JP5846984B2 - Electric module and method of manufacturing electric module - Google Patents

Electric module and method of manufacturing electric module Download PDF

Info

Publication number
JP5846984B2
JP5846984B2 JP2012069971A JP2012069971A JP5846984B2 JP 5846984 B2 JP5846984 B2 JP 5846984B2 JP 2012069971 A JP2012069971 A JP 2012069971A JP 2012069971 A JP2012069971 A JP 2012069971A JP 5846984 B2 JP5846984 B2 JP 5846984B2
Authority
JP
Japan
Prior art keywords
electrode plate
transparent conductive
sealing material
semiconductor layer
conductive films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012069971A
Other languages
Japanese (ja)
Other versions
JP2013201079A (en
Inventor
尚洋 藤沼
尚洋 藤沼
智弘 大塚
智弘 大塚
中嶋 節男
節男 中嶋
俊介 功刀
俊介 功刀
聡 與口
聡 與口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012069971A priority Critical patent/JP5846984B2/en
Publication of JP2013201079A publication Critical patent/JP2013201079A/en
Application granted granted Critical
Publication of JP5846984B2 publication Critical patent/JP5846984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、電気モジュール及び電気モジュールの製造方法に関する。   The present invention relates to an electric module and a method for manufacturing the electric module.

近年、化石燃料に代わるクリーンエネルギーの発電装置として太陽電池が注目され、シリコン(Si)系太陽電池、および色素増感型太陽電池の開発が進められている。とりわけ色素増感型太陽電池は、安価で量産しやすいものとして、その構造及び製造方法が広く研究開発されている(例えば下記特許文献1)。
図9(d)に示すように、特許文献1に記載された色素増感太陽電池50は、透明基板51の板面に透明導電膜52が成膜され、透明導電膜52の表面に色素を担持させた半導体層53が形成された第1電極板54と、対向基板55に、透明導電膜52に対向配置される対向導電膜56が成膜された第2電極板57と、半導体層53との間に隙間Rを形成してこの半導体層53を囲繞するとともに、第1電極板54と第2電極板57とを貼り合わせて密封されたセルSを形成する封止材58と、セルS内に注入された電解液59とを備えた構成となっている。
In recent years, solar cells have attracted attention as clean energy power generation devices that replace fossil fuels, and silicon (Si) solar cells and dye-sensitized solar cells have been developed. In particular, dye-sensitized solar cells have been widely researched and developed for their structures and manufacturing methods as being inexpensive and easy to mass-produce (for example, Patent Document 1 below).
As shown in FIG. 9D, in the dye-sensitized solar cell 50 described in Patent Document 1, a transparent conductive film 52 is formed on the plate surface of the transparent substrate 51, and the dye is applied to the surface of the transparent conductive film 52. A first electrode plate 54 on which the supported semiconductor layer 53 is formed; a second electrode plate 57 in which a counter conductive film 56 disposed opposite to the transparent conductive film 52 is formed on the counter substrate 55; and the semiconductor layer 53 A sealing material 58 that forms a sealed cell S by sealing the first electrode plate 54 and the second electrode plate 57 together with a gap R between the first electrode plate 54 and the second electrode plate 57. The electrolyte solution 59 injected into S is provided.

そして、上記色素増感太陽電池50の製造は、次のようにして行われる。すなわち、図9(a)〜(d)に示すように、透明基板51に不図示のマスクをして印刷法等によりこの透明基板51上に透明導電膜52をパターニングし、透明導電膜52を成膜した後、更に透明導電膜52上に、半導体層53を形成するペーストを透明導電膜52と同様に塗工し第1電極(いわゆる光電極)54を作製する。また、第1電極板54に対向配置させる対向導電膜56を透明導電膜52と同様にして対向基板55に成膜し第2電極板57を作製する。そして、半導体層53との間に隙間Rを設けて半導体層53を囲繞するように封止材58を透明導電膜52の表面に配し、第1電極板54と第2電極板57とを導電膜52,56同士を対向させて貼り合わせ、電解液59を注入し、色素増感太陽電池50としている。   And manufacture of the said dye-sensitized solar cell 50 is performed as follows. That is, as shown in FIGS. 9A to 9D, a transparent conductive film 52 is patterned on the transparent substrate 51 by using a mask (not shown) on the transparent substrate 51 by a printing method or the like. After the film formation, a paste for forming the semiconductor layer 53 is further applied onto the transparent conductive film 52 in the same manner as the transparent conductive film 52 to form a first electrode (so-called photoelectrode) 54. In addition, a counter conductive film 56 disposed opposite to the first electrode plate 54 is formed on the counter substrate 55 in the same manner as the transparent conductive film 52 to produce the second electrode plate 57. Then, a sealing material 58 is disposed on the surface of the transparent conductive film 52 so as to surround the semiconductor layer 53 by providing a gap R between the first electrode plate 54 and the second electrode plate 57. The conductive films 52 and 56 are bonded to each other and the electrolyte solution 59 is injected to form the dye-sensitized solar cell 50.

特開2011−49140号公報JP 2011-49140 A

ところで、色素増感太陽電池50は、半導体層53が様々な色素を担持することができ、透明基板51を通してその色彩を見せることができるため、色素増感太陽電池50自身及び色素増感太陽電池50を適用し得る各種製品のデザイン性を向上させるものとしても注目されている。しかしながら、色素増感太陽電池50によれば、各セルSの半導体層53と封止材58との間に隙間Rが形成されているため、透明基板51又は対向基板55から外観した場合に半導体層53の周囲に電解液59の色彩が写り、色むらが生じているように見えてしまい、色素増感太陽電池50の外観的な品質を損ねるという問題があった。
また、セルS内において半導体層53の表面積がこの隙間Rの面積の分小さくなり、それだけ発電効率が悪いという問題があった。
また、色素増感太陽電池50を製造するにあたっても、透明導電膜52の表面及び透明基板51をマスクした上で半導体層53を印刷法等によりパターニングしつつ成膜するものであるため、各製造工程が煩雑であるという問題があった。
また、透明導電膜52の表面にマスクを設ける必要があるため、透明基板51を搬送しながら第1電極板54を作製する方法を採用することが困難であるという問題があった。
また、透明導電膜52等にマスクをしてスパッタやエアロゾルデポジション法により成膜しようとする場合、マスクによる凹凸等によって吹き付けを均一に行うことが難しくなり、電池の性能上の品質を担保することが難しくなるおそれがあるという問題があった。
By the way, in the dye-sensitized solar cell 50, since the semiconductor layer 53 can carry various dyes and can show the color through the transparent substrate 51, the dye-sensitized solar cell 50 itself and the dye-sensitized solar cell. Attention has also been paid to improving the design of various products to which 50 can be applied. However, according to the dye-sensitized solar cell 50, since the gap R is formed between the semiconductor layer 53 and the sealing material 58 of each cell S, the semiconductor when viewed from the transparent substrate 51 or the counter substrate 55 is used. There is a problem that the color of the electrolytic solution 59 appears in the periphery of the layer 53 and color unevenness appears, and the appearance quality of the dye-sensitized solar cell 50 is impaired.
In addition, the surface area of the semiconductor layer 53 in the cell S is reduced by the area of the gap R, and the power generation efficiency is accordingly reduced.
Further, in manufacturing the dye-sensitized solar cell 50, the surface of the transparent conductive film 52 and the transparent substrate 51 are masked, and the semiconductor layer 53 is formed while being patterned by a printing method or the like. There was a problem that the process was complicated.
Further, since it is necessary to provide a mask on the surface of the transparent conductive film 52, there is a problem that it is difficult to adopt a method of manufacturing the first electrode plate 54 while transporting the transparent substrate 51.
In addition, when a mask is applied to the transparent conductive film 52 or the like to form a film by sputtering or aerosol deposition, it becomes difficult to perform spraying uniformly due to unevenness or the like by the mask, thereby ensuring the quality of the battery performance. There was a problem that it might be difficult.

