WO2020202972A1 - Module and method for manufacturing same - Google Patents

Module and method for manufacturing same Download PDF

Info

Publication number
WO2020202972A1
WO2020202972A1 PCT/JP2020/008656 JP2020008656W WO2020202972A1 WO 2020202972 A1 WO2020202972 A1 WO 2020202972A1 JP 2020008656 W JP2020008656 W JP 2020008656W WO 2020202972 A1 WO2020202972 A1 WO 2020202972A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
insulating layer
annular metal
hole
Prior art date
Application number
PCT/JP2020/008656
Other languages
French (fr)
Japanese (ja)
Inventor
高野貴之
笹島裕一
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2020202972A1 publication Critical patent/WO2020202972A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to a module and a manufacturing method thereof, for example, a module for mounting an electronic component and a manufacturing method thereof.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve heat dissipation.
  • the present invention is provided through a first insulating layer, an electronic component mounted on the lower surface of the first insulating layer, and a first through hole provided on the upper surface of the first insulating layer and penetrating the first insulating layer.
  • the wiring connected to the electronic component, the first layer provided under or on the electronic component, and the corresponding electronic component between the first insulating layer and the first layer.
  • the corresponding electronic component and the corresponding electronic component are filled in a first space surrounded by a first annular metal layer surrounding any one of the wirings, the first insulating layer, the first layer and the first annular metal layer.
  • a module comprising a first resin for sealing one of the wirings, and having a first hole connecting the outside and the first space on at least one of the first insulating layer and the first annular metal layer. Is.
  • the first hole may be provided in the first annular metal layer.
  • the first hole may be provided diagonally or in the vicinity of the first annular metal layer.
  • the electronic component and the wiring are provided between the second layer provided under the electronic component and on the wiring, whichever is not one of the above, and between the first insulating layer and the second layer.
  • a second space surrounded by a second annular metal layer surrounding the other, the first insulating layer, the second layer, and the second annular metal layer is filled to seal the other of the electronic component and the wiring. It can be configured to include two resins.
  • the first hole is provided in the first annular metal layer
  • the first insulating layer is provided with a second hole connecting the first space and the second space
  • the second annular metal layer is provided.
  • the structure may be such that no holes are provided in the.
  • the first hole is provided in the first annular metal layer, is not provided in the first insulating layer and the first layer, and is externally provided in the second annular metal layer and the second.
  • the configuration may be such that a second hole connecting the space is provided.
  • the first layer is a second insulating layer provided on the wiring, and the wiring is provided on the upper surface of the second insulating layer and is provided through a second through hole penetrating the second insulating layer. It can be configured to include an electrode to be connected to.
  • the present invention is provided through a first insulating layer, an electronic component mounted on the lower surface of the first insulating layer, and a first through hole provided on the upper surface of the first insulating layer and penetrating the first insulating layer.
  • the wiring connected to the electronic component, the first layer provided under or on the electronic component, and the corresponding electronic component between the first insulating layer and the first layer.
  • a first annular metal layer that surrounds any one of the wirings is provided, and at least one of the first insulating layer, the first layer, and the first annular metal layer is provided with an external layer and the first insulating layer.
  • a method for manufacturing a module comprising a step of filling the first space with a resin for sealing one of the corresponding electronic component and the wiring through the first hole of the structure.
  • the structure comprises a second layer provided under the electronic component and on the other side of the wiring, and the other of the electronic component and the wiring between the first insulating layer and the second layer.
  • a second annular metal layer that surrounds the first hole is provided in the first annular metal layer, and the first insulating layer is provided with the first space, the first insulating layer, the second layer, and the like.
  • a second hole connecting the second space surrounded by the second annular metal layer is provided, the second annular metal layer is not provided with a hole, and the step of filling the resin is the first step.
  • the configuration may include a step of filling the first space with the resin through the holes and filling the resin from the first space to the second space through the second holes.
  • heat dissipation can be improved.
  • FIG. 1 (a) to 1 (c) are cross-sectional views (No. 1) showing a method of manufacturing a module according to the first embodiment.
  • 2 (a) and 2 (b) are cross-sectional views (No. 2) showing a method of manufacturing the module according to the first embodiment.
  • 3 (a) and 3 (b) are cross-sectional views (No. 3) showing a method of manufacturing the module according to the first embodiment.
  • 4 (a) and 4 (b) are cross-sectional views (No. 4) showing a method of manufacturing the module according to the first embodiment.
  • FIG. 5 is a cross-sectional view (No. 5) showing a method of manufacturing the module according to the first embodiment.
  • FIG. 6 is a cross-sectional view (No.
  • FIG. 7 is a cross-sectional view (No. 7) showing a method of manufacturing the module according to the first embodiment.
  • 8 (a) and 8 (b) are plan views showing a method of manufacturing the module according to the first embodiment.
  • FIG. 9 is a plan view of the module according to the first embodiment.
  • FIG. 10 is a plan view of the module according to the first embodiment.
  • FIG. 11 is a cross-sectional view showing a method of manufacturing a module according to the first modification of the first embodiment.
  • 12 (a) and 12 (b) are plan views showing a method of manufacturing a module according to a modification 1 of the first embodiment.
  • FIG. 13 (a) and 13 (b) are plan views showing a method of manufacturing a module according to a modification 2 of the first embodiment.
  • FIG. 14 is a cross-sectional view showing a method of manufacturing a module according to a modification 3 of the first embodiment.
  • 15 (a) and 15 (b) are plan views showing a method of manufacturing a module according to a modification 3 of the first embodiment.
  • FIG. 16 is a cross-sectional view showing a method of manufacturing a module according to a modification 4 of the first embodiment.
  • 17 (a) and 17 (b) are plan views showing a method of manufacturing a module according to a modification 4 of the first embodiment.
  • 18 (a) and 18 (b) are cross-sectional views showing a method of manufacturing the module according to the second embodiment.
  • FIG. 19 (a) and 19 (b) are a cross-sectional view and a plan view showing a method of manufacturing the module according to the second embodiment.
  • FIG. 20 is a plan view of the module according to the second embodiment.
  • FIG. 21 is a plan view showing a method of manufacturing a module according to the first modification of the second embodiment.
  • 22 (a) and 22 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 2 of the second embodiment.
  • 23 (a) and 23 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 3 of the second embodiment.
  • FIG. 8A illustrates the insulating layer 10, the wirings 80a to 80c, and the annular metal layer 86.
  • FIG. 8B illustrates the insulating layer 10, the electronic components 40a, 40b, 42, and the annular metal layer 48. In the cross-sectional view, the electronic components 40 and the wiring 80 are shown, but in the plan view, the electronic components 40a and 40b and the wirings 80a to 80c are shown.
  • the adhesive 16 is applied to the lower surface of the insulating layer 10.
  • the insulating layer 10 is a resin layer such as a polyimide layer and has flexibility.
  • the thickness of the insulating layer 10 is, for example, 7.5 ⁇ m to 125 ⁇ m.
  • the adhesive 16 is a resin adhesive such as an epoxy resin adhesive.
  • the adhesive 16 is applied, for example, by using a spin coating method, a spray coating method, an inkjet method, or a screen printing method.
  • the thickness of the adhesive 16 is, for example, 5 ⁇ m to 50 ⁇ m after curing.
  • the insulating layer 10 on which the adhesive 16 is formed in advance may be prepared.
  • the adhesive 16 may be selectively applied corresponding to the regions where the electronic components 40 and 42, the conductive block 46 and the annular metal layer 48, which will be described later, are arranged.
  • the adhesive 16 is preferably a resin material having excellent heat resistance and low dielectric properties.
  • a through hole 12 penetrating the insulating layer 10 and the adhesive 16 is formed.
  • the through hole 12 is formed by, for example, irradiating a laser beam.
  • the size of the through hole 12 is, for example, 30 ⁇ m to 500 ⁇ m.
  • annular metal layer 48 is provided with holes 72a and 72b diagonally in a plane (see, for example, FIG. 8B). Terminals 51 and 52 are provided on the upper surface of the electronic component 40, and terminals 53 are provided on the lower surface of the electronic component 40. Terminals 54 and 56 are provided on the upper surface of the electronic component 42.
  • the electronic component 40 is, for example, a vertical transistor, and is a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET such as a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • a semiconductor material such as Si, GaN or SiC is used for the transistor.
  • the electronic component 40 is, for example, a bare chip or a package in which a bare chip is sealed and mounted.
  • the package on which the bare chip is mounted is a package such as WLP (Wafer Level Package) or SIP (Single Inline Package).
  • the electronic component 42 is, for example, an integrated circuit, a controller that controls the electronic component 40, and is, for example, a bare chip or a package on which a bare chip is mounted.
  • Terminals 51 to 54 and 56 are electrodes of electronic components 40 and 42, and are made of a metal such as Cu (copper), Au (gold), Ag (silver) or Al (aluminum), or one of them as a main material. It is a pad.
  • a gate terminal and a source terminal are provided on the upper surface, and a drain terminal (or a source terminal) is provided on the lower surface.
  • the conductive block 46 and the annular metal layer 48 are Cu or a metal layer containing Cu as a main material, and are preferably a metal block or a plate having a rectangular cross section.
  • the adhesive 16 is cured to fix and bond the electronic components 40 and 42, the conductive block 46, the annular metal layer 48, and the insulating layer 10.
  • the heat treatment is carried out at a temperature of, for example, 150 ° C to 300 ° C.
  • the terminals 51 to 54 and 56 are exposed in the through hole 12.
  • a metal layer 14 is formed on the upper surface of the insulating layer 10 and the inner surface of the through hole 12.
  • a seed layer is formed on the upper surface of the insulating layer 10 and the inner surface of the through hole 12.
  • the seed layer is formed by, for example, a sputtering method or an electroless plating method.
  • a plating layer is formed on the upper surface of the seed layer.
  • the plating layer is, for example, Cu or a metal layer containing Cu as a main material.
  • the metal layer 14 is formed by the seed layer and the plating layer.
  • the thickness of the metal layer 14 is, for example, several ⁇ m to 125 ⁇ m, and is the thickness at which the through hole 12 is embedded.
  • a bonding layer 28 is provided on the upper surface of the metal layer 14.
  • the bonding layer 28 is a so-called conductive paste in which the resin paste contains a brazing material, metal particles such as Cu or Ag, metal powder, and the like.
  • a support substrate having a metal layer 24 formed on one main surface of the insulating layer 20 is separately prepared.
  • the insulating layer 20 is a resin layer such as a polyimide layer.
  • the metal layer 24 is, for example, a layer containing Cu or Cu as a main material.
  • the support substrate is, for example, a copper-clad laminate (CCL: Copper Clad Laminate) substrate, and the metal layer 24 is a rolled or electroplated metal layer.
  • the holes 70a and 70b are provided in the metal layer 24 diagonally on a flat surface (see FIG. 8A).
  • the thickness of the insulating layer 10 is, for example, 7 ⁇ m to 125 ⁇ m, and the thickness of the metal layer 24 is, for example, 50 ⁇ m to 300 ⁇ m.
  • the metal layer 24 may be formed on the entire surface of the insulating layer 20, and then the metal layer 24 may be patterned by using a photolithography method and an etching method.
  • the metal layer 24 formed by machining such as pressing may be attached to the insulating layer 20.
  • An adhesive or the like may be provided between the insulating layer 20 and the metal layer 24.
  • the adhesive may be formed on the entire surface of the insulating layer 20, or may be selectively formed at a location where the metal layer 24 is provided.
  • a through hole 22 penetrating the insulating layer 20 is formed.
  • the method for forming the through hole 22 is the same as the method for forming the through hole 12 in FIG. 1 (b).
  • the metal layer 26 is formed on the upper surface of the insulating layer 20 and in the through hole 22.
  • the metal layer 26 is formed by a plating method in the same manner as the method for forming the metal layer 14 in FIG. 2 (a). As a result, the metal layer 26 is connected to the metal layer 24 via the through hole 22.
  • the lower surface of the metal layer 24 is brought into contact with the upper surface of the bonding layer 28 of FIG. 2B.
  • the metal layers 14 and 24 are thermally, mechanically and electrically joined.
  • the thickness of the bonding layer 28 is, for example, 5 ⁇ m to 50 ⁇ m after firing.
  • the thick wiring 80 and the annular metal layer 86 are formed by the metal layer 14, the bonding layer 28, and the metal layer 24.
  • the annular metal layer 86 is provided with holes 70b.
  • the terminals 51 and 56 are electrically connected to the metal layer 26 by the wiring 80.
  • the terminals 52 and 54 are electrically connected by wiring 82.
  • the annular metal layer 86 is provided on the periphery of the insulating layers 10 and 20 and supports the insulating layers 10 and 20. A space 98 surrounded by the insulating layers 10 and 20 and the annular metal layer 86 is formed.
  • the resin 60 is formed in the space 98 between the insulating layers 10 and 20.
  • a transfer molding method, an injection method or a compression method is used to form the resin 60.
