WO2020203052A1 - 缶用鋼板およびその製造方法 - Google Patents

缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020203052A1
WO2020203052A1 PCT/JP2020/009743 JP2020009743W WO2020203052A1 WO 2020203052 A1 WO2020203052 A1 WO 2020203052A1 JP 2020009743 W JP2020009743 W JP 2020009743W WO 2020203052 A1 WO2020203052 A1 WO 2020203052A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolling
cans
amount
Prior art date
Application number
PCT/JP2020/009743
Other languages
English (en)
French (fr)
Inventor
勇人 齋藤
房亮 假屋
克己 小島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020539014A priority Critical patent/JP6822617B1/ja
Priority to CN202080017314.6A priority patent/CN113490760B/zh
Priority to CN202310766077.9A priority patent/CN116657048A/zh
Priority to KR1020217033678A priority patent/KR102677317B1/ko
Publication of WO2020203052A1 publication Critical patent/WO2020203052A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to a steel sheet for cans suitable for a can container material used for food and beverage cans and a method for producing the same.
  • the present invention particularly relates to a steel plate for cans and a method for producing the same, which is suitable for a DRD (Draw and Redraw) can body, a lug cap and a screw cap used as a lid of a bottle.
  • DRD Direct and Redraw
  • steel plates called DR Double Redduced
  • the DR material is a steel sheet produced by primary cold rolling, annealing, and then secondary cold rolling at a rolling ratio of a certain level or higher.
  • SR Single Reduced
  • SR Single Reduced
  • the DR material is hardened mainly by work hardening, so it generally has low draw moldability. Therefore, there is a problem that defects such as cracks occur in parts where high draw moldability is required, such as rivet portion of EOE (Easy-Open End) and flange processing of a 3-piece can body portion.
  • EOE Electronic-Open End
  • flange processing of a 3-piece can body portion.
  • a steel sheet having improved drawability has been proposed.
  • Patent Document 1 states that, in terms of mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.100%, the balance consists of Fe and unavoidable impurities, and the tensile strength TS is 500 MPa or more. Further, a steel plate for a high-strength container having a proof stress difference of 20 MPa or less in the plate width direction and the rolling direction is disclosed.
  • Patent Document 2 describes, in terms of mass%, C: 0.010% or more and 0.080% or less, Si: 0.05% or less, Mn: 0.10% or more and 0.70% or less, P: It contains 0.03% or less, S: 0.020% or less, Al: 0.005% or more and 0.070% or less, N: 0.0120% or more and 0.0180% or less, and the balance is Fe and unavoidable impurities. It has a component composition consisting of the above N, the N content as a solid solution N is 0.0100% or more, the ferrite average particle size is 7.0 ⁇ m or less, and the plate thickness is 1 from the surface.
  • the dislocation density at the / 4 depth position is 4.0 ⁇ 10 14 m -2 or more and 2.0 ⁇ 10 15 m -2 or less, the tensile strength in the direction perpendicular to rolling after aging treatment is 530 MPa or more, and the elongation is 7
  • a high-strength steel plate characterized by being% or more is disclosed.
  • Patent Document 1 has obtained good flange workability and necking workability, but the draw moldability required for processing a DRD can body, a screw cap, or the like is not sufficient.
  • the overhanging allowance (flange width) of the flange portion after molding is uniform in the can body circumference direction. It is required to provide a steel sheet for cans having excellent drawability with little variation in the flange width in the circumferential direction.
  • the tensile strength in the technique described in Patent Document 1 is about 640 MPa, and the steel plate strength is insufficient for a thin-walled product to have sufficient pressure resistance.
  • Patent Document 2 also lacks draw moldability.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-strength steel sheet for cans having excellent draw moldability and a method for producing the same.
  • high strength means that the tensile strength in the rolling direction after the aging treatment is 650 MPa or more.
  • the present inventors have conducted diligent research to solve the above problems. As a result, the present inventors have focused on the effect of the in-plane anisotropy ⁇ r of the r value of the steel sheet on the drawability of the steel sheet for cans, and the ⁇ r of the steel sheet is ⁇ 0.3 or more and 0. It was newly found that excellent draw moldability can be obtained if the value is 3 or less. Further, the present inventors set the conditions of steel composition, slab heating, hot rolling, winding, primary cold rolling, annealing, and secondary cold rolling within a predetermined range, so that ⁇ r is ⁇ . We have found that it is possible to provide steel sheets for cans of 0.3 or more and 0.3 or less. Then, based on this finding, the present invention has been completed. In the present specification, the "r value” is a Rankford value indicating a plastic strain ratio. Further, in the present specification, " ⁇ r" can be calculated according to the formula described later.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the balance has a composition of Fe and unavoidable impurities,
  • a steel sheet for cans having an in-plane anisotropy ⁇ r of r value of ⁇ 0.3 or more and 0.3 or less.
  • a method for producing a steel sheet for cans which comprises a step of annealing a cold-rolled sheet at 620 ° C. or higher and 690 ° C. or lower, and a step of secondary cold rolling the annealed annealed sheet at a rolling ratio of more than 20% and 40% or less.
  • the present invention it is possible to provide a high-strength steel sheet for cans having an r-value in-plane anisotropy ⁇ r of ⁇ 0.3 or more and 0.3 or less and having excellent drawability.
  • the steel plate for cans of the present invention it is possible to make cans and lids with a thin DR steel plate, and it is possible to achieve resource saving and cost reduction, which is extremely effective in industry. ..
  • the steel sheet for cans of the present invention By mass% C: 0.010% or more and 0.080% or less, Si: 0.05% or less, Mn: 0.10% or more and 0.70% or less, P: 0.03% or less, S: 0.020% or less, Al: 0.005% or more and 0.020% or less and N: 0.0120% or more and 0.0180% or less.
  • the balance has a composition of Fe and unavoidable impurities, The in-plane anisotropy ⁇ r of the r value is ⁇ 0.3 or more and 0.3 or less. Then, in the steel sheet for cans of the present invention, a slab having the above component composition is heated to 1180 ° C.
  • hot-rolled at a finishing temperature of 820 ° C. or higher hot-rolled at a finishing temperature of 820 ° C. or higher, and then wound at a temperature of more than 640 ° C. and 700 ° C. or lower to 85%.
  • It can be produced by primary cold rolling at the above rolling ratio, annealing at 620 ° C. or higher and 690 ° C. or lower, and secondary cold rolling at a rolling ratio of more than 20% and 40% or lower.
  • C 0.010% or more and 0.080% or less
  • C is an element important for improving strength, and by setting it to 0.010% or more, high strength, specifically, tensile strength in the rolling direction after aging treatment Contributes to increasing the strength to 650 MPa or more.
