WO2020206770A1 - 一种显示面板及显示装置 - Google Patents

一种显示面板及显示装置 Download PDF

Info

Publication number
WO2020206770A1
WO2020206770A1 PCT/CN2019/085480 CN2019085480W WO2020206770A1 WO 2020206770 A1 WO2020206770 A1 WO 2020206770A1 CN 2019085480 W CN2019085480 W CN 2019085480W WO 2020206770 A1 WO2020206770 A1 WO 2020206770A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
voltage
circuit
display panel
preset
Prior art date
Application number
PCT/CN2019/085480
Other languages
English (en)
French (fr)
Inventor
鞠锐
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/494,374 priority Critical patent/US11257451B2/en
Publication of WO2020206770A1 publication Critical patent/WO2020206770A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • This application relates to the field of display technology, in particular to a display panel and a display device.
  • GOA technology Gate Driver on Array is the array substrate row drive technology, which uses the array process of the liquid crystal panel to fabricate the gate drive circuit on the TFT (thin film transistor) array substrate to realize the drive method of scanning the gate row by row.
  • the PMIC Power Management Integrated Circuit
  • VGH gate turn-on voltage
  • the VTH threshold voltage
  • VGH temperature compensation function that is, when these PMICs are used in GOA circuits, the VGH may be less than the TFT's VTH under low temperature conditions because the VGH has no temperature compensation, and the screen display is abnormal or cannot be displayed normally. The problem.
  • the present application provides a display panel and a display device, so as to avoid the problem of abnormal display or failure of normal display caused by insufficient low-temperature driving of the display panel.
  • an embodiment of the present application provides a display panel that includes a thin film transistor, a first circuit, and a second circuit; the first circuit includes a first output terminal, a first resistor, and a second circuit connected in series in sequence. Two resistors. The first output terminal is used to output the control voltage to the gate of the thin film transistor. An access terminal is provided between the first resistor and the second resistor.
  • the access terminal is input with the first preset voltage and the second resistor One end is grounded;
  • the second circuit includes a third resistor and a compensation control switch connected in series, one end of the second circuit is connected to the access end, and the other end is grounded; when the temperature is lower than the preset temperature threshold, the compensation control switch is turned on,
  • the three resistors and the second resistor are connected in parallel to increase the control voltage output from the first output terminal to the gate of the thin film transistor.
  • the display panel also includes a comparator and a third circuit; the third circuit is connected to the comparator and is used to input the voltage to be compared to the comparator.
  • the comparator inputs a lead to the compensation control switch.
  • the signal is turned on to turn on the compensation control switch; the third circuit includes a temperature measuring element, which controls the voltage to be compared to change according to the temperature change.
  • the voltage to be compared is greater than the preset voltage threshold .
  • the compensation control switch is a field effect tube
  • the comparator is connected to the gate of the field effect tube
  • the turn-on signal is a voltage signal
  • the comparator includes a fourth circuit.
  • the fourth circuit includes a fourth resistor and a fifth resistor. One end of the fourth resistor is input with a second preset voltage, and the other end of the fourth resistor is connected to one end of the fifth resistor. The other end of the five resistor is grounded, and the preset voltage threshold is the voltage drop of the fifth resistor.
  • the fifth resistor is an adjustable resistor.
  • the temperature measuring element is a diode
  • the third circuit also includes a sixth resistor.
  • One end of the sixth resistor is input with a third preset voltage, the other end of the sixth resistor is connected to the anode of the diode, and the cathode of the diode is grounded.
  • the voltage to be compared Is the forward voltage drop of the diode.
  • the diode is a silicon tube.
  • each second circuit corresponds to a preset temperature threshold.
  • the compensation control switch is a thermal switch.
  • an embodiment of the present application further provides a display device, the display device includes a display panel, the display panel includes a thin film transistor, a first circuit, and a second circuit; the first circuit includes a first output terminal connected in series , A first resistor, and a second resistor. The first output terminal is used to output a control voltage to the gate of the thin film transistor. An access terminal is provided between the first resistor and the second resistor.
  • the second circuit includes a third resistor and a compensation control switch connected in series with each other, one end of the second circuit is connected to the access end, and the other end is grounded; when the temperature is lower than the preset temperature threshold, The compensation control switch is turned on, and the third resistor and the second resistor are connected in parallel to increase the control voltage output from the first output terminal to the gate of the thin film transistor.
  • the display panel also includes a comparator and a third circuit; the third circuit is connected to the comparator and is used to input the voltage to be compared to the comparator.
  • the comparator inputs a lead to the compensation control switch.
  • the signal is turned on to turn on the compensation control switch; the third circuit includes a temperature measuring element, which controls the voltage to be compared to change according to the temperature change.
  • the voltage to be compared is greater than the preset voltage threshold .
  • the compensation control switch is a field effect tube
  • the comparator is connected to the gate of the field effect tube
  • the turn-on signal is a voltage signal
  • the comparator includes a fourth circuit.
  • the fourth circuit includes a fourth resistor and a fifth resistor. One end of the fourth resistor is input with a second preset voltage, and the other end of the fourth resistor is connected to one end of the fifth resistor. The other end of the five resistor is grounded, and the preset voltage threshold is the voltage drop of the fifth resistor.
  • the fifth resistor is an adjustable resistor.
  • the temperature measuring element is a diode
  • the third circuit also includes a sixth resistor.
  • One end of the sixth resistor is input with a third preset voltage, the other end of the sixth resistor is connected to the anode of the diode, and the cathode of the diode is grounded.