  • the resin 60 is introduced from the hole 70a as shown by the arrow 76a and is filled in the space 98 as shown by the dotted lines 77a to 77c. Air escapes from the hole 70b as shown by the arrow 76b.
  • metal layers 34 and 36 are provided on the upper surface and the lower surface of the insulating substrate 30.
  • the insulating substrate 30 is, for example, a ceramic substrate.
  • the metal layers 34 and 36 are, for example, Cu layers.
  • the insulating substrate 30, the metal layers 34 and 36 function as a heat sink that releases heat from the electronic component 40.
  • the bonding layer 38 is applied to the upper surface of the metal layer 34.
  • the material of the bonding layer 38 is, for example, Ag paste, Cu paste or brazing material.
  • the upper surface of the bonding layer 38 is brought into contact with the lower surfaces of the electronic component 40, the conductive block 46, and the annular metal layer 48.
  • the joint layer 38 is fired by heat treatment.
  • the electronic component 40, the conductive block 46, the annular metal layer 48, and the metal layer 24 are thermally, mechanically, and electrically joined.
  • the thickness of the bonding layer 28 is, for example, 5 ⁇ m to 50 ⁇ m after firing.
  • the terminal 53 is electrically connected to the metal layer 26 via the metal layer 34, the conductive block 46, and the wiring 80.
  • the current flows from the upper surface to the lower surface of the electronic component 40, from the lower surface to the metal layer 26 on the upper surface of the module via the metal layer 34, the conductive block 46, and the wiring 80.
  • a space 99 surrounded by the insulating layer 10, the insulating substrate 30, and the annular metal layer 48 is formed.
  • the resin 62 is formed in the space 99 between the insulating layer 10 and the insulating substrate 30.
  • a transfer molding method, an injection method or a compression method is used to form the resin 62.
  • the resin 62 is introduced from the hole 72a as shown by the arrow 78a.
  • the resin 62 is diagonally filled with the space 99 between the insulating layer 10 and the insulating substrate 30, as shown by the dotted lines 79a to 79c.
  • the air in the space 99 escapes from the hole 72b.
  • the resin 62 is filled in the space 99, the resin 62 is cured.
  • the electronic components 40a, 40b and 42 are sealed.
  • the resin 62 is, for example, a thermosetting resin or a thermoplastic resin.
  • the width of the annular metal layer 86 in the X direction and the Y direction is, for example, 100 ⁇ m or 5000 ⁇ m, and the thickness of the annular metal layer 86 in the Z direction is, for example, 30 ⁇ m to 300 ⁇ m.
  • the widths of the holes 70a and 70b in the X and Y directions are, for example, 100 ⁇ m to 500 ⁇ m.
  • the holes 70a and 70b may be provided in at least a part of the annular metal layer 86 in the Z direction.
  • the width of the annular metal layer 48 in the X direction and the Y direction is, for example, 100 ⁇ m to 5000 ⁇ m, and the thickness of the annular metal layer 48 in the Z direction is, for example, 50 ⁇ m to 1000 ⁇ m.
  • the widths of the holes 72a and 72b in the X and Y directions are, for example, 100 ⁇ m to 5000 ⁇ m.
  • the holes 72a and 72b may be provided in at least a part of the annular metal layer 48 in the Z direction.
  • FIG. 9 and 10 are plan views of the module according to the first embodiment.
  • FIG. 9 mainly shows the portion of the upper layer provided in the insulating layer 20 of FIG. 7, and shows the through hole 22, the metal layers 24 and 26.
  • FIG. 10 mainly shows a lower layer portion provided on the insulating layer 10 side, and includes a through hole 12, a metal layer 14, electronic components 40a, 40b, 42, terminals 51a, 51b, 52a, 52b, 54, 56, and wiring. 80a to 80c, 82a and 82b are illustrated.
  • terminals 51a and 52a are provided on the upper surface of the electronic component 40a, and terminals 51b and 52b are provided on the upper surface of the electronic component 40b.
  • the electronic components 40a and 40b are, for example, power semiconductor elements and vertical transistors.
  • the terminals 51a and 51b are source terminals, and the terminals 52a and 52b are gate terminals.
  • Terminals 54 and 56 are provided on the upper surface of the electronic component 42.
  • the electronic component 42 has a control circuit that controls a transistor.
  • the control circuit outputs a gate signal to the gate terminal of the transistor based on the control signal from the outside.
  • the terminal 54 is a terminal that outputs a transistor gate signal to the terminals 52a and 52b.
  • the terminal 56 is a terminal that receives a control signal from the outside.
  • the metal layer 26 forms a source pad Ps, a drain pad Pd, and a control pad Pg.
  • the terminals 51a and 51b are electrically connected to the wiring 80a via the through hole 12.
  • the wiring 80a is electrically connected to the source pad Ps via the through hole 22.
  • the terminals 52a and 52b are electrically connected to the terminal 54 via the through hole 12 and the wiring 82a.
  • the terminal 56 is electrically connected to the control pad Pg via the through holes 12, 22 and the wirings 80b and 82b.
  • the terminals 53 provided on the lower surfaces of the electronic components 40a and 40b are electrically connected to the drain pad Pd via the bonding layer 38, the metal layer 34, the conductive block 46, and the wiring 80c.
  • a ground potential is supplied to the drain pad Pd.
  • the wiring connected to the source terminal may have a large planar dimension but is required to be thick, and the wiring connected to the gate terminal may be thin but required to have a small planar dimension.
  • the wiring 80a is a wiring for supplying a current between the source pad Ps and the terminals 51a and 51b which are the source terminals.
  • the wiring 80c is a wiring for supplying a current between the drain pad Pd and the terminal 53 which is a drain terminal.
  • the wiring 82a is a wiring for supplying a control voltage or a control current between the terminal 54 which is a control terminal of the control circuit and the terminals 52a and 52b which are gate terminals.
  • the wiring 80b is a wiring that connects the control pad Pg and the terminal 56, and a relatively large current flows through the wiring 80b.
  • the wiring 80a connected to the source terminal, the wiring 80c connected to the drain terminal, and the wiring 80b connected to the terminal 56 are formed by the metal layers 14 and 24, and the wiring 82a connected to the gate terminal. Is formed only by the metal layer 14. Thereby, the thick wiring 80a to 80c and the thin wiring 82 can be formed by a simple process.
  • the annular metal layers 48 and 86 can improve heat dissipation from the electronic components 40 and 42. Moreover, the strength can be improved.
  • Resins 60 and 62 can be formed in the cyclic metal layers 48 and 86 by providing holes 70a, 70b, 72a and 72b for injecting or discharging the resin in the annular metal layers 48 and 86.
  • the holes 70a and 70b are provided on opposite sides of the annular metal layer 86, and are provided diagonally or in the vicinity of the annular metal layer 86.
  • the holes 72a and 72b are provided on opposite sides of the annular metal layer 48, and are provided diagonally or in the vicinity of the annular metal layer 48.
  • FIGS. 12A and 12B are plan views showing a method of manufacturing the module according to the first modification of the first embodiment. is there.
  • the annular metal layer 86 is not provided.
  • a mold is used between the insulating layers 10 and 20 to form the resin 60.
  • the resin 62 is introduced from the hole 72a as shown by the arrow 78a.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted. Either one of the annular metal layers 48 and 86 may not be provided as in the first modification of the first embodiment.
  • FIG. 13A and 13 (b) are plan views showing a method of manufacturing a module according to a modification 2 of the first embodiment.
  • the holes 70c are provided on the sides of the annular metal layer 86 where the holes 70a and 70b are not provided.
  • the resin 60 is introduced into the space 98 from the hole 70a as shown by the arrow 76a, the air in the space 98 can be evacuated from the hole 70c as shown by the arrow 76c.
  • holes 72c are provided on the sides of the annular metal layer 48 where the holes 72a and 72b are not provided.
  • the resin 62 is introduced into the space 99 from the hole 72a as shown by the arrow 78a, the air in the space 99 can be evacuated from the hole 72c as shown by the arrow 78c.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • the holes 70a to 70c and 72a to 72c are provided on each side, air can be evacuated from the spaces 98 and 99.
  • the holes 70c and 72c may be provided at arbitrary locations.
  • FIG. 14 is a cross-sectional view showing a method of manufacturing a module according to a modification 3 of the first embodiment
  • FIGS. 15 (a) and 15 (b) show a method of manufacturing a module according to the third modification of the first embodiment. It is a plan view.
  • the annular metal layer 86 is not provided.
  • a hole 74 is provided in the insulating layer 10.
  • the annular metal layer 48 is not provided with holes 72a and 72b. The position of the hole 74 in FIG. 14 does not correspond to the position of the hole in FIGS. 15 (a) and 15 (b).
  • the insulating layers 10 and 20 are covered with the mold 90.
  • the resin is introduced from the introduction hole 91a of the mold 90 as shown by the arrow 92a. Air escapes from the lead-out hole 91b of the mold 90 as shown by the arrow 92b.
  • the resin is introduced from the space above the insulating layer 10 to the space below it through the holes 74 of the insulating layer 10 as shown by the arrow 93a.
  • the inside of the cyclic metal layer 48 can be filled with the resin 62 even if the annular metal layer 48 is not provided with holes.
  • At least one of the holes 74 may function as a hole for venting air from the space 99.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • FIG. 16 is a cross-sectional view showing a method of manufacturing a module according to a modified example 4 of the first embodiment
  • FIGS. 17 (a) and 17 (b) show a method of manufacturing a module according to the modified example 4 of the first embodiment. It is a plan view.
  • the annular metal layer 86 is provided with holes 70a and 70b.
  • a hole 74 is provided in the insulating layer 10.
  • the annular metal layer 48 is not provided with holes.
  • FIG. 18 (a) to 19 (a) are cross-sectional views showing a method of manufacturing the module according to the second embodiment.
  • FIG. 19B is a plan view showing a method of manufacturing the module according to the second embodiment.
  • FIG. 19B illustrates the insulating layer 10, the wirings 80a to 80c and the annular metal layer 86.
  • the insulating layers 10 and 20 are prepared in the same manner as in FIGS. 2 (b) and 3 (b).
  • the conductive block and the annular metal layer are not provided on the lower surface of the insulating layer 10.
  • No terminal is provided on the lower surface of the electronic component 40.
  • the electronic component 40 is a horizontal transistor, the source terminal, drain terminal, and gate terminal are all provided on the upper surface.
  • the wiring 80 and the annular metal layer 86 include metal layers 24 and 26, respectively, and the wiring 82 includes a metal layer 14 and no metal layer 24.
  • the resin 60 is formed in the space 98 between the insulating layers 10 and 20 as in FIG. 4 (b).
  • a transfer molding method, an injection method or a compression method is used to form the resin 60.
  • the resin 60 is introduced from the hole 70a as shown by the arrow 76a.
  • the resin 60 is diagonally filled with the space 98 between the insulating layers 10 and 20 as shown by the dotted lines 77a to 77c.
  • the air in the space 98 escapes from the hole 70b.
  • the resin 60 is filled in the space 98, the resin 60 is cured. As a result, the module according to the second embodiment is completed.
  • FIG. 20 is a plan view of the module according to the second embodiment.
  • FIG. 20 illustrates through holes 12, metal layers 14, electronic components 40a, 40b, 42, terminals 51a to 51d, 52a, 54, 56, wirings 80a to 80c, 82a, 82b and an annular metal layer 86.
  • terminals 51a, 51c and 52a are provided on the upper surface of the electronic component 40a, and terminals 51b, 51d and 52b are provided on the upper surface of the electronic component 40b.
  • the electronic components 40a and 40b are, for example, power semiconductor elements and transistors.
  • the terminals 51a and 51b are source terminals, the terminals 51c and 51d are drain terminals, and the terminals 52a and 52b are gate terminals.
  • the terminals 51a and 51b are electrically connected by wiring 80a, and are electrically connected to a source pad (not shown) on the upper surface of the insulating layer 20.
  • the terminals 51c and 51d are electrically connected by wiring 80c, and are electrically connected to a drain pad (not shown) on the upper surface of the insulating layer 20.
  • the terminals 52a and 52b are electrically connected to the terminal 54 by the wiring 82a.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • the source terminal and the drain terminal may be provided on the upper surface of the electronic component 40.
  • the cyclic metal layer 86 may be provided, and the annular metal layer 48 and the resin 62 may not be provided.
  • FIG. 21 is a plan view showing a method of manufacturing a module according to the first modification of the second embodiment.
  • the holes 70c are provided on the sides of the annular metal layer 86 where the holes 70a and 70b are not provided.
  • the resin 60 is introduced from the holes 70a as shown by the arrow 76a, the air in the space 98 is released from the holes 70b and 70c as shown by the arrows 76b and 76c. Therefore, the resin 60 can be easily introduced into the space 98.
  • Other configurations are the same as those in the second embodiment, and the description thereof will be omitted.
  • [Modification 2 of Example 2] 22 (a) and 22 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 2 of the second embodiment.
  • the annular metal layer 86 is not provided with holes 70a and 70b.
  • a hole 74 is provided in the insulating layer 10.