  • the amount of C is 0.020% or more.
  • the C amount exceeds 0.080%, the in-plane anisotropy ⁇ r of the r value is lower than ⁇ 0.3 and the draw moldability is lowered. Therefore, the upper limit of the C amount is set to 0.080% or less. There is a need to.
  • the amount of C is 0.040% or less.
  • the Si amount needs to be 0.05% or less, preferably 0.05% or less. It is 0.03% or less.
  • the lower limit of Si is preferably 0.01%.
  • Mn 0.10% or more and 0.70% or less
  • Mn has the effect of improving the tensile strength of the steel sheet by solid solution strengthening and the hot ductility caused by S contained in the steel by forming MnS. It has the effect of preventing a decrease. In order to obtain this effect, it is necessary to add 0.10% or more of Mn. In particular, from the viewpoint of increasing the strength of the steel sheet, it is preferable to add Mn in an amount of 0.20% or more, and more preferably 0.50% or more. On the other hand, if Mn exceeds 0.70%, the in-plane anisotropy deteriorates. Therefore, the amount of Mn is set to 0.70% or less. Preferably, the amount of Mn is 0.65% or less.
  • the amount of P is 0.03% or less.
  • the amount of P is 0.02% or less. It should be noted that reducing the amount of P to less than 0.01% involves an increase in costs such as smelting costs. Therefore, from the viewpoint of economy, it is preferable that the amount of P is 0.01% or more.
  • S 0.020% or less S forms sulfide in steel, lowers hot ductility, and lowers workability in hot rolling. Therefore, the upper limit of the amount of S is 0.020% or less. Preferably, the amount of S is 0.015% or less. If the S amount is 0.008% or more, pitting corrosion can be prevented regardless of the contents of the can, so the S amount is preferably 0.008% or more.
  • Al 0.005% or more and 0.020% or less
  • Al is an element added as an antacid. In order to obtain this effect, it is necessary to add 0.005% or more of Al.
  • the amount of Al needs to be 0.020% or less.
  • the amount of Al is preferably 0.008% to 0.019%, more preferably 0.011% to 0.016%.
  • the amount of Al is preferably 0.008% or more, more preferably 0.011% or more, preferably 0.019% or less, and more preferably 0.016% or less.
  • N 0.0120% or more and 0.0180% or less N contributes to increasing the strength of the steel sheet as a solid solution strengthening element. For this effect, it is necessary to add 0.0120% or more as the amount of N. On the other hand, when a large amount of N is added, the in-plane anisotropy ⁇ r of the r value is remarkably lowered and the draw moldability is lowered. Therefore, the upper limit of the N amount is set to 0.0180%.
  • the amount of N is 0.0135% to 0.0165%.
  • the amount of N is preferably 0.0135% or more, and preferably 0.0165% or less.
  • the steel sheet for cans of the present invention contains the above various components, and the balance is based on the component composition of Fe and unavoidable impurities.
  • the steel sheet for cans of the present invention can be obtained by adding the above basic components as necessary.
  • Ni: 0.05% or more and 0.15% or less and Cu: 0.05% or more and 0.20% or less can be contained.
  • Ti 0.005% or more and 0.020% or less Ti contributes to increasing the strength of the steel sheet as a precipitation strengthening element. Because of this effect, it is preferable to add 0.005% or more of Ti. On the other hand, when a large amount of Ti is added, the anisotropy of the steel sheet becomes excessively large, so the amount of Ti is preferably 0.020% or less.
  • Nb 0.005% or more and 0.020% or less Nb contributes to increasing the strength of the steel sheet as a precipitation strengthening element. Because of this effect, it is preferable to add 0.005% or more of Nb. On the other hand, when a large amount of Nb is added, the anisotropy of the steel sheet becomes excessively large, so that it is preferably 0.02% or less.
  • Mo acts as a precipitation strengthening element and contributes to increasing the strength of the steel sheet by making the structure finer. Because of this effect, it is preferable to add 0.01% or more of Mo. However, since the effect is saturated even if a large amount of Mo is added, the amount of Mo is preferably 0.05% or less.
  • Cr 0.04% or more and 0.10% or less Cr contributes to increasing the strength of the steel sheet as a precipitation strengthening element. Because of this effect, it is preferable to add 0.04% or more of Cr. When a large amount of Cr is added, it becomes a coarse precipitate and the effect of increasing the strength is saturated. Therefore, the amount of Cr is preferably 0.10% or less.
  • B 0.0005% or more and 0.0060% or less B contributes to high strength of the steel sheet by fine granulation. Because of this effect, it is preferable to add 0.0005% or more of B. Even if a large amount of B is added, not only the effect is saturated, but also the absolute value of the in-plane anisotropy ⁇ r of the r value of the steel sheet becomes large, so that the amount of B is preferably 0.0060% or less.
  • Ca 0.0010% or more and 0.01% or less Ca has an effect of refining sulfide to improve hot ductility. Further, in Ca, by binding Ca with S, the amount of Mn that produces the compound MnS is reduced, and the proportion of the amount of Mn that contributes to solid solution strengthening is increased, which contributes to increasing the strength of the steel sheet. effective. Therefore, it is preferable to add 0.0010% or more of Ca. Even if a large amount of Ca is added, not only the effect is saturated, but also the drawability may be deteriorated due to coarse inclusions. Therefore, the amount of Ca is preferably 0.01% or less.
  • Ni 0.05% or more and 0.15% or less Ni contributes to high strength of steel sheet by solid solution strengthening and fine graining. For this effect, it is preferable to add 0.05% or more of Ni. When a large amount of Ni is added, deterioration of the surface texture becomes remarkable, so the amount of Ni is preferably 0.15% or less.
  • Cu 0.05% or more and 0.20% or less Cu contributes to high strength of steel sheet by solid solution strengthening and fine granulation. For this effect, it is preferable to add 0.05% or more of Cu. When a large amount is added, the surface texture is significantly deteriorated. Therefore, the amount of Cu is preferably 0.20% or less, more preferably 0.15% or less.
  • In-plane anisotropy of r value ⁇ r ⁇ 0.3 or more and 0.3 or less
  • the index ⁇ r needs to be ⁇ 0.3 or more and 0.3 or less.
  • ⁇ r As ⁇ r deviates from the above range, the anisotropy of the r value becomes larger, and the so-called “ears” of the flange portion become larger during drawing forming, so that a good shape cannot be obtained. That is, if ⁇ r is out of the above range, the width of the flange portion after drawing molding fluctuates greatly, so that sound drawing forming in which a uniform flange width shape can be obtained in the steel sheet for cans cannot be realized.
  • ⁇ r is preferably ⁇ 0.25 or more and 0.25 or less.
  • Tensile strength in rolling direction after aging treatment 650 MPa or more