  • the voltage to be compared Is the forward voltage drop of the diode.
  • the diode is a silicon tube.
  • each second circuit corresponds to a preset temperature threshold.
  • the compensation control switch is a thermal switch.
  • the display panel provided in the present application includes a thin film transistor, a first circuit, and a second circuit; the first circuit includes a first output terminal, a first resistor, and a second circuit connected in series in sequence. Two resistors.
  • the first output terminal is used to output the control voltage to the gate of the thin film transistor.
  • An access terminal is provided between the first resistor and the second resistor.
  • the access terminal is input with the first preset voltage and the second resistor One end is grounded;
  • the second circuit includes a third resistor and a compensation control switch connected in series, one end of the second circuit is connected to the access end, and the other end is grounded; when the temperature is lower than the preset temperature threshold, the compensation control switch is turned on,
  • the three resistors and the second resistor are connected in parallel to increase the control voltage output from the first output terminal to the gate of the thin film transistor, which can realize the temperature compensation of VGH under low temperature conditions, thereby avoiding the picture display of the display panel due to insufficient low temperature driving Problems that are abnormal or cannot be displayed normally.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is another schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 3 is another schematic diagram of the structure of the display panel provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the power management integrated circuit does not have the gate turn-on voltage (VGH) temperature compensation function
  • VGH gate turn-on voltage
  • the PMIC when the PMIC is applied to the GOA circuit, it may cause the VGH to be lower than the threshold voltage (VTH) of the thin film transistor (TFT) under low temperature conditions, and then display The display of the panel screen is abnormal or cannot be displayed normally.
  • the solution adopted in this application is to add a circuit to perform temperature compensation on the PMIC output VGH under low temperature conditions, so as to avoid abnormal display or abnormal display of the display panel due to insufficient low temperature driving. problem.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel 10 includes a thin film transistor (not shown in the figure), a first circuit 11 and a second circuit 12.
  • the first circuit 11 includes a first output terminal 111, a first resistor R1, and a second resistor R2 serially connected in series.
  • the first output terminal 111 is used to output the control voltage VGH to the gate of the thin film transistor, the first resistor R1 and the second resistor R2
  • An access terminal 112 is provided between the resistors R2, a first preset voltage VFB is input to the access terminal 112, and one end of the second resistor R2 is grounded.
  • the second circuit 12 includes a third resistor R3 and a compensation control switch S1 connected in series with each other. One end of the second circuit 12 is connected to the access terminal 112 and the other end is grounded. When the temperature is lower than the preset temperature threshold, the compensation control switch S1 is turned on, and the third resistor R3 and the second resistor R2 are connected in parallel to increase the control voltage VGH output from the first output terminal 111 to the gate of the thin film transistor.
  • the compensation control switch S1 can be changed from the on state to the off state to stop the output to the first output terminal 111 to the gate of the thin film transistor.
  • the control voltage VGH is temperature compensated.
  • the first circuit 11 is a PMIC, which is used to provide a VGH (gate turn-on voltage) to the TFT array substrate of the display panel 10 to turn on the TFT.
  • the second circuit 12 is used to perform temperature compensation on the control voltage VGH output from the PMIC to the TFT under low temperature conditions, so as to avoid the problem of abnormal display or abnormal display of the display panel 10 due to insufficient low temperature driving.
  • VGH VFB*(1+R1/R2)
  • VFB 1.25V
  • R1 232K ⁇
  • R2 10K ⁇
  • the compensation control switch S1 When the temperature is lower than the preset temperature threshold, the compensation control switch S1 is turned on, and the resistance when the compensation control switch S1 is turned on is very small and can be ignored, that is, the third resistor R3 is connected in parallel with the second resistor R2, and the second resistor R2 and The resistance value of the third resistor R3 in parallel is: R2R3/(R2+R3), which is equivalent to that the resistance value of the second resistor R2 in the original PMIC is reduced from R2 to R2R3/(R2+R3), that is, the temperature
  • the compensated VGH VFB*(1+R1/(R2R3/(R2+R3)), for example.
  • the display panel 10 further includes a comparator 13 and a third circuit 14.
  • the third circuit 14 is connected to the comparator 13 for inputting the voltage VB to be compared to the comparator 13.
  • the comparator 13 inputs a turn-on signal to the compensation control switch S1 to turn on the compensation control switch S1.
  • the comparator 13 inputs a disconnect signal to the compensation control switch S1 to turn off the compensation control switch S1.
  • the third circuit 14 includes a temperature measuring element, which controls the voltage VB to be compared to change according to the temperature change. When the temperature is lower than the preset temperature threshold, the voltage VB to be compared is greater than the preset voltage threshold.
  • the compensation control switch S1 may be a field effect tube, for example, a MOS tube
  • the comparator 13 is connected to the gate G of the field effect tube S1
  • the above-mentioned turn-on signal is a voltage signal
  • the voltage value corresponding to the voltage signal is greater than the field effect
  • the threshold voltage of the tube S1 correspondingly, the above-mentioned disconnect signal is also a voltage signal, and the voltage value corresponding to the voltage signal is smaller than the threshold voltage of the field effect tube S1.
  • the comparator 13 includes a fourth circuit 131
  • the preset temperature threshold and the voltage drop of the fifth resistor R5 correspond to each other.
  • the fifth resistor R5 may be an adjustable resistor, that is, the size of the fifth resistor R5 can be artificially adjusted to adjust the size of the preset temperature threshold.
