WO2020203443A1 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
WO2020203443A1
WO2020203443A1 PCT/JP2020/012904 JP2020012904W WO2020203443A1 WO 2020203443 A1 WO2020203443 A1 WO 2020203443A1 JP 2020012904 W JP2020012904 W JP 2020012904W WO 2020203443 A1 WO2020203443 A1 WO 2020203443A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dye
base material
electrode layer
sensitized solar
Prior art date
Application number
PCT/JP2020/012904
Other languages
French (fr)
Japanese (ja)
Inventor
福島岳行
染井秀徳
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2020203443A1 publication Critical patent/WO2020203443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell.
  • Dye-sensitized solar cells are attracting attention as new solar cells to replace silicon-based solar cells.
  • Dye-sensitized solar cells can efficiently generate electricity even in low-light environments such as indoors and at dusk, so they are expected to be applied to power-saving applications such as IoT (Internet of Things) devices.
  • IoT Internet of Things
  • by mounting the dye-sensitized solar cell on the wiring board built in the IoT device it is possible to drive an electronic device such as a sensor in the IoT device with the electric power of the dye-sensitized solar cell.
  • a dye-sensitized solar cell in which a power generation unit that generates power is surrounded by a sealing material on the surface of a package substrate to prevent the electrolyte solution of the power generation unit from leaking with the sealing material (Patent Document). 1).
  • Patent Document Patent Document 1
  • the area of the power generation unit since it is necessary to secure a space for providing the sealing material on the package substrate, the area of the power generation unit must be reduced, and a sufficient amount of power generation cannot be obtained.
  • Patent Document 2 a technique of providing an electrode pad on a translucent base material included in a dye-sensitized solar cell and connecting the electrode pad and a wiring substrate with solder is also disclosed (Patent Document 2).
  • Patent Document 2 a technique of providing an electrode pad on a translucent base material included in a dye-sensitized solar cell and connecting the electrode pad and a wiring substrate with solder is also disclosed (Patent Document 2).
  • heat is easily transferred to the dye-sensitized solar cell, so that the characteristics may deteriorate.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a dye-sensitized solar cell capable of increasing the amount of power generation.
  • the dye-sensitized solar cell according to the present invention includes a transparent base material, a transparent electrode layer provided on the transparent base material, a power generation layer containing a dye provided on the transparent electrode layer, and the power generation. It is characterized by having a solid electrolyte layer provided on the layer, a counter electrode layer provided on the solid electrolyte layer, and a resin base material fixed to the upper surface of the counter electrode layer.
  • the resin base material has a first main surface fixed to the upper surface of the counter electrode layer and a second main surface opposite to the first main surface.
  • a first via hole and a second via hole are formed in the resin base material, a first via conductor formed in the first via hole and electrically connected to the transparent electrode layer, and the second via conductor.
  • the first via conductor and the second via conductor may be provided on the edge of the resin base material.
  • the resin base material is polygonal in a plan view
  • the first via conductor is provided on one of the two corners of the polygon
  • the second via conductor is provided on the other.
  • a via conductor may be provided.
  • the first via hole and the second via hole are provided outside the cell region where the transparent electrode layer, the solid electrolyte layer, and the counter electrode layer each overlap in a plan view. You may.
  • the first via conductor is connected to the counter electrode layer in the outer first contact region of the cell region, and the second via conductor is the cell region. It may be connected to the transparent electrode layer in the outer second contact region.
  • the solid electrolyte layer is provided with a size that fits in the cell region in a plan view, and the insulating layer provided on the transparent electrode layer in the first contact region and the said. It further has a conductive layer provided on the transparent electrode layer in the second contact region, and in the first contact region, the counter electrode layer is provided on the insulating layer, and the second contact electrode layer is provided. In the contact region, the transparent electrode layer and the second via conductor may be connected via the conductive layer.
  • the conductive layer may be provided at a distance from the solid electrolyte layer in a plan view, and the insulating layer may also be provided between the solid electrolyte layer and the conductive layer. Good.
  • the transparent electrode layer in the first contact region may be separated from the transparent electrode layer in the cell region.
  • the side surface of the power generation layer and the side surface of the transparent base material may be in the same plane.
  • FIG. 1 and FIG. 2 are perspective views (No. 1) during the manufacture of the dye-sensitized solar cell according to the first embodiment.
  • FIG. 2 are perspective views (No. 2) during the production of the dye-sensitized solar cell according to the first embodiment.
  • FIG. 3 are cross-sectional views (No. 1) of the wiring board according to the first embodiment during manufacturing.
  • (A) to (c) are cross-sectional views (No. 2) during manufacturing of the wiring board according to the first embodiment.
  • (A) is a perspective view of the wiring board according to the first embodiment when the second main surface of the resin base material is turned up, and (b) is a cross section along the line BB of (a). It is a figure.
  • FIG. 1 is a perspective view (No. 1) during the production of the dye-sensitized solar cell according to the second embodiment.
  • FIG. 2 is a perspective view (No. 2) during the production of the dye-sensitized solar cell according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along the line EE of FIG. 14 (a)
  • FIG. 14 (a) is a cross-sectional view taken along the line FF of FIG. 14 (a)
  • (c) is a cross-sectional view taken along the line EF of FIG.
  • a transparent base material 20 having a first main surface 20a and a second main surface 20b facing each other is prepared.
  • the first main surface 20a is an incident surface on which light is incident under actual use.
  • an ITO (Indium Tin Oxide) layer is formed in advance as a transparent electrode layer 21 to a thickness of about 0.1 ⁇ m to 0.5 ⁇ m.
  • any one of the FTO (Fluorine Doped Tin Oxide) layer, the zinc oxide layer, the laminated film of the indium-tin composite oxide layer and the silver layer, and the antimony-doped tin oxide layer is transparent. It may be formed as the electrode layer 21.
  • the transparent base material 20 is a glass substrate, and the length Ax of the long side thereof is 5 mm to 40 mm, for example, 20 mm, and the length Ay of the short side is 5 mm to 20 mm, for example, 15 mm.
  • the thickness Az of the transparent base material 20 is 0.1 mm to 3.0 mm, for example, 1.1 mm.
  • a transparent plastic plate may be used as the transparent base material 20 instead of the glass substrate.
  • an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region I, and then the alcohol solution is heated and dried to cause reverse electrons.
  • the movement prevention layer 22 is formed to have a thickness of about 5 nm to 0.1 ⁇ m.
  • the drying temperature in this step is not particularly limited, and drying may be performed at a temperature of 450 ° C. to 650 ° C., for example, about 550 ° C.
  • the cell region I is a region in which the solar cell is formed on the transparent base material 20. Further, the region adjacent to the cell region I becomes a peripheral region II in which a via conductor for drawing electric power from the solar cell is later formed.
  • each area I and II are not particularly limited.
  • the cell region I is a square region having a side length L of 1 mm to 20 mm, for example, 15 mm in a plan view.
  • the peripheral region II has a rectangular shape in a plan view, the length By of the long side thereof is 1 mm to 20 mm, for example, 15 mm, and the length Bx of the short side is 1 mm to 10 mm, for example, 5 mm.
  • a slurry in which titanium oxide particles having a particle size of 5 nm to 50 nm are dispersed is placed on the reverse electron transfer prevention layer 22 by a screen printing method to a thickness of about 1 ⁇ m to 10 ⁇ m.
  • the power generation layer 25 is formed by applying the coating and heating it to remove organic components.
  • the slurry for example, PST-30NRD, which is a titanium oxide paste manufactured by JGC Catalysts and Chemicals, is used.
  • the heating temperature of the slurry is 450 ° C. to 650 ° C., for example, 550 ° C., and the drying time is 10 minutes to 120 minutes, for example, about 30 minutes.
  • the semiconductor particles constituting the power generation layer 25 are not limited to titanium oxide particles, and Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn. , Zr, Sr, Ga, Si, Cr, and Nb oxide particles may form the power generation layer 25. Further, the power generation layer 25 may be formed of particles of perovskite-type oxides such as SrTiO 3 and CaTiO 3 . The region forming the power generation layer 25 is the same square region as the cell region I (see FIG. 1B).
  • the transparent base material 20 is immersed in an organic solution containing a dye, and the dye is adsorbed on the surface of the semiconductor particles constituting the power generation layer 25.
  • the organic solution and immersion conditions are not particularly limited.
  • an organic solvent prepared by mixing acetonitrile and t-butanol in a volume ratio of 1: 1 is prepared, and CYC-B11 (K) as a dye is added to the organic solvent at a concentration of 0.1 mM to 1 mM, for example, 0.2 mM.
  • the added organic solution can be used in this step.
  • the transparent base material 20 is immersed in the organic solution for 1 hour to 12 hours, for example, 4 hours to adsorb the dye on the power generation layer 25. Just do it.
  • the dye is not limited to the above, and the metal complex dye or the organic dye may be adsorbed on the power generation layer 25.
  • the metal complex dye include transition metal complexes such as ruthenium-cis-diaqua-bipyridyl complex, ruthenium-tris complex, ruthenium-bis complex, osmium-tris complex, and osmium-bis complex.
  • Zinc-tetra (4-carboxyphenyl) porphyrin and iron-hexacianide complex are also examples of metal complex dyes.
  • organic dyes examples include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, and cyanine dyes.
  • dyes, merocyanine dyes, xanthene dyes, carbazole compound dyes and the like are examples of organic dyes.
  • the process shown in FIG. 2B will be described.
  • the solid electrolyte precursor 26 iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million are mixed so as to be uniform.
  • the solid electrolyte precursor 26 is dropped onto the power generation layer 25 by 0.1 ⁇ L to 50 ⁇ L, for example, 20 ⁇ L, and the power generation layer 25 is impregnated with the solid electrolyte precursor 26. Then, the power generation layer 25 is heated to 50 ° C.
  • the solid electrolyte precursor 26 on the power generation layer 25 is designated as the solid electrolyte layer 27. After that, the power generation layer 25 is returned to room temperature.
  • the electrolyte contained in the solid electrolyte precursor 26 is not limited to DMII.
  • an iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, which is in a solid state near room temperature or in a molten state, can be used as an ionic liquid.
  • room temperature molten salt examples include 1-methyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide (BMII), 1-ethyl-pyridinium iodide and the like 4
  • BMII 1-ethyl-pyridinium iodide
  • the material of the solid electrolyte layer 27 is not limited to the above, and an organic semiconductor material such as a molten salt containing a redox pair, an oxadiazole compound, and a pyrazoline compound may be used as the material of the solid electrolyte layer 27. .. Further, the solid electrolyte layer 27 may be formed of a metal halide material such as copper iodide or copper bromide. This completes the treatment for the transparent base material 20.
  • a dye-sensitized solar cell is manufactured by joining a wiring board to the transparent base material 20. Therefore, the manufacturing method of the wiring board will be described next.
  • 3 (a) to 4 (c) are cross-sectional views of the wiring board according to the present embodiment during manufacturing.
  • the double-sided copper-clad base material 30 shown in FIG. 3A is prepared.
  • the double-sided copper-clad base material 30 has a first copper foil 32 pressed onto the first main surface 31a of the resin base material 31 by hot pressing, and has a second main surface 31b facing the first main surface 31a. It can be produced by crimping the copper foil 33 of No. 2 by a hot press.
  • the resin base material 31 is not particularly limited, but in this example, a glass epoxy substrate obtained by impregnating a glass woven fabric with a heat-resistant epoxy resin is used as the resin base material 31.
  • the polyimide film may be used as the resin base material 31.
  • the thickness of the resin base material 31 is 0.1 mm to 3.2 mm, for example, 1 ⁇ m.
  • the thickness of each of the copper foils 32 and 33 is not particularly limited. As an example, the thickness of each of the copper foils 32 and 33 is 18 ⁇ m to 200 ⁇ m, for example 35 ⁇ m.
  • the resin base material 31 is formed with the first via hole 31x by drilling the double-sided copper-clad base material 30.
  • the diameter of the first via hole 31x is 0.1 mm to 2 mm, for example, 0.25 mm.
  • an electroless copper plating layer is formed on the inner surface of the first via hole 31x and the surfaces of the copper foils 32 and 33, and an electrolytic copper plating layer is further formed on the electroless copper plating layer.
  • the total thickness of the electroless copper plating layer and the electrolytic copper plating layer is 10 ⁇ m to 30 ⁇ m, for example, about 20 ⁇ m.
  • each copper plating layer formed in the first via hole 31x is used as the first via conductor 36a, and the copper foils 32 and 33 and these copper plating layers are used as the copper layer 37.
  • the copper layer 37 is patterned by photolithography and wet etching to form the first electrode pad 37a and the first wiring 37b on the second main surface 31b. ..
  • the gold layer 38 was placed on the copper layer 37, the first electrode pad 37a, and the first wiring 37b by electroless plating to form a gold layer 38 of 0.01 ⁇ m to 0.05 ⁇ m.
  • a gold layer 38 of 0.01 ⁇ m to 0.05 ⁇ m.
  • it is formed to have a thickness of about 0.03 ⁇ m.
  • the plating method for forming the gold layer 38 having such a thin thickness is also called flash plating.
  • a titanium layer and a platinum layer were formed as a catalyst layer 39 on the copper layer 37 on the first main surface 31a side of the resin base material 31 by a sputtering method in this order.
  • the copper layer 37, the gold layer 38, and the catalyst layer 39 are each designated as the counter electrode layer 40.
  • the titanium layer in the catalyst layer 39 functions as an adhesion layer, and its thickness is about 0.05 ⁇ m to 0.5 ⁇ m, for example, about 0.1 ⁇ m. Further, the thickness of the platinum layer in the catalyst layer 39 is not particularly limited, and the catalyst layer 39 can be formed to a thickness of 0.01 ⁇ m to 0.3 ⁇ m, for example, about 0.05 ⁇ m.
  • FIG. 5A is a perspective view of the wiring board 45 when the second main surface 31b of the resin base material 31 is turned up.
  • the above-mentioned FIG. 4 (c) corresponds to a cross-sectional view taken along the line AA of FIG. 5 (a).
  • a second electrode pad 37c is formed on the second main surface 31b of the resin base material 31 in the same process as the first electrode pad 37a described above. Then, a second wiring 37d formed in the same process as the first wiring 37b is connected to the second electrode pad 37c.
  • the shape of the first electrode pad 37a is a square having a side length of 1 mm to 6 mm, for example, 5 mm in a plan view.
  • the shape of the second electrode pad 37c is similar to this.
  • 5 (b) is a cross-sectional view taken along the line BB of FIG. 5 (a).
  • a second via hole 31y is formed in the resin base material 31 in the same process as in which the first via hole 31x was formed.
  • a second via conductor 36b is formed on the inner surface of the second via hole 31y in the same process as when the first via conductor 36a is formed, and one end of the above-mentioned second wiring 37d is a second. It is connected to the via conductor 36b of.
  • FIG. 6 is a perspective view of the wiring board 45 when the first main surface 31a of the resin base material 31 is turned up.
  • the above-mentioned first via conductor 36a and second via conductor 36b are provided in the first contact region CR 1 and the second contact region CR 2 at the edge of the resin base material 31, respectively. ..
  • These contact regions CR 1 and CR 2 are regions corresponding to the peripheral region II (see FIG. 2B) outside the cell region I, and power is supplied from the cell region I via the via conductors 36a and 36b. This is the area to take out.
  • the counter electrode layer 40 is formed in the first contact region CR 1 , whereas the counter electrode layer 40 is not formed in the second contact region CR 2 . As a result, one end of the second via conductor 36b and the resin base material 31 are exposed in the second contact region CR 2 .
  • the area of the counter electrode layer 40 occupying the area of the first main surface 31a is 85% to 95%, for example, 87.5% or more.
  • the width Bw of each of the contact regions CR 1 and CR 2 is not particularly limited, and the width Bw is 5 mm to 10 mm, for example, about 7.5 mm.
  • FIGS. 7 to 9 are perspective views during the production of the dye-sensitized solar cell according to the present embodiment.
  • the above-mentioned transparent base material 20 is prepared again. Then, a silver paste is applied as the conductive layer 43 on the transparent electrode layer 21 in the second contact region CR 2 . In order to prevent the conductive layer 43 and the solid electrolyte layer 27 from being electrically short-circuited, a space S is provided between them to form the conductive layer 43 at a distance from the solid electrolyte layer 27. preferable.
