WO2020204032A1 - 鉛プラグ入り積層ゴム支承 - Google Patents

鉛プラグ入り積層ゴム支承 Download PDF

Info

Publication number
WO2020204032A1
WO2020204032A1 PCT/JP2020/014831 JP2020014831W WO2020204032A1 WO 2020204032 A1 WO2020204032 A1 WO 2020204032A1 JP 2020014831 W JP2020014831 W JP 2020014831W WO 2020204032 A1 WO2020204032 A1 WO 2020204032A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
laminated rubber
laminated
lead plug
thickness
Prior art date
Application number
PCT/JP2020/014831
Other languages
English (en)
French (fr)
Inventor
合田 裕一
Original Assignee
株式会社ビー・ビー・エム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビー・ビー・エム filed Critical 株式会社ビー・ビー・エム
Publication of WO2020204032A1 publication Critical patent/WO2020204032A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Definitions

  • the present invention relates to a laminated rubber bearing with a lead plug.
  • some laminated rubber bearings have a columnar lead plug embedded therein.
  • the lead plug is plastically deformed to absorb the seismic energy and attenuate the vibration.
  • Laminated rubber bearings with lead plugs are generally formed by inserting columnar lead plugs into through holes that penetrate the laminated rubber in the vertical direction.
  • the upper and lower surfaces of the laminated rubber are covered with a steel plate.
  • the lead plug may bite into the upper or lower rubber layer. If such deformation occurs, it will not be possible to exhibit stable damping performance as a seismic isolation bearing, and there is a concern that lead will be adversely affected by exposure to the outside air.
  • the present invention can maintain stable damping performance even when a large shearing force is applied, and also supports laminated rubber with a lead plug that does not adversely affect the surrounding environment.
  • the challenge is to propose.
  • the present invention for solving the above-mentioned problems covers a laminated rubber formed by alternately laminating a plurality of rubber plates and a plurality of metal plates, a lead plug embedded in the laminated rubber, and an upper surface of the laminated rubber.
  • a lead-plugged laminated rubber bearing including an upper steel plate and a lower steel plate that covers the lower surface of the laminated rubber.
  • the thickness of the rubber plates arranged at the upper and lower portions of the laminated rubber is smaller than the thickness of the rubber plates arranged at the center of the laminated rubber in the laminating direction.
  • the thickness of the rubber plate is reduced at the upper and lower parts of the laminated rubber on which a larger shear force acts than other parts during an earthquake, so that the upper part of the laminated rubber
  • the amount of displacement at the bottom can be kept small.
  • the thickness of the rubber plates arranged on the uppermost layer and the lowermost layer of the laminated rubber be smaller than the thickness of the rubber plates of the other layers. In this case, it is more desirable that the thickness of the plurality of rubber plates laminated on the laminated rubber increases from the uppermost layer and the lowest layer of the laminated rubber toward the intermediate layer.
  • the laminated rubber bearing 1 of the present embodiment is a lead-plugged laminated rubber bearing including a laminated rubber 2, a lead plug 3, and a steel plate 4.
  • the laminated rubber 2 is formed by alternately laminating a plurality of (6 sheets in this embodiment) rubber plates 21 and a plurality of (5 sheets in this embodiment) metal plates 22.
  • the laminated rubber 2 of the present embodiment has a columnar shape, but the shape of the laminated rubber 2 is not limited to a cylinder, and may be, for example, a prismatic shape. Further, the number of rubber plates 21 and metal plates 22 is not limited, and may be appropriately determined.
  • the rubber plate 21 is made of natural rubber formed in a plate shape.
  • a through hole 23 for inserting the lead plug 3 is formed in the central portion of the rubber plate 21.
  • the elastic modulus of the rubber plate 21 is not limited, but in the present embodiment, those in the range of 1.0 to 6.5 MPa are used.
  • the position, number, shape and arrangement of the through holes 23 of the rubber plate 21 are not limited, and may be appropriately determined according to the arrangement and shape of the lead plug 3.
  • the material constituting the rubber plate 21 is not limited to natural rubber, and may be, for example, high damping rubber.
  • the thickness of the plurality of rubber plates 21 laminated on the laminated rubber 2 increases from the uppermost layer and the lowest layer of the laminated rubber 2 toward the intermediate layer. That is, among the rubber plates 21a to 21f laminated in order from the bottom, the lower rubber plates 21a to 21c become thicker from the bottom to the top, and the upper rubber plates 21d to 21f go from the top to the bottom. The plate thickness increases accordingly.
  • the thickness of the rubber plates 21 of each layer first, all the rubber plates 21 arranged on the laminated rubber 2 so that the maximum displacement amount assumed at the time of an earthquake is within the allowable displacement amount. Set the total thickness.
  • the thickness of the rubber plate 21 of each layer may be set so that the displacement amount of the rubber plate 21 of each layer at the time of shear deformation is substantially equal.