そこで、本発明は、外観的な品質を向上させることができるとともに、光電変換効率を向上することのできる電子モジュールを提供することを課題とする。また、電気モジュールを簡便かつ効率的に製造することを課題とする。   Then, this invention makes it a subject to provide the electronic module which can improve external appearance quality and can improve photoelectric conversion efficiency. It is another object of the present invention to manufacture an electric module simply and efficiently.

請求項1の発明は、一の基板に複数の透明導電膜が間隔をおいて成膜され、前記透明導電膜の表面に多孔質の半導体層が形成された第1電極板と、他の基板に前記複数の透明導電膜に対向するように間隔をおいて複数の対向導電膜が成膜された第2電極板とが、間隔をおいて対向配置され、これら第1電極板と第2電極板とを貼り合わせる封止材が配され、この封止材と前記第1電極板と第2電極板とにより電解液が封止された複数のセルが形成された電気モジュールであって、前記半導体層は、前記複数の透明導電膜に亘って連続して形成され、前記封止材は、前記半導体層の表面に配されていることを特徴とする。
本発明では、半導体層を複数の透明導電膜に亘って連続して形成しているため、これら複数の透明導電膜間に亘って半導体層の色彩を色むらなく表すことができる。
また、一の基板を半導体層によって隙間なく覆うことができるため、受光面積が可及的に拡がり発電効率を高めることができる。
請求項2の発明は、請求項1に記載の電気モジュールであって、前記半導体層は、前記透明導電膜の表面の全体を覆っていることを特徴とする。
本発明では、半導体層が透明導電膜の表面全体に形成されているので、セル内を隙間なく半導体層の色彩で表すことができる。
請求項3の発明は、請求項1又は2に記載の電気モジュールであって、前記複数の透明導電膜同士の間に配された前記半導体層には、前記封止材が含浸されていることを特徴とする。
本発明では、半導体層内に封止材が含浸されているので、隣り合うセル間に配された半導体層に電解液が浸透するのを防止することができ、隣り合うセル間でのイオンの輸送が生ずることを防止することができる。
請求項4の発明は、請求項1から3のいずれか一項に記載の電気モジュールであって、前記封止材として、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂又は熱光硬化性樹脂の少なくともいずれかを用いていることを特徴とする。
本発明では、封止層として熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂又は熱光硬化性樹脂を用いているので、セルを形成する封止材を半導体層に容易に含浸させることができる。
請求項5の発明は、一の基板に間隔をおいて複数の透明導電膜を成膜し、前記透明導電膜の表面に多孔質の半導体層を形成した第1電極板と、他の基板に前記透明導電膜に対向するように間隔をおいて複数の対向導電膜を成膜した第2電極板とを形成する電極板形成工程と、前記第1電極板及び前記第2電極板の少なくともいずれか一方の板面に、封止材を配する封止材配置工程と、前記封止材によって前記第1電極板と前記第2電極板とを貼り合わせ、これら第1電極板と第2電極板との間に電解液を充填してセルを複数形成するセル形成工程とを有する電気モジュールの製造方法であって、前記電極板形成工程において、互いに間隔をおいて複数の前記透明導電膜を成膜した後に、前記半導体層をこれら複数の透明導電膜に亘って連続的に形成し、前記封止材配置工程において、前記封止材を前記半導体層の表面に配することを特徴とする。
本発明では、複数の透明導電膜を成膜した後に、半導体層をこれら複数の透明導電膜に亘って連続的に形成するため、半導体層をパターニングする工程を省いて均一な厚さの半導体層を簡便に形成することができる。特に、基板を搬送しながら連続的に半導体層を作製する方法に好適に適用することができる。
請求項6の発明は、請求項5に記載の電気モジュールの製造方法であって、前記封止材配置工程において、前記複数の透明導電膜同士の間に配した前記半導体層に前記封止材を含浸させることを特徴とする。
本発明では、前記複数の透明導電膜同士の間に配した半導体層に封止材を含浸させて半導体層を容易に封孔処理し、セルの絶縁性を高めることができる。
請求項7の発明は、請求項5又は6に記載の電気モジュールの製造方法であって、前記封止材は、前記複数の透明導電膜同士の間及び前記対向導電膜同士の間、並びに、前記透明導電膜及び前記対向導電膜の表面の一部を被覆するように配することを特徴とする。
本発明では、封止材を、前記複数の透明導電膜同士の間及び対向導電膜同士の間、並びに、前記半導体層及び前記対向導電膜の表面の一部を被覆するように配する、すなわち封止材の形成幅を透明導電膜同士の間及び対向導電膜同士の間よりも大きく設ける。したがって、第1電極板と第2電極板との貼り合せ時にこれらの位置合わせを厳密に考慮することなく簡便に行うことができる。
請求項8の発明は、請求項5から7のいずれか一項に記載の電気モジュールの製造方法であって、前記封止材として、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、熱光硬化性樹脂の少なくともいずれかを用いることを特徴とする。
本発明では、封止材として熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂又は熱光硬化性樹脂を用いるため、半導体層に封止材を容易に含浸させることができる。
A first electrode plate in which a plurality of transparent conductive films are formed on one substrate at intervals and a porous semiconductor layer is formed on the surface of the transparent conductive film, and another substrate And a second electrode plate on which a plurality of opposing conductive films are formed so as to be opposed to the plurality of transparent conductive films are arranged to face each other at intervals, and the first electrode plate and the second electrode An electrical module in which a sealing material for bonding a plate is disposed, and a plurality of cells in which an electrolyte is sealed by the sealing material, the first electrode plate, and the second electrode plate is formed. The semiconductor layer is formed continuously over the plurality of transparent conductive films, and the sealing material is disposed on a surface of the semiconductor layer.
In this invention, since the semiconductor layer is continuously formed over several transparent conductive films, the color of a semiconductor layer can be expressed uniformly among these several transparent conductive films.
In addition, since one substrate can be covered with a semiconductor layer without a gap, a light receiving area is increased as much as possible, and power generation efficiency can be increased.
A second aspect of the present invention is the electrical module according to the first aspect, wherein the semiconductor layer covers the entire surface of the transparent conductive film.
In the present invention, since the semiconductor layer is formed on the entire surface of the transparent conductive film, the inside of the cell can be represented by the color of the semiconductor layer without a gap.
Invention of Claim 3 is an electric module of Claim 1 or 2, Comprising: The said sealing material is impregnated in the said semiconductor layer distribute | arranged between these transparent conductive films. It is characterized by.
In the present invention, since the semiconductor layer is impregnated with the sealing material, the electrolyte solution can be prevented from penetrating into the semiconductor layer disposed between the adjacent cells, and ions between the adjacent cells can be prevented. Transport can be prevented from occurring.
Invention of Claim 4 is an electric module as described in any one of Claim 1 to 3, Comprising: As said sealing material, a thermoplastic resin, a thermosetting resin, a photocurable resin, or a thermosetting resin It is characterized by using at least one of resins.
In the present invention, since a thermoplastic resin, a thermosetting resin, a photocurable resin, or a thermophotosetting resin is used as the sealing layer, the semiconductor layer can be easily impregnated with the sealing material that forms the cells. it can.
According to a fifth aspect of the present invention, there is provided a first electrode plate in which a plurality of transparent conductive films are formed at intervals on one substrate, and a porous semiconductor layer is formed on the surface of the transparent conductive film; An electrode plate forming step of forming a second electrode plate on which a plurality of opposing conductive films are formed so as to face the transparent conductive film, and at least one of the first electrode plate and the second electrode plate The first electrode plate and the second electrode are bonded to each other by bonding the first electrode plate and the second electrode plate with the sealing material by the sealing material. A method of manufacturing an electric module comprising a cell forming step of forming a plurality of cells by filling an electrolyte between the plates, wherein the plurality of transparent conductive films are spaced apart from each other in the electrode plate forming step. After the film formation, the semiconductor layer is continuously spread over the plurality of transparent conductive films. Formed in the sealing material arranging process, characterized in that arranging the sealing material on the surface of the semiconductor layer.
In the present invention, after forming a plurality of transparent conductive films, a semiconductor layer is formed continuously over the plurality of transparent conductive films, and therefore, a semiconductor layer having a uniform thickness is omitted without patterning the semiconductor layer. Can be easily formed. In particular, it can be suitably applied to a method for continuously producing a semiconductor layer while conveying a substrate.
Invention of Claim 6 is a manufacturing method of the electric module of Claim 5, Comprising: In the said sealing material arrangement | positioning process, the said sealing material is provided in the said semiconductor layer distribute | arranged between these transparent conductive films. It is characterized by impregnating.
In the present invention, the semiconductor layer disposed between the plurality of transparent conductive films can be impregnated with a sealing material, so that the semiconductor layer can be easily sealed to improve the insulating properties of the cell.
Invention of Claim 7 is a manufacturing method of the electric module of Claim 5 or 6, Comprising: The said sealing material is between these transparent conductive films, between the said opposing conductive films, and, It arrange | positions so that a part of surface of the said transparent conductive film and the said opposing conductive film may be coat | covered.
In the present invention, the sealing material is arranged so as to cover a part of the surfaces of the plurality of transparent conductive films and between the opposing conductive films, and the semiconductor layer and the opposing conductive film. The formation width of the sealing material is set larger than between the transparent conductive films and between the opposing conductive films. Therefore, it is possible to simply perform the alignment without strictly considering these positions when bonding the first electrode plate and the second electrode plate.
Invention of Claim 8 is a manufacturing method of the electric module as described in any one of Claim 5-7, Comprising: As said sealing material, a thermoplastic resin, a thermosetting resin, a photocurable resin, heat | fever It is characterized by using at least one of photocurable resins.
In the present invention, since a thermoplastic resin, a thermosetting resin, a photocurable resin or a thermophotosetting resin is used as the sealing material, the semiconductor layer can be easily impregnated with the sealing material.