  • an ultraviolet curable resin is applied onto the transparent electrode layer 21 in the first contact region CR 1 , and then the ultraviolet curable resin is irradiated with ultraviolet rays to be cured to form an insulating layer 44.
  • the solid electrolyte layer 27 and the conductive layer 43 are insulated by the insulating layer 44 by forming the insulating layer 44 also in the space S between the solid electrolyte layer 27 and the conductive layer 43.
  • the wiring board 45 is arranged above the transparent base material 20, and the solid electrolyte layer 27 of the transparent base material 20 and the first main surface 31a of the resin base material 31 face each other.
  • the transparent base material 20 and the resin base material 31 are laminated and heated to a temperature of about 50 ° C.
  • the conductive layer 43 is solidified, and the second via conductor 36b and the transparent electrode layer 21 are connected via the conductive layer 43.
  • this step it is preferable to perform this step in a vacuum or a reduced pressure atmosphere in order to prevent air bubbles from being mixed between the transparent substrate 20 and the wiring substrate 45.
  • FIG. 10A is a cross-sectional view taken along the line CC of FIG.
  • the counter electrode layer 40 is fixed to the first main surface 31a of the resin base material 31, and the solid electrolyte layer 27 and the transparent electrode layer 21 are beneath the counter electrode layer 40. And are formed. Then, when light is incident on the power generation layer 25 via the transparent base material 20 and the transparent electrode layer 21, an electromotive force is generated in the cell region I, and the potential difference due to the electromotive force is the transparent electrode layer 21 and the counter electrode layer. Occurs between 40 and 40.
  • the transparent electrode layer 21 serves as a negative electrode
  • the counter electrode layer 40 serves as a positive electrode.
  • the power generation layer 25 is formed over the entire width of the transparent base material 20, and the side surface 20s of the transparent base material 20 and the side surface 25s of the power generation layer 25 are located on the same surface P.
  • the amount of light received by the power generation layer 25 increases as compared with the case where the power generation layer 25 is formed on the transparent base material 20 so that the side surface 25s recedes from the side surface 20s, and the amount of power generation in the cell region I is increased. Is possible.
  • FIG. 10B is a cross-sectional view taken along the line DD of FIG.
  • the counter electrode layer 40 and the first via conductor 36a are connected, and the positive voltage of the counter electrode layer 40 is the resin base material 31. It is pulled out to the second main surface 31b side of the above. Further, since the insulating layer 44 is interposed between the transparent electrode layer 21 and the counter electrode layer 40, the insulating layer 44 prevents the first via conductor 36a and the transparent electrode layer 21 from being electrically short-circuited. Can be prevented with.
  • the second via conductor 36b and the transparent electrode layer 21 are connected via the conductive layer 43, and the negative voltage of the transparent electrode layer 21 is the second via conductor 36b. It is pulled out to the second main surface 32b side of the resin base material 31 via.
  • an ultraviolet curable resin is applied as a sealing resin 47 to each side surface of the transparent base material 20 and the resin base material 31, and then the sealing resin 47 is cured by irradiation with ultraviolet rays. ,
  • the sealing resin 47 prevents moisture from entering the solid electrolyte layer 27 and the like.
  • the ultraviolet curable resin may be applied so as to cover a part of the second main surface 31b of the resin base material 31 to form the sealing resin 47.
  • a solid electrolyte layer 27 having no possibility of liquid leakage is used without using a liquid electrolyte. Therefore, there is no possibility that the electrolyte leaks from the via holes 31x and 31y (see FIG. 10B), and the transparent electrode layer 21 and the counter electrode are passed through the via conductors 36a and 36b formed in the via holes 31x and 31y.
  • the voltage of the layer 40 can be drawn out to the electrode pads 37a and 37c, respectively.
  • the solid electrolyte layer 27 since there is no possibility that the solid electrolyte layer 27 leaks, it is not necessary to provide a sealing material on the surface of the transparent base material 20 to prevent the leak. By eliminating the need for the sealing material in this way, the cell region I can be expanded, and the amount of power generated by the dye-sensitized solar cell 50 can be increased.
  • the transparent base material 20 since the area where the sealing resin 47 and the transparent base material 20 overlap when viewed in a plan view is extremely small, even when the dye-sensitized solar cell 50 is miniaturized, the transparent base material 20 generates electricity. The area of the cell region I that contributes to the above does not decrease significantly. Therefore, an effective power generation area can be sufficiently secured even when the dye-sensitized solar cell 50 is miniaturized. Moreover, by drawing out the voltage through the via conductors 36a and 36b as described above, the dye-sensitized solar cell 50 is compared with the case where the wiring for drawing out the voltage is provided on the side surface of the resin base material 31. It can be miniaturized.
  • the resin base material 31 has a certain degree of flexibility, so that deterioration of the mechanical strength of the resin base material 31 due to the via holes 31x and 31y can be suppressed. ..
  • the dye is compared with the case where the ceramic base material is used instead of the resin base material 31.
  • the cost of the sensitized solar cell 50 can be reduced.
  • the method of using the dye-sensitized solar cell 50 is not particularly limited.
  • FIG. 11 is a cross-sectional view for explaining an example of how to use the dye-sensitized solar cell 50.
  • the dye-sensitized solar cell 50 is mounted on the wiring board 60 built in the IoT device or the like.
  • the wiring board 60 is formed of a resin such as a glass epoxy resin like the resin base material 31, and terminals 61 and 62 obtained by patterning a copper layer are provided on the surface thereof. Then, these terminals 61 and 62 and the electrode pads 37a and 37c are connected by solder 63.
  • the dye-sensitized solar cell 50 is irradiated with light L to generate an electromotive force, and an electronic device such as a sensor built in the IoT device can be operated with the electromotive force.
  • the electrode pads 37a and 37c are heated when the solder 63 is melted at the time of mounting, whereby the solid electrolyte layer 27 is also heated.
  • the solid electrolyte layer 27 is more stable than the liquid electrolyte, it is less likely to be damaged by heat during mounting. Therefore, various parts for protecting the solid electrolyte layer 27 from heat damage become unnecessary, and the dye-sensitized solar cell 50 can be miniaturized.
  • the substrate on the counter electrode side used in the conventional dye-sensitized solar cell is a glass substrate, but in this embodiment, the resin substrate 31 is interposed between the transparent substrate 20 and the electrode pads 37a and 37c. There is. Therefore, it becomes difficult for the heat when connecting the electrode pads 37a and 37c and the wiring board 60 with the solder 63 to be transferred to the transparent substrate 20, and it is possible to prevent the transparent substrate 20 from cracking due to the heat, and eventually the electrodes 37a and 37c. Can be prevented from being damaged.
  • the resin base material 31 is formed of the same material as the wiring board 60, there is no significant difference in the amount of thermal expansion between the two, and the connection reliability between the wiring board 60 and the dye-sensitized solar cell 50 Sex can also be maintained.
  • the dye-sensitized solar cell 50 can be mounted on the wiring board 60 via the solder 63, and both are connected. It is possible to eliminate the need for a connector or the like.
  • a transparent base material 20 having a transparent electrode layer 21 formed on the second main surface 20b is prepared.
  • the triangular regions including the corners 20c and 20d of the transparent base material 20 are the first contact region CR 1 and the second contact region CR 2 , respectively.
  • the size of the first contact region CR 1 is not particularly limited, but in this embodiment, the lengths Cx and Cy of one side of the first contact region CR 1 are 0.5 mm to 1.5 mm, for example, 1 mm.
  • the size of the second contact region CR 2 is also about the same. Then, the region including all of the transparent base material 20 in the portion excluding these contact regions CR 1 and CR 2 becomes the hexagonal cell region I.
  • the transparent electrode layer 21 is irradiated with a laser along the edge of the first contact region CR 1 to form slits 21s in the transparent electrode layer 21, and the transparent electrode layer 21 in the first contact region CR 1 is formed. Is separated from the transparent electrode layer 21 in the cell region I.
  • an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region I, and then the alcohol solution is heated and dried to cause reverse electrons.
  • the movement prevention layer 22 is formed to have a thickness of about 5 nm to 0.1 ⁇ m. Similar to the first embodiment, the drying temperature in this step is 450 ° C. to 650 ° C., for example, about 550 ° C.
  • a slurry in which titanium oxide particles having a particle size of 5 nm to 50 nm are dispersed is placed on the reverse electron transfer prevention layer 22 by a screen printing method to a thickness of about 1 ⁇ m to 10 ⁇ m.
  • the power generation layer 25 is formed by applying the coating and heating it to remove organic components.
  • the heating temperature of the slurry is 450 ° C. to 650 ° C., for example, 550 ° C., and the drying time is 10 minutes to 120 minutes, for example, about 30 minutes.
  • the slurry is not particularly limited, but in this example, PST-30NRD, which is a titanium oxide paste manufactured by JGC Catalysts and Chemicals, is used as the slurry, as in the first embodiment.
  • the transparent base material 20 is immersed in an organic solution containing a dye, and the dye is adsorbed on the surface of the semiconductor particles constituting the power generation layer 25.
  • an organic solution prepared by adding CYC-B11 (K) as a dye to an organic solvent obtained by mixing acetonitrile and t-butanol in a volume ratio of 1: 1 is used as in the first embodiment. ..
  • the concentration of the dye in the organic solvent is 0.1 mM to 1 mM, for example, 0.2 mM.
  • the transparent base material 20 is immersed in the organic solution for 1 hour to 12 hours, for example, 4 hours to adsorb the dye on the power generation layer 25. Just do it.
  • 0.1 ⁇ L to 50 ⁇ L, for example, 20 ⁇ L of the solid electrolyte precursor 26 is dropped onto the power generation layer 25, and the power generation layer 25 is impregnated with the solid electrolyte precursor 26.
  • the solid electrolyte precursor 26 for example, a solution in which iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million are uniformly mixed is used.
  • the power generation layer 25 is heated to volatilize the excess acetonitrile contained in the solid electrolyte precursor 26, and the solid electrolyte precursor 26 on the power generation layer 25 is designated as the solid electrolyte layer 27.
  • the heating temperature of the power generation layer 25 is 50 ° C. to 150 ° C., for example, 100 ° C.
  • the heating time is 1 to 60 minutes, for example, 30 minutes.
  • the power generation layer 25 is returned to room temperature. This completes the treatment for the transparent base material 20.
  • the wiring board used together with the transparent base material 20 will be described.
  • FIGS. 14A and 14B are perspective views of the wiring board 45 used in this embodiment.
  • the same elements described in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
  • the wiring board 45 is manufactured in the same process as described with reference to FIGS. 3 (a) to 4 (c) in the first embodiment, and the positions of the via conductors 36a and 36b and the counter electrode layer 40 are formed. Only the shape of is different from the first embodiment.
  • FIG. 14A is a perspective view of the wiring board 45 when the second main surface 31b of the resin base material 31 is facing up.
  • the first contact region CR 1 and the second contact region CR 2 are provided outside the cell region I in this embodiment as well.
  • the first contact region CR 1 is provided so as to include the corner portion 31c of the resin base material 31, and the first via conductor 36a is provided in the first contact region CR 1 .
  • the second contact region CR 2 is provided so as to include the corner portion 31d of the resin base material 31, and the second via conductor 36b is provided in the second contact region CR 2 .
  • FIG. 14B is a perspective view of the wiring board 45 when the first main surface 31a of the resin base material 31 is facing up.
  • the counter electrode layer 40 in the second contact region CR 2 is separated from the cell region I by patterning to form a triangular connection pad 40a.
  • FIG. 15 (a) is a cross-sectional view taken along the line EE of FIG. 14 (a).
  • the first via conductor 36a is formed in the first via hole 31x of the resin base material 31 as in the first embodiment.
  • the copper layer 37, the gold layer 38, and the catalyst layer 39 are each formed in this order on the first main surface 31a of the resin base material 31, as in the first embodiment. Become.
  • FIG. 15 (b) is a cross-sectional view taken along the line FF of FIG. 14 (a).
  • the first electrode pad 37a is formed by patterning a copper layer 37 as in the first embodiment, and a gold layer 38 is formed on the copper layer 37 by flash plating.
  • FIG. 15 (c) is a cross-sectional view taken along the line GG of FIG. 14 (a).
  • the second via conductor 36b is formed in the second via hole 31y of the resin base material 31 as in the first embodiment.
  • 16 to 18 are cross-sectional views of the dye-sensitized solar cell according to the present embodiment during manufacturing.
  • the above-mentioned transparent base material 20 is prepared again, and silver paste is applied as the conductive layer 43 on the transparent electrode layer 21 in the second contact region CR 2 .
  • silver paste is applied as the conductive layer 43 on the transparent electrode layer 21 in the second contact region CR 2 .
  • a space S is provided between the solid electrolyte layer 27 and the conductive layer 43, and the solid electrolyte layer 27 is used.
  • the conductive layer 43 is formed at intervals.
  • an ultraviolet curable resin is applied onto the transparent electrode layer 21 in the first contact region CR 1 , and then the ultraviolet curable resin is irradiated with ultraviolet rays to be cured to form an insulating layer 44.
  • the insulating layer 44 is also formed between the solid electrolyte layer 27 and the conductive layer 43, whereby the solid electrolyte layer 27 and the conductive layer 43 are insulated by the insulating layer 44.
  • the wiring board 45 is arranged above the transparent base material 20, and the solid electrolyte layer 27 of the transparent base material 20 and the first main surface 31a of the resin base material 31 face each other.
  • the transparent base material 20 and the resin base material 31 are laminated and heated to a temperature of about 50 ° C.
  • the conductive layer 43 is solidified, and the second via conductor 36b and the transparent electrode layer 21 are connected via the conductive layer 43.
  • this step it is preferable to perform this step in a vacuum or a reduced pressure atmosphere in order to prevent air bubbles from being mixed between the transparent base material 20 and the wiring board 45.
  • FIG. 19A is a cross-sectional view taken along the line HH of FIG.
  • each of the transparent electrode layer 21, the solid electrolyte layer 27, and the counter electrode layer 40 is formed in the cell region I, and the transparent base material 20 is formed as in the first embodiment. Electromotive force is generated in the power generation layer 25 in the cell region I by the light incident through the cell region I. Then, the transparent electrode layer 21 under the power generation layer 25 functions as a negative electrode, and the counter electrode layer 40 above the power generation layer 25 functions as a positive electrode.
  • FIG. 19B is a cross-sectional view taken along the line JJ of FIG.
  • the counter electrode layer 40 and the first via conductor 36a are connected, and the positive voltage of the counter electrode layer 40 is the resin base material 31. It is pulled out to the second main surface 31b side of the above. Further, the insulating layer 44 interposed between the transparent electrode layer 21 and the counter electrode layer 40 can prevent the first via conductor 36a and the transparent electrode layer 21 from being electrically short-circuited. In particular, in this example, since the slits 21s are formed in the transparent electrode layer 21, the possibility that the transparent electrode layer 21 and the first via conductor 36a are electrically short-circuited can be further reduced.
  • the second via conductor 36b is connected to the transparent electrode layer 21 via the connection pad 40a and the conductive layer 43.
  • the negative voltage of the transparent electrode layer 21 is drawn to the second main surface 31b side of the resin base material 31 via the second via conductor 36b.
  • the insulating layer 44 between the connection pad 40a and the counter electrode layer 40 as in this example, it is possible to prevent the connection pad 40a and the counter electrode layer 40 from being electrically short-circuited. It becomes.
  • an ultraviolet curable resin is applied as a sealing resin 47 to each side surface of the transparent base material 20 and the resin base material 31. Then, the sealing resin 47 is cured by irradiation with ultraviolet rays, and the sealing resin 47 prevents water from entering the solid electrolyte layer 27 and the like.
  • the first via conductor 36a is provided on one of the two corners 31c and 31d of the rectangular resin base material 31, and the other. Is provided with a second via conductor 36b.
  • the resin base material 31 has a rectangular shape in a plan view, but the plane shape of the resin base material 31 is made into a polygonal shape having five or more corners, and two of the corners are used.
  • the first via conductor 36a and the second via conductor 36b may be provided.