  • the method of setting the thickness of the rubber plate 21 is not limited, and may be appropriately determined. Further, the area of the rubber plate 21 may be appropriately determined according to the weight of the member (superstructure) placed on the laminated rubber bearing 1, the allowable displacement amount, and the like.
  • the metal plate 22 is made of a circular steel plate in a plan view having a plane shape equivalent to that of the rubber plate 21.
  • a through hole 24 for inserting the lead plug 3 is formed in the metal plate 22 at a position corresponding to the through hole 23 of the rubber plate 21.
  • the thickness of the metal plate 22 is not limited, and may be appropriately determined according to the weight of the member (superstructure B1) placed on the laminated rubber bearing 1, the hardness of the rubber plate 21, and the like.
  • the lead plug 3 is embedded in the central portion of the laminated rubber 2.
  • the lead plug 3 penetrates through holes 23 and 24 of the rubber plate 21 and the metal plate 22 constituting the laminated rubber 2, and the upper end and the lower end of the lead plug 3 project from the upper surface and the lower surface of the laminated rubber 2. ing.
  • one lead plug 3 is arranged at the center of the laminated rubber 2, but the number and arrangement of the lead plugs 3 are not limited. For example, four lead plugs 3 may be arranged at intervals in the central portion of the laminated rubber 2.
  • the lead plug 3 has a columnar shape.
  • the shape of the lead plug 3 is not limited to a columnar shape, and may be, for example, a prismatic shape.
  • the lead plug 3 of the present embodiment is made of lead having an elastic modulus in the range of 5000 to 6000 MPa.
  • the material constituting the lead plug 3 is not limited.
  • the lead plug 3 of the present embodiment has an outer surface covered with an elastic coating material 31 so that lead is not exposed to the atmosphere even when a large deformation occurs at the time of an earthquake or the like. ..
  • the elastic coating material 31 is made of natural rubber, and the shear elastic modulus and flexural modulus of the elastic coating material 31 are in the range of 2.0 to 14.0 MPa and the range of 1000 to 82000 MPa, respectively.
  • the material constituting the elastic coating material 31 is not limited, and may be, for example, a high damping rubber or other resin-based material. Further, the shear modulus and flexural modulus of the elastic dressing 31 are not limited to the above ranges. Further, the thickness of the elastic coating material 31 may be appropriately determined.
  • the elastic coating material 31 may be installed as needed, and the lead plug 3 does not necessarily have to be covered with the elastic coating material 31.
  • the upper and lower surfaces of the laminated rubber 2 are covered with steel plates 4 (upper steel plate 41 and lower steel plate 42).
  • a through hole 43 is formed in the steel plate 4 corresponding to the position of the lead plug 3.
  • the upper end portion of the lead plug 3 (the portion protruding from the upper surface of the laminated rubber 2) is inserted into the through hole 43 of the upper steel plate 41, and the lower end portion of the lead plug 3 (the portion protruding from the lower surface of the laminated rubber 2).
  • the upper surface and the lower surface of the lead plug 3 coincide with the upper surface of the upper steel plate 41 and the lower surface of the lower steel plate 42, respectively (is flush with each other).
  • the through hole 43 may be shielded by a lid material or the like. Further, the steel plate 4 may be formed with a groove for inserting the end portion of the lead plug 3 instead of the through hole 43. Further, when the height of the lead plug 3 is equal to or less than the height of the laminated rubber 2, the steel plate 4 may be a flat plate having no through holes 43 or grooves formed therein.
  • the manufacturing method of the laminated rubber bearing 1 includes a laminating step and a molding step.
  • the laminating step is a step of laminating the rubber plate 21 and the metal plate 22 to form the laminated rubber 2.
  • the laminating step first, as shown in FIG. 3A, the lower steel plate 42 is placed on the mold 5, and the lead plug 3 is placed. At this time, the outer surface of the lead plug 3 is covered with the elastic coating material 31.
  • the elastic coating material 31 may be installed on the outer surface of the lead plug 3 on the mold 5. Further, the lower portion of the lead plug 3 is inserted into the through hole 43 of the lower steel plate 42.
  • the fixed plug 51 is planted in the mold 5.
  • the fixing plug 51 is inserted into a recess 32 formed at the lower end of the lead plug 3, and the lead plug 3 is fixed to the mold 5 so that the lead plug 3 does not move during vulcanization molding. ..
  • the fixed plug 51 may be provided as needed.
  • a rectangular rubber material 33 provided around the side surface of the lead plug 3 and a circular rubber material 34 arranged on the upper and lower surfaces of the lead plug 3 are used.
  • the elastic coating material 31 is formed.
  • the method of forming the elastic coating material 31 is not limited.
  • lead is formed by laminating a ring-shaped rubber material 33a along the outer surface of the lead plug 3.