  • the tensile strength of the steel sheet in the rolling direction is 650 MPa or more.
  • the tensile strength is generally lower in the rolling direction than in the rolling perpendicular direction. Therefore, in the present specification, the tensile strength in the rolling direction is used for evaluation. Further, since steel sheets for cans are often used by baking coating, in this specification, evaluation is made based on the characteristics after aging treatment at 210 ° C.
  • the tensile strength of the steel sheet in the rolling direction is preferably 680 MPa or more.
  • the strength is excessively increased, molding defects such as wrinkles become noticeable during molding, so the tensile strength is preferably 800 MPa or less.
  • the steel sheet for cans of the present invention has a step of heating a slab having the above component composition to 1180 ° C. or higher, a step of hot rolling the heated slab at a finishing temperature of 820 ° C. or higher, and hot rolling heat.
  • Heating temperature 1180 ° C. or higher If the heating temperature of the slab before hot rolling is too low, a part of AlN becomes undissolved, the amount of solid solution N decreases, and the tensile strength decreases. Therefore, in the step of heating the slab, a heating temperature of 1180 ° C. or higher is required.
  • the preferred heating temperature is 1200 ° C. or higher.
  • the upper limit of the heating temperature is not particularly specified, but if it is 1300 ° C. or lower, surface defects due to scale can be easily avoided, so that the upper limit is preferably 1300 ° C.
  • finishing temperature If the finishing temperature in the hot rolling step of 820 ° C. or higher is less than 820 ° C., the above-mentioned ⁇ r becomes a value outside the predetermined range, and the drawability deteriorates. Therefore, the finishing temperature needs to be 820 ° C. or higher.
  • the preferred finishing temperature is 860 ° C. or higher.
  • the upper limit of the finishing temperature is not particularly limited, but it is preferable if the temperature is 930 ° C. or lower because a steel sheet having a finer particle size can be obtained.
  • Winding temperature Over 640 ° C and 700 ° C or less If the winding temperature in the winding process is 640 ° C or less, the formation of cementite in the steel becomes insufficient, and the primary cooling of the next process remains in an excessive state of solid solution C. Since inter-rolling is performed, the ⁇ r becomes a value outside the predetermined range, and the drawability deteriorates. Therefore, the winding temperature needs to be higher than 640 ° C.
  • the preferred winding temperature is 650 ° C. or higher.
  • the winding temperature exceeds 700 ° C., the particle size of the hot-rolled sheet becomes coarse, so that the particle size of the final steel sheet also becomes coarse and the tensile strength decreases. Therefore, the winding temperature needs to be 700 ° C. or lower.
  • the preferred winding temperature is 680 ° C or lower.
  • pickling prior to cold rolling, pickling can be performed if necessary.
  • the pickling conditions are not particularly specified, and it is sufficient that the surface scale of the hot-rolled plate can be removed. Therefore, it may be pickled according to a conventional method.
  • Primary cold rolling rate 85% or more
  • the rolling rate in the process of primary cold rolling needs to be 85% or more for the purpose of refining the ferrite grain size after annealing and improving the tensile strength.
  • the rolling ratio is preferably 86% or more.
  • the total cold rolling ratio which is the sum of the rolling ratios of the primary cold rolling and the secondary cold rolling described later, is 90.5% or less, and more preferably 90.0% or less.
  • Annealing temperature 620 ° C. or higher and 690 ° C. or lower
  • the annealing temperature needs to be 620 ° C. or higher.
  • the annealing temperature needs to be 690 ° C. or lower.
  • the annealing temperature is preferably 640 ° C. or higher, preferably 680 ° C. or lower, and more preferably 640 ° C. to 680 ° C.
  • the annealing time is preferably 10 s or more.
  • the annealing method is not limited, but a continuous annealing method is preferable from the viewpoint of material uniformity.
  • the cooling conditions after annealing are not particularly limited, but from the viewpoint of increasing the strength by the action of solid solution C, the temperature range from 500 ° C. to 300 ° C. is cooled at 50 ° C./s or more after annealing. It is more preferred to cool at a rate.
  • Secondary cold rolling rate More than 20% and 40% or less
  • the annealed sheet obtained after the above annealing is increased in strength by secondary cold rolling and finished into a thin steel sheet.
  • the preferred rolling ratio is 22% or more.
  • the rolling ratio needs to be 40% or less.
  • the rolling ratio is preferably 35% or less.
  • the steel sheet for cans of the present invention can be obtained. Even if the steel sheet obtained here is subjected to surface treatment such as plating or chemical conversion treatment, the effect of the invention is not lost.
  • a steel slab was obtained by melting steel containing the components of steel symbols A to V shown in Table 1 and the balance consisting of unavoidable impurities and Fe.
  • the obtained steel slab is heated, hot-rolled, wound, pickled to remove scale, and then primary cold-rolled under the conditions shown in Table 2 to reach each annealing temperature in a continuous annealing furnace. Annealed.
  • the obtained annealed sheet was secondarily cold-rolled at each secondary cold-rolling ratio to obtain steel sheets (steel plate symbols 1 to 29) having a plate thickness of 0.12 to 0.22 mm.
  • In-plane anisotropy of r-value ⁇ r The in-plane anisotropy ⁇ r of the r value was measured and evaluated by the natural vibration method (module r) described in ASTM A623M.
  • Drawing property A blank having a diameter of 160 mm was punched from the obtained steel sheet, and a can body having a diameter of 82.8 mm and a height of 45.5 mm was produced by drawing-redrawing. Further, the bottom of the can was beaded (depth 0.5 mm, radius of curvature 1 mm) with diameters of 70 mm and 40 mm. The flange width of the obtained can body was measured all around at a pitch of 15 degrees. If the difference between the maximum value and the minimum value of the flange width is 1.5 mm or less, the draw moldability is good ⁇ , if it is more than 1.5 mm and 2 mm or less, the draw moldability is acceptable. If so, it was evaluated as x because it was inferior in draw moldability.
  • Lubrication conditions Lubricating oil applied to both sides of the steel sheet
  • First drawing ratio 1.52
  • Aperture ratio of the second aperture 1.26
  • Wrinkle suppression pressure at each aperture 0.3MPa Die shoulder radius at first drawing: 2.5 mm
  • Die shoulder radius at the time of the second drawing 2.5 mm
  • the lid is wrapped around the above can body, a hole is made from the lid side, air is sent under sealing, and the pressure at which the bottom of the can buckles is measured. If it is 0.18 MPa or more, it is ⁇ , less than 0.18 MPa. If so, it was set as x.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