Abstract

A dye-sensitized solar cell according to the present invention is characterized by comprising: a transparent base material; a transparent electrode layer that is provided on the transparent base material; a power generation layer that is provided on the transparent electrode layer, while containing a dye; a solid electrolyte layer that is provided on the power generation layer; a counter electrode layer that is provided on the solid electrolyte layer; and a resin base material that is firmly bonded to the upper surface of the counter electrode layer. 

Description

色素増感太陽電池Dye-sensitized solar cell
 本発明は、色素増感太陽電池に関する。 The present invention relates to a dye-sensitized solar cell.
 シリコン系の太陽電池に代わる新たな太陽電池として色素増感太陽電池が注目されている。色素増感太陽電池は、室内や薄暮時のように低照度の環境でも効率的に発電できるため、IoT(Internet of Things)デバイス等の省電力用途への応用が期待されている。その場合、IoTデバイスが内蔵する配線基板に色素増感太陽電池を実装することにより、IoTデバイス内のセンサ等の電子デバイスを色素増感太陽電池の電力で駆動することができる。 Dye-sensitized solar cells are attracting attention as new solar cells to replace silicon-based solar cells. Dye-sensitized solar cells can efficiently generate electricity even in low-light environments such as indoors and at dusk, so they are expected to be applied to power-saving applications such as IoT (Internet of Things) devices. In that case, by mounting the dye-sensitized solar cell on the wiring board built in the IoT device, it is possible to drive an electronic device such as a sensor in the IoT device with the electric power of the dye-sensitized solar cell.
 これまでに配線基板への実装を想定した様々な太陽電池が提案されているが、いずれも改善の余地がある。 Various solar cells have been proposed so far that are supposed to be mounted on a wiring board, but there is room for improvement in all of them.
 例えば、パッケージ基板の表面のうち発電を行う発電部をシーリング材で囲うことにより、発電部の電解質溶液が液漏れするのをシーリング材で防止した色素増感太陽電池が開示されている(特許文献1)。但し、この色素増感太陽電池では、シーリング材を設けるスペースをパッケージ基板に確保する必要があるため発電部の面積を小さくしなければならず、十分な発電量を得ることができない。 For example, a dye-sensitized solar cell is disclosed in which a power generation unit that generates power is surrounded by a sealing material on the surface of a package substrate to prevent the electrolyte solution of the power generation unit from leaking with the sealing material (Patent Document). 1). However, in this dye-sensitized solar cell, since it is necessary to secure a space for providing the sealing material on the package substrate, the area of the power generation unit must be reduced, and a sufficient amount of power generation cannot be obtained.
 また、色素増感太陽電池が備える透光性基材に電極パッドを設け、その電極パッドと配線基板とをはんだで接続する技術も開示されている(特許文献2)。この技術では、色素増感太陽電池に熱が伝わりやすいため、特性が劣化する恐れがあった。 Further, a technique of providing an electrode pad on a translucent base material included in a dye-sensitized solar cell and connecting the electrode pad and a wiring substrate with solder is also disclosed (Patent Document 2). In this technique, heat is easily transferred to the dye-sensitized solar cell, so that the characteristics may deteriorate.
特開2010-80122号公報Japanese Unexamined Patent Publication No. 2010-80122 特開2011-243298号公報Japanese Unexamined Patent Publication No. 2011-243298
 本発明は、上記課題に鑑みてなされたものであり、発電量を増やすことが可能な色素増感太陽電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a dye-sensitized solar cell capable of increasing the amount of power generation.
 本発明に係る色素増感太陽電池は、透明基材と、前記透明基材の上に設けられた透明電極層と、前記透明電極層の上に設けられた色素を含む発電層と、前記発電層の上に設けられた固体電解質層と、前記固体電解質層の上に設けられた対向電極層と、前記対向電極層の上面に固着した樹脂基材とを有することを特徴とする。 The dye-sensitized solar cell according to the present invention includes a transparent base material, a transparent electrode layer provided on the transparent base material, a power generation layer containing a dye provided on the transparent electrode layer, and the power generation. It is characterized by having a solid electrolyte layer provided on the layer, a counter electrode layer provided on the solid electrolyte layer, and a resin base material fixed to the upper surface of the counter electrode layer.
 上記色素増感太陽電池において、前記樹脂基材は、前記対向電極層の上面に固着した第1の主面と、前記第1の主面の反対面である第2の主面とを有し、前記樹脂基材に第1のビアホールと第2のビアホールが形成され、前記第1のビアホールに形成され、前記透明電極層に電気的に接続された第1のビア導体と、前記第2のビアホールに形成され、前記対向電極層に電気的に接続された第2のビア導体と、前記第2の主面に設けられ、前記第1のビア導体に接続された第1の電極パッドと、前記第2の主面に設けられ、前記第2のビア導体に接続された第2の電極パッドとを更に有してもよい。 In the dye-sensitized solar cell, the resin base material has a first main surface fixed to the upper surface of the counter electrode layer and a second main surface opposite to the first main surface. A first via hole and a second via hole are formed in the resin base material, a first via conductor formed in the first via hole and electrically connected to the transparent electrode layer, and the second via conductor. A second via conductor formed in the via hole and electrically connected to the counter electrode layer, and a first electrode pad provided on the second main surface and connected to the first via conductor. It may further have a second electrode pad provided on the second main surface and connected to the second via conductor.
 上記色素増感太陽電池において、前記第1のビア導体と前記第2のビア導体は、前記樹脂基材の縁に設けられてもよい。 In the dye-sensitized solar cell, the first via conductor and the second via conductor may be provided on the edge of the resin base material.
 上記色素増感太陽電池において、前記樹脂基材は平面視で多角形であり、前記多角形の二つの角部のうちの一方に前記第1のビア導体が設けられ、他方に前記第2のビア導体が設けられてもよい。 In the dye-sensitized solar cell, the resin base material is polygonal in a plan view, the first via conductor is provided on one of the two corners of the polygon, and the second via conductor is provided on the other. A via conductor may be provided.
 上記色素増感太陽電池において、前記第1のビアホールと前記第2のビアホールは、前記透明電極層、前記固体電解質層、及び前記対向電極層の各々が平面視で重なるセル領域の外側に設けられてもよい。 In the dye-sensitized solar cell, the first via hole and the second via hole are provided outside the cell region where the transparent electrode layer, the solid electrolyte layer, and the counter electrode layer each overlap in a plan view. You may.
 上記色素増感太陽電池において、前記第1のビア導体は、前記セル領域の前記外側の第1のコンタクト領域において前記対向電極層と接続され、前記第2のビア導体は、前記セル領域の前記外側の第2のコンタクト領域において前記透明電極層と接続されてもよい。 In the dye-sensitized solar cell, the first via conductor is connected to the counter electrode layer in the outer first contact region of the cell region, and the second via conductor is the cell region. It may be connected to the transparent electrode layer in the outer second contact region.
 上記色素増感太陽電池において、前記固体電解質層は、平面視で前記セル領域に収まる大きさに設けられ、前記第1のコンタクト領域における前記透明電極層の上に設けられた絶縁層と、前記第2のコンタクト領域における前記透明電極層の上に設けられた導電層とを更に有し、前記第1のコンタクト領域において、前記絶縁層の上に前記対向電極層が設けられ、前記第2のコンタクト領域において、前記導電層を介して前記透明電極層と前記第2のビア導体とが接続されてもよい。 In the dye-sensitized solar cell, the solid electrolyte layer is provided with a size that fits in the cell region in a plan view, and the insulating layer provided on the transparent electrode layer in the first contact region and the said. It further has a conductive layer provided on the transparent electrode layer in the second contact region, and in the first contact region, the counter electrode layer is provided on the insulating layer, and the second contact electrode layer is provided. In the contact region, the transparent electrode layer and the second via conductor may be connected via the conductive layer.
 上記色素増感太陽電池において、前記導電層は、平面視で前記固体電解質層から間隔をおいて設けられ、前記絶縁層は、前記固体電解質層と前記導電層との間にも設けられてもよい。 In the dye-sensitized solar cell, the conductive layer may be provided at a distance from the solid electrolyte layer in a plan view, and the insulating layer may also be provided between the solid electrolyte layer and the conductive layer. Good.
 上記色素増感太陽電池において、前記第1のコンタクト領域における前記透明電極層が、前記セル領域における前記透明電極層から分離してもよい。 In the dye-sensitized solar cell, the transparent electrode layer in the first contact region may be separated from the transparent electrode layer in the cell region.
 上記色素増感太陽電池において、前記発電層の側面と前記透明基材の側面とが同一面内にあってもよい。 In the dye-sensitized solar cell, the side surface of the power generation layer and the side surface of the transparent base material may be in the same plane.
 本発明によれば、発電量を増やすことが可能な色素増感太陽電池を提供することができる。 According to the present invention, it is possible to provide a dye-sensitized solar cell capable of increasing the amount of power generation.
(a)、(b)は、第1実施例に係る色素増感太陽電池の製造途中の斜視図(その1)である。(A) and (b) are perspective views (No. 1) during the manufacture of the dye-sensitized solar cell according to the first embodiment. (a)、(b)は、第1実施例に係る色素増感太陽電池の製造途中の斜視図(その2)である。(A) and (b) are perspective views (No. 2) during the production of the dye-sensitized solar cell according to the first embodiment. (a)~(c)は、第1実施例に係る配線基板の製造途中の断面図(その1)である。(A) to (c) are cross-sectional views (No. 1) of the wiring board according to the first embodiment during manufacturing. (a)~(c)は、第1実施例に係る配線基板の製造途中の断面図(その2)である。(A) to (c) are cross-sectional views (No. 2) during manufacturing of the wiring board according to the first embodiment. (a)は、樹脂基材の第2の主面を上にしたときの第1実施例に係る配線基板の斜視図であり、(b)は、(a)のB-B線に沿う断面図である。(A) is a perspective view of the wiring board according to the first embodiment when the second main surface of the resin base material is turned up, and (b) is a cross section along the line BB of (a). It is a figure. 樹脂基材の第1の主面を上にしたときの第1実施例に係る配線基板の斜視図である。It is a perspective view of the wiring board which concerns on 1st Example when the 1st main surface of a resin base material is turned up. 第1実施例に係る色素増感太陽電池の製造途中の斜視図(その3)である。It is a perspective view (No. 3) in the process of manufacturing the dye-sensitized solar cell which concerns on 1st Example. 第1実施例に係る色素増感太陽電池の製造途中の斜視図(その4)である。It is a perspective view (the 4) in the manufacturing process of the dye-sensitized solar cell which concerns on 1st Example. 第1実施例に係る色素増感太陽電池の製造途中の斜視図(その5)である。It is a perspective view (No. 5) in the process of manufacturing the dye-sensitized solar cell which concerns on 1st Example. (a)は、図8のC-C線に沿う断面図であり、(b)は、図8のD-D線に沿う断面図である。(A) is a cross-sectional view taken along the line CC of FIG. 8, and (b) is a cross-sectional view taken along the line DD of FIG. 第1実施例に係る色素増感太陽電池の使用方法の一例について説明するための断面図である。It is sectional drawing for demonstrating an example of the use method of the dye-sensitized solar cell which concerns on 1st Example. (a)、(b)は、第2実施例に係る色素増感太陽電池の製造途中の斜視図(その1)である。(A) and (b) are perspective views (No. 1) during the production of the dye-sensitized solar cell according to the second embodiment. (a)、(b)は、第1実施例に係る色素増感太陽電池の製造途中の斜視図(その2)である。(A) and (b) are perspective views (No. 2) during the production of the dye-sensitized solar cell according to the first embodiment. (a)、(b)は、本実施例で使用する配線基板の斜視図である。(A) and (b) are perspective views of the wiring board used in this embodiment. (a)は図14(a)のE-E線に沿う断面図であり、(b)は図14(a)のF-F線に沿う断面図であり、(c)は図14(a)のG-G線に沿う断面図である。(A) is a cross-sectional view taken along the line EE of FIG. 14 (a), (b) is a cross-sectional view taken along the line FF of FIG. 14 (a), and (c) is a cross-sectional view taken along the line EF of FIG. 14 (a). ) Is a cross-sectional view taken along the line GG. 第2実施例に係る色素増感太陽電池の製造途中の斜視図(その3)である。It is a perspective view (No. 3) in the process of manufacturing the dye-sensitized solar cell which concerns on 2nd Example. 第2実施例に係る色素増感太陽電池の製造途中の斜視図(その4)である。It is a perspective view (the 4) in the manufacturing process of the dye-sensitized solar cell which concerns on 2nd Example. 第2実施例に係る色素増感太陽電池の製造途中の斜視図(その5)である。It is a perspective view (No. 5) in the process of manufacturing the dye-sensitized solar cell which concerns on 2nd Example. (a)は、図17のH-H線に沿う断面図であり、(b)は図17のJ-J線に沿う断面図である。(A) is a cross-sectional view taken along the line HH of FIG. 17, and (b) is a cross-sectional view taken along the line JJ of FIG.
(第1実施例)
 本実施例に係る色素増感太陽電池について、その製造方法を追いながら説明する。図1(a)~図2(b)は、第1実施例に係る色素増感太陽電池の製造途中の斜視図である。
(First Example)
The dye-sensitized solar cell according to this embodiment will be described while following its manufacturing method. 1 (a) to 2 (b) are perspective views during the manufacturing of the dye-sensitized solar cell according to the first embodiment.