本発明の電気モジュールによれば、電気モジュールの外観的な品質を向上することができ、電気モジュール自身及び電気モジュールを適用する各種製品のデザイン性を高めて付加価値を向上させることができるとともに、光電変換効率を高めることができるという効果を奏する。
また、本発明の電気モジュールの製造方法によれば、複数の透明導電膜に亘って半導体層を連続して形成させることができるため、半導体層の形成作業を簡素化することができる。また、基板を搬送させながらであっても半導体層を容易かつ均一に形成することができ、電気モジュールの製造効率を向上することができるという効果を奏する。
According to the electric module of the present invention, it is possible to improve the appearance quality of the electric module, improve the design of various products to which the electric module itself and the electric module are applied, and improve added value, There is an effect that the photoelectric conversion efficiency can be increased.
In addition, according to the method for manufacturing an electric module of the present invention, the semiconductor layer can be continuously formed across the plurality of transparent conductive films, so that the semiconductor layer forming operation can be simplified. In addition, the semiconductor layer can be formed easily and uniformly even while the substrate is transported, and the manufacturing efficiency of the electric module can be improved.

は、本発明の一実施形態として示した電気モジュールを模式的に示した厚さ方向の断面図である。These are sectional drawings of the thickness direction which showed typically the electric module shown as one embodiment of the present invention. (a),(b)は、本発明の一実施形態として示した電気モジュールの製造方法の電極板形成工程を示した図である。(A), (b) is the figure which showed the electrode plate formation process of the manufacturing method of the electric module shown as one Embodiment of this invention. は、本発明の一実施形態として示した電気モジュールの製造方法の封止材配置工程を示した断面図である。These are sectional drawings which showed the sealing material arrangement | positioning process of the manufacturing method of the electric module shown as one Embodiment of this invention. は、本発明の一実施形態として示した電気モジュールの製造方法のセル形成工程を示した断面図である。These are sectional drawings which showed the cell formation process of the manufacturing method of the electric module shown as one Embodiment of this invention. は、本発明の一実施形態として示した電気モジュールの製造方法のセル形成工程を示した断面図である。These are sectional drawings which showed the cell formation process of the manufacturing method of the electric module shown as one Embodiment of this invention. は、本発明の一実施形態として示した電気モジュールの接続状態を示した断面図である。These are sectional drawings which showed the connection state of the electric module shown as one Embodiment of this invention. は、本発明の一実施形態として示した電気モジュールの他の例を示した厚さ方向の断面図である。These are sectional drawings of the thickness direction which showed the other example of the electric module shown as one Embodiment of this invention. は、本発明の一実施形態として示した電気モジュールの変形例を示した厚さ方向の断面図である。These are sectional drawings of the thickness direction which showed the modification of the electric module shown as one Embodiment of this invention. (a)〜(d)は、従来の色素増感太陽電池の製造方法を表した断面図である。(A)-(d) is sectional drawing showing the manufacturing method of the conventional dye-sensitized solar cell.

以下、図を参照して本発明の電気モジュール及び電気モジュールの製造方法の一実施形態について説明する。図1は、本発明の電気モジュールの一例として示された色素増感太陽電池1を実際の寸法及び比率に関係なく模式的に示したもの(以下全ての図において同様)である。
同図に示すように、色素増感太陽電池1は、一の基板2上に間隔をおいて複数形成された透明導電膜3及び半導体層4を備えた第1電極板5と、他の基板6上に間隔をおいて複数成膜された対向導電膜7を備えた第2電極板8との間に、セパレータ9を介装し、第1電極板5と第2電極板8との間の空間を囲繞してセルSを形成する封止材10を配し、セルSの内部に電解液11を充填して液密に封止したものである。
Hereinafter, an embodiment of an electric module and a method for manufacturing the electric module according to the present invention will be described with reference to the drawings. FIG. 1 schematically shows a dye-sensitized solar cell 1 shown as an example of the electric module of the present invention regardless of actual dimensions and ratios (the same applies to all the drawings below).
As shown in the figure, a dye-sensitized solar cell 1 includes a first electrode plate 5 having a plurality of transparent conductive films 3 and semiconductor layers 4 formed on one substrate 2 at intervals, and another substrate. A separator 9 is interposed between the second electrode plate 8 and the second electrode plate 8 provided with a plurality of opposing conductive films 7 formed on the substrate 6 at intervals, and between the first electrode plate 5 and the second electrode plate 8. The sealing material 10 which forms the cell S surrounding the space is arranged, and the inside of the cell S is filled with the electrolyte solution 11 and sealed in a liquid-tight manner.

一の基板2及び他の基板6は、透明導電膜3及び対向導電膜7の基台となる部材であり、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)等の透明の合成樹脂材料を略矩形に打ち抜いて形成されたものである。   One substrate 2 and another substrate 6 are members that serve as a base for the transparent conductive film 3 and the counter conductive film 7. For example, transparent synthetic resin materials such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) are used. Is formed by punching into a substantially rectangular shape.

透明導電膜3は、いわゆる第1電極となるものであり、一の基板2の板面に略矩形形状で、間隔を空けて複数形成されている。隣り合う透明導電膜3,3同士の間は、望ましくは0.1mm以上空けられており、溝(間隙)15を形成している。透明導電膜3の材料としては、酸化スズ(ITO)、酸化亜鉛等が用いられる。   The transparent conductive film 3 serves as a so-called first electrode, and a plurality of transparent conductive films 3 are formed in a substantially rectangular shape on the plate surface of one substrate 2 at intervals. The adjacent transparent conductive films 3 and 3 are preferably spaced by 0.1 mm or more to form a groove (gap) 15. As a material for the transparent conductive film 3, tin oxide (ITO), zinc oxide, or the like is used.

半導体層4は、後述する増感色素から電子を受け取り輸送する機能を有するものであり、金属酸化物からなる半導体により各透明導電膜3の表面及び溝15を含む一の基板2の板面全体に隈なく設けられている。金属酸化物としては、例えば、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、等が用いられる。 The semiconductor layer 4 has a function of receiving and transporting electrons from a sensitizing dye described later, and the entire plate surface of one substrate 2 including the surface of each transparent conductive film 3 and the grooves 15 by a semiconductor made of a metal oxide. It is provided without hesitation. As the metal oxide, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), or the like is used.