食品や飲料缶に用いられる缶容器材料に適した缶用鋼板およびその製造方法を提供する。本発明の缶用鋼板は、質量%で、C:0.010~0.080%、Si:0.05%以下、Mn:0.10~0.70%、P:0.03%以下、S:0.020%以下、Al:0.005~0.020%およびN:0.0120~0.0180%を含有し、残部はFeおよび不可避的不純物の成分組成を有し、Δrが-0.3~0.3以下である。

Description

缶用鋼板およびその製造方法
 本発明は、食品や飲料缶に用いられる缶容器材料に適した缶用鋼板およびその製造方法に関する。本発明は、特に、DRD(Draw and Redraw)缶胴、瓶の蓋として使用されるラグキャップおよびスクリューキャップに好適な、缶用鋼板およびその製造方法に関する。
 飲料缶や食缶に用いられる鋼板の中で、缶蓋や缶底、3ピース缶の胴などにDR(Double Reduced)材と呼ばれる鋼板が用いられる場合がある。DR材とは一次冷間圧延の後、焼鈍を施し、その後に再度、一定以上の圧延率で二次冷間圧延を行って製造された鋼板である。圧延率の小さい調質圧延のみを行うSR(Single Reduced)材に比べ、容易に、硬質化しつつ板厚を薄くすることができる。近年の環境負荷低減およびコスト削減の観点から、飲料缶や食品缶に用いられる鋼板の使用量削減が求められており、鋼板の薄肉化が容易なDR材への要望が大きくなっている。
 DR材は、主に加工硬化により硬質化するため、一般的に絞り成形性が低い。そのため、EOE(Easy-Open End)のリベット部や3ピース缶胴部のフランジ加工など、高い絞り成形性が要求される部位で割れなどの不具合が発生するという問題がある。これに対し、絞り成形性を改善した鋼板が提案されている。
 例えば、特許文献1には、質量%で、C:0.01~0.05%、Si:0.04%以下、Mn:0.1~1.2%、S:0.10%以下、Al:0.001~0.100%、N:0.10%以下、P:0.0020~0.100%を含有し、残部がFeおよび不可避的不純物からなり、引張強さTSが500MPa以上、かつ板幅方向と圧延方向の耐力差が20MPa以下である高強度容器用鋼板が開示されている。
 また、例えば、特許文献2には、質量%で、C:0.010%以上0.080%以下、Si:0.05%以下、Mn:0.10%以上0.70%以下、P:0.03%以下、S:0.020%以下、Al:0.005%以上0.070%以下、N:0.0120%以上0.0180%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、含有する前記Nの内、固溶NとしてのN含有量が0.0100%以上であり、フェライト平均粒径が7.0μm以下であり、表面から板厚の1/4深さ位置の転位密度が4.0×1014-2以上2.0×1015-2以下であり、時効処理後の圧延直角方向の引張強さが530MPa以上、伸びが7%以上であることを特徴とする高強度鋼板が開示されている。
WO2009/125876 WO2015/166646
 特許文献1に記載された技術では、良好なフランジ加工性やネッキング加工性が得られているが、例えばDRD缶胴やスクリューキャップなどに加工する際に要求される絞り成形性は十分ではない。例えば、鋼板を缶胴に絞り成形する際には、成型後のフランジ部の張り出し代(フランジ幅)が缶胴周方向に均等であることが理想的である。このフランジ幅の周方向変動の少ない、絞り成形性に優れる缶用鋼板の提供が要求されている。また、特許文献1に記載の技術における引張強さは640MPa程度であり、薄肉の製品で十分な耐圧強度を有するには、鋼板強度が不足している。
 同様に、特許文献2に記載された技術も、絞り成形性が不足している。
 本発明は、かかる事情に鑑みなされたもので、絞り成形性に優れる高強度の缶用鋼板およびその製造方法を提供することを目的とする。ここで、高強度とは、時効処理後の圧延方向の引張強さが650MPa以上であることをいう。
 本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、本発明者らは、缶用鋼板の絞り成形性に対して、鋼板が有するr値の面内異方性Δrが与える影響に着目し、鋼板のΔrが-0.3以上0.3以下であれば優れた絞り成形性が得られることを新たに見出した。また、本発明者らは、鋼成分、スラブ加熱、熱間圧延、巻取り、一次冷間圧延、焼鈍、および二次冷間圧延の各条件を所定の範囲内とすることにより、Δrが-0.3以上0.3以下である缶用鋼板の提供が可能であることを見出した。そして、この知見に基づいて本発明を完成するに至った。
 なお、本明細書において、「r値」とは、塑性歪み比を示すランクフォード値のことである。また、本明細書において、「Δr」は、後述する式に従って算出することができる。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
 (1)質量%で、
 C:0.010%以上0.080%以下、
 Si:0.05%以下、
 Mn:0.10%以上0.70%以下、
 P:0.03%以下、
 S:0.020%以下、
 Al:0.005%以上0.020%以下
 およびN:0.0120%以上0.0180%以下を含有し、
 残部はFeおよび不可避的不純物の成分組成を有し、
 r値の面内異方性Δrが-0.3以上0.3以下
 である、缶用鋼板。
 (2)前記成分組成に加えて、質量%で、
 Ti:0.005以上0.020%以下、
 Nb:0.005以上0.020%以下、
 Mo:0.01以上0.05%以下、
 Cr:0.04以上0.10%以下、
 B:0.0005以上0.0060%以下、
 Ca:0.0010以上0.01%以下、
 Ni:0.05以上0.15%以下および
 Cu:0.05以上0.20%以下
のうちの、一種以上を含有する、前記(1)に記載の缶用鋼板。
 (3)前記(1)又は(2)に記載の成分組成を有するスラブを、1180℃以上に加熱する工程と、加熱されたスラブを仕上げ温度820℃以上にて熱間圧延する工程と、熱間圧延された熱延板を640℃超700℃以下にて巻取る工程と、巻き取られた熱延板を85%以上の圧延率で一次冷間圧延する工程と、一次冷間圧延された冷延板を620℃以上690℃以下で焼鈍する工程と、焼鈍された焼鈍板を圧延率20%超40%以下で二次冷間圧延する工程とを有する、缶用鋼板の製造方法。