 まず、図1(a)に示すように、相対する第1の主面20aと第2の主面20bとを備えた透明基材20を用意する。これらの主面のうち、第1の主面20aは、実使用下において光が入射する入射面となる。一方、第2の主面20bには、予め透明電極層21としてITO(Indium Tin Oxide)層が0.1μm~0.5μm程度の厚さに形成される。なお、ITO層に代えて、FTO(Fluorine doped Tin Oxide)層、酸化亜鉛層、インジウム-錫複合酸化物層と銀層との積層膜、及びアンチモンがドープされた酸化錫層のいずれかを透明電極層21として形成してもよい。 First, as shown in FIG. 1A, a transparent base material 20 having a first main surface 20a and a second main surface 20b facing each other is prepared. Of these main surfaces, the first main surface 20a is an incident surface on which light is incident under actual use. On the other hand, on the second main surface 20b, an ITO (Indium Tin Oxide) layer is formed in advance as a transparent electrode layer 21 to a thickness of about 0.1 μm to 0.5 μm. Instead of the ITO layer, any one of the FTO (Fluorine Doped Tin Oxide) layer, the zinc oxide layer, the laminated film of the indium-tin composite oxide layer and the silver layer, and the antimony-doped tin oxide layer is transparent. It may be formed as the electrode layer 21.
 また、透明基材20はガラス基板であって、その長辺の長さAxは5mm~40mm、例えば20mmであり、短辺の長さAyは5mm~20mm、例えば15mmである。また、透明基材20の厚さAzは、0.1mm~3.0mm、例えば1.1mmである。なお、ガラス基板に代えて透明なプラスチック板を透明基材20として使用してもよい。 Further, the transparent base material 20 is a glass substrate, and the length Ax of the long side thereof is 5 mm to 40 mm, for example, 20 mm, and the length Ay of the short side is 5 mm to 20 mm, for example, 15 mm. The thickness Az of the transparent base material 20 is 0.1 mm to 3.0 mm, for example, 1.1 mm. A transparent plastic plate may be used as the transparent base material 20 instead of the glass substrate.
 次に、図1(b)に示すように、チタンアルコキシドから調整したアルコール溶液をセル領域Iにおける透明電極層21の上に塗布した後、そのアルコール溶液を加熱して乾燥させることにより、逆電子移動防止層22を5nm~0.1μm程度の厚さに形成する。本工程における乾燥温度は特に限定されず、450℃~650℃、例えば550℃程度の温度で乾燥を行えばよい。 Next, as shown in FIG. 1 (b), an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region I, and then the alcohol solution is heated and dried to cause reverse electrons. The movement prevention layer 22 is formed to have a thickness of about 5 nm to 0.1 μm. The drying temperature in this step is not particularly limited, and drying may be performed at a temperature of 450 ° C. to 650 ° C., for example, about 550 ° C.
 なお、セル領域Iは、透明基材20において太陽電池セルが形成される領域である。また、そのセル領域Iの隣の領域は、太陽電池セルから電力を引き出すためのビア導体が後で形成される周辺領域IIとなる。 The cell region I is a region in which the solar cell is formed on the transparent base material 20. Further, the region adjacent to the cell region I becomes a peripheral region II in which a via conductor for drawing electric power from the solar cell is later formed.
 各領域I、IIの形状や大きさは特に限定されない。セル領域Iは、平面視で一辺の長さLが1mm~20mm、例えば15mmの正方形状の領域とする。また、周辺領域IIは、平面視で矩形状であり、その長辺の長さByは1mm~20mm、例えば15mmであり、短辺の長さBxは1mm~10mm、例えば5mmである。 The shape and size of each area I and II are not particularly limited. The cell region I is a square region having a side length L of 1 mm to 20 mm, for example, 15 mm in a plan view. Further, the peripheral region II has a rectangular shape in a plan view, the length By of the long side thereof is 1 mm to 20 mm, for example, 15 mm, and the length Bx of the short side is 1 mm to 10 mm, for example, 5 mm.
 続いて、図2(a)に示すように、粒径が5nm~50nmの酸化チタン粒子が分散されたスラリを逆電子移動防止層22の上にスクリーン印刷法で1μm~10μm程度の厚さに塗布し、それを加熱して有機物成分を除去することにより発電層25を形成する。そのスラリとして、例えば日揮触媒化成製の酸化チタンペーストであるPST-30NRDを使用する。また、スラリの加熱温度は450℃~650℃、例えば550℃であり、その乾燥時間は10分~120分、例えば30分程度である。 Subsequently, as shown in FIG. 2A, a slurry in which titanium oxide particles having a particle size of 5 nm to 50 nm are dispersed is placed on the reverse electron transfer prevention layer 22 by a screen printing method to a thickness of about 1 μm to 10 μm. The power generation layer 25 is formed by applying the coating and heating it to remove organic components. As the slurry, for example, PST-30NRD, which is a titanium oxide paste manufactured by JGC Catalysts and Chemicals, is used. The heating temperature of the slurry is 450 ° C. to 650 ° C., for example, 550 ° C., and the drying time is 10 minutes to 120 minutes, for example, about 30 minutes.
 なお、発電層25を構成する半導体粒子は酸化チタン粒子に限定されず、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Cr、及びNbのいずれかの酸化物の粒子で発電層25を構成してもよい。更に、SrTiOやCaTiO等のペロブスカイト型酸化物の粒子で発電層25を形成してもよい。
 また、発電層25を形成する領域は、セル領域I(図1(b)参照)と同じ正方形の領域である。
The semiconductor particles constituting the power generation layer 25 are not limited to titanium oxide particles, and Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn. , Zr, Sr, Ga, Si, Cr, and Nb oxide particles may form the power generation layer 25. Further, the power generation layer 25 may be formed of particles of perovskite-type oxides such as SrTiO 3 and CaTiO 3 .
The region forming the power generation layer 25 is the same square region as the cell region I (see FIG. 1B).
 その後、色素を含有する有機溶液に透明基材20を浸漬し、発電層25を構成する半導体粒子の表面に色素を吸着させる。その有機溶液や浸漬条件も特に限定されない。例えば、アセトニトリルとt-ブタノールとを1:1の体積比率で混合した有機溶媒を用意し、その有機溶媒に色素としてCYC-B11(K)を0.1mM~1mM、例えば0.2mMの濃度で添加してなる有機溶液を本工程で使用し得る。そして、その有機溶液を0℃~80℃、例えば50℃に保温しつつ、有機溶液に透明基材20を1時間~12時間、例えば4時間だけ浸漬することで発電層25に色素を吸着させればよい。 After that, the transparent base material 20 is immersed in an organic solution containing a dye, and the dye is adsorbed on the surface of the semiconductor particles constituting the power generation layer 25. The organic solution and immersion conditions are not particularly limited. For example, an organic solvent prepared by mixing acetonitrile and t-butanol in a volume ratio of 1: 1 is prepared, and CYC-B11 (K) as a dye is added to the organic solvent at a concentration of 0.1 mM to 1 mM, for example, 0.2 mM. The added organic solution can be used in this step. Then, while keeping the organic solution at 0 ° C. to 80 ° C., for example, 50 ° C., the transparent base material 20 is immersed in the organic solution for 1 hour to 12 hours, for example, 4 hours to adsorb the dye on the power generation layer 25. Just do it.
 更に、色素も上記に限定されず、金属錯体色素や有機色素を発電層25に吸着させればよい。このうち、金属錯体色素としては、例えば、ルテニウム-シス-ジアクア-ビピリジル錯体、ルテニウム-トリス錯体、ルテニウム-ビス錯体、オスミウム-トリス錯体、オスミウム-ビス錯体等の遷移金属錯体がある。また、亜鉛-テトラ(4-カルボキシフェニル)ポルフィリン、鉄-ヘキサシアニド錯体も金属錯体色素の一例である。 Further, the dye is not limited to the above, and the metal complex dye or the organic dye may be adsorbed on the power generation layer 25. Among these, examples of the metal complex dye include transition metal complexes such as ruthenium-cis-diaqua-bipyridyl complex, ruthenium-tris complex, ruthenium-bis complex, osmium-tris complex, and osmium-bis complex. Zinc-tetra (4-carboxyphenyl) porphyrin and iron-hexacianide complex are also examples of metal complex dyes.
 また、有機色素としては、例えば、9-フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素、及びカルバゾール化合物系色素等がある。 Examples of organic dyes include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, and cyanine dyes. There are dyes, merocyanine dyes, xanthene dyes, carbazole compound dyes and the like.
 次に、図2(b)に示す工程について説明する。まず、固体電解質前駆体26として、ヨウ素、1,3-ジメチルイミダゾリウムヨージド(DMII)、アセトニトリル、及び分子量が100万のポリエチレンオキシドの各々を均一になるように混合する。次いで、この固体電解質前駆体26を発電層25の上に0.1μL~50μL、例えば20μLだけ滴下し、発電層25に固体電解質前駆体26を含浸させる。そして、発電層25を50℃~150℃、例えば100℃に加熱し、この状態を1分~60分、例えば30分間維持することにより、固体電解質前駆体26に含まれる余剰のアセトニトリルを揮発させ、発電層25の上の固体電解質前駆体26を固体電解質層27とする。その後に、発電層25を室温に戻す。 Next, the process shown in FIG. 2B will be described. First, as the solid electrolyte precursor 26, iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million are mixed so as to be uniform. Next, the solid electrolyte precursor 26 is dropped onto the power generation layer 25 by 0.1 μL to 50 μL, for example, 20 μL, and the power generation layer 25 is impregnated with the solid electrolyte precursor 26. Then, the power generation layer 25 is heated to 50 ° C. to 150 ° C., for example, 100 ° C., and this state is maintained for 1 minute to 60 minutes, for example, 30 minutes to volatilize the excess acetonitrile contained in the solid electrolyte precursor 26. The solid electrolyte precursor 26 on the power generation layer 25 is designated as the solid electrolyte layer 27. After that, the power generation layer 25 is returned to room temperature.
 なお、固体電解質前駆体26に含まれる電解質はDMIIに限定されない。例えば、ピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩であって、室温付近で固体状態にある塩や溶融状態にある常温溶融塩をイオン液体として使用し得る。そのような常温溶融塩としては、例えば、1-メチル-3-プロピルイミダゾリウムヨージド、1-ブチル-3-メチルイミダゾリウムヨージド(BMII)、1-エチル-ピリジニウムヨージド等のヨウ化4級アンモニウム塩化合物等がある。 The electrolyte contained in the solid electrolyte precursor 26 is not limited to DMII. For example, an iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, which is in a solid state near room temperature or in a molten state, can be used as an ionic liquid. Examples of such a room temperature molten salt include 1-methyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide (BMII), 1-ethyl-pyridinium iodide and the like 4 There are quaternary ammonium salt compounds and the like.
 更に、固体電解質層27の材料は上記に限定されず、酸化還元対を含有する溶融塩、オキサジアゾール化合物、及びピラゾリン化合物等の有機半導体材料を固体電解質層27の材料として使用してもよい。また、ヨウ化銅や臭化銅等の金属ハロゲン化物材料で固体電解質層27を形成してもよい。
 以上により透明基材20に対する処理を終える。
Further, the material of the solid electrolyte layer 27 is not limited to the above, and an organic semiconductor material such as a molten salt containing a redox pair, an oxadiazole compound, and a pyrazoline compound may be used as the material of the solid electrolyte layer 27. .. Further, the solid electrolyte layer 27 may be formed of a metal halide material such as copper iodide or copper bromide.
This completes the treatment for the transparent base material 20.
 本実施例では、この透明基材20に配線基板を接合することにより色素増感太陽電池を作製する。そこで、次にその配線基板の製造方法について説明する。 In this embodiment, a dye-sensitized solar cell is manufactured by joining a wiring board to the transparent base material 20. Therefore, the manufacturing method of the wiring board will be described next.
 図3(a)~図4(c)は、本実施例に係る配線基板の製造途中の断面図である。 3 (a) to 4 (c) are cross-sectional views of the wiring board according to the present embodiment during manufacturing.
 まず、図3(a)に示す両面銅張基材30を用意する。その両面銅張基材30は、樹脂基材31の第1の主面31aに熱プレスにより第1の銅箔32を圧着し、かつ第1の主面31aに相対する第2の主面31bに第2の銅箔33を熱プレスにより圧着することで作製し得る。 First, the double-sided copper-clad base material 30 shown in FIG. 3A is prepared. The double-sided copper-clad base material 30 has a first copper foil 32 pressed onto the first main surface 31a of the resin base material 31 by hot pressing, and has a second main surface 31b facing the first main surface 31a. It can be produced by crimping the copper foil 33 of No. 2 by a hot press.
 樹脂基材31は特に限定されないが、この例ではガラス織布に耐熱性のエポキシ樹脂を含浸させたガラスエポキシ基板を樹脂基材31として使用する。なお、ポリイミドフィルムを樹脂基材31として使用してもよい。また、その樹脂基材31の厚さは0.1mm~3.2mm、例えば1μmである。更に、各銅箔32、33の厚さも特に限定されない。一例として、各銅箔32、33の厚さは18μm~200μm、例えば35μmである。 The resin base material 31 is not particularly limited, but in this example, a glass epoxy substrate obtained by impregnating a glass woven fabric with a heat-resistant epoxy resin is used as the resin base material 31. The polyimide film may be used as the resin base material 31. The thickness of the resin base material 31 is 0.1 mm to 3.2 mm, for example, 1 μm. Further, the thickness of each of the copper foils 32 and 33 is not particularly limited. As an example, the thickness of each of the copper foils 32 and 33 is 18 μm to 200 μm, for example 35 μm.
 続いて、図3(b)に示すように、両面銅張基材30に対してドリル加工を行うことにより樹脂基材31に第1のビアホール31xを形成する。その第1のビアホール31xの直径は0.1mm~2mm、例えば0.25mmである。 Subsequently, as shown in FIG. 3B, the resin base material 31 is formed with the first via hole 31x by drilling the double-sided copper-clad base material 30. The diameter of the first via hole 31x is 0.1 mm to 2 mm, for example, 0.25 mm.
 次に、図3(c)に示すように、第1のビアホール31xの内面と各銅箔32、33の表面とに無電解銅めっき層を形成し、更にその上に電解銅めっき層を形成する。なお、無電解銅めっき層と電解銅めっき層とを合わせた厚さは10μm~30μm、例えば20μm程度とする。そして、第1のビアホール31xに形成された各銅めっき層を第1のビア導体36aとすると共に、各銅箔32、33とこれらの銅めっき層とを銅層37とする。 Next, as shown in FIG. 3C, an electroless copper plating layer is formed on the inner surface of the first via hole 31x and the surfaces of the copper foils 32 and 33, and an electrolytic copper plating layer is further formed on the electroless copper plating layer. To do. The total thickness of the electroless copper plating layer and the electrolytic copper plating layer is 10 μm to 30 μm, for example, about 20 μm. Then, each copper plating layer formed in the first via hole 31x is used as the first via conductor 36a, and the copper foils 32 and 33 and these copper plating layers are used as the copper layer 37.