  • the side surface of the plug 3 may be covered, or as shown in FIG. 4C, the strip-shaped rubber material 33b may be spirally wound around the outer peripheral surface of the lead plug 3.
  • the outer surface of the lead plug 3 may be coated with the elastic coating material 31 by inserting the lead plug 3 into the vulcanized rubber material.
  • the rubber plate 21 and the metal plate 22 are alternately laminated on the lower steel plate 42.
  • the lead plug 3 whose outer surface is covered with the elastic coating material 31 is inserted into the through holes 23 and 24 of the rubber plate 21 and the metal plate 22.
  • the rubber plate 21a having the smallest plate thickness is placed on the bottom layer, and then the rubber plates 21 (21a to 21c) are laminated in order so that the plate thickness gradually increases.
  • the rubber plates 21 (21d to 21f) are laminated in order from the rubber plate 21d having the largest plate thickness so that the plate thickness decreases toward the top (FIG. 3 (c)).
  • the upper steel plate 41 is placed on the upper surface of the laminated rubber 2 as shown in FIG. 3C. At this time, the upper part of the lead plug 3 is inserted into the through hole 43 of the upper steel plate 41. Subsequently, the mold 5 is placed on the upper surface of the upper steel plate 41.
  • the fixed plug 51 is planted in the mold 5.
  • the fixing plug 51 is inserted into a recess 32 formed at the upper end of the lead plug 3, and the lead plug 3 is fixed to the mold 5 so that the lead plug 3 does not move during vulcanization molding. ..
  • the fixed plug 51 may be provided as needed.
  • the rubber plate 21, the metal plate 22, the lead plug 3 and the steel plate 4 are vulcanized.
  • Vulcanization molding is performed by compressing the mold 5 installed in the press machine (not shown) from above and below and heating it.
  • the laminated rubber 2 and the lead plug 3 are integrally molded.
  • the mold is removed.
  • the fixing pin 51 is pulled out from the laminated rubber bearing 1 together with the mold 5.
  • the recess 32 of the lead plug 3 is filled with the same material as the elastic coating material 31.
  • the material to be filled in the recess 32 is not limited, and may be appropriately selected.
  • the thickness of the rubber plates 21 arranged at the upper and lower parts of the laminated rubber 2 is smaller than the thickness of the rubber plate 21 at the center, so that the rubber plates 21 of each layer It is possible to equalize the amount of deformation of. That is, since the thickness of the rubber plate 21 is small at the upper and lower parts of the laminated rubber 2, the amount of deformation of the rubber plate 21 is small. As a result, it is possible to prevent the deformation of the upper portion and the lower portion of the laminated rubber 2 when a shearing force is applied from becoming extremely large as compared with the other portions. Therefore, it is possible to prevent the lead plug 3 from biting into the rubber layer (rubber plate 21) and restrain the lead plug 3 with an even pressure. As a result, stable damping performance can be ensured, and lead can be prevented from being exposed to the atmosphere even when a large shear deformation occurs.
  • the present invention has been described above.
  • the present invention is not limited to the above-described embodiment, and each component can be appropriately modified without departing from the spirit of the present invention.
  • the case where the lead plug-containing laminated rubber bearing 1 is used for a bridge has been described, but the installation location of the lead plug-containing laminated rubber bearing 1 is not limited to the bridge, and is applicable to all structures. It is possible.
  • the thickness of the rubber plate 21 is increased from the uppermost layer and the lowest layer of the laminated rubber 2 toward the intermediate layer, but among the plurality of rubber plates 21, the upper and lower parts of the laminated rubber 2 are covered.
  • the thickness of the arranged rubber plate 21 may be smaller than the thickness of the rubber plate 21 arranged in the central portion, and the arrangement of the rubber plate 21 is not limited.
  • the thickness of only the rubber plates 21a and 21f arranged on the uppermost layer and the lowermost layer of the laminated rubber 2 is the thickness of the rubber plates 21 (21b to 21e) of the other layers.
  • the thickness of the rubber plate 21h which is smaller than the thickness and is arranged in layers other than the uppermost layer and the lowermost layer, may be constant. Further, as shown in FIG. 4B, the rubber plate 21 (21 g, 21f) having several layers (two layers in the drawing) from the top of the laminated rubber 2 and the rubber plate 21 having several layers (two layers in the drawing) from the bottom.
  • the thicknesses of (21a and 21b) may be the same, and may be smaller than the thickness of the rubber plates 21 (21c to 21e) of the other layer (intermediate portion). Further, the thicknesses of the rubber plate 21 arranged on the uppermost layer (upper part) and the rubber plate 21 arranged on the lowermost layer (lower part) of the laminated rubber 2 may be different or the same. ..
  • the lead plug 3 has the rubber plate 21 and the metal plate 22 It may be inserted later into the through holes 23 and 24 of the laminated laminated rubber 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