半導体層4は、増感色素を担持している。増感色素は、有機色素または金属錯体色素で構成されている。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系、等の各種有機色素を用いることができる。金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
以上の構成の下に、第1電極板5は、一の基板2の一方の板面に間隔をおいて複数の透明導電膜3を成膜し、これら複数の透明導電膜3に亘って各透明導電膜3の表面を含む一の基板2の板面全体に形成された半導体層4を備えて構成されている。
The semiconductor layer 4 carries a sensitizing dye. The sensitizing dye is composed of an organic dye or a metal complex dye. Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. As the metal complex dye, for example, a ruthenium complex is preferably used.
Under the above configuration, the first electrode plate 5 forms a plurality of transparent conductive films 3 on one plate surface of one substrate 2 at intervals, and each of the first electrode plates 5 extends over the plurality of transparent conductive films 3. The semiconductor layer 4 is formed on the entire plate surface of one substrate 2 including the surface of the transparent conductive film 3.

対向導電膜7は、いわゆる第2電極となるものであり、各透明導電膜3に対向するように他の基板6の板面に間隔をおいて複数成膜され、第2電極板8を構成している。対向導電膜7,7間は、望ましくは0.1mm以上空けられており、溝(間隙)15を形成している。
この対向導電膜7には、例えば、酸化スズ(ITO)、酸化亜鉛等が用いられている。
この第2電極板8は、各対向導電膜7を各透明導電膜3に対向させて、第1電極板5と対向配置されている。
The counter conductive film 7 serves as a so-called second electrode, and a plurality of films are formed on the plate surface of another substrate 6 so as to oppose each transparent conductive film 3 to form a second electrode plate 8. doing. The opposing conductive films 7 and 7 are preferably separated by 0.1 mm or more, and a groove (gap) 15 is formed.
For example, tin oxide (ITO), zinc oxide or the like is used for the counter conductive film 7.
The second electrode plate 8 is disposed to face the first electrode plate 5 with the opposing conductive films 7 facing the transparent conductive films 3.

セパレータ9は、電解液11及び封止材10を通過させ得る多数の孔(不図示)を有した不織布等のシート材により形成されたものであり、第1電極板5と第2電極板8との間に介装され封止材10により挟持されている。   The separator 9 is formed of a sheet material such as a nonwoven fabric having a large number of holes (not shown) through which the electrolytic solution 11 and the sealing material 10 can pass, and the first electrode plate 5 and the second electrode plate 8. And is sandwiched between the sealing materials 10.

封止材10は、第1電極板5又は第2電極板8の板面を平面視した際に、各透明導電膜3及び対向導電膜7を囲繞するように、すなわち、複数の透明導電膜3,3同士の溝15に対向する半導体層4の表面に配されている。この封止材10によって、セルSが形成された状態で第1電極板5と第2電極板8とが接着され、セルS内に電解液11が保持及び封止されている。
封止材10の材料には、例えば、シリコンホットメルト等の熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂、紫外線硬化性樹脂又は熱光硬化性樹脂等が用いられる。
The sealing material 10 surrounds each transparent conductive film 3 and the counter conductive film 7 when the plate surface of the first electrode plate 5 or the second electrode plate 8 is viewed in plan view, that is, a plurality of transparent conductive films. It is arranged on the surface of the semiconductor layer 4 facing the three and three grooves 15. With the sealing material 10, the first electrode plate 5 and the second electrode plate 8 are bonded in a state where the cell S is formed, and the electrolytic solution 11 is held and sealed in the cell S.
As the material of the sealing material 10, for example, a thermosetting resin such as silicon hot melt, a thermoplastic resin, a photocurable resin, an ultraviolet curable resin, or a thermophotocurable resin is used.

電解液11としては、例えば、アセトニトリル、プロピオニトリル等の非水系溶剤;ヨウ化ジメチルプロピルイミダゾリウム又はヨウ化ブチルメチルイミダゾリウム等のイオン液体などの液体成分に、ヨウ化リチウム等の支持電解液とヨウ素とが混合された溶液等が用いられている。また、電解液11は、逆電子移動反応を防止するため、t−ブチルピリジンを含むものでもよい。   Examples of the electrolytic solution 11 include non-aqueous solvents such as acetonitrile and propionitrile; liquid components such as ionic liquids such as dimethylpropylimidazolium iodide and butylmethylimidazolium iodide; and a supporting electrolytic solution such as lithium iodide. A solution or the like in which iodine and iodine are mixed is used. Moreover, in order to prevent reverse electron transfer reaction, the electrolyte solution 11 may contain t-butylpyridine.

次に、色素増感太陽電池1の製造方法について図2〜図6を用いて説明する。
本発明の一実施形態としての色素増感太陽電池1の製造方法は、以下の工程を有するものである。すなわち、
(I)図2(a),(b)に示すように、一の基板2に溝15を設けて複数の透明導電膜3,3・・を成膜し、各透明導電膜3の表面を含んでこれら複数の透明導電膜3,3・・に亘って連続して半導体層4を形成した第1電極板5を形成する工程と、図3に示すように、他の基板6の板面に溝15を設けて各透明導電膜3,3に対向するように複数の対向導電膜7,7・・を成膜し第2電極板8を形成する工程<電極板形成工程>
(II)図3に示すように、第1電極板5の各透明導電膜3及び第2電極板8の各対向導電膜7のいずれか一方又は双方を囲繞するように封止材10を配する工程<封止材配置工程>
(III)図4,図5に示すように、封止材10によって第1電極板5と第2電極板8とを貼り合わせ、これら第1電極板5と第2電極板8との間にセルS,S・・を複数設け、電解液11を充填するセル形成工程<セル形成工程>
Next, the manufacturing method of the dye-sensitized solar cell 1 is demonstrated using FIGS.
The manufacturing method of the dye-sensitized solar cell 1 as one embodiment of the present invention includes the following steps. That is,
(I) As shown in FIGS. 2A and 2B, a plurality of transparent conductive films 3, 3... Are formed by providing grooves 15 in one substrate 2, and the surface of each transparent conductive film 3 is formed. Including the step of forming the first electrode plate 5 in which the semiconductor layer 4 is continuously formed over the plurality of transparent conductive films 3, 3,..., As shown in FIG. Step of forming a second electrode plate 8 by forming a plurality of opposing conductive films 7, 7... So as to be opposed to the transparent conductive films 3, 3 by providing a groove 15 <electrode plate forming step>
(II) As shown in FIG. 3, the sealing material 10 is arranged so as to surround either one or both of the transparent conductive films 3 of the first electrode plate 5 and the opposing conductive films 7 of the second electrode plate 8. <Sealant placement process>
(III) As shown in FIGS. 4 and 5, the first electrode plate 5 and the second electrode plate 8 are bonded together by the sealing material 10, and the first electrode plate 5 and the second electrode plate 8 are interposed between them. A cell forming process in which a plurality of cells S, S... Are provided and filled with the electrolytic solution 11 <Cell forming process>