  • the preset temperature threshold needs to be set to zero degrees Celsius, it is necessary to first obtain the to-be-compared voltage VB output by the third circuit 14 under the condition of zero degrees Celsius, and then adjust the size of the fourth resistor R4 or the fifth resistor R5 , So that the voltage drop of the fifth resistor R5 is equal to the voltage VB to be compared under the condition of zero degrees Celsius.
  • the corresponding voltage to be compared VB will be greater than the preset voltage threshold VA, and the comparator 13 will output a turn-on signal to the compensation control switch S1, so that the compensation control switch S1 is turned on Then, the VGH output by the first circuit 11 is subjected to low temperature compensation.
  • the temperature measuring element is a diode D
  • the third circuit 14 further includes a sixth resistor R6, one end of the sixth resistor R6 is input with a third preset voltage V2, and the sixth resistor R6 The other end of is connected to the anode of diode D, the cathode of diode D is grounded, and the voltage VB to be compared is the forward voltage drop of diode D.
  • the forward pressure drop of the diode D increases as the temperature decreases.
  • the pressure drop of the diode D is equal to the aforementioned preset voltage threshold VA.
  • the diode D is preferably a silicon tube, because the pressure drop of the silicon tube is larger than that of other diodes such as germanium tubes, which is beneficial to improve the accuracy of temperature compensation.
  • diodes D there may be multiple diodes D, and multiple diodes D are connected in series.
  • diodes D there are four diodes D, and four diodes (D1, D2, D3, D4) are connected in series, and the voltage VB to be compared is the total voltage drop of the four diodes (D1, D2, D3, D4).
  • the four diodes (D1, D2, D3, D4) are silicon tubes, and the voltage drop of each diode is 0.7V under normal temperature (25 degrees Celsius), then VB is 2.8V.
  • the pressure drop of the silicon tube increases by 2.2 mV, and VB becomes 3.02V.
  • each second circuit 12 corresponds to a preset temperature threshold.
  • the corresponding preset temperature thresholds are respectively zero degrees Celsius, minus 5 degrees Celsius, and minus 10 degrees Celsius.
  • the compensation control switch S1 of the second circuit 12 is turned on.
  • the compensation control switches S1 of the three second circuits 12 are all turned on. In this way, the VGH output by the first circuit can be compensated in multiple temperature intervals, so as to gradually increase the temperature compensation value of the VGH, which is beneficial to reduce power consumption.
  • the compensation control switch S1 can be a thermal switch that conducts at a low temperature, or a field effect tube.
  • the compensation control switch S1 for each second circuit 12 can be independently set accordingly
  • the comparator 13 and the third circuit 14 described in the above embodiment, or the compensation control switch S1 of each second circuit 12 can be independently corresponding to the comparator 13 described in the above embodiment, and all the comparators 13 are shared
  • the same third circuit 14 is used to control the compensation control switch S1 of the group to be turned on when the temperature is lower than the corresponding preset temperature threshold.
  • the display panel in this embodiment includes a thin film transistor, a first circuit, and a second circuit;
  • the first circuit includes a first output terminal, a first resistor, and a second resistor connected in series.
  • the terminal is used to output a control voltage to the gate of the thin film transistor, an access terminal is provided between the first resistor and the second resistor, the first preset voltage is input to the access terminal, and one end of the second resistor is grounded;
  • the second circuit It includes a third resistor and a compensation control switch connected in series.
  • One end of the third resistor and the compensation control switch connected in series is connected to the access terminal, and the other end is grounded; when the temperature is lower than the preset temperature threshold, the compensation control switch is turned on,
  • the three resistors and the second resistor are connected in parallel to increase the control voltage output from the first output terminal to the gate of the thin film transistor, which can realize the temperature compensation of VGH under low temperature conditions, thereby avoiding the picture display of the display panel due to insufficient low temperature driving Problems that are abnormal or cannot be displayed normally.
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the display device 40 includes the display panel 41 of any of the foregoing embodiments.
  • the display panel 41 includes a thin film transistor, a first circuit, and a second circuit.
  • the first circuit includes a first output terminal, a first resistor, and a second resistor connected in series in sequence.
  • the first output terminal is used to output a control voltage to the gate of the thin film transistor.
  • the first preset voltage is input to the access terminal, and one end of the second resistor is grounded.
  • the second circuit includes a third resistor and a compensation control switch connected in series with each other. One end of the second circuit is connected to the access end, and the other end is grounded. When the temperature is lower than the preset temperature threshold, the compensation control switch is turned on, and the third resistor and the second resistor are connected in parallel to increase the control voltage output from the first output terminal to the gate of the thin film transistor.
  • the display panel in this embodiment includes a thin film transistor, a first circuit, and a second circuit;
  • the first circuit includes a first output terminal, a first resistor, and a second resistor connected in series.
  • the terminal is used to output a control voltage to the gate of the thin film transistor, an access terminal is provided between the first resistor and the second resistor, the first preset voltage is input to the access terminal, and one end of the second resistor is grounded;
  • the second circuit It includes a third resistor and a compensation control switch connected in series.
