WO2020207077A1 - 显示装置和显示装置的制备方法 - Google Patents

显示装置和显示装置的制备方法 Download PDF

Info

Publication number
WO2020207077A1
WO2020207077A1 PCT/CN2020/070481 CN2020070481W WO2020207077A1 WO 2020207077 A1 WO2020207077 A1 WO 2020207077A1 CN 2020070481 W CN2020070481 W CN 2020070481W WO 2020207077 A1 WO2020207077 A1 WO 2020207077A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
display device
photosensitive material
substrate
Prior art date
Application number
PCT/CN2020/070481
Other languages
English (en)
French (fr)
Inventor
兰松
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020207077A1 publication Critical patent/WO2020207077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • This application relates to the field of display technology, and in particular to a display device and a method for manufacturing the display device.
  • Polymer-dispersed liquid crystal displays are widely used because of their excellent performance, but the driving voltage of polymer-dispersed liquid crystals is generally higher, which affects the development of polymer-dispersed liquid crystal displays.
  • the existing polymer dispersed liquid crystal display device has the technical problem of relatively high driving voltage and needs to be improved.
  • the present application provides a display device and a manufacturing method of the display device to alleviate the technical problem of high driving voltage of the existing polymer dispersed liquid crystal display device.
  • the present application provides a display device, which includes a first substrate and a second substrate arranged in a cell, a liquid crystal cell is formed between the first substrate and the second substrate, and a liquid crystal mixture is injected into the liquid crystal cell.
  • the liquid crystal mixture includes liquid crystals, polymers and photosensitive materials.
  • the structural formula of the photosensitive material is Where A is a semiconductor material, It is a methacrylic group, n is 3-20.
  • the semiconductor material is at least one of cadmium sulfide, selenium, aluminum sulfide, and bismuth sulfide.
  • the polymer is at least one of polyacrylate, epoxy, acrylic and polyimide.
  • the polymer is polyimide.
  • the liquid crystal is a negative liquid crystal.
  • the mass ratio of the liquid crystal is 70% to 90%
  • the mass ratio of the polymer is 10% to 30%
  • the mass of the photosensitive material accounts for The ratio is 1% to 5%.
  • This application also provides a method for manufacturing a display device, including:
  • a liquid crystal cell is formed between the first substrate and the second substrate;
  • the liquid crystal, polymer and photosensitive material are mixed and injected into the liquid crystal cell to form a liquid crystal mixture.
  • the step of mixing liquid crystal, polymer and photosensitive material and injecting into the liquid crystal cell to form the liquid crystal mixture includes: changing the structural formula to The photosensitive material is mixed with liquid crystal and polymer, where A is a semiconductor material, It is a methacrylic group, n is 3-20.
  • the semiconductor material is at least one of cadmium sulfide, selenium, aluminum sulfide, and bismuth sulfide.
  • the step of mixing liquid crystal, polymer, and photosensitive material and injecting into the liquid crystal cell to form the liquid crystal mixture includes: mixing polyacrylate, epoxy resin, thiol At least one of acrylic and polyimide is used as a polymer to be mixed with liquid crystal and photosensitive materials.
  • the step of mixing liquid crystal, polymer and photosensitive material and injecting into the liquid crystal cell to form a liquid crystal mixture includes: mixing liquid crystal with a mass ratio of 70% to 90% , The polymer with a mass ratio of 10%-30% and a photosensitive material with a mass ratio of 1% to 5% are mixed.
  • the step of mixing liquid crystal, polymer and photosensitive material and injecting into the liquid crystal cell to form a liquid crystal mixture includes:
  • the liquid crystal, the polymer and the photosensitive material are illuminated to form a liquid crystal mixture.
  • the step of mixing liquid crystal, polymer, and photosensitive material, heating and pouring into the liquid crystal cell includes: heating at a temperature of 100 to 150 degrees Celsius.
  • the step of cooling the liquid crystal, the polymer and the photosensitive material includes: cooling at a rate of 5-10° C./min.
  • the step of irradiating the liquid crystal, the polymer and the photosensitive material to form a liquid crystal mixture includes: irradiating with ultraviolet light.
  • the present application provides a display device and a method for manufacturing the display device.
  • the display device includes a first substrate and a second substrate arranged on a box, between the first substrate and the second substrate A liquid crystal cell is formed, and a liquid crystal mixture is injected into the liquid crystal cell, and the liquid crystal mixture includes liquid crystal, polymer, and photosensitive material.
  • photosensitive material By adding photosensitive material to the display device, when the intensity of the ambient light gradually increases, the photosensitive material becomes a conductor under the excitation of the light, and the impedance of the polymer substrate becomes smaller. Under the condition of constant driving voltage, the liquid crystal molecules also Deflection can occur, thus reducing the driving voltage of the display device.
  • FIG. 1 is a schematic diagram of the first structure of a display device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of weak light irradiation of a display device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of strong light irradiation in a display device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of strong light irradiation of a display device provided by an embodiment of the application.
  • FIG. 5 is a flow chart of a manufacturing method of a display device provided by an embodiment of the application.
  • the present application provides a display device to alleviate the technical problem of high driving voltage of the existing polymer dispersed liquid crystal display device.
  • FIG. 1 it is a schematic structural diagram of a display device provided by an embodiment of this application.
  • the display device includes a first substrate 10 and a second substrate 20 arranged on the cell.
  • the first substrate 10 and the second substrate 20 are bonded together by a sealant 30 to form a liquid crystal cell (not shown), and the liquid crystal cell is injected
  • a liquid crystal mixture 40 which includes a liquid crystal 41, a polymer 42 and a photosensitive material 43.
  • a first electrode 11 is formed on the first substrate 10, and a second electrode 12 is formed on the second substrate.
  • the display device further includes a driving circuit (not shown), and the driving circuit is connected to the first electrode 11 and the second electrode 12. Used to apply voltage to form an electric field between the first electrode 11 and the second electrode 12.
  • the liquid crystal cell contains a liquid crystal 41, a polymer 42 and a photosensitive material 43, wherein the liquid crystal 41 and the polymer 42 undergo polymerization under certain conditions to form a polymer dispersed liquid crystal.
  • Polymer-dispersed liquid crystal is a kind of composite material with special optoelectronic properties by dispersing small molecule liquid crystal into polymer and polymerizing under certain conditions to form micron-sized liquid crystal droplets uniformly dispersed in the polymer network.
  • the droplet size is generally less than 10 ⁇ m.
  • Polymer-dispersed liquid crystals have different states when voltage is applied and when voltage is not applied.
  • the ordinary refractive index of the liquid crystal droplet When no voltage is applied, the ordinary refractive index of the liquid crystal droplet is mismatched with the refractive index of the polymer.