  • the resin 60 is introduced into the space 98 from the hole 74a as shown by the arrow 76a. Air in the space 98 escapes from the hole 74b as shown by the arrow 76b.
  • Other configurations are the same as those in the second embodiment, and the description thereof will be omitted.
  • the insulating layer 10 may be provided with a hole 74a for introducing the resin 60.
  • FIGS. 23 (a) and 23 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 3 of the second embodiment.
  • the annular metal layer 86 is provided with holes 70a and 70b
  • the insulating layer 10 is provided with holes 74.
  • the resin 60 is introduced from the holes 70a as shown by the arrows 76a
  • the air in the space 98 escapes from the holes 70b and 74 as shown by the arrows 76b and 76c.
  • Other configurations are the same as those in the second embodiment, and the description thereof will be omitted.
  • the hole 74 provided in the insulating layer 10 may be used for air release.
  • the electronic components 40 and 42 are mounted on the lower surface of the insulating layer 10 (first insulating layer) and penetrate the upper surface of the insulating layer 10.
  • Wiring 80 and 82 that connect to the electronic components 40 and 42 via the hole 12 (first through hole) are provided.
  • An insulating layer 20 (first layer) is provided on the wirings 80 and 82.
  • the annular metal layer 86 (first annular metal layer) surrounds the wirings 80 and 82 between the insulating layer 10 and the insulating layer 20.
  • the resin 60 (first resin) is filled in the space 98 (first space) surrounded by the insulating layer 10, the insulating layer 20, and the annular metal layer 86, and seals the wirings 80 and 82.
  • the insulating substrate 30 is provided under the electronic components 40 and 42.
  • the annular metal layer 48 surrounds the electronic components 40 and 42 between the insulating layer 10 and the insulating substrate 30.
  • the resin 62 fills the space 99 surrounded by the insulating layer 10, the insulating substrate 30, and the annular metal layer 48, and seals the electronic components 40 and 42.
  • the heat generated in the electronic components 40 and 42 (when the electronic component 40 is a power semiconductor, for example, 250 ° C.) is released to the outside by the cyclic metal layer 48 or 86.
  • the temperature in the vicinity of the electronic components 40 and 42 is lowered, so that other electronic components can be mounted in the vicinity of the electronic components 40 and 42.
  • the strength can be increased as compared with the resin 60 or 62 alone.
  • thick wirings 80b and 80c and a conductive block 46 are provided between the electronic component 40 and the annular metal layer 48 or 86.
  • the heat dissipation of the heat generated in the electronic component 40 can be improved.
  • At least one of the insulating layer 10 and the annular metal layer 48 or 86 is provided with holes 70a to 70c, 72a to 72c and 74 (first holes) connecting (that is, communicating with) the outside and the space 98 or 99.
  • the insulating layers 10, 20 (or the insulating substrate 30) and the annular metal layer 86 (or 48) are passed through the holes 70a to 70c, 72a to 72c and 74 of the structure having the insulating layer 10 and the annular metal layer 48 or 86.
  • the holes 70a and 70b are provided diagonally to or near the annular metal layer 86, and the holes 72a and 72b are provided diagonally or near the annular metal layer 48. As a result, as shown in FIGS. 8 and 9, a viscous resin can be filled in the space.
  • the insulating substrate 30 (second layer) is provided under the electronic components 40 and 42.
  • the annular metal layer 48 (second annular metal layer) surrounds the electronic components 40 and 42 between the insulating layer 10 and the insulating substrate 30.
  • the resin 62 (second resin) is filled in a space 99 (second space) surrounded by the insulating layer 10, the insulating substrate 30, and the annular metal layer 48, and seals the electronic components 40 and 42.
  • the heat generated in the electronic components 40 and 42 is efficiently released to the outside by both the annular metal layers 48 and 86.
  • the strength can be further increased by providing both the annular metal layers 48 and 86.
  • the annular metal layer 86 is provided with holes 70a and 70b (first hole), and the insulating layer 10 is provided with a hole 74 (second hole).
  • the annular metal layer 48 is not provided with holes 72a and 72b.
  • the space 98 can be filled with the resin 60 through the holes 70a and 70b, and the resin 62 can be filled in the space 99 in the annular metal layer 48 from the space 98 through the holes 74.
  • the annular metal layer 86 is provided with holes 70a and 70b, the insulating layer 10 is not provided with holes 74, and the annular metal layer 48 is provided with holes 72a and 72b. There is. Thereby, the resins 60 and 62 can be formed by another step.
  • An insulating layer 20 (second insulating layer) is provided on the wiring 80, and a metal layer 26 is provided on the upper surface of the insulating layer 20 as an electrode and is connected to the wiring 80 via a through hole 22 (second through hole). As a result, the heat of the electronic component 40 can be released through the wiring 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Provided is a module which comprises: a first insulating layer; an electronic component that is mounted on a lower surface of the first insulating layer; wiring that is formed on an upper surface of the first insulating layer and is connected to the electronic component via a first through hole which passes through the first insulating layer; a first layer that is formed either below the electronic component or above the wiring; a first annular metal layer that surrounds the corresponding one of either the electronic component or the wiring between the first insulating layer and the first layer; and a first resin that fills a first space surrounded by the first insulating layer, the first layer, and the first annular metal layer and seals the corresponding one of either the electronic component or the wiring. A first hole that connects the first space with the outside is formed in at least one of the first insulating layer and the first annular metal layer. 

Description

モジュールおよびその製造方法Module and its manufacturing method
 本発明はモジュールおよびその製造方法に関し、例えば電子部品を搭載するモジュールおよびその製造方法に関する。 The present invention relates to a module and a manufacturing method thereof, for example, a module for mounting an electronic component and a manufacturing method thereof.
 パワー半導体デバイス等の電子部品が搭載されたモジュールにおいて、電子部品に接続される配線を厚くすることが知られている(例えば特許文献1)。 It is known that in a module on which an electronic component such as a power semiconductor device is mounted, the wiring connected to the electronic component is thickened (for example, Patent Document 1).
米国特許出願公開第2007/0235810号明細書U.S. Patent Application Publication No. 2007/0235810
 配線を介し電子部品に大電流を供給すると電子部品が発熱する。そこで、効率的に放熱する構造が求められている。 When a large current is supplied to an electronic component via wiring, the electronic component generates heat. Therefore, there is a demand for a structure that efficiently dissipates heat.
 本発明は、上記課題に鑑みなされたものであり、放熱性を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve heat dissipation.
 本発明は、第1絶縁層と、前記第1絶縁層の下面に搭載された電子部品と、前記第1絶縁層の上面に設けられ、前記第1絶縁層を貫通する第1貫通孔を介し前記電子部品と接続する配線と、前記電子部品下および前記配線上のいずれか一方に設けられた第1層と、前記第1絶縁層と前記第1層との間において対応する前記電子部品および前記配線のいずれか一方を囲む第1環状金属層と、前記第1絶縁層、前記第1層および前記第1環状金属層に囲まれた第1空間に充填され前記対応する前記電子部品および前記配線のいずれか一方を封止する第1樹脂と、を備え、前記第1絶縁層および前記第1環状金属層の少なくとも一方に外部と前記第1空間とをつなぐ第1孔が設けられたモジュールである。 The present invention is provided through a first insulating layer, an electronic component mounted on the lower surface of the first insulating layer, and a first through hole provided on the upper surface of the first insulating layer and penetrating the first insulating layer. The wiring connected to the electronic component, the first layer provided under or on the electronic component, and the corresponding electronic component between the first insulating layer and the first layer. The corresponding electronic component and the corresponding electronic component are filled in a first space surrounded by a first annular metal layer surrounding any one of the wirings, the first insulating layer, the first layer and the first annular metal layer. A module comprising a first resin for sealing one of the wirings, and having a first hole connecting the outside and the first space on at least one of the first insulating layer and the first annular metal layer. Is.
 上記構成において、前記第1孔は前記第1環状金属層に設けられている構成とすることができる。 In the above configuration, the first hole may be provided in the first annular metal layer.
 上記構成において、前記第1孔は前記第1環状金属層の対角またはその近傍に設けられている構成とすることができる。 In the above configuration, the first hole may be provided diagonally or in the vicinity of the first annular metal layer.
 上記構成において、前記電子部品下および前記配線上のうち前記いずれか一方でない他方に設けられた第2層と、前記第1絶縁層と前記第2層との間において前記電子部品および前記配線の他方を囲む第2環状金属層と、前記第1絶縁層、前記第2層および前記第2環状金属層に囲まれた第2空間に充填され前記電子部品および前記配線の他方を封止する第2樹脂と、を備える構成とすることができる。 In the above configuration, the electronic component and the wiring are provided between the second layer provided under the electronic component and on the wiring, whichever is not one of the above, and between the first insulating layer and the second layer. A second space surrounded by a second annular metal layer surrounding the other, the first insulating layer, the second layer, and the second annular metal layer is filled to seal the other of the electronic component and the wiring. It can be configured to include two resins.
 上記構成において、前記第1孔は前記第1環状金属層に設けられ、前記第1絶縁層に前記第1空間と前記第2空間とをつなぐ第2孔が設けられ、前記第2環状金属層に孔は設けられていない構成とすることができる。 In the above configuration, the first hole is provided in the first annular metal layer, the first insulating layer is provided with a second hole connecting the first space and the second space, and the second annular metal layer is provided. The structure may be such that no holes are provided in the.
 上記構成において、前記第1孔は、前記第1環状金属層に設けられ、前記第1絶縁層および前記第1層には設けられておらず、前記第2環状金属層に外部と前記第2空間とをつなぐ第2孔が設けられている構成とすることができる。 In the above configuration, the first hole is provided in the first annular metal layer, is not provided in the first insulating layer and the first layer, and is externally provided in the second annular metal layer and the second. The configuration may be such that a second hole connecting the space is provided.
 上記構成において、前記第1層は前記配線上に設けられた第2絶縁層であり、前記第2絶縁層の上面に設けられ、前記第2絶縁層を貫通する第2貫通孔を介し前記配線と接続する電極を備える構成とすることができる。 In the above configuration, the first layer is a second insulating layer provided on the wiring, and the wiring is provided on the upper surface of the second insulating layer and is provided through a second through hole penetrating the second insulating layer. It can be configured to include an electrode to be connected to.
 本発明は、第1絶縁層と、前記第1絶縁層の下面に搭載された電子部品と、前記第1絶縁層の上面に設けられ、前記第1絶縁層を貫通する第1貫通孔を介し前記電子部品と接続する配線と、前記電子部品下および前記配線上のいずれか一方に設けられた第1層と、前記第1絶縁層と前記第1層との間において対応する前記電子部品および前記配線のいずれか一方を囲む第1環状金属層と、を備え、前記第1絶縁層、前記第1層および前記第1環状金属層の少なくとも1つに、外部と、前記第1絶縁層、前記第1層および前記第1環状金属層に囲まれた第1空間と、をつなぐ第1孔が設けられた構造を形成する工程と、
 前記構造の前記第1孔を介し、前記第1空間に前記対応する前記電子部品および前記配線のいずれか一方を封止する樹脂を充填する工程と、を含むモジュールの製造方法。
The present invention is provided through a first insulating layer, an electronic component mounted on the lower surface of the first insulating layer, and a first through hole provided on the upper surface of the first insulating layer and penetrating the first insulating layer. The wiring connected to the electronic component, the first layer provided under or on the electronic component, and the corresponding electronic component between the first insulating layer and the first layer. A first annular metal layer that surrounds any one of the wirings is provided, and at least one of the first insulating layer, the first layer, and the first annular metal layer is provided with an external layer and the first insulating layer. A step of forming a structure provided with a first hole connecting the first layer and the first space surrounded by the first annular metal layer.
A method for manufacturing a module, comprising a step of filling the first space with a resin for sealing one of the corresponding electronic component and the wiring through the first hole of the structure.
 上記構成において、前記構造は、前記電子部品下および前記配線上の他方に設けられた第2層と、前記第1絶縁層と前記第2層との間において前記電子部品および前記配線の他方を囲む第2環状金属層と、を備え、前記第1孔は前記第1環状金属層に設けられ、前記第1絶縁層に、前記第1空間と、前記第1絶縁層、前記第2層および前記第2環状金属層に囲まれた第2空間と、をつなぐ第2孔が設けられ、前記第2環状金属層に孔は設けられておらず、前記樹脂を充填する工程は、前記第1孔を介し前記第1空間に前記樹脂を充填し、前記第2孔を介し前記第1空間から前記第2空間に前記樹脂を充填する工程を含む構成とすることができる。 In the above configuration, the structure comprises a second layer provided under the electronic component and on the other side of the wiring, and the other of the electronic component and the wiring between the first insulating layer and the second layer. A second annular metal layer that surrounds the first hole is provided in the first annular metal layer, and the first insulating layer is provided with the first space, the first insulating layer, the second layer, and the like. A second hole connecting the second space surrounded by the second annular metal layer is provided, the second annular metal layer is not provided with a hole, and the step of filling the resin is the first step. The configuration may include a step of filling the first space with the resin through the holes and filling the resin from the first space to the second space through the second holes.