 次に、図4(a)に示すように、フォトリソグラフィとウェットエッチングにより銅層37をパターニングして、第2の主面31bに第1の電極パッド37aと第1の配線37bとを形成する。 Next, as shown in FIG. 4A, the copper layer 37 is patterned by photolithography and wet etching to form the first electrode pad 37a and the first wiring 37b on the second main surface 31b. ..
 続いて、図4(b)に示すように、銅層37、第1の電極パッド37a、及び第1の配線37bのそれぞれの上に無電解めっきにより金層38を0.01μm~0.05μm、例えば0.03μm程度の厚さに形成する。このように薄い厚さの金層38を形成するめっき法はフラッシュめっきとも呼ばれる。 Subsequently, as shown in FIG. 4B, the gold layer 38 was placed on the copper layer 37, the first electrode pad 37a, and the first wiring 37b by electroless plating to form a gold layer 38 of 0.01 μm to 0.05 μm. For example, it is formed to have a thickness of about 0.03 μm. The plating method for forming the gold layer 38 having such a thin thickness is also called flash plating.
 続いて、図4(c)に示すように、樹脂基材31の第1の主面31a側の銅層37の上に触媒層39としてチタン層と白金層とをこの順にスパッタ法により形成し、銅層37、金層38、及び触媒層39の各々を対向電極層40とする。 Subsequently, as shown in FIG. 4C, a titanium layer and a platinum layer were formed as a catalyst layer 39 on the copper layer 37 on the first main surface 31a side of the resin base material 31 by a sputtering method in this order. , The copper layer 37, the gold layer 38, and the catalyst layer 39 are each designated as the counter electrode layer 40.
 なお、触媒層39におけるチタン層は密着層として機能し、その厚さは0.05μm~0.5μm、例えば0.1μm程度である。また、触媒層39における白金層の厚さも特に限定されず、0.01μm~0.3μm、例えば0.05μm程度の厚さに触媒層39を形成し得る。 The titanium layer in the catalyst layer 39 functions as an adhesion layer, and its thickness is about 0.05 μm to 0.5 μm, for example, about 0.1 μm. Further, the thickness of the platinum layer in the catalyst layer 39 is not particularly limited, and the catalyst layer 39 can be formed to a thickness of 0.01 μm to 0.3 μm, for example, about 0.05 μm.
 以上により、本実施例で使用する配線基板45の基本構造が完成する。 From the above, the basic structure of the wiring board 45 used in this embodiment is completed.
 図5(a)は、樹脂基材31の第2の主面31bを上にしたときの配線基板45の斜視図である。なお、前述の図4(c)は図5(a)のA-A線に沿う断面図に相当する。 FIG. 5A is a perspective view of the wiring board 45 when the second main surface 31b of the resin base material 31 is turned up. The above-mentioned FIG. 4 (c) corresponds to a cross-sectional view taken along the line AA of FIG. 5 (a).
 図5(a)に示すように、樹脂基材31の第2の主面31bには、前述の第1の電極パッド37aと同じ工程で第2の電極パッド37cが形成される。そして、その第2の電極パッド37cには、第1の配線37bと同一工程で形成された第2の配線37dが接続される。 As shown in FIG. 5A, a second electrode pad 37c is formed on the second main surface 31b of the resin base material 31 in the same process as the first electrode pad 37a described above. Then, a second wiring 37d formed in the same process as the first wiring 37b is connected to the second electrode pad 37c.
 なお、第1の電極パッド37aの形状は、平面視で一辺の長さが1mm~6mm、例えば5mmの正方形とする。第2の電極パッド37cの形状もこれと同様である。
 図5(b)は、図5(a)のB-B線に沿う断面図である。
The shape of the first electrode pad 37a is a square having a side length of 1 mm to 6 mm, for example, 5 mm in a plan view. The shape of the second electrode pad 37c is similar to this.
5 (b) is a cross-sectional view taken along the line BB of FIG. 5 (a).
 図5(b)に示すように、樹脂基材31には、第1のビアホール31xを形成したのと同じ工程で第2のビアホール31yが形成される。そして、その第2のビアホール31yの内面には第1のビア導体36aを形成したのと同じ工程で第2のビア導体36bが形成されており、前述の第2の配線37dの一端が第2のビア導体36bに接続される。 As shown in FIG. 5B, a second via hole 31y is formed in the resin base material 31 in the same process as in which the first via hole 31x was formed. A second via conductor 36b is formed on the inner surface of the second via hole 31y in the same process as when the first via conductor 36a is formed, and one end of the above-mentioned second wiring 37d is a second. It is connected to the via conductor 36b of.
 図6は、樹脂基材31の第1の主面31aを上にしたときの配線基板45の斜視図である。 FIG. 6 is a perspective view of the wiring board 45 when the first main surface 31a of the resin base material 31 is turned up.
 図6に示すように、前述の第1のビア導体36aと第2のビア導体36bは、それぞれ樹脂基材31の縁の第1のコンタクト領域CRと第2のコンタクト領域CRに設けられる。これらのコンタクト領域CR、CRは、セル領域Iの外側の周辺領域II(図2(b)参照)に対応した領域であって、各ビア導体36a、36bを介してセル領域Iから電力を取り出す領域である。 As shown in FIG. 6, the above-mentioned first via conductor 36a and second via conductor 36b are provided in the first contact region CR 1 and the second contact region CR 2 at the edge of the resin base material 31, respectively. .. These contact regions CR 1 and CR 2 are regions corresponding to the peripheral region II (see FIG. 2B) outside the cell region I, and power is supplied from the cell region I via the via conductors 36a and 36b. This is the area to take out.
 その第1のコンタクト領域CRには対向電極層40が形成されているのに対し、第2のコンタクト領域CRには対向電極層40が形成されていない。これにより、第2のコンタクト領域CRには、第2のビア導体36bの一端と樹脂基材31とが露出することになる。 The counter electrode layer 40 is formed in the first contact region CR 1 , whereas the counter electrode layer 40 is not formed in the second contact region CR 2 . As a result, one end of the second via conductor 36b and the resin base material 31 are exposed in the second contact region CR 2 .
 また、この例では、第1の主面31aの面積に占める対向電極層40の面積を85%~95%、例えば87.5%以上とする。更に、各コンタクト領域CR、CRの幅Bwも特に限定されず、幅Bwを5mm~10mm、例えば7.5mm程度とする。 Further, in this example, the area of the counter electrode layer 40 occupying the area of the first main surface 31a is 85% to 95%, for example, 87.5% or more. Further, the width Bw of each of the contact regions CR 1 and CR 2 is not particularly limited, and the width Bw is 5 mm to 10 mm, for example, about 7.5 mm.
 これ以降の工程について、図7~図9を参照しながら説明する。図7~図9は、本実施例に係る色素増感太陽電池の製造途中の斜視図である。 The subsequent steps will be described with reference to FIGS. 7 to 9. 7 to 9 are perspective views during the production of the dye-sensitized solar cell according to the present embodiment.
 まず、図7に示すように、前述の透明基材20を再び用意する。そして、第2のコンタクト領域CRにおける透明電極層21の上に導電層43として銀ペーストを塗布する。なお、その導電層43と固体電解質層27とが電気的に短絡するのを防止するために両者の間にスペースSを設け、固体電解質層27から間隔をおいて導電層43を形成するのが好ましい。 First, as shown in FIG. 7, the above-mentioned transparent base material 20 is prepared again. Then, a silver paste is applied as the conductive layer 43 on the transparent electrode layer 21 in the second contact region CR 2 . In order to prevent the conductive layer 43 and the solid electrolyte layer 27 from being electrically short-circuited, a space S is provided between them to form the conductive layer 43 at a distance from the solid electrolyte layer 27. preferable.
 次いで、第1のコンタクト領域CRにおける透明電極層21の上に紫外線硬化樹脂を塗布した後、その紫外線硬化樹脂に紫外線を照射して硬化させることにより絶縁層44を形成する。この例では、固体電解質層27と導電層43との間のスペースSにも絶縁層44を形成することにより、固体電解質層27と導電層43とを絶縁層44で絶縁する。 Next, an ultraviolet curable resin is applied onto the transparent electrode layer 21 in the first contact region CR 1 , and then the ultraviolet curable resin is irradiated with ultraviolet rays to be cured to form an insulating layer 44. In this example, the solid electrolyte layer 27 and the conductive layer 43 are insulated by the insulating layer 44 by forming the insulating layer 44 also in the space S between the solid electrolyte layer 27 and the conductive layer 43.
 そして、透明基材20の上方に配線基板45を配し、透明基材20の固体電解質層27と樹脂基材31の第1の主面31aとを対向させる。 Then, the wiring board 45 is arranged above the transparent base material 20, and the solid electrolyte layer 27 of the transparent base material 20 and the first main surface 31a of the resin base material 31 face each other.
 次に、図8に示すように、透明基材20と樹脂基材31とを張り合わせ、これらを50℃程度の温度に加熱する。これにより導電層43が固化し、第2のビア導体36bと透明電極層21とが導電層43を介して接続されることになる。 Next, as shown in FIG. 8, the transparent base material 20 and the resin base material 31 are laminated and heated to a temperature of about 50 ° C. As a result, the conductive layer 43 is solidified, and the second via conductor 36b and the transparent electrode layer 21 are connected via the conductive layer 43.
 なお、透明基材20と配線基板45との間に気泡が混入するのを防止するために、真空中や減圧雰囲気中で本工程を行うのが好ましい。 It is preferable to perform this step in a vacuum or a reduced pressure atmosphere in order to prevent air bubbles from being mixed between the transparent substrate 20 and the wiring substrate 45.
 また、このように透明基材20と樹脂基材31とを張り合わせることにより、セル領域Iにおいて透明電極層21、発電層25、固体電解質層27、及び対向電極層40の各々が平面視で重なることになる。
 図10(a)は、図8のC-C線に沿う断面図である。
Further, by laminating the transparent base material 20 and the resin base material 31 in this way, each of the transparent electrode layer 21, the power generation layer 25, the solid electrolyte layer 27, and the counter electrode layer 40 in the cell region I is viewed in a plan view. It will overlap.
FIG. 10A is a cross-sectional view taken along the line CC of FIG.
 図10(a)に示すように、セル領域Iにおいては、樹脂基材31の第1の主面31aに対向電極層40が固着しており、その下に固体電解質層27と透明電極層21とが形成される。そして、透明基材20と透明電極層21とを介して発電層25に光が入射することでセル領域Iに起電力が生じ、その起電力に起因した電位差が透明電極層21と対向電極層40との間に生じる。なお、この例では透明電極層21が負極となり、対向電極層40が正極となる。 As shown in FIG. 10A, in the cell region I, the counter electrode layer 40 is fixed to the first main surface 31a of the resin base material 31, and the solid electrolyte layer 27 and the transparent electrode layer 21 are beneath the counter electrode layer 40. And are formed. Then, when light is incident on the power generation layer 25 via the transparent base material 20 and the transparent electrode layer 21, an electromotive force is generated in the cell region I, and the potential difference due to the electromotive force is the transparent electrode layer 21 and the counter electrode layer. Occurs between 40 and 40. In this example, the transparent electrode layer 21 serves as a negative electrode, and the counter electrode layer 40 serves as a positive electrode.
 また、セル領域Iにおいては透明基材20の全幅にわたって発電層25が形成されており、透明基材20の側面20sと発電層25の側面25sとが同一面Pに位置するようになる。これにより、側面25sが側面20sから後退するように透明基材20の上に発電層25を形成する場合と比較して発電層25の受光量が増え、セル領域Iにおける発電量を増加させることが可能となる。
 一方、図10(b)は、図8のD-D線に沿う断面図である。
Further, in the cell region I, the power generation layer 25 is formed over the entire width of the transparent base material 20, and the side surface 20s of the transparent base material 20 and the side surface 25s of the power generation layer 25 are located on the same surface P. As a result, the amount of light received by the power generation layer 25 increases as compared with the case where the power generation layer 25 is formed on the transparent base material 20 so that the side surface 25s recedes from the side surface 20s, and the amount of power generation in the cell region I is increased. Is possible.
On the other hand, FIG. 10B is a cross-sectional view taken along the line DD of FIG.
 図10(b)に示すように、第1のコンタクト領域CRにおいては、対向電極層40と第1のビア導体36aとが接続されており、対向電極層40の正電圧が樹脂基材31の第2の主面31b側に引き出される。また、透明電極層21と対向電極層40との間に絶縁層44が介在しているため、第1のビア導体36aと透明電極層21とが電気的に短絡してしまうのを絶縁層44で防止することができる。 As shown in FIG. 10B, in the first contact region CR 1 , the counter electrode layer 40 and the first via conductor 36a are connected, and the positive voltage of the counter electrode layer 40 is the resin base material 31. It is pulled out to the second main surface 31b side of the above. Further, since the insulating layer 44 is interposed between the transparent electrode layer 21 and the counter electrode layer 40, the insulating layer 44 prevents the first via conductor 36a and the transparent electrode layer 21 from being electrically short-circuited. Can be prevented with.
 一方、第2のコンタクト領域CRにおいては、導電層43を介して第2のビア導体36bと透明電極層21とが接続されており、透明電極層21の負電圧が第2のビア導体36bを介して樹脂基材31の第2の主面32b側に引き出される。 On the other hand, in the second contact region CR 2 , the second via conductor 36b and the transparent electrode layer 21 are connected via the conductive layer 43, and the negative voltage of the transparent electrode layer 21 is the second via conductor 36b. It is pulled out to the second main surface 32b side of the resin base material 31 via.
 この後は、図9に示すように、透明基材20と樹脂基材31のそれぞれの側面に封止樹脂47として紫外線硬化樹脂を塗布した後、紫外線の照射によりその封止樹脂47を硬化させ、固体電解質層27等に水分が浸入するのを封止樹脂47で防止する。なお、紫外線硬化樹脂を樹脂基材31の第2の主面31bの一部も覆うように塗布し封止樹脂47を形成してもよい。 After that, as shown in FIG. 9, an ultraviolet curable resin is applied as a sealing resin 47 to each side surface of the transparent base material 20 and the resin base material 31, and then the sealing resin 47 is cured by irradiation with ultraviolet rays. , The sealing resin 47 prevents moisture from entering the solid electrolyte layer 27 and the like. The ultraviolet curable resin may be applied so as to cover a part of the second main surface 31b of the resin base material 31 to form the sealing resin 47.