 本発明によれば、r値の面内異方性Δrが-0.3以上0.3以下である、絞り成形性に優れる高強度の缶用鋼板を提供することができる。本発明の缶用鋼板を用いることにより、板厚の薄いDR鋼板での製缶や製蓋が可能になり、省資源化および低コスト化を達成することができ、産業上格段の効果を奏する。
 以下、本発明を詳細に説明する。本発明の缶用鋼板は、
 質量%で、
 C:0.010%以上0.080%以下、
 Si:0.05%以下、
 Mn:0.10%以上0.70%以下、
 P:0.03%以下、
 S:0.020%以下、
 Al:0.005%以上0.020%以下および
 N:0.0120%以上0.0180%以下を含有し、
 残部はFeおよび不可避的不純物の成分組成を有し、
 r値の面内異方性Δrが-0.3以上0.3以下である、ことを特徴とする。
 そして、本発明の缶用鋼板は、上記成分組成を有するスラブを1180℃以上に加熱し、仕上げ温度820℃以上にて熱間圧延した後、640℃超700℃以下にて巻取り、85%以上の圧延率で一次冷間圧延し、620℃以上690℃以下で焼鈍し、圧延率20%超40%以下で二次冷間圧延することで、製造することができる。
 まず、本発明の缶用鋼板の成分組成について説明する。
C:0.010%以上0.080%以下
 Cは、強度向上に重要な元素であり、0.010%以上とすることで、高強度、具体的には時効処理後の圧延方向の引張強さを650MPa以上とするのに寄与する。好ましくはC量は0.020%以上である。一方、C量が0.080%を超えるとr値の面内異方性Δrが-0.3よりも低下し、絞り成形性が低下するため、C量の上限を0.080%以下とする必要がある。好ましくはC量は0.040%以下である。
Si:0.05%以下
 Siは、多量に添加すると、Siの表面濃化により表面処理性が劣化し、耐食性が低下するため、Si量を0.05%以下とする必要があり、好ましくは0.03%以下である。一方、Siは引張強さの向上に寄与するため、Siの下限は0.01%とすることが好ましい。
Mn:0.10%以上0.70%以下
 Mnは、固溶強化により鋼板の引張強さを向上させる効果や、MnSを形成することにより、鋼中に含まれるSに起因する熱間延性の低下を防止する効果がある。この効果を得るためには0.10%以上のMnの添加が必要である。特に、鋼板の高強度化の観点からは、Mnを0.20%以上添加することが好ましく、さらには0.50%以上が好ましい。一方、Mnが0.70%を超えると、面内異方性が劣化する。従って、Mn量は0.70%以下とする。好ましくはMn量は0.65%以下である。
P:0.03%以下
 Pは、多量に添加すると過剰な硬質化や、Pの鋼板中央部への偏析により絞り成形性が低下し、また、耐食性が低下する。このためP量の上限は0.03%とする。好ましくはP量は0.02%以下である。なお、P量を0.01%未満に低減するには、製錬コストなどのコストの増加を伴う。したがって、経済性の観点からは、P量を0.01%以上とすることが好ましい。
S:0.020%以下
 Sは、鋼中で硫化物を形成して、熱間延性を低下させ、熱間圧延における加工性を低下させる。よって、S量の上限は0.020%以下とする。好ましくはS量は0.015%以下である。なお、S量が0.008%以上であれば、缶の内容物によらず孔食を防ぐことができるため、S量は0.008%以上とすることが好ましい。
Al:0.005%以上0.020%以下
 Alは、脱酸剤として添加される元素である。この効果を得るためには、0.005%以上のAlの添加が必要である。鋼中にAlが過剰に存在する場合、Nと結合してAlNが形成され、鋼中の固溶Nを減少させる結果、鋼板の引張強さが低下する。したがって、Al量は0.020%以下とする必要がある。Al量は、好ましくは0.008%~0.019%であり、より好ましくは0.011%~0.016%である。Al量は、0.008%以上が好ましく、0.011%以上がより好ましく、0.019%以下が好ましく、0.016%以下がより好ましい。
N:0.0120%以上0.0180%以下
 Nは、固溶強化元素として、鋼板の高強度化に寄与する。この効果のため、N量として0.0120%以上の添加が必要である。一方、Nが多量に添加されると、r値の面内異方性Δrが顕著に低下し、絞り成形性が低下するため、N量の上限は0.0180%とする。好ましくは、N量は0.0135%~0.0165%である。N量は、0.0135%以上が好ましく、0.0165%以下が好ましい。
 本発明の缶用鋼板は、以上の諸成分を含み、残部はFeおよび不可避的不純物の成分組成を基本成分とする。
 本発明の缶用鋼板は、必要に応じて、上記基本成分に加えて、
 Ti:0.005%以上0.020%以下、
 Nb:0.005%以上0.020%以下、
 Mo:0.01%以上0.05%以下、
 Cr:0.04%以上0.10%以下、
 B:0.0005%以上0.0060%以下、
 Ca:0.0010%以上0.01%以下、
 Ni:0.05%以上0.15%以下および
 Cu:0.05%以上0.20%以下
のうちの、一種以上を含有することができる。
Ti:0.005%以上0.020%以下
 Tiは、析出強化元素として、鋼板の高強度化に寄与する。この効果のため、Tiを0.005%以上添加することが好ましい。一方、Tiを多量に添加すると、鋼板の異方性が過度に大きくなるため、Ti量は0.020%以下とすることが好ましい。
Nb:0.005%以上0.020%以下
 Nbは、析出強化元素として、鋼板の高強度化に寄与する。この効果のため、Nbを0.005%以上添加することが好ましい。一方、Nbを多量に添加すると、鋼板の異方性が過度に大きくなるため、0.02%以下とすることが好ましい。
Mo:0.01%以上0.05%以下
 Moは、析出強化元素として作用し、また組織を細粒化することにより、鋼板の高強度化に寄与する。この効果のため、Moを0.01%以上添加することが好ましい。しかし、Moを多量に添加しても効果が飽和するため、Mo量は0.05%以下とすることが好ましい。
Cr:0.04%以上0.10%以下
 Crは、析出強化元素として、鋼板の高強度化に寄与する。この効果のため、Crを0.04%以上添加することが好ましい。Crを多量に添加した場合、粗大な析出物となって高強度化の効果が飽和するため、Cr量は0.10%以下とすることが好ましい。
B:0.0005%以上0.0060%以下