(I)<電極板形成工程>
電極板形成工程においては、第1電極板5及び第2電極板8は、以下のようにして形成される。
<第1電極板形成>
図2(a)に示すように、一の基板2として、PET基板等を用い、一の基板2の板面に透明導電膜3が間隔をおいて複数成膜されるよう酸化インジウムスズ(ITO)等をスパッタリング、印刷法、エッジング、エアロゾルデポジション法(以下「AD法」という)等によりパターニングする。このパターニングにより透明導電膜3,3の間に溝15が形成される。
透明導電膜3のパターニングは、上記の方法の他に、透明導電膜3を一の基板2の板面全体に成膜し、その後レーザー加工又は機械的研磨によって行ってもよい。
半導体層4は、例えば焼成が可能な酸化チタン含有ペーストを印刷法等により、複数の透明導電膜3の表面及び溝15を含んで一の基板2の板面の全体に連続して塗布(いわゆるべた塗り)し、多孔質となるよう焼結することにより、透明導電膜3の表面3a全体及び溝15内に漏れなく形成する。
この際、一の基板2として、フィルム状のPET等を用いる場合は、半導体層4をAD法によって好適に成膜することができる。また、半導体層4は、低温焼成法によってもPETフィルム等に好適に製膜することができる。この場合、一の基板2の全体に低温焼成ペーストを印刷法などにより塗布し、比較的低い温度領域で乾燥することで半導体層4を形成する。
(I) <Electrode plate forming step>
In the electrode plate forming step, the first electrode plate 5 and the second electrode plate 8 are formed as follows.
<First electrode plate formation>
As shown in FIG. 2 (a), a PET substrate or the like is used as one substrate 2, and indium tin oxide (ITO) is formed so that a plurality of transparent conductive films 3 are formed on the plate surface of the one substrate 2 at intervals. And the like are patterned by sputtering, printing, edging, aerosol deposition (hereinafter referred to as “AD method”), and the like. By this patterning, a groove 15 is formed between the transparent conductive films 3 and 3.
In addition to the above method, the transparent conductive film 3 may be patterned by forming the transparent conductive film 3 over the entire plate surface of one substrate 2 and then performing laser processing or mechanical polishing.
The semiconductor layer 4 is continuously applied to the entire plate surface of the single substrate 2 including the surface of the plurality of transparent conductive films 3 and the grooves 15 by a printing method or the like, for example, by baking (eg, a bakable titanium oxide-containing paste). It is formed without leakage in the entire surface 3a of the transparent conductive film 3 and in the groove 15 by sintering to be porous.
At this time, when film-like PET or the like is used as the single substrate 2, the semiconductor layer 4 can be suitably formed by the AD method. Moreover, the semiconductor layer 4 can be suitably formed into a PET film or the like by a low temperature baking method. In this case, the semiconductor layer 4 is formed by applying a low-temperature firing paste to the entire substrate 2 by a printing method or the like and drying in a relatively low temperature region.

半導体層4を形成した後、増感色素を溶剤に溶かした増感色素溶液に半導体層4を浸漬させ、該半導体層4に増感色素を担持させる。なお、半導体層4に増感色素を担持させる方法は、上記に限定されず、増感色素溶液中に半導体層4を移動させながら連続的に投入・浸漬・引き上げを行う方法なども採用される。
なお、この際、透明導電膜3及び半導体層4の一部には、隣り合う透明導電膜3及び半導体層4に向けて一部が突出した接続部P,P・・を形成し、後で隣接するセルSと直列接続できるようにしておく。
以上により、図2(b)に示す第1電極板5が得られる。
After the semiconductor layer 4 is formed, the semiconductor layer 4 is immersed in a sensitizing dye solution in which a sensitizing dye is dissolved in a solvent, and the sensitizing dye is supported on the semiconductor layer 4. The method for supporting the sensitizing dye on the semiconductor layer 4 is not limited to the above, and a method of continuously charging, dipping and pulling up while moving the semiconductor layer 4 in the sensitizing dye solution is also employed. .
At this time, a part of the transparent conductive film 3 and the semiconductor layer 4 is formed with connection portions P, P,... Protruding partly toward the adjacent transparent conductive film 3 and the semiconductor layer 4. A serial connection with adjacent cells S is made possible.
Thus, the first electrode plate 5 shown in FIG. 2B is obtained.

<第2電極板形成>
第2電極板8は、図3に示す他の基板6として、ポリエチレンテレフタレート(PET)等を用い、他の基板6の板面に対向導電膜7が間隔をおいて形成されるように、ITO又は酸化亜鉛等をスパッタリング、印刷法、スプレー法、エッジング、AD法等によりパターニングする。このパターニングにより対向導電膜7,7の間に溝15が形成される。
対向導電膜7のパターニングは、上記の方法の他に、対向導電膜7を他の基板6の板面全体に成膜し、その後レーザー加工又は機械的研磨によって行ってもよい。
なお、対向導電膜7は、隣り合う対向導電膜7に対向する透明導電膜3及び半導体層4の接続部Pと対向させて直列接続構造とするため、透明導電膜3及び半導体層4のように、突出する部分を設けない。
<Formation of second electrode plate>
The second electrode plate 8 uses polyethylene terephthalate (PET) or the like as the other substrate 6 shown in FIG. 3, and ITO is formed so that the opposing conductive film 7 is formed on the plate surface of the other substrate 6 at intervals. Alternatively, zinc oxide or the like is patterned by sputtering, printing, spraying, edging, AD, or the like. By this patterning, a groove 15 is formed between the opposing conductive films 7 and 7.
In addition to the above method, the counter conductive film 7 may be patterned by forming the counter conductive film 7 over the entire plate surface of another substrate 6 and then performing laser processing or mechanical polishing.
In addition, since the opposing conductive film 7 is opposed to the connecting portion P of the transparent conductive film 3 and the semiconductor layer 4 facing the adjacent opposing conductive film 7, the opposing conductive film 7 has a series connection structure. No protruding part is provided.

(II)<封止材配置工程>
図3に示すように、封止材配置工程においては、一の基板2の板面を平面視した際に、各透明導電膜3が囲繞されるように封止材10を溝15の上方を含む半導体層4の表面に配する。
なお、封止材10は、第1電極板5に配された封止材10に対向するように第2電極板8側にも配してもよい。
また、この際に、半導体層4の接続部P上と接続部Pに対向する対向導電膜7上にUVAgペーストQを塗布しておく。
(II) <Encapsulant placement step>
As shown in FIG. 3, in the sealing material arranging step, the sealing material 10 is placed above the groove 15 so that each transparent conductive film 3 is surrounded when the plate surface of one substrate 2 is viewed in plan view. Disposed on the surface of the semiconductor layer 4 to be included.
The sealing material 10 may also be disposed on the second electrode plate 8 side so as to face the sealing material 10 disposed on the first electrode plate 5.
At this time, the UVAg paste Q is applied to the connection portion P of the semiconductor layer 4 and the opposing conductive film 7 facing the connection portion P.

(III)<セル形成工程>
セル形成工程は、図4,図5に示すように、封止材配置工程の後に、各透明導電膜3と各対向導電膜7とを対向配置させて第1電極板5と第2電極板8とを貼り合わせ、封止材10を熱硬化等させて第1電極板5と第2電極板8とを接着し、第1電極板5、第2電極板8及び封止材10により囲繞されたセルSを形成する。
そして、図5に示すように、各セルSに形成された不図示の貫通孔からセルS内に電解液11を充填し、貫通孔を封止材で封止し、図6に示すように、各セルSの透明導電膜3及び半導体層4の接続部Pが隣接するセルSに突出して直列接続された色素増感太陽電池1を得る。
(III) <Cell formation process>
As shown in FIGS. 4 and 5, in the cell forming process, after the sealing material arranging process, each transparent conductive film 3 and each opposing conductive film 7 are arranged to face each other, and the first electrode plate 5 and the second electrode plate are arranged. 8 are bonded together, the sealing material 10 is thermally cured to bond the first electrode plate 5 and the second electrode plate 8, and the first electrode plate 5, the second electrode plate 8 and the sealing material 10 are surrounded. The formed cell S is formed.
Then, as shown in FIG. 5, the electrolyte solution 11 is filled into the cells S from the through holes (not shown) formed in each cell S, and the through holes are sealed with a sealing material, as shown in FIG. Then, the dye-sensitized solar cell 1 in which the transparent conductive film 3 of each cell S and the connection portion P of the semiconductor layer 4 protrude from the adjacent cell S and are connected in series is obtained.

以上のように、色素増感太陽電池1によれば、半導体層4を複数の透明導電膜3に亘って、すなわち透明導電膜3,3・・同士の間の溝15を含めて隣接する透明導電膜3,3の表面・・に連続して設け、一の基板2の板面全体に配されているため、色素増感太陽電池1の第1電極板5又は第2電極板8の板面全体に半導体層4の色彩を可及的に色むらなく表すことができる。したがって、色素増感太陽電池1自身及び色素増感太陽電池1を適用可能な各種製品のデザイン性を向上することができ、色素増感太陽電池1の付加価値を高めることができるという効果が得られる。
また、一の基板2を封止材10が配される位置も含めて半導体層4によって隙間なく覆うことにより、受光面積が可及的に拡がるため色素増感太陽電池1の発電効率を向上することができるという効果が得られる。
As described above, according to the dye-sensitized solar cell 1, the semiconductor layer 4 extends over the plurality of transparent conductive films 3, that is, adjacent to the transparent conductive films 3, 3 including the grooves 15 between the transparent conductive films 3. The first electrode plate 5 or the second electrode plate 8 of the dye-sensitized solar cell 1 because it is continuously provided on the surfaces of the conductive films 3 and 3 and is disposed on the entire plate surface of the single substrate 2. The color of the semiconductor layer 4 can be expressed as evenly as possible on the entire surface. Therefore, the design of various products to which the dye-sensitized solar cell 1 itself and the dye-sensitized solar cell 1 can be applied can be improved, and the added value of the dye-sensitized solar cell 1 can be increased. It is done.
Further, by covering the same substrate 2 with the semiconductor layer 4 including the position where the sealing material 10 is disposed without gaps, the light receiving area is expanded as much as possible, so that the power generation efficiency of the dye-sensitized solar cell 1 is improved. The effect that it can be obtained.