 以上により、本実施例に係る色素増感太陽電池50の基本構造が完成する。 From the above, the basic structure of the dye-sensitized solar cell 50 according to this embodiment is completed.
 その色素増感太陽電池50では、液体の電解質を使用せずに、液漏れの可能性がない固体電解質層27を使用する。そのため、ビアホール31x、31y(図10(b)参照)から電解質が液漏れする可能性がなく、そのビアホール31x、31yに形成された各ビア導体36a、36bを介して透明電極層21や対向電極層40の電圧を各電極パッド37a、37cに引き出すことができる。 In the dye-sensitized solar cell 50, a solid electrolyte layer 27 having no possibility of liquid leakage is used without using a liquid electrolyte. Therefore, there is no possibility that the electrolyte leaks from the via holes 31x and 31y (see FIG. 10B), and the transparent electrode layer 21 and the counter electrode are passed through the via conductors 36a and 36b formed in the via holes 31x and 31y. The voltage of the layer 40 can be drawn out to the electrode pads 37a and 37c, respectively.
 更に、固体電解質層27が液漏れする可能性がないため、液漏れを防止するためのシーリング材を透明基材20の表面に設ける必要がない。このようにシーリング材を不要としたことでセル領域Iを拡大することができ、色素増感太陽電池50の発電量を増加させることが可能となる。 Further, since there is no possibility that the solid electrolyte layer 27 leaks, it is not necessary to provide a sealing material on the surface of the transparent base material 20 to prevent the leak. By eliminating the need for the sealing material in this way, the cell region I can be expanded, and the amount of power generated by the dye-sensitized solar cell 50 can be increased.
 また、平面視したときに封止樹脂47と透明基材20とが重複する領域が極僅かであるため、色素増感太陽電池50を小型化した場合であっても、透明基材20において発電に寄与するセル領域Iの面積が大きく減少することがない。よって、色素増感太陽電池50を小型化した場合にも有効な発電面積を十分確保することができる。
 しかも、上記のように各ビア導体36a、36bを介して電圧の引き出しを行うことで、電圧を引き出すための配線を樹脂基材31の側面に設ける場合と比較して色素増感太陽電池50を小型化することができる。
Further, since the area where the sealing resin 47 and the transparent base material 20 overlap when viewed in a plan view is extremely small, even when the dye-sensitized solar cell 50 is miniaturized, the transparent base material 20 generates electricity. The area of the cell region I that contributes to the above does not decrease significantly. Therefore, an effective power generation area can be sufficiently secured even when the dye-sensitized solar cell 50 is miniaturized.
Moreover, by drawing out the voltage through the via conductors 36a and 36b as described above, the dye-sensitized solar cell 50 is compared with the case where the wiring for drawing out the voltage is provided on the side surface of the resin base material 31. It can be miniaturized.
 更に、セラミックのように脆い材料とは異なり、樹脂基材31はある程度の可撓性があるため、各ビアホール31x、31yによって樹脂基材31の機械的強度が劣化するのを抑制することができる。 Further, unlike a brittle material such as ceramic, the resin base material 31 has a certain degree of flexibility, so that deterioration of the mechanical strength of the resin base material 31 due to the via holes 31x and 31y can be suppressed. ..
 そして、ドリル加工によって簡単かつ安価に各ビアホール31x、31yを形成することが可能な樹脂基材31を利用したことで、樹脂基材31に代えてセラミック基材を利用する場合と比較して色素増感太陽電池50の低コスト化を実現できる。
 この色素増感太陽電池50の使用方法は特に限定されない。
By using the resin base material 31 capable of easily and inexpensively forming the via holes 31x and 31y by drilling, the dye is compared with the case where the ceramic base material is used instead of the resin base material 31. The cost of the sensitized solar cell 50 can be reduced.
The method of using the dye-sensitized solar cell 50 is not particularly limited.
 図11は、色素増感太陽電池50の使用方法の一例について説明するための断面図である。 FIG. 11 is a cross-sectional view for explaining an example of how to use the dye-sensitized solar cell 50.
 図11の例では、IoTデバイス等が内蔵する配線基板60に色素増感太陽電池50を実装する場合を想定している。配線基板60は、樹脂基材31と同様にガラスエポキシ樹脂等の樹脂から形成されており、その表面には銅層をパターニングして得られた端子61、62が設けられる。そして、これらの端子61、62と各電極パッド37a、37cとをはんだ63により接続する。 In the example of FIG. 11, it is assumed that the dye-sensitized solar cell 50 is mounted on the wiring board 60 built in the IoT device or the like. The wiring board 60 is formed of a resin such as a glass epoxy resin like the resin base material 31, and terminals 61 and 62 obtained by patterning a copper layer are provided on the surface thereof. Then, these terminals 61 and 62 and the electrode pads 37a and 37c are connected by solder 63.
 この状態で色素増感太陽電池50に光Lを照射することで起電力が発生し、IoTデバイスが内蔵するセンサ等の電子デバイスをその起電力で動作させることができる。 In this state, the dye-sensitized solar cell 50 is irradiated with light L to generate an electromotive force, and an electronic device such as a sensor built in the IoT device can be operated with the electromotive force.
 このような使用方法では、実装時にはんだ63を溶融するときに電極パッド37a、37cが加熱され、これにより固体電解質層27も加熱されることになる。但し、固体電解質層27は、液体の電解液と比較して安定であるため、実装時に熱によるダメージを受け難い。そのため、熱によるダメージから固体電解質層27を保護するための種々の部品が不要となり、色素増感太陽電池50を小型化することができる。 In such a usage method, the electrode pads 37a and 37c are heated when the solder 63 is melted at the time of mounting, whereby the solid electrolyte layer 27 is also heated. However, since the solid electrolyte layer 27 is more stable than the liquid electrolyte, it is less likely to be damaged by heat during mounting. Therefore, various parts for protecting the solid electrolyte layer 27 from heat damage become unnecessary, and the dye-sensitized solar cell 50 can be miniaturized.
 更に、従来の色素増感太陽電池で用いられる対向電極側の基板はガラス基板であるが、本実施例では透明基板20と各電極パッド37a、37cとの間に樹脂基材31が介在している。そのため、各電極パッド37a、37cと配線基板60とをはんだ63で接続するときの熱が透明基板20に伝わり難くなり、その熱で透明基板20が割れるのを防止でき、ひいては各電極37a、37cが破損するのを抑制できる。 Further, the substrate on the counter electrode side used in the conventional dye-sensitized solar cell is a glass substrate, but in this embodiment, the resin substrate 31 is interposed between the transparent substrate 20 and the electrode pads 37a and 37c. There is. Therefore, it becomes difficult for the heat when connecting the electrode pads 37a and 37c and the wiring board 60 with the solder 63 to be transferred to the transparent substrate 20, and it is possible to prevent the transparent substrate 20 from cracking due to the heat, and eventually the electrodes 37a and 37c. Can be prevented from being damaged.
 また、樹脂基材31は配線基板60と同じ材料から形成されているため、両者の間の熱膨張量に顕著な差は発生せず、配線基板60と色素増感太陽電池50との接続信頼性も維持することができる。 Further, since the resin base material 31 is formed of the same material as the wiring board 60, there is no significant difference in the amount of thermal expansion between the two, and the connection reliability between the wiring board 60 and the dye-sensitized solar cell 50 Sex can also be maintained.
 更に、はんだ63が接合する各電極パッド37a、37cを色素増感太陽電池50に設けたことで、はんだ63を介して配線基板60に色素増感太陽電池50を実装でき、両者を接続するためのコネクタ等を不要にすることができる。 Further, since the electrode pads 37a and 37c to which the solder 63 is bonded are provided on the dye-sensitized solar cell 50, the dye-sensitized solar cell 50 can be mounted on the wiring board 60 via the solder 63, and both are connected. It is possible to eliminate the need for a connector or the like.
 (第2実施例)
 本実施例では、第1実施例よりも発電量を増やすことが可能な色素増感太陽電池について説明する。図12(a)~図13(b)は、第2実施例に係る色素増感太陽電池の製造途中の斜視図である。なお、これらの図において、第1実施例で説明したのと同じ要素には第1実施例におけるのと同じ符号を付し、以下ではその説明を省略する。
(Second Example)
In this embodiment, a dye-sensitized solar cell capable of increasing the amount of power generation as compared with the first embodiment will be described. 12 (a) to 13 (b) are perspective views during the manufacturing of the dye-sensitized solar cell according to the second embodiment. In these figures, the same elements as described in the first embodiment are designated by the same reference numerals as those described in the first embodiment, and the description thereof will be omitted below.
 まず、図12(a)に示すように、第2の主面20bに透明電極層21が形成された透明基材20を用意する。本実施例では、その透明基材20の角部20c、20dを含む三角形の領域がそれぞれ第1のコンタクト領域CRと第2のコンタクト領域CRになる。第1のコンタクト領域CRの大きさは特に限定されないが、本実施例では第1のコンタクト領域CRの一辺の長さCx、Cyを0.5mm~1.5mm、例えば1mmとする。第2のコンタクト領域CRの大きさもこれと同程度とする。そして、これらのコンタクト領域CR、CRを除いた部分の透明基材20の全てを含む領域が六角形状のセル領域Iとなる。 First, as shown in FIG. 12A, a transparent base material 20 having a transparent electrode layer 21 formed on the second main surface 20b is prepared. In this embodiment, the triangular regions including the corners 20c and 20d of the transparent base material 20 are the first contact region CR 1 and the second contact region CR 2 , respectively. The size of the first contact region CR 1 is not particularly limited, but in this embodiment, the lengths Cx and Cy of one side of the first contact region CR 1 are 0.5 mm to 1.5 mm, for example, 1 mm. The size of the second contact region CR 2 is also about the same. Then, the region including all of the transparent base material 20 in the portion excluding these contact regions CR 1 and CR 2 becomes the hexagonal cell region I.
 次に、その第1のコンタクト領域CRの縁に沿って透明電極層21にレーザを照射することにより透明電極層21にスリット21sを形成し、第1のコンタクト領域CRにおける透明電極層21をセル領域Iにおける透明電極層21から分離する。 Next, the transparent electrode layer 21 is irradiated with a laser along the edge of the first contact region CR 1 to form slits 21s in the transparent electrode layer 21, and the transparent electrode layer 21 in the first contact region CR 1 is formed. Is separated from the transparent electrode layer 21 in the cell region I.
 続いて、図12(b)に示すように、チタンアルコキシドから調整したアルコール溶液をセル領域Iにおける透明電極層21の上に塗布した後、そのアルコール溶液を加熱して乾燥させることにより、逆電子移動防止層22を5nm~0.1μm程度の厚さに形成する。第1実施例と同様に、本工程における乾燥温度は450℃~650℃、例えば550℃程度とする。 Subsequently, as shown in FIG. 12B, an alcohol solution prepared from titanium alkoxide is applied onto the transparent electrode layer 21 in the cell region I, and then the alcohol solution is heated and dried to cause reverse electrons. The movement prevention layer 22 is formed to have a thickness of about 5 nm to 0.1 μm. Similar to the first embodiment, the drying temperature in this step is 450 ° C. to 650 ° C., for example, about 550 ° C.
 次に、図13(a)に示すように、粒径が5nm~50nmの酸化チタン粒子が分散されたスラリを逆電子移動防止層22の上にスクリーン印刷法で1μm~10μm程度の厚さに塗布し、それを加熱して有機物成分を除去することにより発電層25を形成する。スラリの加熱温度は450℃~650℃、例えば550℃であり、その乾燥時間は10分~120分、例えば30分程度である。なお、スラリは特に限定されないが、この例では、第1実施例と同様に、日揮触媒化成製の酸化チタンペーストであるPST-30NRDをそのスラリとして使用する。 Next, as shown in FIG. 13A, a slurry in which titanium oxide particles having a particle size of 5 nm to 50 nm are dispersed is placed on the reverse electron transfer prevention layer 22 by a screen printing method to a thickness of about 1 μm to 10 μm. The power generation layer 25 is formed by applying the coating and heating it to remove organic components. The heating temperature of the slurry is 450 ° C. to 650 ° C., for example, 550 ° C., and the drying time is 10 minutes to 120 minutes, for example, about 30 minutes. The slurry is not particularly limited, but in this example, PST-30NRD, which is a titanium oxide paste manufactured by JGC Catalysts and Chemicals, is used as the slurry, as in the first embodiment.
 その後に、色素を含有する有機溶液に透明基材20を浸漬し、発電層25を構成する半導体粒子の表面に色素を吸着させる。その有機溶液として、第1実施例と同様に、アセトニトリルとt-ブタノールとを1:1の体積比率で混合した有機溶媒に色素としてCYC-B11(K)を添加してなる有機溶液を使用する。なお、有機溶媒における色素の濃度は、0.1mM~1mM、例えば0.2mMである。そして、その有機溶液を0℃~80℃、例えば50℃に保温しつつ、有機溶液に透明基材20を1時間~12時間、例えば4時間だけ浸漬することで発電層25に色素を吸着させればよい。 After that, the transparent base material 20 is immersed in an organic solution containing a dye, and the dye is adsorbed on the surface of the semiconductor particles constituting the power generation layer 25. As the organic solution, an organic solution prepared by adding CYC-B11 (K) as a dye to an organic solvent obtained by mixing acetonitrile and t-butanol in a volume ratio of 1: 1 is used as in the first embodiment. .. The concentration of the dye in the organic solvent is 0.1 mM to 1 mM, for example, 0.2 mM. Then, while keeping the organic solution at 0 ° C. to 80 ° C., for example, 50 ° C., the transparent base material 20 is immersed in the organic solution for 1 hour to 12 hours, for example, 4 hours to adsorb the dye on the power generation layer 25. Just do it.
 次に、図13(b)に示すように、固体電解質前駆体26を発電層25の上に0.1μL~50μL、例えば20μLだけ滴下し、発電層25に固体電解質前駆体26を含浸させる。その固体電解質前駆体26として、例えばヨウ素、1,3-ジメチルイミダゾリウムヨージド(DMII)、アセトニトリル、及び分子量が100万のポリエチレンオキシドの各々を均一に混合した液を使用する。 Next, as shown in FIG. 13B, 0.1 μL to 50 μL, for example, 20 μL of the solid electrolyte precursor 26 is dropped onto the power generation layer 25, and the power generation layer 25 is impregnated with the solid electrolyte precursor 26. As the solid electrolyte precursor 26, for example, a solution in which iodine, 1,3-dimethylimidazolium iodide (DMII), acetonitrile, and polyethylene oxide having a molecular weight of 1 million are uniformly mixed is used.