 Bは、細粒化により、鋼板の高強度化に寄与する。この効果のため、Bを0.0005%以上添加することが好ましい。Bを多量に添加しても効果が飽和するだけではなく、鋼板のr値の面内異方性Δrの絶対値が大きくなるため、B量は0.0060%以下とすることが好ましい。
Ca:0.0010%以上0.01%以下
 Caには、硫化物を微細化して熱間延性を向上させる効果がある。また、Caには、CaがSと結びつくことにより、化合物MnSを生成するMnの量を低減させつつ、固溶強化に寄与するMn量の割合を増加させて、鋼板の高強度化に寄与する効果がある。このため、Caを0.0010%以上添加することが好ましい。Caを多量に添加しても効果が飽和するのみならず、粗大な介在物となって絞り成形性が劣化する場合がある。したがって、Ca量は0.01%以下とすることが好ましい。
Ni:0.05%以上0.15%以下
 Niは、固溶強化や細粒化により、鋼板の高強度化に寄与する。この効果のため、Niを0.05%以上添加することが好ましい。Niを多量に添加した場合、表面性状の劣化が顕著になるため、Ni量は0.15%以下とすることが好ましい。
Cu:0.05%以上0.20%以下
 Cuは、固溶強化や細粒化により、鋼板の高強度化に寄与する。この効果のため、Cuを0.05%以上添加することが好ましい。多量に添加した場合、表面性状の劣化が顕著になるため、Cu量は0.20%以下とすることが好ましく、より好ましくは0.15%以下とする。
 次に、本発明の缶用鋼板における材質特性について説明する。
 r値の面内異方性Δr:-0.3以上0.3以下
 DRD缶胴や瓶蓋を良好な絞り成形性のもとに成形するためには、r値の面内異方性の指標であるΔrが-0.3以上0.3以下である必要がある。ここで、ΔrはΔr=(r0+r90-2・r45)/2の式で表される。Δrが上記範囲を外れるほど、r値の異方性が大きくなり、絞り成形時にフランジ部のいわゆる「耳」が大きくなるので、良好な形状が得られない。すなわち、Δrが上記範囲を外れると、絞り成形後のフランジ部の幅の変動が大きくなるので、缶用鋼板において均一なフランジ幅の形状が得られる健全な絞り成形が実現されない。
 Δrは、好ましくは-0.25以上0.25以下である。
 時効処理後の圧延方向の引張強さ:650MPa以上
 DRD缶胴や瓶蓋の耐圧強度を確保するためには、鋼板の圧延方向の引張強さを650MPa以上とすることが好ましい。引張強さを650MPa以上とすることで鋼板を薄肉化しても十分な耐圧強度を確保することが出来る。DR材の場合、一般的に圧延直角方向に比べて圧延方向のほうが、引張強さが低いため、本明細書では圧延方向の引張強さで評価する。また、缶用鋼板は焼付け塗装して使用されることが多いため、本明細書では、焼付け塗装に相当する210℃、10minの時効処理後の特性にて評価する。板厚を特に薄くする場合には、鋼板の圧延方向の引張強さを680MPa以上とすることが好ましい。一方、過度に高強度化した場合、成形時にシワなどの成形不良の発生が顕著になるため、引張強さを800MPa以下とすることが好ましい。
 次に、本発明の缶用鋼板の製造方法について説明する。
 本発明の缶用鋼板は、上記成分組成を有するスラブを、1180℃以上に加熱する工程と、加熱されたスラブを仕上げ温度820℃以上にて熱間圧延する工程と、熱間圧延された熱延板を640℃超700℃以下にて巻取る工程と、巻き取られた熱延板を85%以上の圧延率で一次冷間圧延する工程と、一次冷間圧延された冷延板を620℃以上690℃以下で焼鈍する工程と、焼鈍された焼鈍板を圧延率20%超40%以下で二次冷間圧延する工程とを経て製造することができる。
 加熱温度:1180℃以上
 熱間圧延前のスラブの加熱温度が低すぎると、AlNの一部が未溶解となり、固溶N量が低下して、引張強さが低下する。したがって、スラブを加熱する工程においては、1180℃以上の加熱温度が必要である。好ましい加熱温度は1200℃以上である。加熱温度の上限は特に規定しないが、1300℃以下であればスケール起因の表面欠陥を避けることが容易になるため、上限は1300℃とすることが好ましい。
 仕上げ温度:820℃以上
 熱間圧延する工程における仕上げ温度が820℃未満であると、上記したΔrが所定の範囲外の値となり、絞り成形性が悪化する。したがって、仕上げ温度は820℃以上とする必要がある。好ましい仕上げ温度は860℃以上である。仕上げ温度の上限は特に限定しないが、930℃以下であればより微細な粒径の鋼板が得られるため、好ましい。
 巻取温度:640℃超700℃以下
 巻き取る工程における巻取温度が640℃以下では、鋼中でのセメンタイトの生成が不十分になり、固溶Cが過剰な状態のまま次工程の一次冷間圧延が施されるため、上記Δrが所定の範囲外の値となり、絞り成形性が悪化する。そのため、巻取温度は640℃超とする必要がある。好ましい巻取温度は650℃以上である。一方、巻取温度が700℃を超えると、熱延板の粒径が粗大になるため、最終的な鋼板の粒径も粗大となり、引張強さが低下する。したがって、巻き取り温度は700℃以下とする必要がある。好ましい巻取温度は680℃以下である。
 ここで、冷間圧延に先立ち、必要に応じて酸洗することができる。なお、酸洗条件は、特に規定されることなく、熱延板の表層スケールが除去できればよい。したがって、常法に従って、酸洗すればよい。
 一次冷間圧延率:85%以上
 一次冷間圧延する工程における圧延率は、焼鈍後のフェライト粒径を微細化して、引張強さを向上させる目的で、85%以上とする必要がある。当該圧延率は、好ましくは86%以上である。一方、圧延率が91.4%以下であれば上記Δrを小さく制御することが容易であるため、好ましい。さらに好ましくは、一次冷間圧延、および後述の二次冷間圧延の圧延率を合計したトータル冷間圧延率を90.5%以下とし、より好ましくは90.0%以下とする。
 焼鈍温度:620℃以上690℃以下
 絞り成形性を確保するには、焼鈍中に十分に再結晶させる必要がある。そのためには、一次冷間圧延する工程で得られた冷延版を焼鈍する工程において、焼鈍温度は620℃以上とする必要がある。一方、焼鈍温度が高すぎると、フェライト粒径が粗大化して、引張強さが低下する。したがって、焼鈍温度は690℃以下とする必要がある。焼鈍温度は640℃以上が好ましく、680℃以下が好ましく、640℃~680℃がより好ましい。なお、焼鈍時間は10s以上とすることが好ましい。また、焼鈍方法は限定するものではないが、材質の均一性の観点から連続焼鈍法とすることが好ましい。さらに、焼鈍後の冷却条件は特に限定するものではないが、固溶Cの作用により高強度化する観点からは、焼鈍後、500℃から300℃までの温度域を50℃/s以上の冷却速度で冷却することがさらに好ましい。
