,所述磁轭(100)及所述转子支架(200)的支撑环(220)的至少一者为在自身周向上分为多段的结构体。
  2. 根据权利要求1所述的电机转子,其中,所述支撑环(220)为在自身周向上分为多段的结构体,包括多个支撑板(221),多个所述支撑板(221)沿周向相继拼接为环形片状体,每个所述支撑板(221)设有第一连接部(C1),所述轴连接件(210)的外周设置有第二连接部(C2),多个所述支撑板(221)能够通过所述第一连接部(C1)与所述轴连接件(210)的第二连接部(C2)连接。
  3. 根据权利要求2所述的电机转子,其中,所述支撑板(221)呈弧状延伸,并且在弧状延伸方向上具有相对的两个端部,所述第一连接部(C1)位于所述支撑板(221)的两个所述端部之间,
    所述第一连接部(C1)、所述第二连接部(C2)中的其中一个为凸起连接部,另一个为与凸起连接部形状匹配的凹槽连接部。
  4. 根据权利要求2所述的电机转子,其中,所述支撑板(221)呈弧状延伸,并且在弧状延伸方向上具有相对的两个端部,每个所述支撑板(221)在两个所述端部设有所述第一连接部(C1),
    其中,相邻的所述支撑板(221)在同一拼接位置的两个所述第一连接部(C1)对应与所述轴连接件(210)的一个所述第二连接部(C2)连接。
  5. 根据权利要求4所述的电机转子,其中,每个所述第一连接部(C1) 为凸起连接部,每个所述第二连接部(C2)为凹槽连接部,并且所述凹槽连接部同时与所述同一拼接位置的两个所述第一连接部(C1)形状匹配;或者
    每个所述第一连接部(C1)为凹槽连接部,每个所述第二连接部(C2)为凸起连接部,并且所述凸起连接部同时与所述同一拼接位置的两个所述第一连接部(C1)形状匹配。
  6. 根据权利要求2所述的电机转子,其中,所述第一连接部(C1)、所述第二连接部(C2)中的其中一个在朝向另一个的表面上形成有至少一个插槽(S1),每个所述插槽(S1)内插设相向设置的一对楔形块(W1)。
  7. 根据权利要求1所述的电机转子,还包括:
    端盖(300),所述端盖(300)呈环状,与所述支撑环(220)同轴间隔设置,
    所述支撑环(220)、所述端盖(300)分别设置于所述磁轭(100)的轴向的两端。
  8. 根据权利要求7所述的电机转子,其中,所述支撑环(220)为在自身周向上分为多段的结构体,包括多个支撑板(221),多个所述支撑板(221)沿周向相继拼接为环形片状体,相邻的所述支撑板(221)之间通过连接组件(400)连接;
    和/或,所述磁轭(100)为在自身周向上分为多段的结构体,包括多个磁轭段(110),多个所述磁轭段(110)沿周向相继拼接为筒状体,相邻的所述磁轭段(110)之间通过连接组件(400)连接;
    和/或,所述端盖(300)为在自身周向上分为多段的结构体,包括多个端盖段(310),多个所述端盖段(310)沿周向相继拼接为环形片状体,相邻的所述端盖段(310)之间通过连接组件(400)连接;
    和/或,所述轴连接件(210)与所述支撑环(220)之间通过连接组件(400)连接。
  9. 根据权利要求8所述的电机转子,其中,相邻的所述支撑板(221)、或者相邻的所述磁轭段(110)、或者相邻的所述端盖段 (310)、或者所述轴连接件(210)与所述支撑环(220)在拼接位置形成第一销孔(H1),
    所述连接组件(400)包括:
    连接基板(410),与相邻的所述支撑板(221)连接、或者与相邻的所述磁轭段(110)连接、或者与相邻的所述端盖段(310)连接、或者将所述轴连接件(210)与所述支撑环(220)连接,所述连接基板(410)设有与所述第一销孔(H1)位置对应的第二销孔(H2);以及
    销块(420),将所述第二销孔(H2)与所述第一销孔(H1)连接,并且与所述连接基板(410)固定。
  10. 根据权利要求9所述的电机转子,其中,相邻的所述支撑板(221)、或者相邻的所述磁轭段(110)、或者相邻的所述端盖段(310)、或者所述轴连接件(210)与所述支撑环(220)在拼接位置分别具有第一连接孔(H3),所述连接基板(410)上设置有与所述第一连接孔(H3)位置对应的第二连接孔(H4),穿设有第一垫片(G1)的第一螺栓(B1)将所述连接基板(410)上的所述第二连接孔(H4)与对应所述第一连接孔(H3)连接固定。
  11. 根据权利要求9所述的电机转子,其中,所述连接基板(410)在所述第二销孔(H2)的周边设有第三连接孔(H5),所述销块(420)呈阶梯圆柱状,并且设有与所述第三连接孔(H5)位置对应的第四连接孔(H6),穿设有第二垫片(G2)的第二螺栓(B2)将所述销块(420)上的所述第三连接孔(H5)与所述连接基板(410)上的所述第四连接孔(H6)连接固定。
  12. 根据权利要求7所述的电机转子,其中,所述支撑环(220)为在自身周向上分为多段的结构体,包括多个支撑板(221),多个所述支撑板(221)沿周向相继拼接为环形片状体,相邻的所述支撑板(221)之间形成第一拼接面,