 そして、発電層25を加熱して固体電解質前駆体26に含まれる余剰のアセトニトリルを揮発させ、発電層25の上の固体電解質前駆体26を固体電解質層27とする。なお、発電層25の加熱温度は50℃~150℃、例えば100℃である。また、その加熱時間は、1分~60分、例えば30分間である。その後に、発電層25を室温に戻す。
 以上により透明基材20に対する処理を終える。次に、この透明基材20と共に使用する配線基板について説明する。
Then, the power generation layer 25 is heated to volatilize the excess acetonitrile contained in the solid electrolyte precursor 26, and the solid electrolyte precursor 26 on the power generation layer 25 is designated as the solid electrolyte layer 27. The heating temperature of the power generation layer 25 is 50 ° C. to 150 ° C., for example, 100 ° C. The heating time is 1 to 60 minutes, for example, 30 minutes. After that, the power generation layer 25 is returned to room temperature.
This completes the treatment for the transparent base material 20. Next, the wiring board used together with the transparent base material 20 will be described.
 図14(a)、(b)は、本実施例で使用する配線基板45の斜視図である。なお、図14(a)、(b)において、第1実施例で説明したのと同じ要素には第1実施例におけるのと同じ符号を付し、以下ではその説明を省略する。 14 (a) and 14 (b) are perspective views of the wiring board 45 used in this embodiment. In FIGS. 14A and 14B, the same elements described in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
 また、配線基板45は、第1実施例で図3(a)~図4(c)を参照して説明したのと同じ工程で作製され、各ビア導体36a、36bの位置や対向電極層40の形状のみが第1実施例と異なる。 Further, the wiring board 45 is manufactured in the same process as described with reference to FIGS. 3 (a) to 4 (c) in the first embodiment, and the positions of the via conductors 36a and 36b and the counter electrode layer 40 are formed. Only the shape of is different from the first embodiment.
 図14(a)は、樹脂基材31の第2の主面31bを上にしたときの配線基板45の斜視図である。 FIG. 14A is a perspective view of the wiring board 45 when the second main surface 31b of the resin base material 31 is facing up.
 図14(a)に示すように、本実施例でもセル領域Iの外側に第1のコンタクト領域CRと第2のコンタクト領域CRとを設ける。このうち、第1のコンタクト領域CRは樹脂基材31の角部31cを含むように設けられており、その第1のコンタクト領域CRに第1のビア導体36aが設けられる。 As shown in FIG. 14A, the first contact region CR 1 and the second contact region CR 2 are provided outside the cell region I in this embodiment as well. Of these, the first contact region CR 1 is provided so as to include the corner portion 31c of the resin base material 31, and the first via conductor 36a is provided in the first contact region CR 1 .
 また、第2のコンタクト領域CRは樹脂基材31の角部31dを含むように設けられており、その第2のコンタクト領域CRに第2のビア導体36bが設けられる。 Further, the second contact region CR 2 is provided so as to include the corner portion 31d of the resin base material 31, and the second via conductor 36b is provided in the second contact region CR 2 .
 図14(b)は、樹脂基材31の第1の主面31aを上にしたときの配線基板45の斜視図である。 FIG. 14B is a perspective view of the wiring board 45 when the first main surface 31a of the resin base material 31 is facing up.
 図14(b)に示すように、第2のコンタクト領域CRにおける対向電極層40は、パターニングによりセル領域Iから分離されて三角形状の接続パッド40aとされる。 As shown in FIG. 14B, the counter electrode layer 40 in the second contact region CR 2 is separated from the cell region I by patterning to form a triangular connection pad 40a.
 図15(a)は、図14(a)のE-E線に沿う断面図である。図15(a)に示すように、第1のビア導体36aは、第1実施例と同様に樹脂基材31の第1のビアホール31xに形成される。また、対向電極層40は、第1実施例と同様に、樹脂基材31の第1の主面31aの上に銅層37、金層38、及び触媒層39の各々をこの順に形成してなる。 FIG. 15 (a) is a cross-sectional view taken along the line EE of FIG. 14 (a). As shown in FIG. 15A, the first via conductor 36a is formed in the first via hole 31x of the resin base material 31 as in the first embodiment. Further, in the counter electrode layer 40, the copper layer 37, the gold layer 38, and the catalyst layer 39 are each formed in this order on the first main surface 31a of the resin base material 31, as in the first embodiment. Become.
 また、図15(b)は、図14(a)のF-F線に沿う断面図である。 Further, FIG. 15 (b) is a cross-sectional view taken along the line FF of FIG. 14 (a).
 図15(b)に示すように、第1の電極パッド37aは、第1実施例と同様に銅層37をパターニングしてなり、その上にフラッシュめっきにより金層38が形成される。 As shown in FIG. 15B, the first electrode pad 37a is formed by patterning a copper layer 37 as in the first embodiment, and a gold layer 38 is formed on the copper layer 37 by flash plating.
 そして、図15(c)は、図14(a)のG-G線に沿う断面図である。 Then, FIG. 15 (c) is a cross-sectional view taken along the line GG of FIG. 14 (a).
 図15(c)に示すように、第2のビア導体36bは、第1実施例と同様に樹脂基材31の第2のビアホール31yに形成される。 As shown in FIG. 15C, the second via conductor 36b is formed in the second via hole 31y of the resin base material 31 as in the first embodiment.
 これ以降の工程について図16~図18を参照しながら説明する。図16~図18は、本実施例に係る色素増感太陽電池の製造途中の断面図である。 The subsequent steps will be described with reference to FIGS. 16 to 18. 16 to 18 are cross-sectional views of the dye-sensitized solar cell according to the present embodiment during manufacturing.
 まず、図16に示すように、前述の透明基材20を再び用意し、第2のコンタクト領域CRにおける透明電極層21の上に導電層43として銀ペーストを塗布する。なお、その導電層43と固体電解質層27とが電気的に短絡するのを防止するために、この例では固体電解質層27と導電層43との間にスペースSを設け、固体電解質層27から間隔をおいて導電層43を形成する。 First, as shown in FIG. 16, the above-mentioned transparent base material 20 is prepared again, and silver paste is applied as the conductive layer 43 on the transparent electrode layer 21 in the second contact region CR 2 . In this example, in order to prevent the conductive layer 43 and the solid electrolyte layer 27 from being electrically short-circuited, a space S is provided between the solid electrolyte layer 27 and the conductive layer 43, and the solid electrolyte layer 27 is used. The conductive layer 43 is formed at intervals.
 次いで、第1のコンタクト領域CRにおける透明電極層21の上に紫外線硬化樹脂を塗布した後、その紫外線硬化樹脂に紫外線を照射して硬化させることにより絶縁層44を形成する。 Next, an ultraviolet curable resin is applied onto the transparent electrode layer 21 in the first contact region CR 1 , and then the ultraviolet curable resin is irradiated with ultraviolet rays to be cured to form an insulating layer 44.
 なお、絶縁層44は、固体電解質層27と導電層43との間にも形成され、これにより固体電解質層27と導電層43とが絶縁層44で絶縁される。 The insulating layer 44 is also formed between the solid electrolyte layer 27 and the conductive layer 43, whereby the solid electrolyte layer 27 and the conductive layer 43 are insulated by the insulating layer 44.
 そして、透明基材20の上方に配線基板45を配し、透明基材20の固体電解質層27と樹脂基材31の第1の主面31aとを対向させる。 Then, the wiring board 45 is arranged above the transparent base material 20, and the solid electrolyte layer 27 of the transparent base material 20 and the first main surface 31a of the resin base material 31 face each other.
 次に、図17に示すように、透明基材20と樹脂基材31とを張り合わせ、これらを50℃程度の温度に加熱する。これにより導電層43が固化し、第2のビア導体36bと透明電極層21とが導電層43を介して接続されることになる。 Next, as shown in FIG. 17, the transparent base material 20 and the resin base material 31 are laminated and heated to a temperature of about 50 ° C. As a result, the conductive layer 43 is solidified, and the second via conductor 36b and the transparent electrode layer 21 are connected via the conductive layer 43.
 なお、第1実施例で説明したように、透明基材20と配線基板45との間に気泡が混入するのを防止するために、真空中や減圧雰囲気中で本工程を行うのが好ましい。 As described in the first embodiment, it is preferable to perform this step in a vacuum or a reduced pressure atmosphere in order to prevent air bubbles from being mixed between the transparent base material 20 and the wiring board 45.
 更に、このように透明基材20と樹脂基材31とを張り合わせることにより、セル領域Iにおいて透明電極層21、発電層25、固体電解質層27、及び対向電極層40の各々が平面視で重なることになる。
 図19(a)は、図17のH-H線に沿う断面図である。
Further, by laminating the transparent base material 20 and the resin base material 31 in this way, each of the transparent electrode layer 21, the power generation layer 25, the solid electrolyte layer 27, and the counter electrode layer 40 in the cell region I is viewed in a plan view. It will overlap.
FIG. 19A is a cross-sectional view taken along the line HH of FIG.
 図19(a)に示すように、セル領域Iにおいては透明電極層21、固体電解質層27、及び対向電極層40の各々が形成されており、第1実施例と同様に透明基材20を介して入射する光によってセル領域Iの発電層25に起電力が生じる。そして、その発電層25の下の透明電極層21が負極として機能し、発電層25の上の対向電極層40が正極として機能する。 As shown in FIG. 19A, each of the transparent electrode layer 21, the solid electrolyte layer 27, and the counter electrode layer 40 is formed in the cell region I, and the transparent base material 20 is formed as in the first embodiment. Electromotive force is generated in the power generation layer 25 in the cell region I by the light incident through the cell region I. Then, the transparent electrode layer 21 under the power generation layer 25 functions as a negative electrode, and the counter electrode layer 40 above the power generation layer 25 functions as a positive electrode.
 また、第1実施例と同様に、セル領域Iにおいては透明基材20と発電層25の各側面20s、25sが同一面Pに位置しており、側面25sを側面20sから後退させた場合よりも発電層25の受光量が増える。
 一方、図19(b)は、図17のJ-J線に沿う断面図である。
Further, as in the first embodiment, in the cell region I, the side surfaces 20s and 25s of the transparent base material 20 and the power generation layer 25 are located on the same surface P, and the side surface 25s is retracted from the side surface 20s. Also, the amount of light received by the power generation layer 25 increases.
On the other hand, FIG. 19B is a cross-sectional view taken along the line JJ of FIG.
 図19(b)に示すように、第1のコンタクト領域CRにおいては、対向電極層40と第1のビア導体36aとが接続されており、対向電極層40の正電圧が樹脂基材31の第2の主面31b側に引き出される。また、透明電極層21と対向電極層40との間に介在する絶縁層44により、第1のビア導体36aと透明電極層21とが電気的に短絡してしまうのを抑制できる。特に、この例では透明電極層21にスリット21sを形成したため、透明電極層21と第1のビア導体36aとが電気的に短絡する可能性を更に低減することができる。 As shown in FIG. 19B, in the first contact region CR 1 , the counter electrode layer 40 and the first via conductor 36a are connected, and the positive voltage of the counter electrode layer 40 is the resin base material 31. It is pulled out to the second main surface 31b side of the above. Further, the insulating layer 44 interposed between the transparent electrode layer 21 and the counter electrode layer 40 can prevent the first via conductor 36a and the transparent electrode layer 21 from being electrically short-circuited. In particular, in this example, since the slits 21s are formed in the transparent electrode layer 21, the possibility that the transparent electrode layer 21 and the first via conductor 36a are electrically short-circuited can be further reduced.
 一方、第2のコンタクト領域CRにおいては、接続パッド40aと導電層43を介して第2のビア導体36bが透明電極層21に接続される。これにより、透明電極層21の負電圧が、第2のビア導体36bを介して樹脂基材31の第2の主面31b側に引き出されることになる。また、この例のように接続パッド40aと対向電極層40との間に絶縁層44を形成したことで、接続パッド40aと対向電極層40とが電気的に短絡するのを抑制することが可能となる。 On the other hand, in the second contact region CR 2 , the second via conductor 36b is connected to the transparent electrode layer 21 via the connection pad 40a and the conductive layer 43. As a result, the negative voltage of the transparent electrode layer 21 is drawn to the second main surface 31b side of the resin base material 31 via the second via conductor 36b. Further, by forming the insulating layer 44 between the connection pad 40a and the counter electrode layer 40 as in this example, it is possible to prevent the connection pad 40a and the counter electrode layer 40 from being electrically short-circuited. It becomes.
 この後は、図18に示すように、透明基材20と樹脂基材31のそれぞれの側面に封止樹脂47として紫外線硬化樹脂を塗布する。そして、紫外線の照射によりその封止樹脂47を硬化させ、固体電解質層27等に水分が浸入するのを封止樹脂47で防止する。 After that, as shown in FIG. 18, an ultraviolet curable resin is applied as a sealing resin 47 to each side surface of the transparent base material 20 and the resin base material 31. Then, the sealing resin 47 is cured by irradiation with ultraviolet rays, and the sealing resin 47 prevents water from entering the solid electrolyte layer 27 and the like.
 以上により、本実施例に係る色素増感太陽電池70の基本構造が完成する。 From the above, the basic structure of the dye-sensitized solar cell 70 according to this embodiment is completed.
 上記した本実施例によれば、図14(a)に示したように、矩形状の樹脂基材31の二つの角部31c、31dのうちの一方に第1のビア導体36aを設け、他方に第2のビア導体36bを設ける。 According to the above-described embodiment, as shown in FIG. 14A, the first via conductor 36a is provided on one of the two corners 31c and 31d of the rectangular resin base material 31, and the other. Is provided with a second via conductor 36b.
 これにより、第1実施例よりもセル領域Iを広く確保することが可能となり、第1実施例よりも発電量を増やすことが可能となる。 As a result, it is possible to secure a wider cell area I than in the first embodiment, and it is possible to increase the amount of power generation as compared with the first embodiment.
 なお、本実施例では樹脂基材31を平面視で矩形状としたが、樹脂基材31の平面形状を角部の個数が5個以上の多角形状にし、その角部のうちの二つに上記のように第1のビア導体36aと第2のビア導体36bを設けてもよい。
 