 二次冷間圧延率:20%超40%以下
 上記の焼鈍後に得られる焼鈍板は、二次冷間圧延により高強度化され、板厚の薄い鋼板に仕上げられる。時効処理後の鋼板における圧延方向の引張強さを650MPa以上とするためには、二次冷間圧延する工程における圧延率を20%超とする必要がある。好ましい圧延率は22%以上である。一方、二次冷間圧延率が高すぎると、絞り成形性が悪化する。したがって、圧延率は40%以下とする必要がある。特に高い絞り成形性が要求される場合には、圧延率を35%以下とすることが好ましい。
 以上により、本発明の缶用鋼板が得られる。ここで得られた鋼板にめっきや化成処理などの表面処理をしても発明の効果が失われることは無い。
 表1に示す鋼記号A~Vの成分を含有し、残部が不可避的不純物とFeからなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを表2に示す条件にて、加熱後、熱間圧延し、巻取り、酸洗にてスケールを除去した後、一次冷間圧延し、連続焼鈍炉にて各焼鈍温度にて焼鈍した。得られた焼鈍板を各二次冷間圧延率にて二次冷間圧延し、板厚0.12~0.22mmの鋼板(鋼板記号1~29)を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 時効処理後の圧延方向の引張強さ
 210℃、10分の焼付け塗装相当の時効処理を行ったのち、JIS Z 2241に規定される5号引張試験を引張方向が圧延方向になるように採取し、JIS Z2241に従い、引張強さを評価した。
 r値の面内異方性Δr
 ASTM A623Mに記載の固有振動法(モジュールr)にてr値の面内異方性Δrを測定、評価した。
 絞り成形性
 得られた鋼板より直径160mmでブランクを打抜き、絞り-再絞り成形にて、直径82.8mm、高さ45.5mmの缶体を作製した。さらに缶底に、直径70mmおよび40mmのビード加工(深さ0.5mm、曲率半径1mm)を施した。得られた缶体について、そのフランジ幅を15度ピッチで全周測定した。フランジ幅の最大値と最小値の差が1.5mm以下であれば絞り成形性が良好であるとして◎、1.5mm超2mm以下であれば絞り成形性が許容可能であるとして○、2mm超であれば絞り成形性に劣るとして×とした。
 この試験における詳細条件を以下に記す。
潤滑条件:鋼板両面に潤滑油塗布
第一絞りの絞り比:1.52
第二絞りの絞り比:1.26
それぞれの絞りにおけるしわ抑え圧:0.3MPa
第一絞り時のダイの肩半径:2.5mm
第二絞り時のダイの肩半径:2.5mm
 耐圧強度
 上記の缶体に蓋を巻締め、蓋側から穴を空けて密封下にエアを送り込み、缶底部がバックリングする圧力を測定し、0.18MPa以上であれば○、0.18MPa未満であれば×とした。
 試験結果を表3に示す。本発明例は、いずれもr値の面内異方性Δrが-0.3以上0.3以下であり、絞り成形性と耐圧強度に優れる。一方、比較例では、上記特性のいずれか一つ以上が劣っている。
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  質量%で、
     C:0.010%以上0.080%以下、
     Si:0.05%以下、
     Mn:0.10%以上0.70%以下、
     P:0.03%以下、
     S:0.020%以下、
     Al:0.005%以上0.020%以下
     およびN:0.0120%以上0.0180%以下を含有し、
     残部はFeおよび不可避的不純物の成分組成を有し、
     r値の面内異方性Δrが-0.3以上0.3以下
     である、缶用鋼板。
  2.  前記成分組成に加えて、質量%で、
     Ti:0.005以上0.020%以下、
     Nb:0.005以上0.020%以下、
     Mo:0.01以上0.05%以下、
     Cr:0.04以上0.10%以下、
     B:0.0005以上0.0060%以下、
     Ca:0.0010以上0.01%以下、
     Ni:0.05以上0.15%以下および
     Cu:0.05以上0.20%以下
    のうちの、一種以上を含有する、請求項1に記載の缶用鋼板。
  3.  請求項1又は請求項2に記載の成分組成を有するスラブを、
    1180℃以上に加熱する工程と、
     加熱されたスラブを仕上げ温度820℃以上にて熱間圧延する工程と、
     熱間圧延された熱延板を640℃超700℃以下にて巻取る工程と、
     巻き取られた熱延板を85%以上の圧延率で一次冷間圧延する工程と、
     一次冷間圧延された冷延板を620℃以上690℃以下で焼鈍する工程と、
     焼鈍された焼鈍板を圧延率20%超40%以下で二次冷間圧延する工程とを有する、缶用鋼板の製造方法。
PCT/JP2020/009743 2019-03-29 2020-03-06 缶用鋼板およびその製造方法 WO2020203052A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020539014A JP6822617B1 (ja) 2019-03-29 2020-03-06 缶用鋼板およびその製造方法
CN202080017314.6A CN113490760B (zh) 2019-03-29 2020-03-06 罐用钢板及其制造方法
CN202310766077.9A CN116657048A (zh) 2019-03-29 2020-03-06 罐用钢板及其制造方法
KR1020217033678A KR102677317B1 (ko) 2019-03-29 2020-03-06 캔용 강판 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067971 2019-03-29
JP2019067971 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203052A1 true WO2020203052A1 (ja) 2020-10-08