  • the direction of the director of the liquid crystal in different droplets is random, so the polymer dispersed liquid crystal exhibits a light scattering effect. Milky white opaque state, outside light cannot pass through; when a voltage is applied, the liquid crystal directors are arranged along the direction of the electric field under the action of the electric field, so that the liquid crystal molecules in all liquid crystal droplets are the same, and the refractive index of the liquid crystal droplets and the polymer Matching, so the polymer dispersed liquid crystal presents transparent characteristics, and external light can pass through.
  • the polymer dispersed liquid crystal combines the liquid crystal and the polymer to make the overall performance excellent.
  • the liquid crystal molecules endow the polymer dispersed liquid crystal film with remarkable electro-optical properties, which has attracted widespread attention and has broad application prospects.
  • polymer-dispersed liquid crystal displays have many advantages, such as no need for polarizers and alignment layers, simple preparation process, easy to make large-area flexible displays, etc. It is currently used in optical modulators, thermal and Pressure sensitive devices, electrically controlled glass, light valves, projection displays, e-books, etc. have been widely used.
  • the liquid crystal 41 is a negative liquid crystal
  • the negative liquid crystal material has a different moment of inertia under the action of an electric field relative to the positive liquid crystal.
  • Negative liquid crystal molecules exhibit a lower tilt angle because they are perpendicular to the electric field distribution.
  • negative liquid crystals Compared with positive liquid crystals, negative liquid crystals have a more uniform twist angle distribution, so they exhibit higher transmittance and are more transparent than positive liquid crystals.
  • the transmittance is 10% to 15% higher.
  • the polymer is at least one of polyacrylate, epoxy, acrylic and polyimide.
  • the polymer 42 is polyimide, which has high and low temperature resistance, high strength and high modulus, low thermal expansion coefficient and dielectric constant, excellent insulation properties, and radiation resistance. It has excellent performance and is widely used, but the polyimide polymer dispersed liquid crystal formed by polyimide and liquid crystal has the problem of excessive driving voltage, which usually reaches above 50V, which greatly restricts the polyimide polymer The development of dispersed liquid crystals.
  • the structural formula of polyimide is
  • the structural formula of polyimide is
  • a photosensitive material 43 is added to the liquid crystal cell to form a photosensitive resistor.
  • the structural formula of the photosensitive material 43 is Where A is a semiconductor material, It is a methacrylic group, n is 3 to 20, and the semiconductor material is at least one of cadmium sulfide, selenium, aluminum sulfide, and bismuth sulfide.
  • These semiconductor materials have the characteristic that their resistance decreases rapidly under the irradiation of light of a specific wavelength. Since the carriers generated by the light are involved in conduction, they drift under the action of the applied electric field, electrons rush to the positive pole of the power supply, and holes rush to the negative pole of the power supply, so that the resistance of the photoresistor drops rapidly. As the photoresistor has different resistance values with different illumination, the driving voltage of the polymer dispersed liquid crystal can be reduced.
  • the mass proportion of the liquid crystal 41 is 70% to 90%
  • the mass proportion of the polymer 42 is 10%-30%
  • the mass proportion of the photosensitive material 43 is 1% to 5%.
  • FIG. 2 it is a schematic diagram of weak light irradiation of the display device provided by an embodiment of this application.
  • the driving circuit applies voltage to the first electrode 11 and the second electrode 12 to form an electric field, and the weak light 50 is incident from the side of the first substrate 10 and enters the liquid crystal cell through the first electrode 11.
  • the first substrate 10 and the second electrode 20 are transparent substrates, such as glass, plastic, and other transparent materials.
  • the first electrode 11 and the second electrode 12 are transparent electrodes, for example, transparent indium tin oxide or the like.
  • the photosensitive material 43 When the weak light 50 is irradiated, the photosensitive material 43 cannot be excited, the impedance of the polymer dispersed liquid crystal is relatively large, the voltage cannot drive the liquid crystal 41 to deflect, and most of the weak light 50 can pass through the display device.
  • FIG. 3 it is a schematic diagram of strong light irradiation in the display device provided by an embodiment of the application.
  • the driving circuit applies voltage to the first electrode 11 and the second electrode 12 to form an electric field, and the medium intensity light 60 is incident from the side of the first substrate 10 and enters the liquid crystal cell through the first electrode 11.
  • the first substrate 10 and the second electrode 20 are transparent substrates, such as glass, plastic, and other transparent materials.
  • the first electrode 11 and the second electrode 12 are transparent electrodes, for example, transparent indium tin oxide or the like.
  • the photosensitive material 43 becomes a conductor under the excitation of the medium strong light 60.
  • the photon energy of the medium strong light 60 is larger than the band gap of the semiconductor material, and the electrons in the valence band of the photosensitive material 43 absorb The energy of a photon can transition to the conduction band and generate a positively charged hole in the valence band.
  • This electron-hole generated by the light is matched to the number of carriers in the semiconductor material to make its resistivity As a result, the resistance of the photosensitive material 43 decreases.
  • the overall impedance of the polymer dispersed liquid crystal in the liquid crystal cell becomes smaller, and when the voltage remains unchanged, the molecules of the liquid crystal 41 are deflected, and only part of the medium-strong light 60 can pass.
  • FIG. 4 it is a schematic diagram of strong light irradiation of the display device provided by the embodiment of this application.
  • the driving circuit applies a voltage to the first electrode 11 and the second electrode 12 to form an electric field.
  • the strong light 70 is incident from the side of the first substrate 10 and enters the liquid crystal cell through the first electrode 11.
  • the first substrate 10 and the second electrode 20 are transparent substrates, such as glass, plastic, and other transparent materials.
  • the first electrode 11 and the second electrode 12 are transparent electrodes, for example, transparent indium tin oxide or the like.
  • the photosensitive material 43 becomes a conductor under the excitation of the strong light 70.
  • the photon energy of the strong light 70 is greater than the band gap of the semiconductor material, and the electron in the valence band of the photosensitive material 43 absorbs one photon After the energy, it can transition to the conduction band and generate a positively charged hole in the valence band.
  • This electron-hole generated by the light is paired with the number of carriers in the semiconductor material, making its resistivity smaller , Thereby causing the resistance of the photosensitive material 43 to decrease.
  • the stronger the light the lower the resistance value.
  • the overall impedance of the polymer dispersed liquid crystal in the liquid crystal cell becomes smaller.
  • the molecules of the liquid crystal 41 deflect and the deflection angle becomes larger. , Most of the strong light 70 cannot pass.
  • the mass ratio of the liquid crystal 41 is 70% to 90%
  • the mass ratio of the polymer 42 is 10% to 30%
  • the mass ratio of the photosensitive material 43 is 1% ⁇ 5%
  • the driving voltage is 25V
  • the irradiated light wavelength is 365 nanometers.