複数のゴム板21と複数の金属板22とが交互に積層されてなる積層ゴム2と、積層ゴム2に埋め込まれた鉛プラグ3と、積層ゴム2の上面を覆う上鋼板41と、積層ゴム2の下面を覆う下鋼板42とを備える積層ゴム支承1である。複数のゴム板21のうち、積層ゴム2の上部および下部に配設されたゴム板21の厚さが、積層ゴム2の積層方向中央部に配設されたゴム板21の厚さよりも小さい。

Description

鉛プラグ入り積層ゴム支承
 本発明は、鉛プラグ入り積層ゴム支承に関する。
 積層ゴム支承には、例えば、特許文献1に示すように、柱状の鉛プラグが埋め込まれたものがある。鉛プラグ入り積層ゴム支承は、地震時に積層ゴムが変形するのに伴い、鉛プラグが塑性変形することで地震エネルギーを吸収して、振動を減衰させる。
 鉛プラグ入り積層ゴム支承は、積層ゴムを上下方向に貫通する貫通孔に柱状の鉛プラグを挿入することにより形成されるのが一般的である。積層ゴムの上面および下面は、鋼板により覆われている。
特開2015-132303号公報
 前記従来の鉛プラグ入り積層ゴム支承は、大きなせん断変形が生じた場合に、積層ゴムの上部または下部のゴム層の変形が高さ方向(積層方向)中央部のゴム層の変形に比べて大きくなるため、鉛プラグが上部又は下部のゴム層に食い込むおそれがある。このような変形が生じると、免震支承として安定した減衰性能を発揮することができなくなるとともに、鉛が外気に曝されることによる環境への悪影響が懸念される。
 このような観点から、本発明は、大きなせん断力が作用した場合であっても、安定した減衰性能を維持することができ、また、周辺環境へ悪影響を及ぼすことがない鉛プラグ入り積層ゴム支承を提案することを課題とする。
 前記課題を解決するための本発明は、複数のゴム板と複数の金属板とが交互に積層されてなる積層ゴムと、前記積層ゴムに埋め込まれた鉛プラグと、前記積層ゴムの上面を覆う上鋼板と、前記積層ゴムの下面を覆う下鋼板とを備える鉛プラグ入り積層ゴム支承である。複数の前記ゴム板のうち、前記積層ゴムの上部および下部に配設されたゴム板の厚さが、前記積層ゴムの積層方向中央部に配設されたゴム板の厚さよりも小さい。
 かかる鉛プラグ入り積層ゴム支承によれば、地震時に他の部分に比べて大きなせん断力が作用する積層ゴムの上部と下部において、ゴム板の厚さを小さくしているため、積層ゴムの上部と下部における変位量を小さく抑えることができる。その結果、上部と下部のゴム板よりも大きい厚さのゴム板が配設された積層ゴムの中央部に比べて、積層ゴムの上部および下部における変形が極端に大きくなることを抑制することができる。そのため、鉛プラグがゴム層に食い込むことを防止し、鉛プラグを均等な圧力で拘束することができる。その結果、安定した減衰性能が確保できるとともに、鉛が大気に露出することも防止できる。
 なお、このような鉛プラグ入り積層ゴム支承は、前記積層ゴムの最上層および最下層に配設されたゴム板の厚さを、他の層のゴム板の厚さよりも小さくするのが望ましい。この場合には、前記積層ゴムに積層された前記複数のゴム板の厚さが、前記積層ゴムの最上層および最下層から中間層に向かうに従って大きくなるようにするのがさらに望ましい。
 本発明の鉛プラグ入り積層ゴム支承によれば、大きなせん断力が作用した場合であっても、安定した減衰性能を発揮することができ、また、周辺環境へ悪影響を及ぼすことを防止することができる。
本実施形態に係る積層ゴム支承の使用状況の例を示す正面図である。 本実施形態に係る積層ゴム支承を示す断面図である。 本実施形態の積層ゴム支承の製造方法の各段階を示す断面図であって、(a)は鉛プラグの設置状況、(b)はゴム板の積層状況、(c)は上鋼板の設置状況である。 (a)は本実施形態に係る鉛プラグの分解斜視図、(b)および(c)は他の形態に係る鉛プラグを示す斜視図である。 (a)および(b)はそれぞれ他の形態に係る積層ゴム支承を示す断面図である。