  • One end of the second circuit is connected to the access terminal, and the other end is grounded; when the temperature is lower than the preset temperature threshold, the compensation control switch is turned on, the third resistor and the second resistor Connected in parallel to increase the control voltage output from the first output terminal to the gate of the thin film transistor, which can realize the temperature compensation of VGH under low temperature conditions, thereby avoiding abnormal display or abnormal display of the display panel due to insufficient low temperature driving. problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板(10),包括薄膜晶体管、第一电路(11)和第二电路(12);第一电路(11)包括依次串联的第一输出端(111)、第一电阻(R1)和第二电阻(R2),第一输出端(111)用于向薄膜晶体管输出控制电压(VGH);第二电路(12)包括相互串联的第三电阻(R3)和补偿控制开关(S1);当温度低于预设温度阈值时,补偿控制开关(S1)导通,第三电阻(R3)和第二电阻(R2)并联,以增大第一输出端(111)输出至薄膜晶体管的控制电压(VGH)。

Description

一种显示面板及显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及显示装置。
背景技术
在液晶面板驱动电路应用中,GOA技术(Gate Driver on Array)即阵列基板行驱动技术,是利用液晶面板的阵列制程将栅极驱动电路制作在TFT(薄膜晶体管)阵列基板上,实现对栅极逐行扫描的驱动方式。其中,PMIC(电源管理集成电路)为显示设备的直流电路DC/DC中的常用电路,用于向TFT提供VGH(栅极开启电压),以开启TFT。
在低温条件下,由于电子迁移率降低,TFT的 VTH(阈值电压)会变高。因此,在低温条件下,需要更高的VGH才能使TFT打开。
但,现有的很多PMIC没有VGH温度补偿功能,即当这些PMIC应用于GOA电路时,可能因为VGH无温度补偿,而导致低温条件下VGH小于TFT的VTH,进而出现画面显示异常或者无法正常显示的问题。
技术问题
本申请提供了一种显示面板及显示装置,以避免显示面板因低温驱动不足而导致的画面显示异常或者无法正常显示的问题。
技术解决方案
为了解决上述问题,本申请实施例提供了一种显示面板,该显示面板包括薄膜晶体管、第一电路、以及第二电路;第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,第一输出端用于向薄膜晶体管的栅极输出控制电压,第一电阻和第二电阻之间设有接入端,接入端上输入有第一预设电压,第二电阻的一端接地;第二电路包括相互串联的第三电阻和补偿控制开关,第二电路的一端与接入端连接,另一端接地;当温度低于预设温度阈值时,补偿控制开关导通,第三电阻和第二电阻并联,以增大第一输出端输出至薄膜晶体管栅极的控制电压。
其中,显示面板还包括比较器、第三电路;第三电路与比较器连接,用于向比较器输入待比较电压,当待比较电压大于预设电压阈值时,比较器向补偿控制开关输入导通信号,以使补偿控制开关导通;第三电路包括测温元件,测温元件根据温度变化控制待比较电压发生变化,当温度低于预设温度阈值时,待比较电压大于预设电压阈值。
其中,补偿控制开关为场效应管,比较器与场效应管的栅极连接,导通信号为电压信号。
其中,比较器包括第四电路,第四电路包括第四电阻、以及第五电阻,第四电阻的一端输入有第二预设电压,第四电阻的另一端与第五电阻的一端连接,第五电阻的另一端接地,预设电压阈值为第五电阻的压降。
其中,第五电阻为可调电阻。
其中,测温元件为二极管,第三电路还包括第六电阻,第六电阻的一端输入有第三预设电压,第六电阻的另一端与二极管的正极连接,二极管的负极接地,待比较电压为二极管的正向压降。
其中,二极管为多个,多个二极管依次串联。
其中,二极管为硅管。
其中,第二电路为多个,预设温度阈值为多个,每一第二电路对应一预设温度阈值。
其中,补偿控制开关为热敏开关。
为了解决上述问题,本申请实施例还提供了一种显示装置,该显示装置包括显示面板,显示面板包括薄膜晶体管、第一电路、以及第二电路;第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,第一输出端用于向薄膜晶体管的栅极输出控制电压,第一电阻和第二电阻之间设有接入端,接入端上输入有第一预设电压,第二电阻的一端接地;第二电路包括相互串联的第三电阻和补偿控制开关,第二电路的一端与接入端连接,另一端接地;当温度低于预设温度阈值时,补偿控制开关导通,第三电阻和第二电阻并联,以增大第一输出端输出至薄膜晶体管栅极的控制电压。
其中,显示面板还包括比较器、第三电路;第三电路与比较器连接,用于向比较器输入待比较电压,当待比较电压大于预设电压阈值时,比较器向补偿控制开关输入导通信号,以使补偿控制开关导通;第三电路包括测温元件,测温元件根据温度变化控制待比较电压发生变化,当温度低于预设温度阈值时,待比较电压大于预设电压阈值。
其中,补偿控制开关为场效应管,比较器与场效应管的栅极连接,导通信号为电压信号。
其中,比较器包括第四电路,第四电路包括第四电阻、以及第五电阻,第四电阻的一端输入有第二预设电压,第四电阻的另一端与第五电阻的一端连接,第五电阻的另一端接地,预设电压阈值为第五电阻的压降。
其中,第五电阻为可调电阻。
其中,测温元件为二极管,第三电路还包括第六电阻,第六电阻的一端输入有第三预设电压,第六电阻的另一端与二极管的正极连接,二极管的负极接地,待比较电压为二极管的正向压降。
其中,二极管为多个,多个二极管依次串联。
其中,二极管为硅管。
其中,第二电路为多个,预设温度阈值为多个,每一第二电路对应一预设温度阈值。
其中,补偿控制开关为热敏开关。
有益效果