  • the light intensity of the medium light 60 is 15 times that of the weak light 50
  • the light intensity of the strong light 70 is 30 times that of the weak light 50. Times. Different intensities of light, the transmittance of the display device is different.
  • the light transmittance of the display device When irradiated with low light 50, the light transmittance of the display device is 90%, when irradiated with medium strong light 60, the light transmittance of the display device is 55%, and when irradiated with strong light 70, the light transmittance of the display device The rate is 25%, that is, when the driving voltage is constant, as the light intensity increases, the light transmittance of the display device gradually decreases.
  • the switch can be controlled by light, so it can be used as a light-controlled intelligent display device for smart Windows etc.
  • the present application also provides a method for manufacturing a display device, including:
  • S1 Provide a first substrate and a second substrate arranged on the cell, and a liquid crystal cell is formed between the first substrate and the second substrate;
  • S2 Mix liquid crystal, polymer and photosensitive material, and inject into the liquid crystal cell to form a liquid crystal mixture.
  • a first substrate and a second substrate are provided for the cell, and a liquid crystal cell is formed between the first substrate and the second substrate.
  • the first substrate 10 and the second substrate 20 are bonded together by a sealant 30 to form a liquid crystal cell (not shown), a first electrode 11 is formed on the first substrate 10, and a second electrode is formed on the second substrate 12.
  • the display device also includes a driving circuit (not shown in the figure). The driving circuit is connected to the first electrode 11 and the second electrode 12 for applying a voltage to form an electric field between the first electrode 11 and the second electrode 12.
  • the first substrate 10 and the second electrode 20 are transparent substrates, such as glass, plastic, and other transparent materials.
  • the first electrode 11 and the second electrode 12 are transparent electrodes, for example, transparent indium tin oxide or the like.
  • liquid crystal, polymer and photosensitive material are mixed and injected into the liquid crystal cell to form a liquid crystal mixture.
  • the mass ratio of the liquid crystal 41 is 70% to 90%
  • the mass ratio of the polymer 42 is 10% to 30%
  • the photosensitive material 43 is 1% to 5% by mass.
  • the three are mixed and heated to a molten state and then filled in a liquid crystal cell, and then cooled down to form a liquid crystal mixture 40 after illumination.
  • the liquid crystal 41 and the polymer 42 undergo a polymerization reaction under certain conditions to form a polymer dispersed liquid crystal.
  • Polymer-dispersed liquid crystal is a kind of composite material with special optoelectronic properties by dispersing small molecule liquid crystal into polymer and polymerizing under certain conditions to form micron-sized liquid crystal droplets uniformly dispersed in the polymer network.
  • the droplet size is generally less than 10 ⁇ m.
  • Polymer-dispersed liquid crystals have different states when voltage is applied and when voltage is not applied.
  • the ordinary refractive index of the liquid crystal droplet When no voltage is applied, the ordinary refractive index of the liquid crystal droplet is mismatched with the refractive index of the polymer.
  • the direction of the director of the liquid crystal in different droplets is random, so the polymer dispersed liquid crystal exhibits a light scattering effect. Milky white opaque state, outside light cannot pass through; when a voltage is applied, the liquid crystal directors are arranged along the direction of the electric field under the action of the electric field, so that the liquid crystal molecules in all liquid crystal droplets are the same, and the refractive index of the liquid crystal droplets and the polymer Matching, so the polymer dispersed liquid crystal presents transparent characteristics, and external light can pass through.
  • the polymer dispersed liquid crystal combines the liquid crystal and the polymer to make the overall performance excellent.
  • the liquid crystal molecules endow the polymer dispersed liquid crystal film with remarkable electro-optical properties, which has attracted widespread attention and has broad application prospects.
  • polymer-dispersed liquid crystal displays have many advantages, such as no need for polarizers and alignment layers, simple preparation process, easy to make large-area flexible displays, etc. It is currently used in optical modulators, thermal and Pressure sensitive devices, electrically controlled glass, light valves, projection displays, e-books, etc. have been widely used.
  • the liquid crystal 41 is a negative liquid crystal, and the negative liquid crystal material has a different moment of inertia under the action of an electric field compared to the positive liquid crystal. Negative liquid crystal molecules exhibit a lower tilt angle because they are perpendicular to the electric field distribution. Compared with positive liquid crystals, negative liquid crystals have a more uniform twist angle distribution, so they exhibit higher transmittance and are more transparent than positive liquid crystals. The transmittance is 10% to 15% higher.
  • the polymer is at least one of polyacrylate, epoxy, acrylic and polyimide.
  • the polymer 42 is polyimide, which has high and low temperature resistance, high strength and high modulus, low thermal expansion coefficient and dielectric constant, excellent insulation properties, and radiation resistance. It has excellent performance and is widely used, but the polyimide polymer dispersed liquid crystal formed by polyimide and liquid crystal has the problem of excessive driving voltage, which usually reaches above 50V, which greatly restricts the polyimide polymer The development of dispersed liquid crystals.
  • the structural formula of polyimide is
  • the structural formula of polyimide is
  • a photosensitive material 43 is added to the liquid crystal cell to form a photosensitive resistor.
  • the structural formula of the photosensitive material 43 is Where A is a semiconductor material, It is a methacrylic group, n is 3 to 20, and the semiconductor material is at least one of cadmium sulfide, selenium, aluminum sulfide, and bismuth sulfide.
  • These semiconductor materials have the characteristic that their resistance decreases rapidly under the irradiation of light of a specific wavelength. Since the carriers generated by the light are involved in conduction, they drift under the action of the applied electric field, electrons rush to the positive pole of the power supply, and holes rush to the negative pole of the power supply, so that the resistance of the photoresistor drops rapidly. As the photoresistor has different resistance values with different illumination, the driving voltage of the polymer dispersed liquid crystal can be reduced.
  • the heating temperature is 100 to 150 degrees Celsius, at which time the liquid crystal 41 and the polymer 42 undergo a polymerization reaction to form a polymer dispersed liquid crystal.
  • the cooling rate is 5-10° C./min to ensure that the liquid crystal 41, the polymer 42 and the photosensitive 43 are uniformly distributed in the liquid crystal cell after cooling.
  • the light used after cooling is ultraviolet light.
  • the liquid crystal 41, the polymer 42 and the photosensitive material 43 are mixed, heated, injected, cooled, and illuminated to form a liquid crystal mixture 40, which is filled in the liquid crystal cell. Since the photoresistor has different resistance with different illumination, the polymer can be reduced. Disperse the driving voltage of the liquid crystal.
  • the photosensitive material 43 cannot be excited, the impedance of the polymer dispersed liquid crystal is relatively large, the voltage cannot drive the liquid crystal 41 to deflect, and most of the weak light 50 can pass through the display device.