    所述磁轭(100)为在自身周向上分为多段的结构体,包括多个磁轭段(110),多个所述磁轭段(110)沿周向相继拼接为筒状体,相邻的所述磁轭段(110)之间形成第二拼接面,
    所述端盖(300)为在自身周向上分为多段的结构体,包括多个端盖段(310),多个所述端盖段(310)沿周向相继拼接为环形片状体,相邻的所述端盖段(310)之间形成第三拼接面,
    其中,所述第一拼接面、所述第二拼接面、所述第三拼接面中至少两种相互错位设置。
  13. 根据权利要求12所述的电机转子,其中,所述电机转子还包括覆盖第一拼接面、第二拼接面、或第三拼接面中的至少一者的密封胶。
  14. 根据权利要求1所述的电机转子,其中,所述支撑环(220)为在自身周向上分为多段的结构体,包括多个支撑板(221),多个所述支撑板(221)沿周向相继拼接为环形片状体,所述磁轭(100)为结构体,包括多个磁轭段(110),多个所述磁轭段(110)沿周向相继拼接为筒状体,
    其中,所述磁轭段(110)的数量是所述支撑板(221)的数量的任意正整数倍。
  15. 根据权利要求1所述的电机转子,其中,所述轴连接件(210)包括中心连接部(211)以及辐射分布于所述中心连接部(211)外周的多个连接臂(212),所述中心连接部(211)设有与电机的转动轴匹配的通孔(H9),多个所述连接臂(212)与所述支撑环(220)连接。
  16. 根据权利要求15所述的电机转子,其中,所述中心连接部(211)通过与所述中心连接部(211)同轴设置的连接法兰与电机的转动轴连接。
  17. 根据权利要求15所述的电机转子,其中,多个所述连接臂(212)将所述中心连接部(211)与所述支撑环(220)之间的空间分隔为多个镂空区域(CA),
    所述电机转子还包括:
    盖板,所述盖板覆盖所述镂空区域(CA)设置。
  18. 根据权利要求15所述的电机转子,其中,多个所述连接臂(212)将所述中心连接部(211)与所述支撑环(220)之间的空间分隔为多个镂空区域(CA),
    所述电机转子还包括:
    过滤件,所述过滤件设置于所述镂空区域(CA)。
  19. 一种电机转子的维护方法,所述电机转子包括磁轭及转子支架,所述磁轭及所述转子支架的支撑环的至少一者为在自身周向上分为多段的结构体,使得所述磁轭、所述支撑环的至少一者能够拆分为多个片段单元,所述电机转子的维护方法包括:
    检测所述电机转子,得到存在缺陷的片段单元;
    将所述存在缺陷的片段单元从所述电机转子上分离,使得所述电机转子具有待填补区;
    将与所述存在缺陷的片段单元功能相同的无缺陷片段单元安装于所述电机转子的所述待填补区,得到修复的电机转子。
  20. 根据权利要求19所述的电机转子的维护方法,其中,所述电机转子还包括端盖,所述磁轭、所述支撑环、所述端盖中的至少一者为在自身周向上分为多段的结构体,使得所述磁轭、所述支撑环、所述端盖的至少一者能够拆分为多个片段单元。
  21. 一种电机,包括:
    固定轴;
    转动轴,通过轴承与所述固定轴同轴连接,所述转动轴能够转动;
    定子,与所述固定轴同轴固定;以及
    转子组件,与所述转动轴同轴连接,
    其中,所述转子组件包括根据权利要求1至18任一项所述的电机转子,所述电机转子的转子支架(200)与所述转动轴连接,能够随所述转动轴相对所述定子转动,所述电机转子的磁轭(100)的周面设有磁体。
  22. 一种风力发电机组,包括:
    叶轮;以及
    根据权利要求21所述的电机,所述电机的转动轴与所述叶轮同轴连接。
PCT/CN2020/074542 2019-04-12 2020-02-07 电机转子及其维护方法、电机、风力发电机组 WO2020207107A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/594,334 US20220200381A1 (en) 2019-04-12 2020-02-07 Rotor of motor, method for maintaining rotor of motor, motor and wind-power electric generator set
EP20787468.6A EP3940924B1 (en) 2019-04-12 2020-02-07 Rotor of motor, method for maintaining rotor of motor, motor and wind-power electric generator set
AU2020256485A AU2020256485B2 (en) 2019-04-12 2020-02-07 Motor rotor and maintenance method therefor, motor, and wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910293934.1 2019-04-12
CN201910293934.1A CN109950994B (zh) 2019-04-12 2019-04-12 电机转子及电机