本申请的有益效果是:区别于现有技术,本申请提供的显示面板包括薄膜晶体管、第一电路、以及第二电路;第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,第一输出端用于向薄膜晶体管的栅极输出控制电压,第一电阻和第二电阻之间设有接入端,接入端上输入有第一预设电压,第二电阻的一端接地;第二电路包括相互串联的第三电阻和补偿控制开关,第二电路的一端与接入端连接,另一端接地;当温度低于预设温度阈值时,补偿控制开关导通,第三电阻和第二电阻并联,以增大第一输出端输出至薄膜晶体管栅极的控制电压,能够实现在低温条件下对VGH的温度补偿,从而避免显示面板因低温驱动不足而导致的画面显示异常或者无法正常显示的问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的结构示意图;
图2是本申请实施例提供的显示面板的另一结构示意图;
图3是本申请实施例提供的显示面板的又一结构示意图;
图4是本申请实施例提供的显示装置的结构示意图。
本发明的实施方式
下面结合附图和实施例,对本申请作进一步地详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
由于电源管理集成电路(PMIC)没有栅极开启电压(VGH)温度补偿功能,当PMIC应用于GOA电路时,可能导致低温条件下VGH小于薄膜晶体管(TFT)的阈值电压(VTH),进而出现显示面板画面显示异常或者无法正常显示的问题。为解决上述技术问题,本申请采用的方案是通过新增一电路,以在低温条件下对PMIC输出VGH进行温度补偿,从而避免显示面板因低温驱动不足而导致的画面显示异常或者无法正常显示的问题。以下,结合附图对本申请进行详细说明。
请参阅图1,图1是本申请实施例提供的显示面板的结构示意图。如图1所示,显示面板10包括薄膜晶体管(图中未示出)、第一电路11、以及第二电路12。第一电路11包括依次串联的第一输出端111、第一电阻R1、以及第二电阻R2,第一输出端111用于向薄膜晶体管的栅极输出控制电压VGH,第一电阻R1和第二电阻R2之间设有接入端112,接入端112上输入有第一预设电压VFB,第二电阻R2的一端接地。第二电路12包括相互串联的第三电阻R3和补偿控制开关S1,第二电路12的一端与接入端112连接,另一端接地。当温度低于预设温度阈值时,补偿控制开关S1导通,第三电阻R3和第二电阻R2并联,以增大第一输出端111输出至薄膜晶体管栅极的控制电压VGH。
另外,当温度由低于预设温度阈值增大至高于预设温度阈值时,补偿控制开关S1可以由导通状态转变为断开状态,以停止对第一输出端111输出至薄膜晶体管栅极的控制电压VGH进行温度补偿。
其中,第一电路11为PMIC,用于向显示面板10的TFT阵列基板提供VGH(栅极开启电压),以开启TFT。第二电路12用于在低温条件下对PMIC输出至TFT的控制电压VGH进行温度补偿,以避免显示面板10因低温驱动不足而导致的画面显示异常或者无法正常显示的问题。
具体地,在常温条件下或者当第二电路12不对VGH进行温度补偿时,补偿控制开关S1处于断开状态,通过第三电阻R3的电流为零,VGH=VFB*(1+R1/R2),例如,VFB=1.25V,R1=232KΩ,R2=10KΩ,则VGH=1.25*232/10V=29V。当温度低于预设温度阈值时,补偿控制开关S1导通,且补偿控制开关S1导通时的电阻很小可以忽略不计,即第三电阻R3与第二电阻R2并联,第二电阻R2和第三电阻R3并联后的阻值为:R2R3/(R2+R3),相当于原来PMIC中的第二电阻R2的阻值由R2减小至了R2R3/(R2+R3),也即进行温度补偿后的VGH=VFB*(1+R1/(R2R3/(R2+R3)),例如。R3=97.6KΩ,则VGH=1.25*(1+232/(10*97.6/(10+97.6))V=33V,相对于补偿前的VGH有所增大,能够避免由于低温驱动不足而导致的显示异常问题。
请参阅图2,图2是本申请实施例提供的另一结构示意图。如图2所示,在一个实施例中,显示面板10还包括比较器13、第三电路14。第三电路14与比较器13连接,用于向比较器13输入待比较电压VB。当待比较电压VB大于预设电压阈值VA时,比较器13向补偿控制开关S1输入导通信号,以使补偿控制开关S1导通,对应地,当待比较电压VB不大于预设电压阈值VA时,比较器13向补偿控制开关S1输入断开信号,以使补偿控制开关S1断开。第三电路14包括测温元件,测温元件根据温度变化控制待比较电压VB发生变化,当温度低于预设温度阈值时,待比较电压VB大于预设电压阈值。
其中,补偿控制开关S1可以为场效应管,例如,MOS管,比较器13与场效应管S1的栅极G连接,上述导通信号为电压信号,且该电压信号对应的电压值大于场效应管S1的阈值电压,对应地,上述断开信号也为电压信号,且该电压信号对应的电压值小于场效应管S1的阈值电压。
在一个具体实施例中,如图2所示,比较器13包括第四电路131,第四电路131包括第四电阻R4、以及第五电阻R5,第四电阻R4的一端输入有第二预设电压V2,第四电阻R4的另一端与第五电阻R5的一端连接,第五电阻R5的另一端接地,预设电压阈值VA为第五电阻R5的压降,且根据欧姆定律,VA=V1*R5/(R4+R5)。
其中,上述预设温度阈值与第五电阻R5的压降相互对应。例如,在第二预设电压V1一定的条件下,通过改变第四电阻R4和第五电阻R5的相对大小,可以改变第五电阻R5的压降,对应的预设温度阈值也会改变。又例如,第五电阻R5可以为可调电阻,即可通过人为调节第五电阻R5的大小,以调整所述预设温度阈值的大小。
具体地,若需要设定的预设温度阈值为零摄氏度,则需要先获取第三电路14在零摄氏度条件下输出的待比较电压VB,然后通过调整第四电阻R4或第五电阻R5的大小,以使第五电阻R5的压降等于零摄氏度条件下的待比较电压VB。如此,当显示面板10的工作温度低于零摄氏度时,对应的待比较电压VB会大于预设电压阈值VA,比较器13会输出导通信号至补偿控制开关S1,以使补偿控制开关S1导通,从而对第一电路11输出的VGH进行低温补偿。
在一个替代实施例中,如图2所示,测温元件为二极管D,第三电路14还包括第六电阻R6,第六电阻R6的一端输入有第三预设电压V2,第六电阻R6的另一端与二极管D的正极连接,二极管D的负极接地,待比较电压VB为二极管D的正向压降。其中,二级管D的正向压降随着温度的降低而增大,当温度低于预设温度阈值时,二级管D的压降等于上述预设电压阈值VA。进一步地,二极管D优选为硅管,因为硅管的压降比其他二级管如锗管的压降大,有利于提高温度补偿的精确度。