  • the photosensitive material 43 becomes a conductor under the excitation of the medium strong light 60.
  • the photon energy of the medium strong light 60 is greater than the band gap of the semiconductor material, and the photosensitive material 43 is in the valence band
  • the electrons can jump to the conduction band and generate a positively charged hole in the valence band.
  • This electron-hole generated by the light is matched to the number of carriers in the semiconductor material, making The resistivity becomes smaller, which causes the resistance of the photosensitive material 43 to decrease.
  • the overall impedance of the polymer dispersed liquid crystal in the liquid crystal cell becomes smaller, and when the voltage remains unchanged, the molecules of the liquid crystal 41 are deflected, and only part of the medium-strong light 60 can pass.
  • the photosensitive material 43 becomes a conductor under the excitation of the strong light 70.
  • the photon energy of the strong light 70 is greater than the band gap of the semiconductor material, and the electrons in the valence band of the photosensitive material 43 absorb The energy of a photon can transition to the conduction band and generate a positively charged hole in the valence band.
  • This electron-hole generated by the light is matched to the number of carriers in the semiconductor material to make its resistivity As a result, the resistance of the photosensitive material 43 decreases.
  • the stronger the light the lower the resistance value.
  • the overall impedance of the polymer dispersed liquid crystal in the liquid crystal cell becomes smaller.
  • the molecules of the liquid crystal 41 deflect and the deflection angle becomes larger. , Most of the strong light 70 cannot pass.
  • the switch can be controlled by light, so it can be used as a light-controlled intelligent display device for smart Windows etc.
  • the present application provides a display device and a manufacturing method of the display device.
  • the display device includes a first substrate and a second substrate arranged in a cell, a liquid crystal cell is formed between the first substrate and the second substrate, and a liquid crystal mixture is injected into the liquid crystal cell , Liquid crystal mixtures include liquid crystals, polymers and photosensitive materials.
  • photosensitive material By adding photosensitive material to the display device, when the intensity of the ambient light gradually increases, the photosensitive material becomes a conductor under the excitation of the light, and the impedance of the polymer substrate becomes smaller. Under the condition of constant driving voltage, the liquid crystal molecules also Deflection can occur, thus reducing the driving voltage of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置和显示装置的制备方法,显示装置包括对盒设置的第一基板(10)和第二基板(20),第一基板(10)与第二基板(20)之间形成有液晶盒,液晶盒内注入有液晶混合物(40),液晶混合物(40)包括液晶(41)、聚合物(42)和光敏材料(43)。当环境光强度逐渐增大时,光敏材料(43)在光的激发作用下变为导体,聚合物(42)基底的阻抗变小,因此降低了显示装置的驱动电压。

Description

显示装置和显示装置的制备方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置和显示装置的制备方法。
背景技术
聚合物分散液晶显示器因具有优异性能而被广泛地应用,但聚合物分散液晶的驱动电压一般较高,这影响了聚合物分散型液晶显示器的发展。
因此,现有的聚合物分散液晶显示装置存在驱动电压较高的技术问题,需要改进。
技术问题
本申请提供一种显示装置和显示装置的制备方法,以缓解现有的聚合物分散液晶显示装置驱动电压较高的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种显示装置,包括对盒设置的第一基板和第二基板,所述第一基板与所述第二基板之间形成有液晶盒,所述液晶盒内注入有液晶混合物,所述液晶混合物包括液晶、聚合物和光敏材料。
在本申请的显示装置中,所述光敏材料的结构式为
Figure PCTCN2020070481-appb-000001
其中A为半导体材料,
Figure PCTCN2020070481-appb-000002
为甲基丙烯酸基团,n为3至20。
在本申请的显示装置中,所述半导体材料为硫化镉、硒、硫化铝和硫化铋中的至少一种。
在本申请的显示装置中,所述聚合物为聚丙烯酸酯,环氧树脂、丙烯酸和聚酰亚胺中的至少一种。