 本実施形態では、図1に示すように、橋梁の上部構造B1と下部構造B2との間に介設される積層ゴム支承1について説明する。本実施形態の積層ゴム支承1は、図2に示すように、積層ゴム2、鉛プラグ3、鋼板4を備える鉛プラグ入り積層ゴム支承である。
 積層ゴム2は、複数(本実施形態では6枚)のゴム板21と複数(本実施形態では5枚)の金属板22とが交互に積層されてなる。本実施形態の積層ゴム2は、円柱状を呈しているが、積層ゴム2の形状は円柱に限定されるものではなく、例えば、角柱状であってもよい。また、ゴム板21および金属板22の枚数は限定されるものではなく、適宜決定すればよい。
 ゴム板21は、板状に形成された天然ゴムにより構成されている。ゴム板21の中央部には、鉛プラグ3を挿通するための貫通孔23が形成されている。ゴム板21の弾性率は限定されるものではないが、本実施形態では、1.0~6.5MPaの範囲内のものを使用する。なお、ゴム板21の貫通孔23の位置、数、形状および配置は限定されるものではなく、鉛プラグ3の配置や形状に応じて適宜決定すればよい。また、ゴム板21を構成する材料は、天然ゴムに限定されるものではなく、例えば、高減衰ゴムであってもよい。
 積層ゴム2に積層された複数のゴム板21の厚さは、積層ゴム2の最上層および最下層から中間層に向かうに従って大きい。すなわち、下から順に積層されたゴム板21a~21fのうち、下側のゴム板21a~21cは下から上に向かうに従って板厚が大きくなり、上側のゴム板21d~21fは上から下に向かうに従って板厚が大きくなっている。各層のゴム板21の厚さを設定する際には、まず、地震時に想定される最大変位量が、許容変位量内に収まるように、積層ゴム2に配設される全てのゴム板21の厚さの合計値を設定する。次に、せん断変形時における各層のゴム板21の変位量が略均等になるように、各層のゴム板21の厚さを設定すればよい。なお、ゴム板21の厚さの設定方法は限定されるものではなく、適宜決定すればよい。また、ゴム板21の面積は、積層ゴム支承1に上載される部材(上部構造)の重量や許容変位量等に応じて適宜決定すればよい。
 金属板22は、ゴム板21と同等の平面形状を有した平面視円形の鋼板からなる。金属板22には、鉛プラグ3を挿通するための貫通孔24が、ゴム板21の貫通孔23に対応する位置に形成されている。なお、金属板22の厚さは限定されるものではなく、積層ゴム支承1に上載される部材(上部構造B1)の重量やゴム板21の硬度等に応じて適宜決定すればよい。
 鉛プラグ3は、積層ゴム2の中央部に埋め込まれている。鉛プラグ3は、積層ゴム2を構成するゴム板21および金属板22の貫通孔23,24を貫通していて、鉛プラグ3の上端部および下端部は、積層ゴム2の上面および下面から突出している。なお、本実施形態では、積層ゴム2の中央部に1本の鉛プラグ3を配置するが、鉛プラグ3の数および配置は限定されるものではない。例えば、積層ゴム2の中央部に4本の鉛プラグ3が間隔をあけて配置されていてもよい。
 鉛プラグ3は、円柱状を呈している。なお、鉛プラグ3の形状は円柱状に限定されるものではなく、例えば、角柱状であってもよい。本実施形態の鉛プラグ3は、弾性率が5000~6000MPaの範囲内の鉛からなる。なお、鉛プラグ3を構成する材料は限定されるものではない。