In this embodiment, the resin base material 31 has a rectangular shape in a plan view, but the plane shape of the resin base material 31 is made into a polygonal shape having five or more corners, and two of the corners are used. As described above, the first via conductor 36a and the second via conductor 36b may be provided.

Claims (10)

  1.  透明基材と、
     前記透明基材の上に設けられた透明電極層と、
     前記透明電極層の上に設けられた色素を含む発電層と、
     前記発電層の上に設けられた固体電解質層と、
     前記固体電解質層の上に設けられた対向電極層と、
     前記対向電極層の上面に固着した樹脂基材と、
     を有することを特徴とする色素増感太陽電池。
    With a transparent base material
    A transparent electrode layer provided on the transparent base material and
    A power generation layer containing a dye provided on the transparent electrode layer and
    A solid electrolyte layer provided on the power generation layer and
    A counter electrode layer provided on the solid electrolyte layer and
    A resin base material fixed to the upper surface of the counter electrode layer and
    A dye-sensitized solar cell characterized by having.
  2.  前記樹脂基材は、前記対向電極層の上面に固着した第1の主面と、前記第1の主面の反対面である第2の主面とを有し、
     前記樹脂基材に第1のビアホールと第2のビアホールが形成され、
     前記第1のビアホールに形成され、前記透明電極層に電気的に接続された第1のビア導体と、
     前記第2のビアホールに形成され、前記対向電極層に電気的に接続された第2のビア導体と、
     前記第2の主面に設けられ、前記第1のビア導体に接続された第1の電極パッドと、
     前記第2の主面に設けられ、前記第2のビア導体に接続された第2の電極パッドとを更に有することを特徴とする請求項1に記載の色素増感太陽電池。
    The resin base material has a first main surface fixed to the upper surface of the counter electrode layer and a second main surface which is an opposite surface of the first main surface.
    A first via hole and a second via hole are formed on the resin base material,
    A first via conductor formed in the first via hole and electrically connected to the transparent electrode layer,
    A second via conductor formed in the second via hole and electrically connected to the counter electrode layer,
    A first electrode pad provided on the second main surface and connected to the first via conductor, and
    The dye-sensitized solar cell according to claim 1, further comprising a second electrode pad provided on the second main surface and connected to the second via conductor.
  3.  前記第1のビア導体と前記第2のビア導体は、前記樹脂基材の縁に設けられたことを特徴とする請求項2に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 2, wherein the first via conductor and the second via conductor are provided on the edge of the resin base material.
  4.  前記樹脂基材は平面視で多角形であり、
     前記多角形の二つの角部のうちの一方に前記第1のビア導体が設けられ、他方に前記第2のビア導体が設けられたことを特徴とする請求項2に記載の色素増感太陽電池。
    The resin base material is polygonal in a plan view and is
    The dye-sensitized solar according to claim 2, wherein the first via conductor is provided on one of the two corners of the polygon, and the second via conductor is provided on the other. battery.
  5.  前記第1のビアホールと前記第2のビアホールは、前記透明電極層、前記発電層、前記固体電解質層、及び前記対向電極層の各々が平面視で重なるセル領域の外側に設けられたことを特徴とする請求項2に記載の色素増感太陽電池。 The first via hole and the second via hole are characterized in that the transparent electrode layer, the power generation layer, the solid electrolyte layer, and the counter electrode layer are each provided outside the cell region where they overlap in a plan view. The dye-sensitized solar cell according to claim 2.
  6.  前記第1のビア導体は、前記セル領域の前記外側の第1のコンタクト領域において前記対向電極層と接続され、
     前記第2のビア導体は、前記セル領域の前記外側の第2のコンタクト領域において前記透明電極層と接続されたことを特徴とする請求項5に記載の色素増感太陽電池。
    The first via conductor is connected to the counter electrode layer in the outer first contact region of the cell region.
    The dye-sensitized solar cell according to claim 5, wherein the second via conductor is connected to the transparent electrode layer in the outer second contact region of the cell region.
  7.  前記第1のコンタクト領域における前記透明電極層の上に設けられた絶縁層と、
     前記第2のコンタクト領域における前記透明電極層の上に設けられた導電層とを更に有し、
     前記第1のコンタクト領域において、前記絶縁層の上に前記対向電極層が設けられ、
     前記第2のコンタクト領域において、前記導電層を介して前記透明電極層と前記第2のビア導体とが接続されたことを特徴とする請求項6に記載の色素増感太陽電池。
    An insulating layer provided on the transparent electrode layer in the first contact region and
    Further having a conductive layer provided on the transparent electrode layer in the second contact region,
    In the first contact region, the counter electrode layer is provided on the insulating layer, and the counter electrode layer is provided.
    The dye-sensitized solar cell according to claim 6, wherein in the second contact region, the transparent electrode layer and the second via conductor are connected via the conductive layer.
  8.  前記導電層は、平面視で前記固体電解質層から間隔をおいて設けられ、
     前記絶縁層は、前記固体電解質層と前記導電層との間にも設けられたことを特徴とする請求項7に記載の色素増感太陽電池。
    The conductive layer is provided at a distance from the solid electrolyte layer in a plan view.
    The dye-sensitized solar cell according to claim 7, wherein the insulating layer is also provided between the solid electrolyte layer and the conductive layer.
  9.  前記第1のコンタクト領域における前記透明電極層が、前記セル領域における前記透明電極層から分離したことを特徴とする請求項6に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 6, wherein the transparent electrode layer in the first contact region is separated from the transparent electrode layer in the cell region.
  10.  前記発電層の側面と前記透明基材の側面とが同一面内にあることを特徴とする請求項1に記載の色素増感太陽電池。
     
    The dye-sensitized solar cell according to claim 1, wherein the side surface of the power generation layer and the side surface of the transparent base material are in the same plane.
PCT/JP2020/012904 2019-03-29 2020-03-24 Dye-sensitized solar cell WO2020203443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067496A JP7369538B2 (en) 2019-03-29 2019-03-29 dye-sensitized solar cells
JP2019-067496 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203443A1 true WO2020203443A1 (en) 2020-10-08

Family

ID=72667844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012904 WO2020203443A1 (en) 2019-03-29 2020-03-24 Dye-sensitized solar cell

Country Status (2)

Country Link
JP (1) JP7369538B2 (en)
WO (1) WO2020203443A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197282A (en) * 2001-12-27 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2005235715A (en) * 2004-02-23 2005-09-02 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and solar cell unit panel using it
JP2009231224A (en) * 2008-03-25 2009-10-08 Hitachi Zosen Corp Photoelectric conversion element, and manufacturing method thereof
JP2010211971A (en) * 2009-03-09 2010-09-24 Citizen Holdings Co Ltd Dye-sensitized solar cell and wrist watch equipped with the same
JP2011054580A (en) * 2009-08-07 2011-03-17 Dainippon Printing Co Ltd Dye-sensitized solar cell, dye-sensitized solar cell module, and coating solution for electrolyte layer formation
JP2013219037A (en) * 2013-05-09 2013-10-24 Dainippon Printing Co Ltd Dye-sensitized solar cell element module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197282A (en) * 2001-12-27 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2005235715A (en) * 2004-02-23 2005-09-02 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and solar cell unit panel using it
JP2009231224A (en) * 2008-03-25 2009-10-08 Hitachi Zosen Corp Photoelectric conversion element, and manufacturing method thereof
JP2010211971A (en) * 2009-03-09 2010-09-24 Citizen Holdings Co Ltd Dye-sensitized solar cell and wrist watch equipped with the same
JP2011054580A (en) * 2009-08-07 2011-03-17 Dainippon Printing Co Ltd Dye-sensitized solar cell, dye-sensitized solar cell module, and coating solution for electrolyte layer formation
JP2013219037A (en) * 2013-05-09 2013-10-24 Dainippon Printing Co Ltd Dye-sensitized solar cell element module

Also Published As

Publication number Publication date
JP2020167300A (en) 2020-10-08
JP7369538B2 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5185550B2 (en) Photoelectric conversion element and manufacturing method thereof
JP6897683B2 (en) Solar cell module
EP2214250A1 (en) Electrode substrate for photoelectric conversion device, method for manufacturing electrode substrate for photoelectric conversion device, and photoelectric conversion device
CN109478469B (en) Solar cell module
JP2004119306A (en) Photoelectric conversion element and its manufacturing method
JP2007018909A (en) Manufacturing method for photoelectric conversion device
CN109564823B (en) Solar cell module
JP2011044357A (en) Photocell module, and manufacturing method of photocell module
JP5324793B2 (en) Dye-sensitized solar cell
US20110108106A1 (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
WO2020203443A1 (en) Dye-sensitized solar cell
JP5160045B2 (en) Photoelectric conversion element
JP5324147B2 (en) Photoelectric conversion element module
JP2004119082A (en) Photoelectric conversion element module
JP7261561B2 (en) organic solar cell
CN110323069B (en) Dye-sensitized solar cell and method for manufacturing same
CN107615425B (en) Photoelectric conversion element
JP2022073258A (en) Solar battery module and method of manufacturing the same
JP2003123855A (en) Electrode for photoelectric conversion element
JP5846984B2 (en) Electric module and method of manufacturing electric module
JP6048047B2 (en) Dye-sensitized solar cell and photoelectrode for dye-sensitized solar cell
JP2023150826A (en) Dye-sensitized solar cell and manufacturing method thereof
JP2023047813A (en) Solar cell, solar cell module, and method of manufacturing solar cell
JP6521644B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782311

Country of ref document: EP

Kind code of ref document: A1