Family

ID=72668408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009743 WO2020203052A1 (ja) 2019-03-29 2020-03-06 缶用鋼板およびその製造方法

Country Status (4)

Country Link
JP (1) JP6822617B1 (ja)
CN (2) CN116657048A (ja)
TW (1) TWI728760B (ja)
WO (1) WO2020203052A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336215A (ja) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd 面内異方性の優れた缶用高強度極薄鋼板の製造方法
JPH09316543A (ja) * 1996-05-29 1997-12-09 Kawasaki Steel Corp 良成形性缶用鋼板の製造方法
WO2015166646A1 (ja) * 2014-04-30 2015-11-05 Jfeスチール株式会社 高強度鋼板及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794004B2 (ja) * 2011-07-12 2015-10-14 Jfeスチール株式会社 フランジ加工性に優れる高強度缶用鋼板およびその製造方法
TWI472624B (zh) * 2012-07-09 2015-02-11 China Steel Corp 低碳鋼材之製造方法
JP6052220B2 (ja) * 2014-03-31 2016-12-27 Jfeスチール株式会社 成形性に優れた高強度冷延薄鋼板およびその製造方法
JP6052474B1 (ja) * 2015-02-26 2016-12-27 Jfeスチール株式会社 王冠用鋼板、王冠用鋼板の製造方法および王冠

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336215A (ja) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd 面内異方性の優れた缶用高強度極薄鋼板の製造方法
JPH09316543A (ja) * 1996-05-29 1997-12-09 Kawasaki Steel Corp 良成形性缶用鋼板の製造方法
WO2015166646A1 (ja) * 2014-04-30 2015-11-05 Jfeスチール株式会社 高強度鋼板及びその製造方法

Also Published As

Publication number Publication date
JP6822617B1 (ja) 2021-01-27
CN113490760B (zh) 2024-01-16
TW202100759A (zh) 2021-01-01
TWI728760B (zh) 2021-05-21
CN113490760A (zh) 2021-10-08
JPWO2020203052A1 (ja) 2021-04-30
CN116657048A (zh) 2023-08-29
KR20210141612A (ko) 2021-11-23

Similar Documents

Publication Publication Date Title
TWI604067B (zh) 兩片式罐用鋼板及其製造方法
TWI545203B (zh) High strength steel sheet and manufacturing method thereof
WO2010113333A1 (ja) 高強度容器用鋼板およびその製造方法
KR102268800B1 (ko) 2피스 캔용 강판 및 그의 제조 방법
TWI609976B (zh) 合金化熔融鍍鋅鋼板及其製造方法
TWI593811B (zh) Can steel plate and its manufacturing method
TWI493053B (zh) 三片式罐體及其製造方法
JP4957843B2 (ja) 缶用鋼板およびその製造方法
KR101264537B1 (ko) 제관용 강판의 제조 방법
TWI479031B (zh) 耐壓強度高且加工性優異之氣溶膠罐底部用鋼板及其製造方法
TWI721696B (zh) 罐用鋼板及其製造方法
JP6123735B2 (ja) 王冠用鋼板、その製造方法および王冠
JP2005320633A (ja) 2ピース変形缶用鋼板およびその製造方法
JP6822617B1 (ja) 缶用鋼板およびその製造方法
JP5540580B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
KR20040077966A (ko) 성형성 및 용접부의 특성이 우수한 용기용 강판 및 그제조 방법
JPH0676618B2 (ja) 伸びフランジ成形性の優れたdi缶用鋼板の製造法
KR102677317B1 (ko) 캔용 강판 및 그의 제조 방법
CN115135795B (zh) 高强度镀锡原板及其制造方法
JP2013147744A (ja) エアゾール缶ボトム用鋼板およびその製造方法
JP5803510B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
CN110506135B (zh) 钢板及其制造方法以及瓶盖和drd罐
JPH01184252A (ja) 伸びフランジ成形性の優れたdi缶用鋼板
WO2020261965A1 (ja) 缶用鋼板およびその製造方法
JP3873732B2 (ja) 3ピースくびれ缶用鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020539014

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033678

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20782541

Country of ref document: EP

Kind code of ref document: A1