 本実施形態の鉛プラグ3は、外面が弾性被覆材31により覆われていて、地震時等において大きな変形が生じた場合であっても鉛が大気に露出することがないように構成されている。弾性被覆材31は、天然ゴムからなり、弾性被覆材31のせん断弾性率および曲げ弾性率は、それぞれ2.0~14.0MPaの範囲内および1000~82000MPaの範囲内である。なお、弾性被覆材31を構成する材料は限定されるものではなく、例えば、高減衰ゴムや、その他の樹脂系の材料であってもよい。また、弾性被覆材31のせん断弾性率および曲げ弾性率は、前記範囲に限定されるものではない。さらに、弾性被覆材31の厚さは、適宜決定すればよい。なお、弾性被覆材31は必要に応じて設置すればよく、鉛プラグ3は必ずしも弾性被覆材31により被覆されている必要はない。
 積層ゴム2の上面および下面は、鋼板4(上鋼板41および下鋼板42)により覆われている。鋼板4には、鉛プラグ3の位置に対応して貫通孔43が形成されている。鉛プラグ3の上端部(積層ゴム2の上面から突出している部分)は、上鋼板41の貫通孔43に挿入しており、鉛プラグ3の下端部(積層ゴム2の下面から突出している部分)は、下鋼板42の貫通孔43に挿入している。鉛プラグ3の上面および下面は、それぞれ上鋼板41の上面および下鋼板42の下面と一致している(面一となっている)。なお、貫通孔43は、蓋材等により遮蔽してもよい。また、鋼板4には、貫通孔43に代えて、鉛プラグ3の端部を挿入するための溝が形成されていてもよい。また、鉛プラグ3の高さが積層ゴム2の高さ以下の場合には、鋼板4は貫通孔43や溝が形成されていない平板であってもよい。
 以下、積層ゴム支承1の製造方法について説明する。積層ゴム支承1の製造方法は、積層工程と、成形工程とを備えている。
 積層工程は、ゴム板21と金属板22を積層して、積層ゴム2を形成する工程である。積層工程では、まず、図3(a)に示すように、金型5上に下鋼板42を載置するとともに、鉛プラグ3を載置する。このとき、鉛プラグ3の外面に弾性被覆材31を被覆しておく。なお、弾性被覆材31は、金型5上において、鉛プラグ3の外面に設置してもよい。また、鉛プラグ3の下部は、下鋼板42の貫通孔43に挿入する。
 本実施形態では、金型5に固定プラグ51が植設されている。固定プラグ51は、鉛プラグ3の下端に形成された凹部32に挿入されていて、加硫成形時に鉛プラグ3が移動することがないように、鉛プラグ3を金型5に固定している。なお、固定プラグ51は必要に応じて設ければよい。
 本実施形態では、図4(a)に示すように、鉛プラグ3の側面に周設した矩形状のゴム材33と、鉛プラグ3の上下面に配設された円形状のゴム材34により弾性被覆材31を形成する。なお、弾性被覆材31の形成方法は限定されるものではなく、例えば、図4(b)に示すように、リング状のゴム材33aを鉛プラグ3の外面に沿って積層することにより、鉛プラグ3の側面を覆ってもよいし、また、図4(c)に示すように、帯状のゴム材33bを鉛プラグ3の外周面に螺旋状に巻き付けてもよい。または、加硫したゴム材に鉛プラグ3を挿入することで、鉛プラグ3の外面に弾性被覆材31を被覆してもよい。
 次に、図3(b)に示すように、下鋼板42上において、ゴム板21および金属板22を交互に積層する。このとき、外面が弾性被覆材31で覆われた鉛プラグ3をゴム板21および金属板22の貫通孔23,24に挿通させる。ゴム板21は、まず、最下層に最も板厚が小さいゴム板21aを載置し、その後板厚が徐々に大きくなるように順番にゴム板21(21a~21c)を積層する。そして、最も板厚が大きい中間部のゴム板21cを積層したら、上に向かうに従って板厚が小さくなるように板厚の大きいゴム板21dから順にゴム板21(21d~21f)を積層する(図3(c)参照)。
 所定の枚数のゴム板21および金属板22を積層したら、図3(c)に示すように、積層ゴム2の上面に上鋼板41を載置する。このとき、上鋼板41の貫通孔43に鉛プラグ3の上部を挿入する。続いて、上鋼板41の上面に金型5を載置する。