具体地,二极管D可以为多个,多个二极管D依次串联。例如,二极管D为4个,四个二极管(D1、D2、D3、D4)依次串联,其中,待比较电压VB为四个二级管(D1、D2、D3、D4)的总压降。又例如,若四个二级管(D1、D2、D3、D4)为硅管,在常温(25摄氏度)条件下,每个二极管的压降为0.7V,则VB为2.8V,进一步地,当温度由常温降至零摄氏度时,根据所选硅管的规格例如温度每降低一摄氏度,硅管的压降升高2.2mV,则VB变为3.02V。
在其他替代实施例中,如图3所示,第二电路12可以为多个,预设温度阈值为多个,每一第二电路12对应一预设温度阈值。例如,第二电路12为三个,对应的预设温度阈值分别为零摄氏度、零下5摄氏度、以及零下10摄氏度。当温度低于零摄氏度且不低于零下5摄氏度时,只有一个第二电路12的补偿控制开关S1导通,当温度低于零下5摄氏度且不低于零下10摄氏度时,只有两个第二电路12的补偿控制开关S1导通,当温度低于零下10摄氏度时,三个第二电路12的补偿控制开关S1均导通。如此,可以分多个温度区间对第一电路输出的VGH进行补偿,以逐步增大VGH的温度补偿值,有利于减小功耗。
其中,补偿控制开关S1可以为低温导通的热敏开关,也可以是场效应管,当补偿控制开关S1为场效应管时,针对每一第二电路12的补偿控制开关S1可独立对应设置上述实施例中所述的比较器13和第三电路14,或者每一第二电路12的补偿控制开关S1可独立对应设置上述实施例中所述的比较器13,且所有的比较器13共用同一个第三电路14,以实现在温度低于对应的预设温度阈值时控制该组的补偿控制开关S1导通。
区别于现有技术,本实施例中的显示面板包括薄膜晶体管、第一电路、以及第二电路;第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,第一输出端用于向薄膜晶体管的栅极输出控制电压,第一电阻和第二电阻之间设有接入端,接入端上输入有第一预设电压,第二电阻的一端接地;第二电路包括相互串联的第三电阻和补偿控制开关,串联的第三电阻和补偿控制开关的一端与接入端连接,另一端接地;当温度低于预设温度阈值时,补偿控制开关导通,第三电阻和第二电阻并联,以增大第一输出端输出至薄膜晶体管栅极的控制电压,能够实现在低温条件下对VGH的温度补偿,从而避免显示面板因低温驱动不足而导致的画面显示异常或者无法正常显示的问题。
请参阅图4,图4是本申请实施例提供的显示装置的结构示意图。如图4所示,该显示装置40包括上述任一实施例的显示面板41。
其中,显示面板41包括薄膜晶体管、第一电路、以及第二电路。第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,第一输出端用于向薄膜晶体管的栅极输出控制电压,第一电阻和第二电阻之间设有接入端,接入端上输入有第一预设电压,第二电阻的一端接地。第二电路包括相互串联的第三电阻和补偿控制开关,第二电路的一端与接入端连接,另一端接地。当温度低于预设温度阈值时,补偿控制开关导通,第三电阻和第二电阻并联,以增大第一输出端输出至薄膜晶体管栅极的控制电压。
区别于现有技术,本实施例中的显示面板包括薄膜晶体管、第一电路、以及第二电路;第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,第一输出端用于向薄膜晶体管的栅极输出控制电压,第一电阻和第二电阻之间设有接入端,接入端上输入有第一预设电压,第二电阻的一端接地;第二电路包括相互串联的第三电阻和补偿控制开关,第二电路的一端与接入端连接,另一端接地;当温度低于预设温度阈值时,补偿控制开关导通,第三电阻和第二电阻并联,以增大第一输出端输出至薄膜晶体管栅极的控制电压,能够实现在低温条件下对VGH的温度补偿,从而避免显示面板因低温驱动不足而导致的画面显示异常或者无法正常显示的问题。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,其包括薄膜晶体管、第一电路、以及第二电路;
    所述第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,所述第一输出端用于向所述薄膜晶体管的栅极输出控制电压,所述第一电阻和所述第二电阻之间设有接入端,所述接入端上输入有第一预设电压,所述第二电阻的一端接地;
    所述第二电路包括相互串联的第三电阻和补偿控制开关,所述第二电路的一端与所述接入端连接,另一端接地;当温度低于预设温度阈值时,所述补偿控制开关导通,所述第三电阻和所述第二电阻并联,以增大所述第一输出端输出至所述薄膜晶体管栅极的所述控制电压。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括比较器和第三电路;
    所述第三电路与所述比较器连接,用于向所述比较器输入待比较电压,当所述待比较电压大于预设电压阈值时,所述比较器向所述补偿控制开关输入导通信号,以使所述补偿控制开关导通;
    所述第三电路包括测温元件,所述测温元件根据温度变化控制所述待比较电压发生变化,当所述温度低于所述预设温度阈值时,所述待比较电压大于所述预设电压阈值。
  3. 根据权利要求2所述的显示面板,其中,所述补偿控制开关为场效应管,所述比较器与所述场效应管的栅极连接,所述导通信号为电压信号。
  4. 根据权利要求2所述的显示面板,其中,所述比较器包括第四电路,所述第四电路包括第四电阻、以及第五电阻,所述第四电阻的一端输入有第二预设电压,所述第四电阻的另一端与所述第五电阻的一端连接,所述第五电阻的另一端接地,所述预设电压阈值为所述第五电阻的压降。
  5. 根据权利要求4所述的显示面板,其中,所述第五电阻为可调电阻。
  6. 根据权利要求2所述的显示面板,其中,所述测温元件为二极管,所述第三电路还包括第六电阻,所述第六电阻的一端输入有第三预设电压,所述第六电阻的另一端与所述二极管的正极连接,所述二极管的负极接地,所述待比较电压为所述二极管的正向压降。
  7. 根据权利要求6所述的显示面板,其中,所述二极管为多个,多个所述二极管依次串联。
  8. 根据权利要求6所述的显示面板,其中,所述二极管为硅管。
  9. 根据权利要求1所述的显示面板,其中,所述第二电路为多个,所述预设温度阈值为多个,每一所述第二电路对应一所述预设温度阈值。
  10. 根据权利要求1所述的显示面板,其中,所述补偿控制开关为热敏开关。
  11. 一种显示装置,其包括显示面板,所述显示面板包括薄膜晶体管、第一电路、以及第二电路;
    所述第一电路包括依次串联的第一输出端、第一电阻、以及第二电阻,所述第一输出端用于向所述薄膜晶体管的栅极输出控制电压,所述第一电阻和所述第二电阻之间设有接入端,所述接入端上输入有第一预设电压,所述第二电阻的一端接地;