 本発明によれば、放熱性を向上させることができる。 According to the present invention, heat dissipation can be improved.
図1(a)から図1(c)は、実施例1に係るモジュールの製造方法を示す断面図(その1)である。1 (a) to 1 (c) are cross-sectional views (No. 1) showing a method of manufacturing a module according to the first embodiment. 図2(a)および図2(b)は、実施例1に係るモジュールの製造方法を示す断面図(その2)である。2 (a) and 2 (b) are cross-sectional views (No. 2) showing a method of manufacturing the module according to the first embodiment. 図3(a)および図3(b)は、実施例1に係るモジュールの製造方法を示す断面図(その3)である。3 (a) and 3 (b) are cross-sectional views (No. 3) showing a method of manufacturing the module according to the first embodiment. 図4(a)および図4(b)は、実施例1に係るモジュールの製造方法を示す断面図(その4)である。4 (a) and 4 (b) are cross-sectional views (No. 4) showing a method of manufacturing the module according to the first embodiment. 図5は、実施例1に係るモジュールの製造方法を示す断面図(その5)である。FIG. 5 is a cross-sectional view (No. 5) showing a method of manufacturing the module according to the first embodiment. 図6は、実施例1に係るモジュールの製造方法を示す断面図(その6)である。FIG. 6 is a cross-sectional view (No. 6) showing a method of manufacturing the module according to the first embodiment. 図7は、実施例1に係るモジュールの製造方法を示す断面図(その7)である。FIG. 7 is a cross-sectional view (No. 7) showing a method of manufacturing the module according to the first embodiment. 図8(a)および図8(b)は、実施例1に係るモジュールの製造方法を示す平面図である。8 (a) and 8 (b) are plan views showing a method of manufacturing the module according to the first embodiment. 図9は、実施例1に係るモジュールの平面図である。FIG. 9 is a plan view of the module according to the first embodiment. 図10は、実施例1に係るモジュールの平面図である。FIG. 10 is a plan view of the module according to the first embodiment. 図11は、実施例1の変形例1に係るモジュールの製造方法を示す断面図である。FIG. 11 is a cross-sectional view showing a method of manufacturing a module according to the first modification of the first embodiment. 図12(a)および図12(b)は、実施例1の変形例1に係るモジュールの製造方法を示す平面図である。12 (a) and 12 (b) are plan views showing a method of manufacturing a module according to a modification 1 of the first embodiment. 図13(a)および図13(b)は、実施例1の変形例2に係るモジュールの製造方法を示す平面図である。13 (a) and 13 (b) are plan views showing a method of manufacturing a module according to a modification 2 of the first embodiment. 図14は、実施例1の変形例3に係るモジュールの製造方法を示す断面図である。FIG. 14 is a cross-sectional view showing a method of manufacturing a module according to a modification 3 of the first embodiment. 図15(a)および図15(b)は、実施例1の変形例3に係るモジュールの製造方法を示す平面図である。15 (a) and 15 (b) are plan views showing a method of manufacturing a module according to a modification 3 of the first embodiment. 図16は、実施例1の変形例4に係るモジュールの製造方法を示す断面図である。FIG. 16 is a cross-sectional view showing a method of manufacturing a module according to a modification 4 of the first embodiment. 図17(a)および図17(b)は、実施例1の変形例4に係るモジュールの製造方法を示す平面図である。17 (a) and 17 (b) are plan views showing a method of manufacturing a module according to a modification 4 of the first embodiment. 図18(a)および図18(b)は、実施例2に係るモジュールの製造方法を示す断面図である。18 (a) and 18 (b) are cross-sectional views showing a method of manufacturing the module according to the second embodiment. 図19(a)および図19(b)は、実施例2に係るモジュールの製造方法を示す断面図および平面図である。19 (a) and 19 (b) are a cross-sectional view and a plan view showing a method of manufacturing the module according to the second embodiment. 図20は、実施例2に係るモジュールの平面図である。FIG. 20 is a plan view of the module according to the second embodiment. 図21は、実施例2の変形例1に係るモジュールの製造方法を示す平面図である。FIG. 21 is a plan view showing a method of manufacturing a module according to the first modification of the second embodiment. 図22(a)および図22(b)は、実施例2の変形例2に係るモジュールの製造方法を示す断面図および平面図である。22 (a) and 22 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 2 of the second embodiment. 図23(a)および図23(b)は、実施例2の変形例3に係るモジュールの製造方法を示す断面図および平面図である。23 (a) and 23 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 3 of the second embodiment.
 以下、図面を参照し本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.
 図1(a)から図7は、実施例1に係るモジュールの製造方法を示す断面図である。図8(a)および図8(b)は、実施例1に係るモジュールの製造方法を示す平面図である。図8(a)は、絶縁層10、配線80aから80cおよび環状金属層86を図示している。図8(b)は、絶縁層10、電子部品40a、40b、42、および環状金属層48を図示している。なお、断面図では電子部品40および配線80として図示しているが、平面図では電子部品40a、40bおよび配線80aから80cとして図示している。 1 (a) to 7 are cross-sectional views showing a method of manufacturing a module according to the first embodiment. 8 (a) and 8 (b) are plan views showing a method of manufacturing the module according to the first embodiment. FIG. 8A illustrates the insulating layer 10, the wirings 80a to 80c, and the annular metal layer 86. FIG. 8B illustrates the insulating layer 10, the electronic components 40a, 40b, 42, and the annular metal layer 48. In the cross-sectional view, the electronic components 40 and the wiring 80 are shown, but in the plan view, the electronic components 40a and 40b and the wirings 80a to 80c are shown.
 図1(a)に示すように、絶縁層10の下面に接着剤16を塗布する。絶縁層10はポリイミド層等の樹脂層であり可撓性を有する。絶縁層10の厚さは例えば7.5μmから125μmである。接着剤16は例えばエポキシ樹脂接着剤等の樹脂接着剤である。接着剤16の塗布は、例えばスピンコート法、スプレコート法、インクジェット法またはスクリーン印刷法を用いる。接着剤16の厚さは硬化後で例えば5μmから50μmである。なお、予め接着剤16が形成された絶縁層10を用意してもよい。接着剤16は、後述する電子部品40、42、導電性ブロック46および環状金属層48が配置される領域に対応して、選択的に塗布されていてもよい。なお、接着剤16は耐熱性および低誘電特性に優れた樹脂材料が好ましい。 As shown in FIG. 1A, the adhesive 16 is applied to the lower surface of the insulating layer 10. The insulating layer 10 is a resin layer such as a polyimide layer and has flexibility. The thickness of the insulating layer 10 is, for example, 7.5 μm to 125 μm. The adhesive 16 is a resin adhesive such as an epoxy resin adhesive. The adhesive 16 is applied, for example, by using a spin coating method, a spray coating method, an inkjet method, or a screen printing method. The thickness of the adhesive 16 is, for example, 5 μm to 50 μm after curing. The insulating layer 10 on which the adhesive 16 is formed in advance may be prepared. The adhesive 16 may be selectively applied corresponding to the regions where the electronic components 40 and 42, the conductive block 46 and the annular metal layer 48, which will be described later, are arranged. The adhesive 16 is preferably a resin material having excellent heat resistance and low dielectric properties.
 図1(b)に示すように、絶縁層10および接着剤16を貫通する貫通孔12を形成する。貫通孔12は、例えばレーザ光を照射することにより形成する。貫通孔12の大きさは、例えば30μmから500μmである。 As shown in FIG. 1B, a through hole 12 penetrating the insulating layer 10 and the adhesive 16 is formed. The through hole 12 is formed by, for example, irradiating a laser beam. The size of the through hole 12 is, for example, 30 μm to 500 μm.
 図1(c)に示すように、接着剤16の下面に電子部品40および42、導電性ブロック46および環状金属層48を配置する。環状金属層48には孔72aおよび72bが平面の対角状に設けられている(例えば図8(b)を参照)。電子部品40の上面には、端子51および52が設けられ、電子部品40の下面には端子53が設けられている。電子部品42の上面には端子54および56が設けられている。 As shown in FIG. 1C, electronic components 40 and 42, a conductive block 46, and an annular metal layer 48 are arranged on the lower surface of the adhesive 16. The annular metal layer 48 is provided with holes 72a and 72b diagonally in a plane (see, for example, FIG. 8B). Terminals 51 and 52 are provided on the upper surface of the electronic component 40, and terminals 53 are provided on the lower surface of the electronic component 40. Terminals 54 and 56 are provided on the upper surface of the electronic component 42.
 電子部品40は、例えば縦型のトランジスタであり、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタまたはパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのFET等のトランジスタである。トランジスタには、Si、GaNまたはSiC等の半導体材料が用いられる。電子部品40は、例えばベアチップまたはベアチップが封止実装されたパッケージである。ベアチップが実装されたパッケージは、WLP(Wafer Level Package)またはSIP(Single Inline Package)等のパッケージである。 The electronic component 40 is, for example, a vertical transistor, and is a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET such as a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor). A semiconductor material such as Si, GaN or SiC is used for the transistor. The electronic component 40 is, for example, a bare chip or a package in which a bare chip is sealed and mounted. The package on which the bare chip is mounted is a package such as WLP (Wafer Level Package) or SIP (Single Inline Package).
 電子部品42は、例えば集積回路であり、電子部品40を制御するコントローラであり、例えばベアチップまたはベアチップが実装されたパッケージである。端子51~54および56は、電子部品40および42の電極であり、例えばCu(銅)、Au(金)、Ag(銀)またはAl(アルミニウム)等の金属、またはこれらの1つを主材料としたパッドである。電子部品40が縦型トランジスタの場合、ゲート端子、ソース端子(またはドレイン端子)が上面に設けられ、ドレイン端子(またはソース端子)が下面に設けられる。導電性ブロック46および環状金属層48は、Cu、またはCuを主材料とした金属層であり、好ましくは断面が矩形の金属の塊、または板体である。 The electronic component 42 is, for example, an integrated circuit, a controller that controls the electronic component 40, and is, for example, a bare chip or a package on which a bare chip is mounted. Terminals 51 to 54 and 56 are electrodes of electronic components 40 and 42, and are made of a metal such as Cu (copper), Au (gold), Ag (silver) or Al (aluminum), or one of them as a main material. It is a pad. When the electronic component 40 is a vertical transistor, a gate terminal and a source terminal (or a drain terminal) are provided on the upper surface, and a drain terminal (or a source terminal) is provided on the lower surface. The conductive block 46 and the annular metal layer 48 are Cu or a metal layer containing Cu as a main material, and are preferably a metal block or a plate having a rectangular cross section.
 熱処理することにより、接着剤16を硬化させ電子部品40、42、導電性ブロック46および環状金属層48と絶縁層10とを固着および接合させる。熱処理は例えば150℃から300℃の温度で実施する。端子51~54および56は貫通孔12に露出する。 By heat treatment, the adhesive 16 is cured to fix and bond the electronic components 40 and 42, the conductive block 46, the annular metal layer 48, and the insulating layer 10. The heat treatment is carried out at a temperature of, for example, 150 ° C to 300 ° C. The terminals 51 to 54 and 56 are exposed in the through hole 12.
 図2(a)に示すように、絶縁層10の上面、貫通孔12の内面に金属層14を形成する。絶縁層10の上面、貫通孔12の内面にシード層を形成する。シード層は、例えばスパッタリング法または無電解めっき法を用い形成する。シード層の上面にめっき層を形成する。めっき層は例えばCuまたはCuを主材料とした金属層である。シード層およびめっき層により金属層14が形成される。金属層14の厚さは例えば数μmから125μmであり、貫通孔12が埋め込まれる厚さとする。 As shown in FIG. 2A, a metal layer 14 is formed on the upper surface of the insulating layer 10 and the inner surface of the through hole 12. A seed layer is formed on the upper surface of the insulating layer 10 and the inner surface of the through hole 12. The seed layer is formed by, for example, a sputtering method or an electroless plating method. A plating layer is formed on the upper surface of the seed layer. The plating layer is, for example, Cu or a metal layer containing Cu as a main material. The metal layer 14 is formed by the seed layer and the plating layer. The thickness of the metal layer 14 is, for example, several μm to 125 μm, and is the thickness at which the through hole 12 is embedded.
 図2(b)に示すように、金属層14の上面に接合層28を設ける。接合層28は、樹脂ペーストにロウ材、CuまたはAg等の金属粒子または金属粉体等が含まれる、いわゆる導電性ペーストである。 As shown in FIG. 2B, a bonding layer 28 is provided on the upper surface of the metal layer 14. The bonding layer 28 is a so-called conductive paste in which the resin paste contains a brazing material, metal particles such as Cu or Ag, metal powder, and the like.