 本実施形態では、金型5に固定プラグ51が植設されている。固定プラグ51は、鉛プラグ3の上端に形成された凹部32に挿入されていて、加硫成形時に鉛プラグ3が移動することがないように、鉛プラグ3を金型5に固定している。なお、固定プラグ51は必要に応じて設ければよい。
 成形工程では、ゴム板21、金属板22、鉛プラグ3および鋼板4を加硫成形する。加硫成形は、プレス機(図示せず)内に設置された金型5を上下から圧縮するとともに、加熱することにより行う。加硫成形することにより、積層ゴム2および鉛プラグ3が一体に成形される。加硫成形後、脱型する。脱型時には、金型5とともに固定ピン51を積層ゴム支承1から抜きとる。固定ピン51を抜きとったら、鉛プラグ3の凹部32を弾性被覆材31と同じ材料等により充填する。なお、凹部32に充填する材料は限定されるものではなく、適宜選定すればよい。
 本実施形態の積層ゴム支承1によれば、積層ゴム2の上部と下部に配設されたゴム板21の板厚が中央部のゴム板21の板厚よりも小さいため、各層のゴム板21の変形量の均等化を図ることが可能となる。すなわち、積層ゴム2の上部および下部では、ゴム板21の厚さが小さいため、ゴム板21の変形量が小さい。その結果、せん断力が作用した際の積層ゴム2の上部および下部における変形が他の部分に比べて極端に大きくなることを抑制することができる。そのため、鉛プラグ3がゴム層(ゴム板21)に食い込むことを防止し、鉛プラグ3を均等な圧力で拘束することができる。その結果、安定した減衰性能が確保できるとともに、大きなせん断変形が生じた場合であっても鉛が大気に露出することを防止できる。
 以上、本発明に係る実施形態について説明した。しかし、本発明は前述の実施形態に限られず、各構成要素については本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
 例えば、前記実施形態では、鉛プラグ入り積層ゴム支承1を橋梁に使用する場合について説明したが、鉛プラグ入り積層ゴム支承1の設置箇所は橋梁に限定されるものではなく、あらゆる構造物に適用可能である。
 また、前記実施形態では、鉛プラグ3の端部が積層ゴム2の上面および下面から突出している場合について説明したが、鉛プラグ3の端部は積層ゴム2から突出している必要はない。この場合には、鋼板4に貫通孔43を形成する必要はない。
 前記実施形態では、積層ゴム2の最上層および最下層から中間層に向かうに従ってゴム板21の板厚が大きくなるようにしたが、複数のゴム板21のうち、積層ゴム2の上部および下部に配設されたゴム板21の厚さが、中央部に配設されたゴム板21の厚さよりも小さければよく、ゴム板21の配置は限定されるものではない。例えば、図5(a)に示すように、積層ゴム2の最上層および最下層に配設されたゴム板21a,21fのみの厚さが、他の層のゴム板21(21b~21e)の厚さよりも小さく、かつ、最上層および最下層以外の層に配設されたゴム板21hの厚さは一定であってもよい。また、図4(b)に示すように、積層ゴム2の上から数層(図面では2層)のゴム板21(21g,21f)および下から数層(図面では2層)のゴム板21(21a,21b)の厚さが同一で、なおかつ、他の層(中間部)のゴム板21(21c~21e)の厚さよりも小さくてもよい。また、積層ゴム2の最上層(上部)に配設されたゴム板21と最下層(下部)に配設されたゴム板21の厚さは異なっていてもよいし、同一であってもよい。
 また、前記実施形態では、鉛プラグ3を挿通させつつゴム板21および金属板22を積層して積層ゴム2を形成する場合について説明したが、鉛プラグ3はゴム板21と金属板22とが積層された積層ゴム2の貫通孔23,24に後から挿入してもよい。
 1  積層ゴム支承(鉛プラグ入り積層ゴム支承)
 2  積層ゴム
 21 ゴム板
 22 金属板
 3  鉛プラグ
 4  鋼板
 41 上鋼板
 42 下鋼板