在本申请的显示装置中,所述聚合物为聚酰亚胺。
在本申请的显示装置中,所述聚酰亚胺的结构式为
Figure PCTCN2020070481-appb-000003
在本申请的显示装置中,所述聚酰亚胺的结构式为
Figure PCTCN2020070481-appb-000004
在本申请的显示装置中,所述液晶为负型液晶。
在本申请的显示装置中,所述液晶混合物中,所述液晶的质量占比为70%~90%、所述聚合物的质量占比为10%~30%,所述光敏材料的质量占比为1%~5%。
本申请还提供一种显示装置的制备方法,包括:
提供对盒设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成液晶盒;
将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物。
在本申请的显示装置的制备方法中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:将结构式为
Figure PCTCN2020070481-appb-000005
的光敏材料和液晶、聚合物进行混合,其中A为半导体材料,
Figure PCTCN2020070481-appb-000006
为甲基丙烯酸基团,n为3至20。
在本申请的显示装置的制备方法中,所述半导体材料为硫化镉、硒、硫化铝和硫化铋中的至少一种。
在本申请的显示装置的制备方法中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:将聚丙烯酸酯,环氧 树脂、硫醇类、丙烯酸和聚酰亚胺中的至少一种作为聚合物,和液晶、光敏材料进行混合。
在本申请的显示装置的制备方法中,所述将聚丙烯酸酯,环氧树脂、硫醇类、丙烯酸和聚酰亚胺中的至少一种作为聚合物,和液晶、光敏材料进行混合的步骤包括:将结构式为
Figure PCTCN2020070481-appb-000007
的聚酰亚胺作为聚合物,和液晶、光敏材料制备成液晶混合物。
在本申请的显示装置的制备方法中,所述将聚丙烯酸酯,环氧树脂、硫醇类、丙烯酸和聚酰亚胺中的至少一种作为聚合物,和液晶、光敏材料进行混合的步骤包括:将结构式为
Figure PCTCN2020070481-appb-000008
的聚酰亚胺作为聚合物,和液晶、光敏材料制备成液晶混合物。
在本申请的显示装置的制备方法中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:将质量占比为70%~90%的液晶、质量占比为10%~30%的聚合物、质量占比为1%~5%的光敏材料混合。
在本申请的显示装置的制备方法中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:
将液晶、聚合物和光敏材料混合,加热后注入所述液晶盒;
将所述液晶、所述聚合物和所述光敏材料进行冷却;
对所述液晶、所述聚合物和所述光敏材料进行光照,形成液晶混合物。
在本申请的显示装置的制备方法中,所述将液晶、聚合物和光敏材料混合,加热后注入所述液晶盒的步骤包括:在100至150摄氏度的温度加热。
在本申请的显示装置的制备方法中,所述将所述液晶、所述聚合物和所述光敏材料进行冷却的步骤包括:以5~10℃/min的速度冷却。
在本申请的显示装置的制备方法中,所述对所述液晶、所述聚合物和所述光敏材料进行光照,形成液晶混合物的步骤包括:用紫外光进行光照。
有益效果
本申请的有益效果:本申请提供一种显示装置和显示装置的制备方法,所述显示装置包括对盒设置的第一基板和第二基板,所述第一基板与所述第二基板之间形成有液晶盒,所述液晶盒内注入有液晶混合物,所述液晶混合物包括液晶、聚合物和光敏材料。通过在显示装置中加入光敏材料,当环境光强度逐渐增大时,光敏材料在光的激发作用下变为导体,聚合物基底的阻抗变小,在驱动电压不变的情况下,液晶分子也能发生偏转,因此降低了显示装置的驱动电压。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的显示装置的第一种结构示意图。
图2为本申请实施例提供的显示装置弱光照射示意图。
图3为本申请实施例提供的显示装置中强光照射示意图。
图4为本申请实施例提供的显示装置强光照射示意图。
图5为本申请实施例提供的显示装置的制备方法流程图。
本申请的实施方式
本申请提供一种液晶显示面板及其制备方法、制备系统,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请提供一种显示装置,以缓解现有的聚合物分散液晶显示装置驱动电压较高的技术问题。
如图1所示,为本申请实施例提供的显示装置的结构示意图。显示装置包括对盒设置的第一基板10和第二基板20,第一基板10和第二基板20之间通过框胶30粘合在一起形成液晶盒(图未示出),液晶盒内注入有液晶混合物 40,液晶混合物40包括液晶41、聚合物42和光敏材料43。
第一基板10上形成有第一电极11,第二基板上形成有第二电极12,显示装置还包括驱动电路(图未示出),驱动电路与第一电极11和第二电极12连接,用于施加电压,使第一电极11和第二电极12之间形成电场。
在本实施例中,液晶盒中有液晶41、聚合物42和光敏材料43,其中,液晶41和聚合物42在一定条件下发生聚合反应,形成聚合物分散液晶。
聚合物分散液晶是将小分子液晶分散到聚合物中,在一定条件下发生聚合反应,形成微米级的液晶微滴均匀地分散在高分子网络中,形成的一种具有特殊光电性能的复合材料,其中微滴尺寸一般小于10μm。
聚合物分散液晶在施加电压和未施加电压情况下,具有不同的状态。
在未施加电压时,液晶微滴的寻常光折射率与聚合物的折射率失配,不同微滴内液晶的指向矢的指向是随机的,因而聚合物分散液晶呈现出对光线散射作用,呈现乳白色的不透明状态,外界光线不能透过;在施加电压时,液晶指向矢受电场作用沿电场方向排列,从而所有液晶微滴中的液晶分子指向矢一致,此时液晶微滴与聚合物折射率匹配,所以聚合物分散液晶呈现出透明的特征,外界光线可以透过。
聚合物分散液晶将液晶和聚合物结合,使得综合性能优异。液晶分子赋予了聚合物分散液晶膜显著的电光特性,使其受到了广泛的关注,并有着广阔的应用前景。相对于传统显示器件来说,聚合物分散型液晶显示器具有很多优点,例如不需偏振片和取向层,制备工艺简单,易于制成大面积柔性显示器等,目前已在光学调制器、热敏及压敏器件、电控玻璃、光阀、投影显示、电子书等方面获得广泛应用。
在本实施例中,液晶41为负型液晶,负型液晶材料相对正性液晶而言,在电场的作用下有着不同的转动惯量。负型液晶分子因垂直于电场分布因而表现出较低的倾斜角,且比起正性液晶,负型液晶扭曲角分布也较均匀,故表现出较高的穿透率,比正性液晶穿透率高10%~15%。
聚合物为聚丙烯酸酯,环氧树脂、丙烯酸和聚酰亚胺中的至少一种。在本实施例中,聚合物42为聚酰亚胺,聚酰亚胺因具有耐高低温、高强度与高模量、低热膨胀系数和介电常数、优异的绝缘性能以及耐辐照性等优异性能而被 广泛地应用,但聚酰亚胺和液晶形成的聚酰亚胺聚合物分散液晶存在驱动电压过大的问题,通常情况下达到了50V以上,极大地制约了聚酰亚胺聚合物分散液晶的发展。
在一种实施例中,聚酰亚胺的结构式为
Figure PCTCN2020070481-appb-000009
在一种实施例中,聚酰亚胺的结构式为
Figure PCTCN2020070481-appb-000010
本实施例在液晶盒中加入光敏材料43,形成光敏电阻,光敏材料43的结构式为
Figure PCTCN2020070481-appb-000011
其中A为半导体材料,
Figure PCTCN2020070481-appb-000012
为甲基丙烯酸基团,n为3至20,半导体材料为硫化镉、硒、硫化铝和硫化铋中的至少一种。
这些半导体材料具有在特定波长的光照射下,其阻值迅速减小的特性。由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻的阻值迅速下降。由于光敏电阻随着光照不同,阻值也不同,从而可以降低聚合物分散液晶的驱动电压。
在本实施例的液晶混合物中,液晶41的质量占比为70%~90%、聚合物42的质量占比为10%~30%,光敏材料43的质量占比为1%~5%。
如图2所示,为本申请实施例提供的显示装置弱光照射示意图。驱动电路对第一电极11和第二电极12施加电压,形成电场,弱光50从第一基板10一侧入射,穿过第一电极11进入液晶盒。