 図3(a)に示すように、別途、絶縁層20の一方主面に金属層24が形成された支持基板を準備する。絶縁層20はポリイミド層等の樹脂層である。金属層24は、例えばCuまたはCuを主材料とした層である。支持基板は、例えば銅張積層(CCL:Copper Clad Laminate)基板であり、金属層24は圧延されたまたは電解めっきされた金属層である。金属層24には孔70aおよび70bが平面の対角状に設けられている(図8(a)参照)。絶縁層10の厚さは例えば7μmから125μmであり、金属層24の厚さは例えば50μmから300μmである。 As shown in FIG. 3A, a support substrate having a metal layer 24 formed on one main surface of the insulating layer 20 is separately prepared. The insulating layer 20 is a resin layer such as a polyimide layer. The metal layer 24 is, for example, a layer containing Cu or Cu as a main material. The support substrate is, for example, a copper-clad laminate (CCL: Copper Clad Laminate) substrate, and the metal layer 24 is a rolled or electroplated metal layer. The holes 70a and 70b are provided in the metal layer 24 diagonally on a flat surface (see FIG. 8A). The thickness of the insulating layer 10 is, for example, 7 μm to 125 μm, and the thickness of the metal layer 24 is, for example, 50 μm to 300 μm.
 絶縁層20の全面に金属層24を形成し、その後金属層24を、フォトリソグラフィ法およびエッチング法を用いパターニングしてもよい。プレス等の機械加工により形成した金属層24を絶縁層20に張り付けてもよい。絶縁層20と金属層24との間に接着剤等が設けられていてもよい。接着剤は絶縁層20の全面に形成されていてもよいし、金属層24が設けられた箇所に選択的に形成されていてもよい。 The metal layer 24 may be formed on the entire surface of the insulating layer 20, and then the metal layer 24 may be patterned by using a photolithography method and an etching method. The metal layer 24 formed by machining such as pressing may be attached to the insulating layer 20. An adhesive or the like may be provided between the insulating layer 20 and the metal layer 24. The adhesive may be formed on the entire surface of the insulating layer 20, or may be selectively formed at a location where the metal layer 24 is provided.
 図3(b)に示すように、絶縁層20を貫通する貫通孔22を形成する。貫通孔22の形成方法は図1(b)の貫通孔12の形成方法と同様である。続いて絶縁層20の上面及び貫通孔22の中に金属層26を形成する。金属層26の形成方法は図2(a)の金属層14の形成方法と同様にめっき法により形成される。これにより、金属層26は貫通孔22を介し金属層24と接続する。 As shown in FIG. 3B, a through hole 22 penetrating the insulating layer 20 is formed. The method for forming the through hole 22 is the same as the method for forming the through hole 12 in FIG. 1 (b). Subsequently, the metal layer 26 is formed on the upper surface of the insulating layer 20 and in the through hole 22. The metal layer 26 is formed by a plating method in the same manner as the method for forming the metal layer 14 in FIG. 2 (a). As a result, the metal layer 26 is connected to the metal layer 24 via the through hole 22.
 図4(a)に示すように、図2(b)の接合層28の上面上に金属層24の下面を接触させる。熱処理して、金属層14と24とが熱的、機械的かつ電気的に接合される。接合層28の厚さは焼成後で例えば5μmから50μmである。 As shown in FIG. 4A, the lower surface of the metal layer 24 is brought into contact with the upper surface of the bonding layer 28 of FIG. 2B. After heat treatment, the metal layers 14 and 24 are thermally, mechanically and electrically joined. The thickness of the bonding layer 28 is, for example, 5 μm to 50 μm after firing.
 以上により、金属層14、接合層28および金属層24により厚い配線80および環状金属層86が形成される。なお、図8(a)のように環状金属層86には孔70bが設けられている。端子51および56は配線80により金属層26と電気的に接続される。端子52と54とは配線82により電気的に接続される。環状金属層86は、絶縁層10および20の周縁に設けられ、絶縁層10および20を支持する。絶縁層10、20および環状金属層86に囲まれた空間98が形成される。 As described above, the thick wiring 80 and the annular metal layer 86 are formed by the metal layer 14, the bonding layer 28, and the metal layer 24. As shown in FIG. 8A, the annular metal layer 86 is provided with holes 70b. The terminals 51 and 56 are electrically connected to the metal layer 26 by the wiring 80. The terminals 52 and 54 are electrically connected by wiring 82. The annular metal layer 86 is provided on the periphery of the insulating layers 10 and 20 and supports the insulating layers 10 and 20. A space 98 surrounded by the insulating layers 10 and 20 and the annular metal layer 86 is formed.
 図4(b)に示すように、絶縁層10と20との間の空間98に樹脂60を形成する。樹脂60の形成には例えばトランスファモールド法、インジェクション法またはコンプレッション法を用いる。図8(a)のように、樹脂60は矢印76aのように孔70aから導入され、点線77aから77cのように空間98に充填される。矢印76bのように孔70bから空気が抜ける。 As shown in FIG. 4B, the resin 60 is formed in the space 98 between the insulating layers 10 and 20. For example, a transfer molding method, an injection method or a compression method is used to form the resin 60. As shown in FIG. 8A, the resin 60 is introduced from the hole 70a as shown by the arrow 76a and is filled in the space 98 as shown by the dotted lines 77a to 77c. Air escapes from the hole 70b as shown by the arrow 76b.
 図5に示すように、絶縁基板30の上面および下面には金属層34および36が設けられている。絶縁基板30は、例えばセラミックス基板である。金属層34および36は例えばCu層である。絶縁基板30、金属層34および36は電子部品40の熱を放出するヒートシンクとして機能する。金属層34上面に接合層38を塗布する。接合層38の材料は例えばAgペースト、Cuペーストまたはロウ材である。 As shown in FIG. 5, metal layers 34 and 36 are provided on the upper surface and the lower surface of the insulating substrate 30. The insulating substrate 30 is, for example, a ceramic substrate. The metal layers 34 and 36 are, for example, Cu layers. The insulating substrate 30, the metal layers 34 and 36 function as a heat sink that releases heat from the electronic component 40. The bonding layer 38 is applied to the upper surface of the metal layer 34. The material of the bonding layer 38 is, for example, Ag paste, Cu paste or brazing material.
 図6に示すように、接合層38の上面に電子部品40、導電性ブロック46および環状金属層48の下面を接触させる。熱処理することで、接合層38を焼成する。これにより、電子部品40、導電性ブロック46および環状金属層48と金属層24が熱的、機械的かつ電気的に接合される。接合層28の厚さは焼成後で例えば5μmから50μmである。端子53は、金属層34、導電性ブロック46、配線80を介し金属層26に電気的に接続される。すなわち、電流は電子部品40の上面から下面、この下面から金属層34、導電性ブロック46および配線80を介してモジュールの上面の金属層26へと流れる。絶縁層10、絶縁基板30および環状金属層48に囲まれた空間99が形成される。 As shown in FIG. 6, the upper surface of the bonding layer 38 is brought into contact with the lower surfaces of the electronic component 40, the conductive block 46, and the annular metal layer 48. The joint layer 38 is fired by heat treatment. As a result, the electronic component 40, the conductive block 46, the annular metal layer 48, and the metal layer 24 are thermally, mechanically, and electrically joined. The thickness of the bonding layer 28 is, for example, 5 μm to 50 μm after firing. The terminal 53 is electrically connected to the metal layer 26 via the metal layer 34, the conductive block 46, and the wiring 80. That is, the current flows from the upper surface to the lower surface of the electronic component 40, from the lower surface to the metal layer 26 on the upper surface of the module via the metal layer 34, the conductive block 46, and the wiring 80. A space 99 surrounded by the insulating layer 10, the insulating substrate 30, and the annular metal layer 48 is formed.
 図7に示すように、絶縁層10と絶縁基板30との間の空間99に樹脂62を形成する。樹脂62の形成には例えばトランスファモールド法、インジェクション法またはコンプレッション法を用いる。図8(b)のように、樹脂62は矢印78aのように孔72aから導入される。樹脂62は、点線79aから79cのように、絶縁層10と絶縁基板30との間の空間99を対角状に充填されている。矢印78bのように、孔72bから空間99内の空気が抜ける。樹脂62が空間99内に充填されると、樹脂62を硬化させる。これにより、電子部品40a、40bおよび42が封止される。樹脂62は、例えば熱硬化型樹脂または熱可塑性樹脂である。以上により実施例1に係るモジュールが完成する。 As shown in FIG. 7, the resin 62 is formed in the space 99 between the insulating layer 10 and the insulating substrate 30. For example, a transfer molding method, an injection method or a compression method is used to form the resin 62. As shown in FIG. 8B, the resin 62 is introduced from the hole 72a as shown by the arrow 78a. The resin 62 is diagonally filled with the space 99 between the insulating layer 10 and the insulating substrate 30, as shown by the dotted lines 79a to 79c. As shown by the arrow 78b, the air in the space 99 escapes from the hole 72b. When the resin 62 is filled in the space 99, the resin 62 is cured. As a result, the electronic components 40a, 40b and 42 are sealed. The resin 62 is, for example, a thermosetting resin or a thermoplastic resin. With the above, the module according to the first embodiment is completed.
 環状金属層86のX方向およびY方向の幅は例えば100μmか5000μmであり、環状金属層86のZ方向の厚さは例えば30μmから300μmである。孔70aおよび70bのX方向およびY方向の幅は例えば100μmから500μmである。孔70aおよび70bは環状金属層86のZ方向の少なくとも一部に設けられていればよい。環状金属層48のX方向およびY方向の幅は例えば100μmから5000μmであり、環状金属層48のZ方向の厚さは例えば50μmから1000μmである。孔72aおよび72bのX方向およびY方向の幅は例えば100μmから5000μmである。孔72aおよび72bは環状金属層48のZ方向の少なくとも一部に設けられていればよい。 The width of the annular metal layer 86 in the X direction and the Y direction is, for example, 100 μm or 5000 μm, and the thickness of the annular metal layer 86 in the Z direction is, for example, 30 μm to 300 μm. The widths of the holes 70a and 70b in the X and Y directions are, for example, 100 μm to 500 μm. The holes 70a and 70b may be provided in at least a part of the annular metal layer 86 in the Z direction. The width of the annular metal layer 48 in the X direction and the Y direction is, for example, 100 μm to 5000 μm, and the thickness of the annular metal layer 48 in the Z direction is, for example, 50 μm to 1000 μm. The widths of the holes 72a and 72b in the X and Y directions are, for example, 100 μm to 5000 μm. The holes 72a and 72b may be provided in at least a part of the annular metal layer 48 in the Z direction.
 図9および図10は、実施例1に係るモジュールの平面図である。図9は、図7の絶縁層20に設けられた上層の部分を主に示し、貫通孔22、金属層24および26を図示している。図10は、絶縁層10側に設けられた下層の部分を主に示し、貫通孔12、金属層14、電子部品40a、40b、42、端子51a、51b、52a、52b、54、56、配線80aから80c、82aおよび82bを図示している。 9 and 10 are plan views of the module according to the first embodiment. FIG. 9 mainly shows the portion of the upper layer provided in the insulating layer 20 of FIG. 7, and shows the through hole 22, the metal layers 24 and 26. FIG. 10 mainly shows a lower layer portion provided on the insulating layer 10 side, and includes a through hole 12, a metal layer 14, electronic components 40a, 40b, 42, terminals 51a, 51b, 52a, 52b, 54, 56, and wiring. 80a to 80c, 82a and 82b are illustrated.
 図9および図10に示すように、電子部品40aおよび40bおよび電子部品42が設けられている。電子部品40aの上面には端子51aおよび52aが設けられ、電子部品40bの上面には端子51bおよび52bが設けられている。電子部品40aおよび40bは例えばパワー半導体素子であり縦型のトランジスタである。端子51aおよび51bはソース端子であり、端子52aおよび52bはゲート端子である。 As shown in FIGS. 9 and 10, electronic components 40a and 40b and electronic components 42 are provided. Terminals 51a and 52a are provided on the upper surface of the electronic component 40a, and terminals 51b and 52b are provided on the upper surface of the electronic component 40b. The electronic components 40a and 40b are, for example, power semiconductor elements and vertical transistors. The terminals 51a and 51b are source terminals, and the terminals 52a and 52b are gate terminals.
 電子部品42の上面には端子54および56が設けられている。電子部品42は、トランジスタを制御する制御回路を有する。制御回路は、外部からの制御信号に基づき、トランジスタのゲート端子にゲート信号を出力する。端子54は、端子52aおよび52bにトランジスタのゲート信号を出力する端子である。端子56は外部から制御信号を受信する端子である。 Terminals 54 and 56 are provided on the upper surface of the electronic component 42. The electronic component 42 has a control circuit that controls a transistor. The control circuit outputs a gate signal to the gate terminal of the transistor based on the control signal from the outside. The terminal 54 is a terminal that outputs a transistor gate signal to the terminals 52a and 52b. The terminal 56 is a terminal that receives a control signal from the outside.