また、隣り合う透明導電膜3,3間の溝15の幅を0.1mm以上設けているため、半導体層4に電解液11が浸透している場合であっても、半導体層4自身の抵抗によりセルS,S間における電子の移動を有効に阻止することができるとともに、イオンの輸送を防止することができるという効果が得られる。   Further, since the width of the groove 15 between the adjacent transparent conductive films 3 and 3 is 0.1 mm or more, the resistance of the semiconductor layer 4 itself can be obtained even when the electrolyte solution 11 penetrates into the semiconductor layer 4. Thus, it is possible to effectively prevent the movement of electrons between the cells S and S and to prevent the transport of ions.

また、透明導電膜3,3・・に亘ってこれらの表面全体に半導体層4をべた塗りすればよいため、一の基板2上に透明導電膜3,3・・がパターニングされたものを搬送しながらで効率的に第1電極板5を作製することができ、色素増感太陽電池1の製造効率を向上することができるという効果が得られる。
特に、第1電極板5をRoll to Rollで(すなわち、ロール単位で)又は帯状に搬送しながら第1電極板5及び第2電極板8を作成する場合には、AD法や低温焼成法を用い、比較的ガラス転移温度が低いPENフィルム状の一の基板2に透明導電膜3や半導体層4を成膜することにより、容易に半導体層4を成膜することができるという効果が得られる。
また、封止材10としてシリコンホットメルト等の熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂又は熱光硬化性樹脂を用いているので、セルSを形成する封止材10を半導体層4に容易に含浸させることができる。
Further, since the semiconductor layer 4 may be applied over the entire surface of the transparent conductive films 3, 3..., The transparent conductive films 3, 3. However, the effect that the 1st electrode plate 5 can be produced efficiently and the manufacturing efficiency of the dye-sensitized solar cell 1 can be improved is acquired.
In particular, when the first electrode plate 5 and the second electrode plate 8 are formed while transporting the first electrode plate 5 in roll to roll (that is, in roll units) or in a strip shape, an AD method or a low temperature firing method is used. The effect is that the semiconductor layer 4 can be easily formed by forming the transparent conductive film 3 and the semiconductor layer 4 on the single substrate 2 in the form of a PEN film having a relatively low glass transition temperature. .
In addition, since a thermoplastic resin such as silicon hot melt, a thermosetting resin, a photocurable resin, or a thermosetting resin is used as the sealing material 10, the sealing material 10 that forms the cell S is used as the semiconductor layer 4. Can be easily impregnated.

なお、上記の実施形態において、図7に示すように、封止材10は、溝15に配された半導体層4a,4a・・内に含浸させ、半導体層4内に電解液11が含浸されにくくなるあるいはされなくなるよう処理をするとより望ましい。半導体層4内に封止材10が含浸されることにより、セルS,S間内に配された半導体層4の絶縁性を高めることが可能となり、半導体層4を経由した電子及びイオンの移動をより有効に防止することができる。   In the above embodiment, as shown in FIG. 7, the sealing material 10 is impregnated in the semiconductor layers 4 a, 4 a... Disposed in the grooves 15, and the electrolytic solution 11 is impregnated in the semiconductor layer 4. It is more desirable to process so that it becomes difficult or impossible. By impregnating the semiconductor layer 4 with the sealing material 10, it becomes possible to improve the insulation of the semiconductor layer 4 disposed between the cells S and S, and movement of electrons and ions through the semiconductor layer 4. Can be prevented more effectively.

また、本実施形態においては、封止材10は、溝15と同じ幅で配した様子を例示したが、図8に示すように、溝15の幅よりも大きい幅で透明導電膜3及び対向導電膜7の表面の一部を被覆するように配されていてもよい。
封止材10の配置を上記のように構成することにより、セルS間での絶縁をより確実にすることができるとともに、第1電極板5と第2電極板8との位置合わせを厳密にする必要がなくなり、これら第1電極板5と第2電極板8との貼り合せ工程がより簡便となるという効果が得られる。
In the present embodiment, the sealing material 10 is illustrated with the same width as that of the groove 15. However, as shown in FIG. You may distribute | arrange so that a part of surface of the electrically conductive film 7 may be coat | covered.
By arranging the sealing material 10 as described above, the insulation between the cells S can be further ensured, and the first electrode plate 5 and the second electrode plate 8 are strictly aligned. There is no need to do this, and the effect that the bonding process of the first electrode plate 5 and the second electrode plate 8 becomes simpler is obtained.

なお、対向導電膜7の表面には、透明導電膜3と対向導電膜7との間の電子の授受を促進させる触媒層が設けられていてもよい。触媒層は、半導体層4に対向するように各対向導電膜7の表面全体に成膜されることが望ましい。
この触媒層の材料としては、プラチナ、ポリアニリン、PEDOT、カーボン等が用いられる。
A catalyst layer that facilitates the transfer of electrons between the transparent conductive film 3 and the counter conductive film 7 may be provided on the surface of the counter conductive film 7. The catalyst layer is desirably formed on the entire surface of each opposing conductive film 7 so as to face the semiconductor layer 4.
Platinum, polyaniline, PEDOT, carbon, or the like is used as the material for the catalyst layer.

以下、実施例を用いて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

1.色素増感太陽電池1の作製
[実施例1]
<第1電極板5>
透明導電膜が成膜された一の基板として、予めITOがPEN基板に成膜されたペクセル社のITO−PEN基板(シート抵抗15Ω/cm2)を用いた。そして、CO2レーザーを用い、PEN基板上のITO層に0.1mm幅の溝を形成し、ITO層をセル間で分断されるようにパターニングを行った。
ITO層がパターニングされたPEN基板の板面全体に、低温焼成TiO2ペースト(ペクセル社)をドクターブレード法にてマスクを用いることなく印刷し、150℃で乾燥をおこない、半導体層となるTiO2層を形成した。TiO2層の厚みは10μmだった。その後、このようにして形成された基板を0.3mMのMK2色素のトルエン溶液に10分間浸漬して増感色素を担持させ、第1電極板を得た。
1. Preparation of dye-sensitized solar cell 1 [Example 1]
<First electrode plate 5>
As one substrate on which a transparent conductive film was formed, an ITO-PEN substrate (sheet resistance 15 Ω / cm 2 ) manufactured by Pexel in which ITO was previously formed on a PEN substrate was used. Then, using a CO 2 laser, a 0.1 mm wide groove was formed in the ITO layer on the PEN substrate, and the ITO layer was patterned so as to be divided between cells.
A low-temperature fired TiO 2 paste (Peccell) is printed on the entire surface of the PEN substrate on which the ITO layer is patterned without using a mask by a doctor blade method, dried at 150 ° C., and becomes a semiconductor layer TiO 2. A layer was formed. The thickness of the TiO 2 layer was 10 μm. Thereafter, the substrate thus formed was immersed in a 0.3 mM MK2 dye toluene solution for 10 minutes to carry the sensitizing dye, thereby obtaining a first electrode plate.