在一种实施例中,第一基板10和第二电极20为透明基板,例如可以是玻 璃、塑料等透明材料。第一电极11和第二电极12为透明电极,例如可以是透明氧化铟锡等。
当弱光50照射时,光敏材料43不能激发,聚合物分散液晶的阻抗比较大,电压不能驱动液晶41发生偏转,弱光50绝大部分可通过显示装置。
如图3所示,为本申请实施例提供的显示装置中强光照射示意图。驱动电路对第一电极11和第二电极12施加电压,形成电场,中强光60从第一基板10一侧入射,穿过第一电极11进入液晶盒。
在一种实施例中,第一基板10和第二电极20为透明基板,例如可以是玻璃、塑料等透明材料。第一电极11和第二电极12为透明电极,例如可以是透明氧化铟锡等。
当中强光60照射时,光敏材料43在中强光60的激发作用下变为导体,此时,中强光60的光子能量大于半导体材料的禁带宽度,光敏材料43价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏材料43阻值下降。
在中强光60的照射下,液晶盒内聚合物分散液晶整体的阻抗变小,电压不变的情况下,液晶41的分子发生偏转,中强光60只有部分能通过。
如图4所示,为本申请实施例提供的显示装置强光照射示意图。驱动电路对第一电极11和第二电极12施加电压,形成电场,强光70从第一基板10一侧入射,穿过第一电极11进入液晶盒。
在一种实施例中,第一基板10和第二电极20为透明基板,例如可以是玻璃、塑料等透明材料。第一电极11和第二电极12为透明电极,例如可以是透明氧化铟锡等。
当强光70照射时,光敏材料43在强光70的激发作用下变为导体,此时,强光70的光子能量大于半导体材料的禁带宽度,光敏材料43价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏材料43阻值下降。
由于光照愈强,阻值愈低,在强光70的照射下,液晶盒内聚合物分散液 晶整体的阻抗变小,电压不变的情况下,液晶41的分子发生偏转,且偏转角度更大,强光70绝大部分不能通过。
在图2、图3和图4中的液晶混合物中,液晶41的质量占比为70%~90%、聚合物42的质量占比为10%~30%,光敏材料43的质量占比为1%~5%,驱动电压均为25V,照射的光照波长都为365纳米,其中,中强光60的光强是弱光50的15倍,强光70的光强是弱光50的30倍。不同强度的光照,显示装置的透过率不同,
使用弱光50照射时,显示装置的光透过率为90%,使用中强光60照射时,显示装置的光透过率为55%,使用强光70照射时,显示装置的光透过率为25%,即在驱动电压不变的情况下,随着光强的增大,显示装置的光透过率逐渐减小。
现有的聚合物分散液晶显示装置在让液晶41的分子发生偏转时,往往需要施加很高的驱动电压,本申请通过在液晶盒中加入光敏材料43,在外界光为强光时,光阻材料43在光照作用下阻值变小,使得聚合物分散液晶整体的阻抗变小,因此不需要施加很高的驱动电压,液晶41的分子也能发生偏转,让光线透过,因此降低了显示装置的驱动电压。
由于本申请提供的显示装置,当环境光为弱光时光可透过,当环境光为强光时光不能投过,通过光线可控制开关,因此可作为一种光控智能显示装置,用于智能窗户等。
如图5所示,本申请还提供一种显示装置的制备方法,包括:
S1:提供对盒设置的第一基板和第二基板,第一基板和第二基板之间形成液晶盒;
S2:将液晶、聚合物和光敏材料进行混合,并注入液晶盒,形成液晶混合物。
下面结合图1至图4对本方法进行具体说明。
在S1中,提供对盒设置的第一基板和第二基板,第一基板和第二基板之间形成液晶盒。第一基板10和第二基板20之间通过框胶30粘合在一起形成液晶盒(图未示出),第一基板10上形成有第一电极11,第二基板上形成有第二电极12,显示装置还包括驱动电路(图未示出),驱动电路与第一电极 11和第二电极12连接,用于施加电压,使第一电极11和第二电极12之间形成电场。
在一种实施例中,第一基板10和第二电极20为透明基板,例如可以是玻璃、塑料等透明材料。第一电极11和第二电极12为透明电极,例如可以是透明氧化铟锡等。
在S2中,将液晶、聚合物和光敏材料进行混合,并注入液晶盒,形成液晶混合物。
在本实施例的液晶混合物中,液晶41的质量占比为70%~90%、聚合物42的质量占比为10%~30%,光敏材料43的质量占比为1%~5%,将三者混合加热至熔融状态后填充在液晶盒中,再降温冷却,光照后形成液晶混合物40。
液晶41和聚合物42在一定条件下发生聚合反应,形成聚合物分散液晶。
聚合物分散液晶是将小分子液晶分散到聚合物中,在一定条件下发生聚合反应,形成微米级的液晶微滴均匀地分散在高分子网络中,形成的一种具有特殊光电性能的复合材料,其中微滴尺寸一般小于10μm。
聚合物分散液晶在施加电压和未施加电压情况下,具有不同的状态。
在未施加电压时,液晶微滴的寻常光折射率与聚合物的折射率失配,不同微滴内液晶的指向矢的指向是随机的,因而聚合物分散液晶呈现出对光线散射作用,呈现乳白色的不透明状态,外界光线不能透过;在施加电压时,液晶指向矢受电场作用沿电场方向排列,从而所有液晶微滴中的液晶分子指向矢一致,此时液晶微滴与聚合物折射率匹配,所以聚合物分散液晶呈现出透明的特征,外界光线可以透过。
聚合物分散液晶将液晶和聚合物结合,使得综合性能优异。液晶分子赋予了聚合物分散液晶膜显著的电光特性,使其受到了广泛的关注,并有着广阔的应用前景。相对于传统显示器件来说,聚合物分散型液晶显示器具有很多优点,例如不需偏振片和取向层,制备工艺简单,易于制成大面积柔性显示器等,目前已在光学调制器、热敏及压敏器件、电控玻璃、光阀、投影显示、电子书等方面获得广泛应用。
液晶41为负型液晶,负型液晶材料相对正性液晶而言,在电场的作用下有着不同的转动惯量。负型液晶分子因垂直于电场分布因而表现出较低的倾斜 角,且比起正性液晶,负型液晶扭曲角分布也较均匀,故表现出较高的穿透率,比正性液晶穿透率高10%~15%。
聚合物为聚丙烯酸酯,环氧树脂、丙烯酸和聚酰亚胺中的至少一种。在本实施例中,聚合物42为聚酰亚胺,聚酰亚胺因具有耐高低温、高强度与高模量、低热膨胀系数和介电常数、优异的绝缘性能以及耐辐照性等优异性能而被广泛地应用,但聚酰亚胺和液晶形成的聚酰亚胺聚合物分散液晶存在驱动电压过大的问题,通常情况下达到了50V以上,极大地制约了聚酰亚胺聚合物分散液晶的发展。
在一种实施例中,聚酰亚胺的结构式为
Figure PCTCN2020070481-appb-000013
在一种实施例中,聚酰亚胺的结构式为
Figure PCTCN2020070481-appb-000014
本实施例在液晶盒中加入光敏材料43,形成光敏电阻,光敏材料43的结构式为
Figure PCTCN2020070481-appb-000015
其中A为半导体材料,
Figure PCTCN2020070481-appb-000016
为甲基丙烯酸基团,n为3至20,半导体材料为硫化镉、硒、硫化铝和硫化铋中的至少一种。
这些半导体材料具有在特定波长的光照射下,其阻值迅速减小的特性。由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻的阻值迅速下降。由于光敏电阻随着光照不同,阻值也不同,从而可以降低聚合物分散液晶的驱动电压。
在一种实施例中,加热温度为100至150摄氏度,此时液晶41与聚合物 42发生聚合反应,形成聚合物分散液晶。
在一种实施例中,冷却的速度为5~10℃/min,以保证冷却后液晶41、聚合物42和光敏43在液晶盒中均匀分布。
在一种实施例中,冷却后使用的光照为紫外光。
液晶41、聚合物42和光敏材料43通过混合、加热、注入、冷却、光照后形成液晶混合物40,填充在液晶盒中,由于光敏电阻随着光照不同,阻值也不同,从而可以降低聚合物分散液晶的驱动电压。
当环境光为弱光50时,光敏材料43不能激发,聚合物分散液晶的阻抗比较大,电压不能驱动液晶41发生偏转,弱光50绝大部分可通过显示装置。
当环境光为中强光60时,光敏材料43在中强光60的激发作用下变为导体,此时,中强光60的光子能量大于半导体材料的禁带宽度,光敏材料43价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏材料43阻值下降。
在中强光60的照射下,液晶盒内聚合物分散液晶整体的阻抗变小,电压不变的情况下,液晶41的分子发生偏转,中强光60只有部分能通过。