 金属層26は、ソースパッドPs、ドレインパッドPdおよび制御パッドPgを形成する。端子51aおよび51bは貫通孔12を介し配線80aに電気的に接続される。配線80aは貫通孔22を介しソースパッドPsに電気的に接続される。端子52aおよび52bは、貫通孔12および配線82aを介し端子54に電気的に接続される。端子56は、貫通孔12、22および配線80bおよび82bを介し制御パッドPgに電気的に接続される。 The metal layer 26 forms a source pad Ps, a drain pad Pd, and a control pad Pg. The terminals 51a and 51b are electrically connected to the wiring 80a via the through hole 12. The wiring 80a is electrically connected to the source pad Ps via the through hole 22. The terminals 52a and 52b are electrically connected to the terminal 54 via the through hole 12 and the wiring 82a. The terminal 56 is electrically connected to the control pad Pg via the through holes 12, 22 and the wirings 80b and 82b.
 電子部品40aおよび40bの下面に設けられた端子53は接合層38、金属層34、導電性ブロック46および配線80cを介しドレインパッドPdに電気的に接続される。ドレインパッドPdには例えばグランド電位が供給される。 The terminals 53 provided on the lower surfaces of the electronic components 40a and 40b are electrically connected to the drain pad Pd via the bonding layer 38, the metal layer 34, the conductive block 46, and the wiring 80c. For example, a ground potential is supplied to the drain pad Pd.
 トランジスタでは、ソース端子およびドレイン端子には大きな電流が流れる。ゲート端子は、ソース電流とドレイン端子との間の電流のスイッチングを行うゲート信号が入力する。このため、ソース端子のパッド面積は大きく、ゲート端子のパッド面積は小さい。ソース端子に接続される配線は、平面寸法は大きくてもよいが厚いことが要求される、ゲート端子に接続される配線は、薄くてもよいが平面寸法は小さいことが要求される。 In a transistor, a large current flows through the source terminal and drain terminal. A gate signal that switches the current between the source current and the drain terminal is input to the gate terminal. Therefore, the pad area of the source terminal is large and the pad area of the gate terminal is small. The wiring connected to the source terminal may have a large planar dimension but is required to be thick, and the wiring connected to the gate terminal may be thin but required to have a small planar dimension.
 実施例1では、配線80aはソースパッドPsとソース端子である端子51aおよび51bとの間の電流の供給用の配線である。配線80cはドレインパッドPdとドレイン端子である端子53との間の電流の供給用の配線である。配線82aは制御回路の制御端子である端子54とゲート端子である端子52aおよび52bとの間の制御電圧または制御電流の供給用の配線である。配線80bは、制御パッドPgと端子56とを接続する配線であり、比較的大きな電流が流れる。 In the first embodiment, the wiring 80a is a wiring for supplying a current between the source pad Ps and the terminals 51a and 51b which are the source terminals. The wiring 80c is a wiring for supplying a current between the drain pad Pd and the terminal 53 which is a drain terminal. The wiring 82a is a wiring for supplying a control voltage or a control current between the terminal 54 which is a control terminal of the control circuit and the terminals 52a and 52b which are gate terminals. The wiring 80b is a wiring that connects the control pad Pg and the terminal 56, and a relatively large current flows through the wiring 80b.
 実施例1では、ソース端子に接続される配線80a、ドレイン端子に接続される配線80c、端子56に接続される配線80bを金属層14と24とで形成し、ゲート端子に接続される配線82aを金属層14のみで形成する。これにより、簡単な工程で厚い配線80aから80cと薄い配線82を形成できる。 In the first embodiment, the wiring 80a connected to the source terminal, the wiring 80c connected to the drain terminal, and the wiring 80b connected to the terminal 56 are formed by the metal layers 14 and 24, and the wiring 82a connected to the gate terminal. Is formed only by the metal layer 14. Thereby, the thick wiring 80a to 80c and the thin wiring 82 can be formed by a simple process.
 環状金属層48および86により、電子部品40および42からの放熱性を向上できる。また、強度を向上させることができる。環状金属層48および86には、樹脂の注入または排出の口となる孔70a、70b、72aおよび72bを設けることで、環状金属層48および86内に樹脂60および62を形成することができる。平面視において孔70aと70bは、環状金属層86の対向する辺に設けられ、環状金属層86の対角またはその近傍に設けられている。孔72aと72bは、環状金属層48の対向する辺に設けられ、環状金属層48の対角またはその近傍に設けられている。 The annular metal layers 48 and 86 can improve heat dissipation from the electronic components 40 and 42. Moreover, the strength can be improved. Resins 60 and 62 can be formed in the cyclic metal layers 48 and 86 by providing holes 70a, 70b, 72a and 72b for injecting or discharging the resin in the annular metal layers 48 and 86. In a plan view, the holes 70a and 70b are provided on opposite sides of the annular metal layer 86, and are provided diagonally or in the vicinity of the annular metal layer 86. The holes 72a and 72b are provided on opposite sides of the annular metal layer 48, and are provided diagonally or in the vicinity of the annular metal layer 48.
[実施例1の変形例1]
 図11は、実施例1の変形例1に係るモジュールを示す断面図、図12(a)および図12(b)は、実施例1の変形例1に係るモジュールの製造方法を示す平面図である。図11から図12(b)に示すように、環状金属層86が設けられていない。絶縁層10と20との間には金型を用い樹脂60を形成する。図12(b)に示すように、樹脂62は矢印78aのように孔72aから導入される。その他の構成は実施例1と同じであり説明を省略する。実施例1の変形例1のように環状金属層48および86のいずれか一方は設けられていなくてもよい。
[Modification 1 of Example 1]
11 is a cross-sectional view showing a module according to the first modification of the first embodiment, and FIGS. 12A and 12B are plan views showing a method of manufacturing the module according to the first modification of the first embodiment. is there. As shown in FIGS. 11 to 12 (b), the annular metal layer 86 is not provided. A mold is used between the insulating layers 10 and 20 to form the resin 60. As shown in FIG. 12B, the resin 62 is introduced from the hole 72a as shown by the arrow 78a. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted. Either one of the annular metal layers 48 and 86 may not be provided as in the first modification of the first embodiment.
[実施例1の変形例2]
 図13(a)および図13(b)は、実施例1の変形例2に係るモジュールの製造方法を示す平面図である。図13(a)に示すように、環状金属層86の孔70aおよび70bが設けられていない辺に孔70cが設けられている。樹脂60を矢印76aのように孔70aから空間98に導入するときに、矢印76cのように空間98の空気を孔70cから抜くことができる。
[Modification 2 of Example 1]
13 (a) and 13 (b) are plan views showing a method of manufacturing a module according to a modification 2 of the first embodiment. As shown in FIG. 13A, the holes 70c are provided on the sides of the annular metal layer 86 where the holes 70a and 70b are not provided. When the resin 60 is introduced into the space 98 from the hole 70a as shown by the arrow 76a, the air in the space 98 can be evacuated from the hole 70c as shown by the arrow 76c.
 図13(b)に示すように、環状金属層48の孔72aおよび72bが設けられていない辺に孔72cが設けられている。樹脂62を矢印78aのように孔72aから空間99に導入するときに、矢印78cのように空間99の空気を孔72cから抜くことができる。その他の構成は実施例1と同じであり説明を省略する。実施例1の変形例2では、各辺に孔70aから70cおよび72aから72cが設けられているため、空間98および99から空気を抜くことができる。孔70cおよび72cは、任意の箇所に設けられていてもよい。 As shown in FIG. 13B, holes 72c are provided on the sides of the annular metal layer 48 where the holes 72a and 72b are not provided. When the resin 62 is introduced into the space 99 from the hole 72a as shown by the arrow 78a, the air in the space 99 can be evacuated from the hole 72c as shown by the arrow 78c. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted. In the second modification of the first embodiment, since the holes 70a to 70c and 72a to 72c are provided on each side, air can be evacuated from the spaces 98 and 99. The holes 70c and 72c may be provided at arbitrary locations.
[実施例1の変形例3]
 図14は、実施例1の変形例3に係るモジュールの製造方法を示す断面図、図15(a)および図15(b)は、実施例1の変形例3に係るモジュールの製造方法を示す平面図である。
[Modification 3 of Example 1]
FIG. 14 is a cross-sectional view showing a method of manufacturing a module according to a modification 3 of the first embodiment, and FIGS. 15 (a) and 15 (b) show a method of manufacturing a module according to the third modification of the first embodiment. It is a plan view.
 図14から図15(b)に示すように、環状金属層86が設けられていない。絶縁層10に孔74が設けられている。環状金属層48には孔72aおよび72bが設けられていない。なお、図14の孔74の位置は図15(a)および図15(b)の孔の位置と対応していない。 As shown in FIGS. 14 to 15 (b), the annular metal layer 86 is not provided. A hole 74 is provided in the insulating layer 10. The annular metal layer 48 is not provided with holes 72a and 72b. The position of the hole 74 in FIG. 14 does not correspond to the position of the hole in FIGS. 15 (a) and 15 (b).
 樹脂60および62を形成するときに絶縁層10および20に金型90を被せる。金型90の導入孔91aより矢印92aのように樹脂を導入する。金型90の導出孔91bから矢印92bのように空気が抜ける。樹脂は矢印93aのように絶縁層10の孔74を介し絶縁層10の上の空間から下の空間に導入される。これにより、環状金属層48に孔が設けられていなくとも、環状金属層48内を樹脂62で充填することができる。孔74の少なくとも1つは空間99から空気を抜く孔として機能してもよい。その他の構成は実施例1と同じであり説明を省略する。 When forming the resins 60 and 62, the insulating layers 10 and 20 are covered with the mold 90. The resin is introduced from the introduction hole 91a of the mold 90 as shown by the arrow 92a. Air escapes from the lead-out hole 91b of the mold 90 as shown by the arrow 92b. The resin is introduced from the space above the insulating layer 10 to the space below it through the holes 74 of the insulating layer 10 as shown by the arrow 93a. As a result, the inside of the cyclic metal layer 48 can be filled with the resin 62 even if the annular metal layer 48 is not provided with holes. At least one of the holes 74 may function as a hole for venting air from the space 99. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
[実施例1の変形例4]
 図16は、実施例1の変形例4に係るモジュールの製造方法を示す断面図、図17(a)および図17(b)は、実施例1の変形例4に係るモジュールの製造方法を示す平面図である。
[Modification 4 of Example 1]
FIG. 16 is a cross-sectional view showing a method of manufacturing a module according to a modified example 4 of the first embodiment, and FIGS. 17 (a) and 17 (b) show a method of manufacturing a module according to the modified example 4 of the first embodiment. It is a plan view.
 図16から図17(b)に示すように、環状金属層86に孔70aおよび70bが設けられている。絶縁層10に孔74が設けられている。環状金属層48には孔は設けられていない。 As shown in FIGS. 16 to 17 (b), the annular metal layer 86 is provided with holes 70a and 70b. A hole 74 is provided in the insulating layer 10. The annular metal layer 48 is not provided with holes.
 樹脂60および62を形成するときに、矢印76aのように孔70aから環状金属層86内に樹脂を導入すると、絶縁層10の孔74を介し、矢印93aのように環状金属層48内に樹脂62が導入される。これにより、環状金属層48に孔72aおよび72bが設けられていなくとも、環状金属層48内を樹脂62で充填することができる。その他の構成は実施例1と同じであり説明を省略する。 When the resins 60 and 62 are formed, when the resin is introduced into the annular metal layer 86 from the holes 70a as shown by the arrow 76a, the resin is introduced into the annular metal layer 48 as shown by the arrow 93a through the holes 74 of the insulating layer 10. 62 is introduced. As a result, even if the annular metal layer 48 is not provided with the holes 72a and 72b, the inside of the annular metal layer 48 can be filled with the resin 62. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
 図18(a)から図19(a)は、実施例2に係るモジュールの製造方法を示す断面図である。図19(b)は、実施例2に係るモジュールの製造方法を示す平面図である。図19(b)は、絶縁層10、配線80aから80cおよび環状金属層86を図示している。 18 (a) to 19 (a) are cross-sectional views showing a method of manufacturing the module according to the second embodiment. FIG. 19B is a plan view showing a method of manufacturing the module according to the second embodiment. FIG. 19B illustrates the insulating layer 10, the wirings 80a to 80c and the annular metal layer 86.
 図18(a)に示すように、図2(b)および図3(b)と同様に、絶縁層10および20を準備する。絶縁層10の下面に導電性ブロックおよび環状金属層は設けられていない。電子部品40の下面に端子は設けられていない。電子部品40が横型トランジスタの場合、ソース端子、ドレイン端子およびゲート端子はいずれも上面に設けられる。 As shown in FIG. 18 (a), the insulating layers 10 and 20 are prepared in the same manner as in FIGS. 2 (b) and 3 (b). The conductive block and the annular metal layer are not provided on the lower surface of the insulating layer 10. No terminal is provided on the lower surface of the electronic component 40. When the electronic component 40 is a horizontal transistor, the source terminal, drain terminal, and gate terminal are all provided on the upper surface.