<第2電極板8>
対向導電膜が成膜された他の基板として、予めITOがPEN基板に成膜されたペクセル社のITO−PEN基板(シート抵抗15Ω/cm2)を用いた。そして、更にITO層の表面全体に触媒層としてカーボンをスクリーン印刷にて成膜した。
その後、CO2レーザーを用い、PEN基板上のITO層及びカーボン層に同時に幅0.1mmの溝を形成し、ITO層及び触媒層がセル間で分断されるようにパターニングを行い、第2電極板を得た。
<Second electrode plate 8>
As another substrate on which the counter conductive film was formed, an ITO-PEN substrate (sheet resistance 15 Ω / cm 2 ) manufactured by Pexel Co., on which ITO was previously formed on a PEN substrate was used. Further, carbon was formed as a catalyst layer on the entire surface of the ITO layer by screen printing.
Thereafter, using a CO 2 laser, a groove having a width of 0.1 mm is simultaneously formed in the ITO layer and the carbon layer on the PEN substrate, and patterning is performed so that the ITO layer and the catalyst layer are divided between the cells. I got a plate.

<封止材配置工程>
第1電極板の溝に対向させてTiO2層の上面に封止材(ハイミラン)を配し、50μmの不織布をセパレータとして介して、第1電極板のITO層と第2電極板のITO層と対向させて貼り合わせた。そして、この状態で約2分間経過させ、封止材をTiO2層に含浸させた。その後、熱プレスにより封止材を硬化させて第1電極板と第2電極板とを接着しセルを3つ連結した。
その後、第2電極板に設けておいた貫通孔から電解液(1.0Mの1−メチル−3−プロピルイミダゾリウムヨージド,0.005Mのヨウ素,0.1Mのチオシアン酸グアニジン メトキシプロピオニトリル電解液1.0M 1−メチル−3−プロピルイミダゾリウムヨージド、0.005M ヨウ素、0.1Mチオシアン酸グアニジン メトキシプロピオニトリル電解液)を注入し、最後に貫通孔を光硬化性樹脂で封止し各セルを直列接続した色素増感太陽電池を得た。
<Encapsulant placement process>
An ITO layer of the first electrode plate and an ITO layer of the second electrode plate are disposed on the upper surface of the TiO 2 layer so as to face the groove of the first electrode plate, and a 50 μm non-woven fabric is used as a separator. And pasted together. And about 2 minutes passed in this state, the sealing material was impregnated into the TiO 2 layer. Then, the sealing material was hardened by hot pressing, the first electrode plate and the second electrode plate were bonded, and three cells were connected.
Thereafter, an electrolytic solution (1.0 M 1-methyl-3-propylimidazolium iodide, 0.005 M iodine, 0.1 M guanidine thiocyanate, methoxypropionitrile was passed through a through hole provided in the second electrode plate. Electrolyte solution 1.0M 1-methyl-3-propylimidazolium iodide, 0.005M iodine, 0.1M guanidine thiocyanate methoxypropionitrile electrolyte solution) was injected, and finally the through hole was sealed with a photocurable resin. The dye-sensitized solar cell which stopped and connected each cell in series was obtained.

[実施例2]
透明導電膜が成膜された一の基板として、予めITOがPEN基板に成膜されたペクセル社のITO−PEN基板(シート抵抗15Ω/cm2)を用いた。その後、CO2レーザーを用い、PEN基板上のITO層に0.1mm幅の溝を形成し、ITO層をセル間で分断されるようにパターニングを行った。
ITO層がパターニングされたPEN基板の板面全体に、AD成膜にてマスクを用いることなくTiO2膜を6μm製膜した。その後、このようにして形成された基板を0.3mMのMK2色素のトルエン溶液に10分間浸漬して増感色素を担持させ、第1電極板を得た。
上記以外は実施例1と同様にして色素増感太陽電池とした。
[比較例]
TiO2層を、マスクを用いてITO層(透明導電膜)の表面にパターニング成膜し、セル間で完全に分離するように封止材と離間させて形成した以外は、実施例と同様の方法で色素増感太陽電池を作製した。
[Example 2]
As one substrate on which a transparent conductive film was formed, an ITO-PEN substrate (sheet resistance 15 Ω / cm 2 ) manufactured by Pexel in which ITO was previously formed on a PEN substrate was used. Thereafter, using a CO 2 laser, a 0.1 mm wide groove was formed in the ITO layer on the PEN substrate, and the ITO layer was patterned so as to be divided between cells.
A 6 μm TiO 2 film was formed on the entire plate surface of the PEN substrate on which the ITO layer was patterned without using a mask in AD film formation. Thereafter, the substrate thus formed was immersed in a 0.3 mM MK2 dye toluene solution for 10 minutes to carry the sensitizing dye, thereby obtaining a first electrode plate.
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except for the above.
[Comparative example]
The TiO 2 layer was patterned on the surface of the ITO layer (transparent conductive film) using a mask, and was formed apart from the sealing material so as to be completely separated between cells. A dye-sensitized solar cell was prepared by this method.

(2)評価
光源として蛍光灯を用い、約500lxの光量下で、上記各実施例及び比較例の色素増感太陽電池1の光電変換効率を測定し比較した。
その結果、実施例1においては、短絡電流密は3.0μA/cm2、開放電圧は1.5 V、曲率因子は0.45、最大出力は2.0μW/cm2となった。
また、実施例2においては、短絡電流密度は3.1μA/cm2 開放電圧は1.5V、曲率因子は0.48、最大出力は2.2μW/cm2となった。
一方、比較例においては、短絡電流密は2.6 μA/cm2、 開放電圧は1.3V、曲率因子は0.51、最大出力が1.7μW/cm2となった。
以上より、実施例1,2に係る色素増感太陽電池を用いた場合、生産性が向上するのみならず、比較例に係る色素増感太陽電池よりも高い電圧及び最大出力を得ることができた。
(2) Evaluation Using a fluorescent lamp as a light source, the photoelectric conversion efficiencies of the dye-sensitized solar cells 1 of the above Examples and Comparative Examples were measured and compared under a light amount of about 500 lx.
As a result, in Example 1, the short circuit current density was 3.0 μA / cm 2, the open circuit voltage was 1.5 V, the curvature factor was 0.45, and the maximum output was 2.0 μW / cm 2.
In Example 2, the short-circuit current density was 3.1 μA / cm 2, the open-circuit voltage was 1.5 V, the curvature factor was 0.48, and the maximum output was 2.2 μW / cm 2.
On the other hand, in the comparative example, the short-circuit current density was 2.6 μA / cm 2 , the open-circuit voltage was 1.3 V, the curvature factor was 0.51, and the maximum output was 1.7 μW / cm 2 .
From the above, when the dye-sensitized solar cells according to Examples 1 and 2 are used, not only the productivity is improved, but also higher voltage and maximum output can be obtained than the dye-sensitized solar cell according to the comparative example. It was.

1 色素増感太陽電池(電気モジュール)
2 一の基板
3 透明導電膜
4 半導体層
5 第1電極板
6 他の基板
7 対向導電膜
8 第2電極板
10 封止材
11 電解液
15 溝(間隔)
S セル
1 Dye-sensitized solar cell (electric module)
2 One substrate 3 Transparent conductive film 4 Semiconductor layer 5 First electrode plate 6 Other substrate 7 Opposing conductive film 8 Second electrode plate 10 Sealing material 11 Electrolytic solution 15 Groove (interval)
S cell

Claims (8)