当环境光为强光70时,光敏材料43在强光70的激发作用下变为导体,此时,强光70的光子能量大于半导体材料的禁带宽度,光敏材料43价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏材料43阻值下降。
由于光照愈强,阻值愈低,在强光70的照射下,液晶盒内聚合物分散液晶整体的阻抗变小,电压不变的情况下,液晶41的分子发生偏转,且偏转角度更大,强光70绝大部分不能通过。
即,在驱动电压不变的情况下,随着光强的增大,显示装置的光透过率逐渐减小。现有的聚合物分散液晶显示装置在让液晶41的分子发生偏转时,往往需要施加很高的驱动电压,本申请通过在液晶盒中加入光敏材料43,在外界光为强光时,光阻材料43在光照作用下阻值变小,使得聚合物分散液晶整体的阻抗变小,因此不需要施加很高的驱动电压,液晶41的分子也能发生偏 转,让光线透过,因此降低了显示装置的驱动电压。
由于本申请提供的显示装置,当环境光为弱光时光可透过,当环境光为强光时光不能投过,通过光线可控制开关,因此可作为一种光控智能显示装置,用于智能窗户等。
根据上述实施例可知:
本申请提供一种显示装置和显示装置的制备方法,显示装置包括对盒设置的第一基板和第二基板,第一基板与第二基板之间形成有液晶盒,液晶盒内注入有液晶混合物,液晶混合物包括液晶、聚合物和光敏材料。通过在显示装置中加入光敏材料,当环境光强度逐渐增大时,光敏材料在光的激发作用下变为导体,聚合物基底的阻抗变小,在驱动电压不变的情况下,液晶分子也能发生偏转,因此降低了显示装置的驱动电压。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示装置,其包括对盒设置的第一基板和第二基板,所述第一基板与所述第二基板之间形成有液晶盒,所述液晶盒内注入有液晶混合物,所述液晶混合物包括液晶、聚合物和光敏材料。
  2. 如权利要求1所述的显示装置,其中,所述光敏材料的结构式为
    Figure PCTCN2020070481-appb-100001
    其中A为半导体材料,
    Figure PCTCN2020070481-appb-100002
    为甲基丙烯酸基团,n为3至20。
  3. 如权利要求2所述的显示装置,其中,所述半导体材料为硫化镉、硒、硫化铝和硫化铋中的至少一种。
  4. 如权利要求1所述的显示装置,其中,所述聚合物为聚丙烯酸酯,环氧树脂、丙烯酸和聚酰亚胺中的至少一种。
  5. 如权利要求4所述的显示装置,其中,所述聚合物为聚酰亚胺。
  6. 如权利要求5所述的显示装置,其中,所述聚酰亚胺的结构式为
    Figure PCTCN2020070481-appb-100003
  7. 如权利要求5所述的显示装置,其中,所述聚酰亚胺的结构式为
    Figure PCTCN2020070481-appb-100004
  8. 如权利要求1所述的显示装置,其中,所述液晶为负型液晶。
  9. 如权利要求1所述的显示装置,其中,所述液晶混合物中,所述液晶的质量占比为70%~90%、所述聚合物的质量占比为10%~30%,所述光敏材料的质量占比为1%~5%。
  10. 一种显示装置的制备方法,其包括:
    提供对盒设置的第一基板和第二基板,所述第一基板和所述第二基板之间形成液晶盒;
    将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物。
  11. 如权利要求10所述的显示装置的制备方法,其中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:将结构式为
    Figure PCTCN2020070481-appb-100005
    的光敏材料和液晶、聚合物进行混合,其中A为半导体材料,
    Figure PCTCN2020070481-appb-100006
    为甲基丙烯酸基团,n为3至20。
  12. 如权利要求11所述的显示装置的制备方法,其中,所述半导体材料为硫化镉、硒、硫化铝和硫化铋中的至少一种。
  13. 如权利要求10所述的显示装置的制备方法,其中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:将聚丙烯酸酯,环氧树脂、硫醇类、丙烯酸和聚酰亚胺中的至少一种作为聚合物,和液晶、光敏材料进行混合。
  14. 如权利要求13所述的显示装置的制备方法,其中,所述将聚丙烯酸酯,环氧树脂、硫醇类、丙烯酸和聚酰亚胺中的至少一种作为聚合物,和液晶、光敏材料进行混合的步骤包括:将结构式为
    Figure PCTCN2020070481-appb-100007
    的聚酰亚胺作为聚合物,和液晶、光敏材料制备成液晶混合物。
  15. 如权利要求13所述的显示装置的制备方法,其中,所述将聚丙烯酸酯,环氧树脂、硫醇类、丙烯酸和聚酰亚胺中的至少一种作为聚合物,和液晶、光敏材料进行混合的步骤包括:将结构式为
    Figure PCTCN2020070481-appb-100008
    的聚酰亚胺作为聚合物,和液晶、光敏材料制备成液晶混合物。
  16. 如权利要求10所述的显示装置的制备方法,其中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:将质量占比为70%~90%的液晶、质量占比为10%~30%的聚合物、质量占比为1%~5%的光敏材料混合。
  17. 如权利要求10所述的显示装置的制备方法,其中,所述将液晶、聚合物和光敏材料进行混合,并注入所述液晶盒,形成液晶混合物的步骤包括:
    将液晶、聚合物和光敏材料混合,加热后注入所述液晶盒;
    将所述液晶、所述聚合物和所述光敏材料进行冷却;
    对所述液晶、所述聚合物和所述光敏材料进行光照,形成液晶混合物。
  18. 如权利要求17所述的显示装置的制备方法,其中,所述将液晶、聚合物和光敏材料混合,加热后注入所述液晶盒的步骤包括:在100至150摄氏度的温度加热。
  19. 如权利要求17所述的显示装置的制备方法,其中,所述将所述液晶、所述聚合物和所述光敏材料进行冷却的步骤包括:以5~10℃/min的速度冷却。
  20. 如权利要求17所述的显示装置的制备方法,其中,所述对所述液晶、所述聚合物和所述光敏材料进行光照,形成液晶混合物的步骤包括:用紫外光进行光照。
PCT/CN2020/070481 2019-04-10 2020-01-06 显示装置和显示装置的制备方法 WO2020207077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910284725.0A CN109976018B (zh) 2019-04-10 2019-04-10 显示装置和显示装置的制备方法
CN201910284725.0 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020207077A1 true WO2020207077A1 (zh) 2020-10-15

Family

ID=67083931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070481 WO2020207077A1 (zh) 2019-04-10 2020-01-06 显示装置和显示装置的制备方法

Country Status (2)

Country Link
CN (1) CN109976018B (zh)
WO (1) WO2020207077A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976018B (zh) * 2019-04-10 2020-09-01 深圳市华星光电半导体显示技术有限公司 显示装置和显示装置的制备方法
CN110540645B (zh) * 2019-09-12 2021-03-16 深圳市华星光电半导体显示技术有限公司 聚合物分散液晶的预聚体、聚合物分散液晶组合物及显示面板
CN111493633B (zh) * 2020-04-27 2021-12-07 东莞蓝海芯科技有限公司 具有调光功能的智能调控窗帘及智能调控屏幕

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928570A (zh) * 2010-05-19 2010-12-29 江苏和成化学材料有限公司 一种用于制备聚合物分散液晶的组合物