    所述第二电路包括相互串联的第三电阻和补偿控制开关,所述第二电路的一端与所述接入端连接,另一端接地;当温度低于预设温度阈值时,所述补偿控制开关导通,所述第三电阻和所述第二电阻并联,以增大所述第一输出端输出至所述薄膜晶体管栅极的所述控制电压。
  12. 根据权利要求11所述的显示装置,其中,所述显示面板还包括比较器和第三电路;
    所述第三电路与所述比较器连接,用于向所述比较器输入待比较电压,当所述待比较电压大于预设电压阈值时,所述比较器向所述补偿控制开关输入导通信号,以使所述补偿控制开关导通;
    所述第三电路包括测温元件,所述测温元件根据温度变化控制所述待比较电压发生变化,当所述温度低于所述预设温度阈值时,所述待比较电压大于所述预设电压阈值。
  13. 根据权利要求12所述的显示装置,其中,所述补偿控制开关为场效应管,所述比较器与所述场效应管的栅极连接,所述导通信号为电压信号。
  14. 根据权利要求12所述的显示装置,其中,所述比较器包括第四电路,所述第四电路包括第四电阻、以及第五电阻,所述第四电阻的一端输入有第二预设电压,所述第四电阻的另一端与所述第五电阻的一端连接,所述第五电阻的另一端接地,所述预设电压阈值为所述第五电阻的压降。
  15. 根据权利要求14所述的显示装置,其中,所述第五电阻为可调电阻。
  16. 根据权利要求12所述的显示装置,其中,所述测温元件为二极管,所述第三电路还包括第六电阻,所述第六电阻的一端输入有第三预设电压,所述第六电阻的另一端与所述二极管的正极连接,所述二极管的负极接地,所述待比较电压为所述二极管的正向压降。
  17. 根据权利要求16所述的显示装置,其中,所述二极管为多个,多个所述二极管依次串联。
  18. 根据权利要求16所述的显示装置,其中,所述二极管为硅管。
  19. 根据权利要求11所述的显示装置,其中,所述第二电路为多个,所述预设温度阈值为多个,每一所述第二电路对应一所述预设温度阈值。
  20. 根据权利要求11所述的显示装置,其中,所述补偿控制开关为热敏开关。
PCT/CN2019/085480 2019-04-10 2019-05-05 一种显示面板及显示装置 WO2020206770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,374 US11257451B2 (en) 2019-04-10 2019-05-05 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910285472.9A CN110097859B (zh) 2019-04-10 2019-04-10 一种显示面板及显示装置
CN201910285472.9 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020206770A1 true WO2020206770A1 (zh) 2020-10-15

Family

ID=67444596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085480 WO2020206770A1 (zh) 2019-04-10 2019-05-05 一种显示面板及显示装置

Country Status (3)

Country Link
US (1) US11257451B2 (zh)
CN (1) CN110097859B (zh)
WO (1) WO2020206770A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012654B (zh) * 2021-03-03 2022-10-11 昆山龙腾光电股份有限公司 一种栅极驱动电源管理系统和显示装置
CN113077736A (zh) * 2021-03-19 2021-07-06 Tcl华星光电技术有限公司 控制电路、显示装置以及电子设备
CN114302527B (zh) * 2021-12-23 2023-09-01 固安翌光科技有限公司 一种oled发光器件及其控制方法
KR20230114805A (ko) * 2022-01-24 2023-08-02 삼성디스플레이 주식회사 표시 장치
CN114627832B (zh) * 2022-02-28 2023-06-16 长沙惠科光电有限公司 电压补偿电路和显示装置
CN114566948A (zh) * 2022-04-15 2022-05-31 中国电子科技集团公司第二十四研究所 一种基于二极管的温度监测开关电源电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915713A (zh) * 2012-10-08 2013-02-06 合肥京东方光电科技有限公司 一种栅极电压温度补偿电路及补偿方法、显示装置
CN102982778A (zh) * 2012-12-11 2013-03-20 友达光电(厦门)有限公司 一种用于goa电路的驱动电压补偿系统
CN105099189A (zh) * 2015-07-17 2015-11-25 深圳市华星光电技术有限公司 一种电压补偿电路及基于电压补偿电路的电压补偿方法
US20160013804A1 (en) * 2014-07-11 2016-01-14 Qualcomm Incorporated Current counting analog-to-digital converter for load current sensing including dynamically biased comparator
CN107066017A (zh) * 2017-05-31 2017-08-18 深圳市华星光电技术有限公司 薄膜晶体管电源控制装置及其控制方法
CN107274836A (zh) * 2017-08-02 2017-10-20 深圳市华星光电半导体显示技术有限公司 具有温度补偿功能的amoled显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203456073U (zh) * 2013-07-25 2014-02-26 北京京东方光电科技有限公司 一种温度反馈调节电路及显示装置
CN105741811B (zh) * 2016-05-06 2018-04-06 京东方科技集团股份有限公司 温度补偿电路、显示面板和温度补偿方法
CN107464534B (zh) * 2017-07-19 2019-01-01 深圳市华星光电半导体显示技术有限公司 开启电压调整电路及液晶显示装置