一の基板に複数の透明導電膜が0.1mm以上の間隔をおいて成膜され、前記透明導電膜の表面に多孔質の半導体層が形成された第1電極板と、他の基板に前記複数の透明導電膜に対向するように間隔をおいて複数の対向導電膜が成膜された第2電極板とが、間隔をおいて対向配置され、これら第1電極板と第2電極板とを貼り合わせる封止材が配され、この封止材と前記第1電極板と第2電極板とにより電解液が封止された複数のセルが形成された電気モジュールであって、
前記半導体層は、前記複数の透明導電膜に亘って連続して形成され、
前記封止材は、前記半導体層の表面に配されていることを特徴とする電気モジュール。
A plurality of transparent conductive films are formed on one substrate at intervals of 0.1 mm or more, a first electrode plate having a porous semiconductor layer formed on the surface of the transparent conductive film, and the other substrate on the first electrode plate A second electrode plate on which a plurality of opposing conductive films are formed so as to face the plurality of transparent conductive films are arranged to face each other at intervals, and the first electrode plate and the second electrode plate An electrical module in which a plurality of cells in which an electrolyte is sealed by the sealing material, the first electrode plate, and the second electrode plate are formed,
The semiconductor layer is formed continuously over the plurality of transparent conductive films,
The electrical module, wherein the sealing material is disposed on a surface of the semiconductor layer.
請求項1に記載の電気モジュールであって、
前記半導体層は、前記透明導電膜の表面の全体を覆っていることを特徴とする電気モジュール。
The electrical module according to claim 1,
The electrical module, wherein the semiconductor layer covers the entire surface of the transparent conductive film.
請求項1又は2に記載の電気モジュールであって、
前記複数の透明導電膜同士の間に配された前記半導体層には、前記封止材が含浸されていることを特徴とする電気モジュール。
The electrical module according to claim 1 or 2,
The electrical module, wherein the semiconductor layer disposed between the plurality of transparent conductive films is impregnated with the sealing material.
請求項1から3のいずれか一項に記載の電気モジュールであって、
前記封止材として、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂又は熱光硬化性樹脂の少なくともいずれかを用いていることを特徴とする電気モジュール。
The electrical module according to any one of claims 1 to 3,
An electrical module using at least one of a thermoplastic resin, a thermosetting resin, a photocurable resin, or a thermophotosetting resin as the sealing material.
一の基板に0.1mm以上の間隔をおいて複数の透明導電膜を成膜し、前記透明導電膜の表面に多孔質の半導体層を形成した第1電極板と、他の基板に前記透明導電膜に対向するように間隔をおいて複数の対向導電膜を成膜した第2電極板とを形成する電極板形成工程と、前記第1電極板及び前記第2電極板の少なくともいずれか一方の板面に、封止材を配する封止材配置工程と、前記封止材によって前記第1電極板と前記第2電極板とを貼り合わせ、これら第1電極板と第2電極板との間に電解液を充填してセルを複数形成するセル形成工程とを有する電気モジュールの製造方法であって、
前記電極板形成工程において、互いに0.1mm以上の間隔をおいて複数の前記透明導電膜を成膜した後に、前記半導体層をこれら複数の透明導電膜に亘って連続的に形成し、
前記封止材配置工程において、前記封止材を前記半導体層の表面に配することを特徴とする電気モジュールの製造方法。
A first electrode plate in which a plurality of transparent conductive films are formed on one substrate at intervals of 0.1 mm or more and a porous semiconductor layer is formed on the surface of the transparent conductive film, and the transparent electrode is formed on another substrate. An electrode plate forming step of forming a second electrode plate on which a plurality of opposing conductive films are formed so as to face the conductive film, and at least one of the first electrode plate and the second electrode plate A sealing material arranging step of arranging a sealing material on the plate surface, and the first electrode plate and the second electrode plate are bonded together by the sealing material, the first electrode plate and the second electrode plate, A method of manufacturing an electric module having a cell forming step of forming a plurality of cells by filling an electrolyte between
In the electrode plate forming step, after forming the plurality of transparent conductive films at intervals of 0.1 mm or more , the semiconductor layer is continuously formed across the plurality of transparent conductive films,
In the sealing material arranging step, the sealing material is disposed on a surface of the semiconductor layer.
請求項5に記載の電気モジュールの製造方法であって、
前記封止材配置工程において、前記複数の透明導電膜同士の間に配した前記半導体層に前記封止材を含浸させることを特徴とする電気モジュールの製造方法。
It is a manufacturing method of the electric module according to claim 5,
In the sealing material arranging step, the semiconductor module disposed between the plurality of transparent conductive films is impregnated with the sealing material.
請求項5又は6に記載の電気モジュールの製造方法であって、
前記封止材は、前記複数の透明導電膜同士の間及び前記対向導電膜同士の間、並びに、前記透明導電膜及び前記対向導電膜の表面の一部を被覆するように配することを特徴とする電気モジュールの製造方法。
It is a manufacturing method of the electric module according to claim 5 or 6,
The sealing material is disposed so as to cover a part of the surfaces of the transparent conductive film and the counter conductive film, and between the plurality of transparent conductive films and the counter conductive films. A method for manufacturing an electrical module.
請求項5から7のいずれか一項に記載の電気モジュールの製造方法であって、
前記封止材として、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂又は熱光硬化性樹脂の少なくともいずれかを用いることを特徴とする電気モジュールの製造方法。
A method for manufacturing an electrical module according to any one of claims 5 to 7,
As the sealing material, at least one of a thermoplastic resin, a thermosetting resin, a photocurable resin, or a thermophotosetting resin is used.
JP2012069971A 2012-03-26 2012-03-26 Electric module and method of manufacturing electric module Active JP5846984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069971A JP5846984B2 (en) 2012-03-26 2012-03-26 Electric module and method of manufacturing electric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069971A JP5846984B2 (en) 2012-03-26 2012-03-26 Electric module and method of manufacturing electric module

Publications (2)

Publication Number Publication Date
JP2013201079A JP2013201079A (en) 2013-10-03
JP5846984B2 true JP5846984B2 (en) 2016-01-20

Family

ID=49521162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069971A Active JP5846984B2 (en) 2012-03-26 2012-03-26 Electric module and method of manufacturing electric module

Country Status (1)

Country Link
JP (1) JP5846984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164362B2 (en) * 2018-09-03 2022-11-01 積水化学工業株式会社 electrical module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142090A (en) * 2003-11-07 2005-06-02 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP4039418B2 (en) * 2003-10-31 2008-01-30 松下電工株式会社 Photoelectric conversion element and photoelectric conversion module
JP4696485B2 (en) * 2004-06-29 2011-06-08 パナソニック電工株式会社 Photoelectric conversion module and manufacturing method thereof
JP4887694B2 (en) * 2005-09-06 2012-02-29 ソニー株式会社 PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, PHOTOELECTRIC CONVERSION ELEMENT MODULE, ELECTRONIC DEVICE, MOBILE BODY, POWER GENERATION SYSTEM, DISPLAY AND MANUFACTURING METHOD
JP2008226615A (en) * 2007-03-12 2008-09-25 Tokai Rubber Ind Ltd Dye-sensitized solar cell, its manufacturing method, and sealer for dye-sensitized solar cell
JP2009032614A (en) * 2007-07-30 2009-02-12 Taiyo Yuden Co Ltd Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell
JP2009146604A (en) * 2007-12-11 2009-07-02 Sekisui Jushi Co Ltd Dye-sensitized solar battery
JP4900443B2 (en) * 2009-09-30 2012-03-21 大日本印刷株式会社 Dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2013201079A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
KR100658263B1 (en) Tandem structured photovoltaic cell and preparation method thereof
US20140227828A1 (en) Dye-sensitized solar cell and method for manufacturing the same
CN109564823B (en) Solar cell module
JP2005142090A (en) Dye-sensitized solar cell
JP5759634B2 (en) Electrical module
JP5702897B2 (en) Electric module manufacturing method and electric module
JP5846984B2 (en) Electric module and method of manufacturing electric module
WO2010042170A2 (en) Interconnection of adjacent devices
JP2003331935A (en) Photoelectric conversion element
JP5778601B2 (en) Manufacturing method of electric module
JP2013201078A (en) Electric module and manufacturing method of the same
US20200136071A1 (en) Organic photovoltaic cell
KR20120119073A (en) Manufacturing method of dye sensitized solar cell
JP5688344B2 (en) Electric module and method of manufacturing electric module
KR20170106299A (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP6166752B2 (en) Electric module manufacturing components
EP2359406B1 (en) Photovoltaic devices
JP5530372B2 (en) Manufacturing method of electric module
JP6048047B2 (en) Dye-sensitized solar cell and photoelectrode for dye-sensitized solar cell
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
TWI535046B (en) Solar cell module and method for connecting the same
KR101284808B1 (en) Manufacturing method for flexible solar cell
JP2013073856A (en) Manufacturing method of electric module and electric module
TWI629802B (en) Photoelectric conversion element, electric module and method for producing photoelectric conversion element
JP2012146539A (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R151 Written notification of patent or utility model registration

Ref document number: 5846984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151