US20110134373A1 (en) * 2009-12-04 2011-06-09 Samsung Electronics Co., Ltd. Reflective display devices and methods of manufacturing the same
CN102618298A (zh) * 2012-02-27 2012-08-01 北京八亿时空液晶科技股份有限公司 一种聚合物分散液晶材料、聚合物分散液晶显示器件及其制备方法
CN103412434A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 一种透明显示装置及制作方法
CN103907052A (zh) * 2011-08-31 2014-07-02 株式会社Lg化学 液晶盒
CN104280934A (zh) * 2014-10-27 2015-01-14 深圳市华星光电技术有限公司 液晶面板及其制作方法
CN109976018A (zh) * 2019-04-10 2019-07-05 深圳市华星光电半导体显示技术有限公司 显示装置和显示装置的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002288A (ja) * 2001-12-13 2004-01-08 Merck Patent Gmbh オキサジアゾール誘導体並びに電荷移動および発光材料としてのこの使用
CN100406987C (zh) * 2005-12-27 2008-07-30 北京科技大学 一种聚合物分散液晶薄膜的制备方法
CN101768449B (zh) * 2008-12-30 2013-03-13 比亚迪股份有限公司 一种聚合物分散液晶组合物、聚合物分散液晶层及制备方法、聚合物分散液晶膜及制备方法
CN102464983B (zh) * 2010-11-12 2014-07-02 京东方科技集团股份有限公司 显示器、聚合物分散液晶膜及其制造方法和驱动方法
JP5975227B2 (ja) * 2011-03-31 2016-08-23 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
GB2504003B (en) * 2012-07-11 2015-08-12 Alphamicron Inc Continuous wave directional emission liquid crystal structures and devices
CN107200818B (zh) * 2012-07-24 2019-11-29 日产化学工业株式会社 适用于液晶取向膜的制造方法的聚合物
CN104238271B (zh) * 2013-06-14 2020-01-03 Az电子材料(卢森堡)有限公司 能低温固化的负型感光性组合物
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
CN107011925B (zh) * 2017-05-23 2020-12-29 成都海亿科技有限公司 液晶垂直取向膜用材料及由其制备的液晶盒和制备方法
CN109298562A (zh) * 2018-11-26 2019-02-01 昆山龙腾光电有限公司 量子棒薄膜及其制作方法、液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134373A1 (en) * 2009-12-04 2011-06-09 Samsung Electronics Co., Ltd. Reflective display devices and methods of manufacturing the same
CN101928570A (zh) * 2010-05-19 2010-12-29 江苏和成化学材料有限公司 一种用于制备聚合物分散液晶的组合物
CN103907052A (zh) * 2011-08-31 2014-07-02 株式会社Lg化学 液晶盒
CN102618298A (zh) * 2012-02-27 2012-08-01 北京八亿时空液晶科技股份有限公司 一种聚合物分散液晶材料、聚合物分散液晶显示器件及其制备方法
CN103412434A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 一种透明显示装置及制作方法
CN104280934A (zh) * 2014-10-27 2015-01-14 深圳市华星光电技术有限公司 液晶面板及其制作方法
CN109976018A (zh) * 2019-04-10 2019-07-05 深圳市华星光电半导体显示技术有限公司 显示装置和显示装置的制备方法

Also Published As

Publication number Publication date
CN109976018B (zh) 2020-09-01
CN109976018A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020207077A1 (zh) 显示装置和显示装置的制备方法
EP2598943A1 (en) Liquid crystal display and method for preparation thereof
CN104360526A (zh) 电控调光膜
WO2014114013A1 (zh) 一种聚合物稳定垂直配向液晶显示面板及液晶显示器
CN105093620B (zh) 公共广告显示屏及其制作方法
JPH0876097A (ja) 液晶光学素子およびその製造方法
JPH11142831A (ja) 高分子分散型液晶表示装置
KR20170104707A (ko) 액정 표시 장치 및 이의 제조 방법
CN106154618A (zh) 调光功能膜、调光功能组件及调光功能器件
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
CN110286527B (zh) 染料液晶调光面板、其制作方法及双层染料液晶调光面板
CN113917729B (zh) 一种基于电响应的反式调光玻璃及制备方法
JPH06102490A (ja) 分散型液晶電気光学装置の作製方法
TWI582504B (zh) 用於製造囊封液晶以及包含該囊封液晶之液晶顯示器之設備及方法
CN108873437B (zh) 调光玻璃结构及其制备方法、液晶显示装置
JP2006195112A (ja) 液晶素子とそれを用いた調光素子および液晶表示装置
JPH05216015A (ja) 液晶表示素子
US20180246361A1 (en) Method of manufacturing an optical device
KR101347940B1 (ko) 냉각판을 이용한 고분자 분산 액정 소자의 제조방법
He et al. Effects of thiol‐ene click reaction on morphology and electro‐optical properties of polyhedral oligomeric silsesquioxane nanostructure‐based polymer dispersed liquid crystal film
JP3457250B2 (ja) 液晶装置の作製方法
CN114442349B (zh) 一种柔性反式液晶调光膜的制备方法
JPH11160691A (ja) 液晶表示素子
Meng et al. 77‐3: High‐Performance Smart Window with Haze Enhancement via Micro‐Domains Manipulation on Alignment Surface
US9823506B2 (en) Liquid crystal panel and liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787464

Country of ref document: EP

Kind code of ref document: A1