US10535305B2 (en) 2017-08-02 2020-01-14 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. AMOLED display panel with function of temperature compensation and display device thereof
CN108389556B (zh) * 2018-03-06 2020-12-29 Tcl华星光电技术有限公司 Tft-lcd阵列基板结构及其goa电路温度补偿方法
CN109473076A (zh) * 2018-12-17 2019-03-15 深圳市华星光电半导体显示技术有限公司 一种goa电路的驱动电压补偿装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102915713A (zh) * 2012-10-08 2013-02-06 合肥京东方光电科技有限公司 一种栅极电压温度补偿电路及补偿方法、显示装置
CN102982778A (zh) * 2012-12-11 2013-03-20 友达光电(厦门)有限公司 一种用于goa电路的驱动电压补偿系统
US20160013804A1 (en) * 2014-07-11 2016-01-14 Qualcomm Incorporated Current counting analog-to-digital converter for load current sensing including dynamically biased comparator
CN105099189A (zh) * 2015-07-17 2015-11-25 深圳市华星光电技术有限公司 一种电压补偿电路及基于电压补偿电路的电压补偿方法
CN107066017A (zh) * 2017-05-31 2017-08-18 深圳市华星光电技术有限公司 薄膜晶体管电源控制装置及其控制方法
CN107274836A (zh) * 2017-08-02 2017-10-20 深圳市华星光电半导体显示技术有限公司 具有温度补偿功能的amoled显示面板及显示装置

Also Published As

Publication number Publication date
US11257451B2 (en) 2022-02-22
CN110097859A (zh) 2019-08-06
CN110097859B (zh) 2020-10-13
US20210327380A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020206770A1 (zh) 一种显示面板及显示装置
US9269326B2 (en) Voltage compensation circuit and operation method thereof
US20070052646A1 (en) Display device
US10027329B2 (en) NOR gate circuit, shift register, array substrate and display apparatus
US11482148B2 (en) Power supply time sequence control circuit and control method thereof, display driver circuit, and display device
US8199092B2 (en) Liquid crystal display having common voltage modulator
US9606645B2 (en) Display apparatus and pixel driving method with current compensation function
WO2021004087A1 (zh) 屏体检测电路、显示屏以及屏体检测方法
US8593449B2 (en) Reference voltage generation circuit, power source device, liquid crystal display device
US7764265B2 (en) Driving apparatus for display device and display device including the same and method of driving the same
JP6046097B2 (ja) 駆動モジュール及びディスプレイ装置
WO2013104222A1 (zh) 静电释放保护电路及其工作方法
WO2014161233A1 (zh) Tft阈值电压补偿电路及方法、移位寄存器和显示装置
TW201417082A (zh) 自我偵測電荷分享模組
CN109686332B (zh) 补偿模块及逻辑门电路、栅极驱动电路和显示装置
US20190122602A1 (en) Pixel control circuit and control method thereof, display device
WO2020199553A1 (zh) 电平转换控制电路与电平转换电路
CN110574098B (zh) 显示装置、驱动电压设定方法和存储介质
US10115360B2 (en) Gate driver
US11138948B2 (en) Voltage stabilization circuit, control method, and display device
WO2019015184A1 (zh) 开启电压调整电路及液晶显示装置
KR20070000144A (ko) 과전류보호회로를 구비한 액정표시장치
US20030112071A1 (en) Driving method and related apparatus for improving power efficiency of an operational transconductance amplifier
US9590620B2 (en) Gate driving circuit and display panel using the same
TWI552142B (zh) 閘極驅動電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924005

Country of ref document: EP

Kind code of ref document: A1