Publications (1)

Publication Number Publication Date
WO2020207107A1 true WO2020207107A1 (zh) 2020-10-15

Family

ID=67014971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074542 WO2020207107A1 (zh) 2019-04-12 2020-02-07 电机转子及其维护方法、电机、风力发电机组

Country Status (5)

Country Link
US (1) US20220200381A1 (zh)
EP (1) EP3940924B1 (zh)
CN (1) CN109950994B (zh)
AU (1) AU2020256485B2 (zh)
WO (1) WO2020207107A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950994B (zh) * 2019-04-12 2020-08-11 新疆金风科技股份有限公司 电机转子及电机
CN113014013B (zh) * 2019-12-20 2023-06-09 新疆金风科技股份有限公司 转子支架、转子、电机及风力发电机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536286U (zh) * 2009-10-04 2010-07-28 李春光 轮状低速永磁风力发电机转子
US20130181571A1 (en) * 2012-01-17 2013-07-18 Hsiu-Mei Chang Structure for Electrical Machines
CN104054238A (zh) * 2012-01-27 2014-09-17 西班牙阿尔斯通可再生能源有限公司 转子组件
CN109950994A (zh) * 2019-04-12 2019-06-28 新疆金风科技股份有限公司 电机转子及电机
CN209709790U (zh) * 2019-04-12 2019-11-29 新疆金风科技股份有限公司 电机转子支架及电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191210507A (en) * 1911-05-04 1912-10-24 Rudolf Goldschmidt Improvements in and pertaining to High-speed Rotors for High-frequency Multipolar Electrical Machinery.
US1687513A (en) * 1928-01-13 1928-10-16 Gen Electric Rotor
JPS5951221B2 (ja) * 1979-11-14 1984-12-12 三菱電機株式会社 回転電機の回転子の製造方法
WO2011002763A1 (en) * 2009-07-02 2011-01-06 Via Wind Energy, Llc Wind generator
IT1397782B1 (it) * 2010-01-15 2013-01-24 Gate Srl Rotore a magneti permanenti per un motore elettrico brushless in corrente continua
GB2505475B (en) * 2012-08-31 2015-11-18 Lappeenranta University Of Technology Compressing a laminated stack in an electrical machine
US10862359B2 (en) * 2015-11-26 2020-12-08 Mitsubishi Electric Corporation Rotor, motor, air-conditioning apparatus, and method for manufacturing rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536286U (zh) * 2009-10-04 2010-07-28 李春光 轮状低速永磁风力发电机转子
US20130181571A1 (en) * 2012-01-17 2013-07-18 Hsiu-Mei Chang Structure for Electrical Machines
CN104054238A (zh) * 2012-01-27 2014-09-17 西班牙阿尔斯通可再生能源有限公司 转子组件
CN109950994A (zh) * 2019-04-12 2019-06-28 新疆金风科技股份有限公司 电机转子及电机
CN209709790U (zh) * 2019-04-12 2019-11-29 新疆金风科技股份有限公司 电机转子支架及电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940924A4 *

Also Published As

Publication number Publication date
CN109950994B (zh) 2020-08-11
EP3940924C0 (en) 2024-03-13
EP3940924B1 (en) 2024-03-13
US20220200381A1 (en) 2022-06-23
EP3940924A1 (en) 2022-01-19
CN109950994A (zh) 2019-06-28
AU2020256485A1 (en) 2021-11-11
EP3940924A4 (en) 2022-05-11
AU2020256485B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
CN101677195B (zh) 定子布置、发电机及风力涡轮机
CA2832114C (en) Method for assembling an electrical machine
WO2020207107A1 (zh) 电机转子及其维护方法、电机、风力发电机组
JP5260737B2 (ja) 風車
DK2143942T3 (en) Windmill
KR101890436B1 (ko) 기어 박스, 시일 및 커버 장치
US20200381967A1 (en) Electric generator having multiple electrical machines
US8564153B2 (en) Hollow single-side supported direct-drive wind turbine generator
US7923854B1 (en) Wind turbines direct drive alternator system with torque balancing
JP2012505338A (ja) 風力タービンロータ及び風力タービン
DK177374B1 (en) Cooling structure for a segmented stator assembly
US20220069649A1 (en) A generator rotor assembly
US10840753B2 (en) Magnet module and electrical machine
FR3099315A1 (fr) Turbogénérateur pour propulsion électrique hybride aéronautique
US20230231426A1 (en) Segment support structure for a generator of a wind turbine
CN105339670A (zh) 泵装置
JP2008069691A (ja) 発電用風車装置および風力発電装置
JP2018207643A (ja) バランス調整方法およびバランス調整用円板
CN106877549A (zh) 一种电动机
CN218940801U (zh) 一种防漏磁的磁力泵转子
CN114448142B (zh) 发电机及其转动座
CN219135076U (zh) 风力发电机的定转子固定装置
WO2024000871A1 (zh) 传动系统及风力发电机组
CN118117822A (zh) 发电机以及风力发电机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020787468

Country of ref document: EP

Effective date: 20211013

ENP Entry into the national phase

Ref document number: 2020256485

Country of ref document: AU

Date of ref document: 20200207

Kind code of ref document: A