 図18(b)に示すように、図4(a)と同様に接合層28を用い金属層24の下面と金属層14の上面とを接合する。配線80および環状金属層86は各々金属層24および26を備え、配線82は金属層14を備え、金属層24は備えていない。 As shown in FIG. 18 (b), the lower surface of the metal layer 24 and the upper surface of the metal layer 14 are joined using the bonding layer 28 in the same manner as in FIG. 4 (a). The wiring 80 and the annular metal layer 86 include metal layers 24 and 26, respectively, and the wiring 82 includes a metal layer 14 and no metal layer 24.
 図19(a)および図19(b)に示すように、図4(b)と同様に、絶縁層10と20との間の空間98に樹脂60を形成する。樹脂60の形成には例えばトランスファモールド法、インジェクション法またはコンプレッション法を用いる。樹脂60は矢印76aのように孔70aから導入される。樹脂60は、点線77aから77cのように、絶縁層10と20との間の空間98を対角状に充填されている。矢印76bのように、孔70bから空間98内の空気が抜ける。樹脂60が空間98内に充填されると、樹脂60を硬化させる。これにより、実施例2に係るモジュールが完成する。 As shown in FIGS. 19 (a) and 19 (b), the resin 60 is formed in the space 98 between the insulating layers 10 and 20 as in FIG. 4 (b). For example, a transfer molding method, an injection method or a compression method is used to form the resin 60. The resin 60 is introduced from the hole 70a as shown by the arrow 76a. The resin 60 is diagonally filled with the space 98 between the insulating layers 10 and 20 as shown by the dotted lines 77a to 77c. As shown by the arrow 76b, the air in the space 98 escapes from the hole 70b. When the resin 60 is filled in the space 98, the resin 60 is cured. As a result, the module according to the second embodiment is completed.
 図20は、実施例2に係るモジュールの平面図である。図20は、貫通孔12、金属層14、電子部品40a、40b、42、端子51aから51d、52a、54、56、配線80aから80c、82a、82bおよび環状金属層86を図示している。 FIG. 20 is a plan view of the module according to the second embodiment. FIG. 20 illustrates through holes 12, metal layers 14, electronic components 40a, 40b, 42, terminals 51a to 51d, 52a, 54, 56, wirings 80a to 80c, 82a, 82b and an annular metal layer 86.
 図20に示すように、電子部品40aおよび40bおよび電子部品42が設けられている。電子部品40aの上面には端子51a、51cおよび52aが設けられ、電子部品40bの上面には端子51b、51dおよび52bが設けられている。電子部品40aおよび40bは例えばパワー半導体素子でありトランジスタである。端子51aおよび51bはソース端子であり、端子51cおよび51dはドレイン端子であり、端子52aおよび52bはゲート端子である。 As shown in FIG. 20, electronic components 40a and 40b and electronic components 42 are provided. Terminals 51a, 51c and 52a are provided on the upper surface of the electronic component 40a, and terminals 51b, 51d and 52b are provided on the upper surface of the electronic component 40b. The electronic components 40a and 40b are, for example, power semiconductor elements and transistors. The terminals 51a and 51b are source terminals, the terminals 51c and 51d are drain terminals, and the terminals 52a and 52b are gate terminals.
 端子51aと51bとは配線80aにより電気的に接続され、絶縁層20の上面のソースパッド(不図示)に電気的に接続される。端子51cと51dとは配線80cにより電気的に接続され、絶縁層20の上面のドレインパッド(不図示)に電気的に接続される。端子52aと52bとは配線82aにより端子54に電気的に接続される。その他の構成は実施例1と同じであり説明を省略する。 The terminals 51a and 51b are electrically connected by wiring 80a, and are electrically connected to a source pad (not shown) on the upper surface of the insulating layer 20. The terminals 51c and 51d are electrically connected by wiring 80c, and are electrically connected to a drain pad (not shown) on the upper surface of the insulating layer 20. The terminals 52a and 52b are electrically connected to the terminal 54 by the wiring 82a. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
 実施例2のようにソース端子とドレイン端子とは電子部品40の上面に設けられていてもよい。環状金属層86が設けられ、環状金属層48および樹脂62は設けられていなくてもよい。 As in the second embodiment, the source terminal and the drain terminal may be provided on the upper surface of the electronic component 40. The cyclic metal layer 86 may be provided, and the annular metal layer 48 and the resin 62 may not be provided.
[実施例2の変形例1]
 図21は、実施例2の変形例1に係るモジュールの製造方法を示す平面図である。図21に示すように、環状金属層86の孔70aおよび70bが設けられていない辺に孔70cが設けられている。矢印76aのように、孔70aから樹脂60を導入するときに、矢印76bおよび76cのように孔70bおよび70cから空間98内の空気が抜ける。このため、空間98内に樹脂60を容易に導入できる。その他の構成は実施例2と同じであり説明を省略する。
[Modification 1 of Example 2]
FIG. 21 is a plan view showing a method of manufacturing a module according to the first modification of the second embodiment. As shown in FIG. 21, the holes 70c are provided on the sides of the annular metal layer 86 where the holes 70a and 70b are not provided. When the resin 60 is introduced from the holes 70a as shown by the arrow 76a, the air in the space 98 is released from the holes 70b and 70c as shown by the arrows 76b and 76c. Therefore, the resin 60 can be easily introduced into the space 98. Other configurations are the same as those in the second embodiment, and the description thereof will be omitted.
[実施例2の変形例2]
 図22(a)および図22(b)は、実施例2の変形例2に係るモジュールの製造方法を示す断面図および平面図である。図22(a)および図22(b)に示すように、環状金属層86に孔70aおよび70bが設けられていない。絶縁層10に孔74が設けられている。矢印76aのように孔74aから空間98に樹脂60を導入する。矢印76bのように孔74bから空間98内の空気が抜ける。その他の構成は実施例2と同じであり説明を省略する。実施例2の変形例2のように、絶縁層10に樹脂60を導入する孔74aを設けてもよい。
[Modification 2 of Example 2]
22 (a) and 22 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 2 of the second embodiment. As shown in FIGS. 22 (a) and 22 (b), the annular metal layer 86 is not provided with holes 70a and 70b. A hole 74 is provided in the insulating layer 10. The resin 60 is introduced into the space 98 from the hole 74a as shown by the arrow 76a. Air in the space 98 escapes from the hole 74b as shown by the arrow 76b. Other configurations are the same as those in the second embodiment, and the description thereof will be omitted. As in the modified example 2 of the second embodiment, the insulating layer 10 may be provided with a hole 74a for introducing the resin 60.
[実施例2の変形例3]
 図23(a)および図23(b)は、実施例2の変形例3に係るモジュールの製造方法を示す断面図および平面図である。図23(a)および図23(b)に示すように、環状金属層86に孔70aおよび70bが設けられ、絶縁層10に孔74が設けられている。矢印76aのように孔70aから樹脂60を導入するときに、矢印76bおよび76cのように空間98内の空気は孔70bおよび74から外部に抜ける。その他の構成は実施例2と同じであり説明を省略する。実施例2の変形例3のように、絶縁層10に設けられた孔74を空気抜けに用いてもよい。
[Modification 3 of Example 2]
23 (a) and 23 (b) are a cross-sectional view and a plan view showing a method of manufacturing a module according to a modification 3 of the second embodiment. As shown in FIGS. 23 (a) and 23 (b), the annular metal layer 86 is provided with holes 70a and 70b, and the insulating layer 10 is provided with holes 74. When the resin 60 is introduced from the holes 70a as shown by the arrows 76a, the air in the space 98 escapes from the holes 70b and 74 as shown by the arrows 76b and 76c. Other configurations are the same as those in the second embodiment, and the description thereof will be omitted. As in the modified example 3 of the second embodiment, the hole 74 provided in the insulating layer 10 may be used for air release.
 実施例1およびその変形例2、4並びに実施例2およびその変形例によれば、絶縁層10(第1絶縁層)の下面に電子部品40および42が搭載され、絶縁層10の上面に貫通孔12(第1貫通孔)を介し電子部品40および42と接続する配線80および82が設けられている。配線80および82上に絶縁層20(第1層)が設けられている。環状金属層86(第1環状金属層)は、絶縁層10と絶縁層20との間において配線80および82を囲む。樹脂60(第1樹脂)は、絶縁層10、絶縁層20および環状金属層86に囲まれた空間98(第1空間)に充填され配線80および82を封止する。 According to the first embodiment and its modifications 2 and 4, and the second embodiment and its modifications, the electronic components 40 and 42 are mounted on the lower surface of the insulating layer 10 (first insulating layer) and penetrate the upper surface of the insulating layer 10. Wiring 80 and 82 that connect to the electronic components 40 and 42 via the hole 12 (first through hole) are provided. An insulating layer 20 (first layer) is provided on the wirings 80 and 82. The annular metal layer 86 (first annular metal layer) surrounds the wirings 80 and 82 between the insulating layer 10 and the insulating layer 20. The resin 60 (first resin) is filled in the space 98 (first space) surrounded by the insulating layer 10, the insulating layer 20, and the annular metal layer 86, and seals the wirings 80 and 82.
 実施例1およびその変形例では、電子部品40および42の下に絶縁基板30が設けられている。環状金属層48は、絶縁層10と絶縁基板30との間において電子部品40および42を囲む。樹脂62は、絶縁層10、絶縁基板30および環状金属層48に囲まれた空間99に充填され電子部品40および42を封止する。 In the first embodiment and its modifications, the insulating substrate 30 is provided under the electronic components 40 and 42. The annular metal layer 48 surrounds the electronic components 40 and 42 between the insulating layer 10 and the insulating substrate 30. The resin 62 fills the space 99 surrounded by the insulating layer 10, the insulating substrate 30, and the annular metal layer 48, and seals the electronic components 40 and 42.
 これにより、電子部品40および42において発生した熱(電子部品40がパワー半導体の場合例えば250℃となる)が環状金属層48または86により外部に放出される。これにより、電子部品40および42近傍の温度が下がるため、電子部品40および42の近傍に他の電子部品を実装することが可能となる。また、環状金属層48または86を設けることで樹脂60または62だけに比べ強度を大きくできる。 As a result, the heat generated in the electronic components 40 and 42 (when the electronic component 40 is a power semiconductor, for example, 250 ° C.) is released to the outside by the cyclic metal layer 48 or 86. As a result, the temperature in the vicinity of the electronic components 40 and 42 is lowered, so that other electronic components can be mounted in the vicinity of the electronic components 40 and 42. Further, by providing the annular metal layer 48 or 86, the strength can be increased as compared with the resin 60 or 62 alone.
 さらに、電子部品40と環状金属層48または86との間に厚い配線80bおよび80c、導電性ブロック46が設けられている。これにより、電子部品40において発生した熱の放熱性を高めることができる。放熱性を高めるため、薄い配線82aおよび82bと環状金属層86との間に厚い配線80bおよび80cを設けることが好ましい。 Further, thick wirings 80b and 80c and a conductive block 46 are provided between the electronic component 40 and the annular metal layer 48 or 86. As a result, the heat dissipation of the heat generated in the electronic component 40 can be improved. In order to improve heat dissipation, it is preferable to provide thick wirings 80b and 80c between the thin wirings 82a and 82b and the annular metal layer 86.
 絶縁層10および環状金属層48または86の少なくとも1つに外部と空間98または99とをつなぐ(すなわち通ずる)孔70aから70c、72aから72cおよび74(第1孔)を設けている。これにより、絶縁層10と環状金属層48または86とを有する構造の孔70aから70c、72aから72cおよび74を介し、絶縁層10、20(または絶縁基板30)および環状金属層86(または48)に囲まれた空間に電子部品または配線を封止する樹脂を充填することができる。 At least one of the insulating layer 10 and the annular metal layer 48 or 86 is provided with holes 70a to 70c, 72a to 72c and 74 (first holes) connecting (that is, communicating with) the outside and the space 98 or 99. As a result, the insulating layers 10, 20 (or the insulating substrate 30) and the annular metal layer 86 (or 48) are passed through the holes 70a to 70c, 72a to 72c and 74 of the structure having the insulating layer 10 and the annular metal layer 48 or 86. ) Can be filled with a resin that seals electronic components or wiring.
 孔70aと70bは環状金属層86の対角またはその近傍に設けられ、孔72aと72bは環状金属層48の対角またはその近傍に設けられることが好ましい。これにより、図8および図9のように、粘性のある樹脂を空間内に充填させることができる。 It is preferable that the holes 70a and 70b are provided diagonally to or near the annular metal layer 86, and the holes 72a and 72b are provided diagonally or near the annular metal layer 48. As a result, as shown in FIGS. 8 and 9, a viscous resin can be filled in the space.