Claims (3)

  1.  複数のゴム板と複数の金属板とが交互に積層されてなる積層ゴムと、
     前記積層ゴムに埋め込まれた鉛プラグと、
     前記積層ゴムの上面を覆う上鋼板と、
     前記積層ゴムの下面を覆う下鋼板と、を備える鉛プラグ入り積層ゴム支承であって、
     複数の前記ゴム板のうち、前記積層ゴムの上部および下部に配設されたゴム板の厚さが、前記積層ゴムの積層方向中央部に配設されたゴム板の厚さよりも小さいことを特徴とする鉛プラグ入り積層ゴム支承。
  2.  前記積層ゴムの最上層および最下層に配設されたゴム板の厚さが、他の層のゴム板の厚さよりも小さいことを特徴とする請求項1に記載の鉛プラグ入り積層ゴム支承。
  3.  前記積層ゴムに積層された前記複数のゴム板の厚さが、前記積層ゴムの最上層および最下層から中間層に向かうに従って大きくなることを特徴とする請求項2に記載の鉛プラグ入り積層ゴム支承。
PCT/JP2020/014831 2019-04-04 2020-03-31 鉛プラグ入り積層ゴム支承 WO2020204032A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071833 2019-04-04
JP2019071833A JP2020169699A (ja) 2019-04-04 2019-04-04 鉛プラグ入り積層ゴム支承

Publications (1)

Publication Number Publication Date
WO2020204032A1 true WO2020204032A1 (ja) 2020-10-08

Family

ID=72669020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014831 WO2020204032A1 (ja) 2019-04-04 2020-03-31 鉛プラグ入り積層ゴム支承

Country Status (2)

Country Link
JP (1) JP2020169699A (ja)
WO (1) WO2020204032A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339633U (ja) * 1989-05-17 1991-04-17
JPH0860746A (ja) * 1994-08-22 1996-03-05 Oiles Ind Co Ltd 鉛封入積層ゴム
JP2004308861A (ja) * 2003-04-10 2004-11-04 Bando Chem Ind Ltd 免震装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339633U (ja) * 1989-05-17 1991-04-17
JPH0860746A (ja) * 1994-08-22 1996-03-05 Oiles Ind Co Ltd 鉛封入積層ゴム
JP2004308861A (ja) * 2003-04-10 2004-11-04 Bando Chem Ind Ltd 免震装置

Also Published As

Publication number Publication date
JP2020169699A (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2017183542A1 (ja) 免震装置
JP3205393U (ja) 免震装置
TWI672447B (zh) 防震支撐裝置
WO2020204032A1 (ja) 鉛プラグ入り積層ゴム支承
JP6026034B1 (ja) 構造物用支承装置
WO2020204031A1 (ja) 鉛プラグ入り積層ゴム支承および鉛プラグ入り積層ゴム支承の製造方法
KR100994370B1 (ko) 납 면진받침 및 그 제조방법
JP7427578B2 (ja) 免震装置
JPH0227484B2 (ja)
JP2019127994A (ja) 免震支持装置
JP2009228855A (ja) 免震用積層ゴム
JP5960492B2 (ja) 積層ゴム
TWI704303B (zh) 防震支撐裝置
JP4868435B2 (ja) 鉛プラグ入り積層ゴム体
JP5136622B2 (ja) 鉛プラグ入り積層ゴム体
EP3540151A1 (en) Enhanced seismic isolation lead rubber bearings
JP7473380B2 (ja) 免震装置
JP2007170488A (ja) 積層ゴム支承体
JP5404104B2 (ja) 免震装置
US11971078B2 (en) Layered support
JP2008232190A (ja) 積層ゴム支承およびその製造方法
JP2006226414A (ja) ハードニング特性を有する積層ゴム支承
JP2018013172A (ja) 免震支持装置
JPH0988189A (ja) 免振積層ゴム
JP2014206197A (ja) 防振支持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20783178

Country of ref document: EP

Kind code of ref document: A1