 実施例1およびその変形例2、4のように、電子部品40および42下に絶縁基板30(第2層)が設けられている。環状金属層48(第2環状金属層)は、絶縁層10と絶縁基板30との間において電子部品40および42を囲む。樹脂62(第2樹脂)は、絶縁層10、絶縁基板30および環状金属層48に囲まれた空間99(第2空間)に充填され電子部品40および42を封止する。これにより、電子部品40および42において発生した熱が環状金属層48および86の両方により外部により効率的に放出される。環状金属層48および86の両方を設けることで強度をより大きくできる。 As in the first embodiment and the second and fourth modifications thereof, the insulating substrate 30 (second layer) is provided under the electronic components 40 and 42. The annular metal layer 48 (second annular metal layer) surrounds the electronic components 40 and 42 between the insulating layer 10 and the insulating substrate 30. The resin 62 (second resin) is filled in a space 99 (second space) surrounded by the insulating layer 10, the insulating substrate 30, and the annular metal layer 48, and seals the electronic components 40 and 42. As a result, the heat generated in the electronic components 40 and 42 is efficiently released to the outside by both the annular metal layers 48 and 86. The strength can be further increased by providing both the annular metal layers 48 and 86.
 実施例1の変形例3のように、環状金属層86に孔70aおよび70b(第1孔)が設けられ、絶縁層10に孔74(第2孔)が設けられている。環状金属層48に孔72aおよび72bは設けられていない。これにより、孔70aおよび70bを介し空間98に樹脂60を充填し、空間98から孔74を介し環状金属層48内の空間99に樹脂62を充填することができる。 As in the modified example 3 of the first embodiment, the annular metal layer 86 is provided with holes 70a and 70b (first hole), and the insulating layer 10 is provided with a hole 74 (second hole). The annular metal layer 48 is not provided with holes 72a and 72b. As a result, the space 98 can be filled with the resin 60 through the holes 70a and 70b, and the resin 62 can be filled in the space 99 in the annular metal layer 48 from the space 98 through the holes 74.
 実施例1およびその変形例2のように、環状金属層86に孔70aおよび70b設けられ、絶縁層10に孔74は設けられておらず、環状金属層48に孔72aおよび72bが設けられている。これにより、樹脂60と62とを別の工程により形成できる。 As in the first embodiment and the second modification thereof, the annular metal layer 86 is provided with holes 70a and 70b, the insulating layer 10 is not provided with holes 74, and the annular metal layer 48 is provided with holes 72a and 72b. There is. Thereby, the resins 60 and 62 can be formed by another step.
 配線80上に絶縁層20(第2絶縁層)が設けられ、電極として金属層26は絶縁層20の上面に設けられ、貫通孔22(第2貫通孔)を介し配線80と接続する。これにより、配線80を介し電子部品40の熱を放出できる。 An insulating layer 20 (second insulating layer) is provided on the wiring 80, and a metal layer 26 is provided on the upper surface of the insulating layer 20 as an electrode and is connected to the wiring 80 via a through hole 22 (second through hole). As a result, the heat of the electronic component 40 can be released through the wiring 80.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.
 10、20 絶縁層
 12、22 貫通孔
 14、24、26、34、36 金属層
 16 接着剤
 28、38 接合層
 30 絶縁基板
 40、40a、40b、42 電子部品
 51-54、56、51a-51d 端子
 60、62 樹脂
 70a-70c、72a-72c、74、74a、74b 孔
 80、80a-80c、82、82a、82b 配線
 98、99 空間
 
10, 20 Insulation layer 12, 22 Through hole 14, 24, 26, 34, 36 Metal layer 16 Adhesive 28, 38 Bonding layer 30 Insulation substrate 40, 40a, 40b, 42 Electronic components 51-54, 56, 51a- 51d Terminals 60, 62 Resin 70a-70c, 72a-72c, 74, 74a, 74b Holes 80, 80a-80c, 82, 82a, 82b Wiring 98, 99 Space

Claims (9)

  1.  第1絶縁層と、
     前記第1絶縁層の下面に搭載された電子部品と、
     前記第1絶縁層の上面に設けられ、前記第1絶縁層を貫通する第1貫通孔を介し前記電子部品と接続する配線と、
     前記電子部品下および前記配線上のいずれか一方に設けられた第1層と、
     前記第1絶縁層と前記第1層との間において対応する前記電子部品および前記配線のいずれか一方を囲む第1環状金属層と、
     前記第1絶縁層、前記第1層および前記第1環状金属層に囲まれた第1空間に充填され前記対応する前記電子部品および前記配線のいずれか一方を封止する第1樹脂と、
     を備え、
     前記第1絶縁層および前記第1環状金属層の少なくとも一方に外部と前記第1空間とをつなぐ第1孔が設けられたモジュール。
    With the first insulating layer
    Electronic components mounted on the lower surface of the first insulating layer and
    A wiring provided on the upper surface of the first insulating layer and connected to the electronic component through a first through hole penetrating the first insulating layer.
    A first layer provided under either the electronic component or the wiring, and
    A first annular metal layer that surrounds one of the corresponding electronic component and the wiring between the first insulating layer and the first layer.
    A first resin that fills a first space surrounded by the first insulating layer, the first layer, and the first annular metal layer and seals one of the corresponding electronic components and the wiring.
    With
    A module in which at least one of the first insulating layer and the first annular metal layer is provided with a first hole connecting the outside and the first space.
  2.  前記第1孔は前記第1環状金属層に設けられている請求項1に記載のモジュール。 The module according to claim 1, wherein the first hole is provided in the first annular metal layer.
  3.  前記第1孔は前記第1環状金属層の対角またはその近傍に設けられている請求項2に記載のモジュール。 The module according to claim 2, wherein the first hole is provided diagonally or in the vicinity of the first annular metal layer.
  4.  前記電子部品下および前記配線上のうち前記いずれか一方でない他方に設けられた第2層と、
     前記第1絶縁層と前記第2層との間において前記電子部品および前記配線の他方を囲む第2環状金属層と、
     前記第1絶縁層、前記第2層および前記第2環状金属層に囲まれた第2空間に充填され前記電子部品および前記配線の他方を封止する第2樹脂と、
     を備える請求項1から3のいずれか一項に記載のモジュール。
    A second layer provided under the electronic component and on the wiring, which is not one of the above,
    A second annular metal layer that surrounds the electronic component and the other of the wiring between the first insulating layer and the second layer.
    A second resin that fills a second space surrounded by the first insulating layer, the second layer, and the second annular metal layer and seals the other of the electronic component and the wiring.
    The module according to any one of claims 1 to 3.
  5.  前記第1孔は前記第1環状金属層に設けられ、
     前記第1絶縁層に前記第1空間と前記第2空間とをつなぐ第2孔が設けられ、
     前記第2環状金属層に孔は設けられていない請求項4に記載のモジュール。
    The first hole is provided in the first annular metal layer and is provided.
    The first insulating layer is provided with a second hole connecting the first space and the second space.
    The module according to claim 4, wherein the second annular metal layer is not provided with holes.
  6.  前記第1孔は、前記第1環状金属層に設けられ、前記第1絶縁層および前記第1層には設けられておらず、
     前記第2環状金属層に外部と前記第2空間とをつなぐ第2孔が設けられている請求項4に記載のモジュール。
    The first hole is provided in the first annular metal layer, and is not provided in the first insulating layer and the first layer.
    The module according to claim 4, wherein the second annular metal layer is provided with a second hole connecting the outside and the second space.
  7.  前記第1層は前記配線上に設けられた第2絶縁層であり、
     前記第2絶縁層の上面に設けられ、前記第2絶縁層を貫通する第2貫通孔を介し前記配線と接続する電極を備える請求項1から6のいずれか一項に記載のモジュール。
    The first layer is a second insulating layer provided on the wiring.
    The module according to any one of claims 1 to 6, further comprising an electrode provided on the upper surface of the second insulating layer and connected to the wiring through a second through hole penetrating the second insulating layer.
  8.  第1絶縁層と、前記第1絶縁層の下面に搭載された電子部品と、前記第1絶縁層の上面に設けられ、前記第1絶縁層を貫通する第1貫通孔を介し前記電子部品と接続する配線と、前記電子部品下および前記配線上のいずれか一方に設けられた第1層と、前記第1絶縁層と前記第1層との間において対応する前記電子部品および前記配線のいずれか一方を囲む第1環状金属層と、を備え、前記第1絶縁層、前記第1層および前記第1環状金属層の少なくとも1つに、外部と、前記第1絶縁層、前記第1層および前記第1環状金属層に囲まれた第1空間と、をつなぐ第1孔が設けられた構造を形成する工程と、
     前記構造の前記第1孔を介し、前記第1空間に前記対応する前記電子部品および前記配線のいずれか一方を封止する樹脂を充填する工程と、
    を含むモジュールの製造方法。
    The first insulating layer, the electronic component mounted on the lower surface of the first insulating layer, and the electronic component provided on the upper surface of the first insulating layer through a first through hole that penetrates the first insulating layer. Any of the electronic component and the wiring corresponding to the wiring to be connected, the first layer provided under the electronic component and either on the wiring, and between the first insulating layer and the first layer. A first annular metal layer surrounding one of them is provided, and at least one of the first insulating layer, the first layer, and the first annular metal layer is provided with an external layer, the first insulating layer, and the first layer. And a step of forming a structure provided with a first hole connecting the first space surrounded by the first annular metal layer.
    A step of filling the first space with a resin that seals either the corresponding electronic component or the wiring through the first hole of the structure.
    How to manufacture a module, including.
  9.  前記構造は、前記電子部品下および前記配線上の他方に設けられた第2層と、前記第1絶縁層と前記第2層との間において前記電子部品および前記配線の他方を囲む第2環状金属層と、を備え、前記第1孔は前記第1環状金属層に設けられ、前記第1絶縁層に、前記第1空間と、前記第1絶縁層、前記第2層および前記第2環状金属層に囲まれた第2空間と、をつなぐ第2孔が設けられ、前記第2環状金属層に孔は設けられておらず、
     前記樹脂を充填する工程は、前記第1孔を介し前記第1空間に前記樹脂を充填し、前記第2孔を介し前記第1空間から前記第2空間に前記樹脂を充填する工程を含む請求項8に記載のモジュールの製造方法。
     
    The structure includes a second layer provided under the electronic component and on the other side of the wiring, and a second annular structure surrounding the electronic component and the other side of the wiring between the first insulating layer and the second layer. A metal layer is provided, and the first hole is provided in the first annular metal layer, and the first insulating layer is provided with the first space, the first insulating layer, the second layer, and the second annular. A second hole is provided to connect the second space surrounded by the metal layer, and the second annular metal layer is not provided with a hole.
    The step of filling the resin includes a step of filling the first space with the resin through the first hole and filling the resin from the first space to the second space through the second hole. Item 8. The method for manufacturing a module according to Item 8.
PCT/JP2020/008656 2019-03-29 2020-03-02 Module and method for manufacturing same WO2020202972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066114 2019-03-29
JP2019066114 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202972A1 true WO2020202972A1 (en) 2020-10-08

Family

ID=72668597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008656 WO2020202972A1 (en) 2019-03-29 2020-03-02 Module and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2020202972A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183571A (en) * 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd Electronic element package and manufacturing method therefor
JP2014200825A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Structure of and method for pressurization/heating joint
JP2016031969A (en) * 2014-07-28 2016-03-07 ローム株式会社 Semiconductor device
WO2018110383A1 (en) * 2016-12-15 2018-06-21 株式会社村田製作所 Electronic module and method for producing electronic module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183571A (en) * 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd Electronic element package and manufacturing method therefor
JP2014200825A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Structure of and method for pressurization/heating joint
JP2016031969A (en) * 2014-07-28 2016-03-07 ローム株式会社 Semiconductor device
WO2018110383A1 (en) * 2016-12-15 2018-06-21 株式会社村田製作所 Electronic module and method for producing electronic module

Similar Documents

Publication Publication Date Title
KR102151047B1 (en) Power overlay structure and method of making same
US10186477B2 (en) Power overlay structure and method of making same
US20060087020A1 (en) Semiconductor device and method for producing the same
US9953917B1 (en) Electronics package with embedded through-connect and resistor structure and method of manufacturing thereof
KR101323416B1 (en) Power circuit package and fabrication method
JP2018120902A (en) Power electronics package and method of manufacturing the same
JP2020529734A (en) Electronic equipment package with integrated interconnection structure and its manufacturing method
US10700035B2 (en) Stacked electronics package and method of manufacturing thereof
US10770444B2 (en) Electronics package having a multi-thickness conductor layer and method of manufacturing thereof
US9953913B1 (en) Electronics package with embedded through-connect structure and method of manufacturing thereof
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
JP2020155640A (en) Module and manufacturing method thereof
WO2020202972A1 (en) Module and method for manufacturing same
JP2001144230A (en) Semiconductor device and its manufacturing method
WO2021181468A1 (en) Semiconductor module
CN108428689B (en) Power electronic device assembly and method of manufacturing the same
WO2021181649A1 (en) Semiconductor module and method for manufacturing same
JP2020077857A (en) Module and manufacturing method thereof
WO2021161449A1 (en) Component module and production method for same
WO2021161498A1 (en) Component module
US20240057255A1 (en) Method of manufacturing a printed circuit board assembly
JP6935976B2 (en) Power modules and how to manufacture power modules
JP2003046027A (en) Heat-radiating type bga package and manufacturing method therefor
WO2021117191A1 (en) Component module and production method for same
JP2020155645A (en) Module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP