WO2020202414A1 - 撮像装置および制御プログラム - Google Patents

撮像装置および制御プログラム Download PDF

Info

Publication number
WO2020202414A1
WO2020202414A1 PCT/JP2019/014398 JP2019014398W WO2020202414A1 WO 2020202414 A1 WO2020202414 A1 WO 2020202414A1 JP 2019014398 W JP2019014398 W JP 2019014398W WO 2020202414 A1 WO2020202414 A1 WO 2020202414A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
region
imaging region
pixel
signal
Prior art date
Application number
PCT/JP2019/014398
Other languages
English (en)
French (fr)
Inventor
優 森岡
昌也 ▲高▼橋
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/014398 priority Critical patent/WO2020202414A1/ja
Publication of WO2020202414A1 publication Critical patent/WO2020202414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • H04N25/633Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current by using optical black pixels

Definitions

  • the present invention relates to an imaging device and a control program.
  • Patent Document 1 discloses a charge coupling element having an optical black region in which a photodiode is arranged and an optical black region in which a photodiode is not arranged. However, the charge coupling element of Patent Document 1 does not consider a plurality of imaging regions in which different imaging conditions are set.
  • the imaging apparatus of the present disclosure technology includes an imaging element having an imaging region having a photoelectric conversion unit that photoelectrically converts light from a subject, a light-shielding pixel region having a light-shielded photoelectric conversion unit, and photoelectric conversion of the imaging region.
  • the signal from the unit is based on the signal from the photoelectric conversion unit of the light-shielding pixel region and the second control condition set in the light-shielding pixel region, which is different from the first control condition set in the imaging region. It has a signal processing unit for correction.
  • the imaging apparatus of the present disclosure technology includes an imaging element having an imaging region having a photoelectric conversion unit that photoelectrically converts light from a subject, a light-shielding pixel region having a light-shielded photoelectric conversion unit, and photoelectric conversion of the imaging region. It has a signal processing unit that corrects the signal from the unit based on the signal from the photoelectric conversion unit of the light-shielding pixel region, the arrangement position of the imaging region, and the arrangement position of the light-shielding pixel region.
  • the control program of the present disclosure technology causes a processor to control an imaging element having an imaging region having a photoelectric conversion unit that photoelectrically converts light from a subject and a light-shielding pixel region having a light-shielded photoelectric conversion unit.
  • the processor is set to the signal from the photoelectric conversion unit in the imaging region, the signal from the photoelectric conversion unit in the light-shielding pixel region, and the imaging region set in the light-shielding pixel region.
  • the correction is made based on the second control condition different from the first control condition.
  • the control program of the present disclosure technology causes a processor to control an imaging element having an imaging region having a photoelectric conversion unit that photoelectrically converts light from a subject and a light-shielding pixel region having a light-shielded photoelectric conversion unit.
  • the processor is provided with a signal from the photoelectric conversion unit of the imaging region, a signal from the photoelectric conversion unit of the light-shielding pixel region, an arrangement position of the imaging region, and an arrangement position of the light-shielding pixel region. To be corrected based on.
  • FIG. 1 is a cross-sectional view of a stacked image sensor.
  • FIG. 2 is a diagram illustrating a pixel arrangement of the imaging chip.
  • FIG. 3 is a circuit diagram of the imaging chip.
  • FIG. 4 is a block diagram showing a configuration example of the image sensor.
  • FIG. 5 is an explanatory diagram showing an example of a block configuration of an electronic device.
  • FIG. 6 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region.
  • FIG. 7 is a circuit diagram showing a circuit configuration of an imaging pixel region and an optical black pixel region in the row direction.
  • FIG. 8 is a circuit diagram showing a circuit configuration of an imaging pixel region and an optical black pixel region in the column direction.
  • FIG. 1 is a cross-sectional view of a stacked image sensor.
  • FIG. 2 is a diagram illustrating a pixel arrangement of the imaging chip.
  • FIG. 3 is a circuit diagram
  • FIG. 9 is a timing chart showing the operation of the block.
  • FIG. 10 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region 2.
  • FIG. 11 is an explanatory diagram showing the relationship 3 between the control condition of the imaging pixel region and the control condition of the optical black pixel region 3.
  • FIG. 12 is a block diagram showing another example of an optical black pixel with PD.
  • FIG. 13 is an explanatory diagram showing the relationship between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the second embodiment.
  • FIG. 14 is an explanatory diagram showing an example of the correction table according to the second embodiment.
  • FIG. 10 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region 2.
  • FIG. 11 is an explanatory diagram showing the relationship 3 between the control condition of the imaging pixel region and the control condition of the optical black pixel region 3.
  • FIG. 15 is a circuit diagram showing a circuit configuration of an imaging pixel region and an optical black pixel region in the column direction.
  • FIG. 16 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the third embodiment.
  • FIG. 17 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the third embodiment.
  • FIG. 18 is an explanatory diagram showing the relationship between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fourth embodiment.
  • FIG. 19 is an explanatory diagram showing an example of the correction table according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the third embodiment.
  • FIG. 17 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical
  • FIG. 20 is a circuit diagram showing a circuit configuration of an imaging pixel region and an optical black pixel region in the row direction.
  • FIG. 21 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fifth embodiment.
  • FIG. 22 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fifth embodiment.
  • FIG. 23 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the sixth embodiment.
  • FIG. 24 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the sixth embodiment.
  • FIG. 21 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fifth embodiment.
  • FIG. 22 is an explanatory diagram showing the
  • FIG. 25 is an explanatory diagram showing an example of the correction table according to the sixth embodiment.
  • FIG. 26 is an explanatory diagram showing the relationship between the control conditions of the imaging pixel region and the control conditions of the optical black pixel region.
  • FIG. 27 is an explanatory diagram showing an example of the correction table according to the seventh embodiment.
  • the image pickup device mounted on the electronic device shown in the examples of the present specification is a stacked image pickup device.
  • different imaging conditions control conditions
  • different imaging conditions control conditions
  • the structure of the stacked image sensor in which different image pickup conditions (control conditions) can be set for each of a plurality of different image pickup regions will be described. It should be noted that this laminated image sensor is described in Japanese Patent Application No. 2012-139026, which the applicant of the present application filed earlier.
  • the electronic device is, for example, an imaging device such as a digital camera or a digital video camera.
  • FIG. 1 is a cross-sectional view of the stacked image sensor 100.
  • the stacked image sensor (hereinafter, simply “imaging element”) 100 processes a back-illuminated image pickup chip (hereinafter, simply “imaging chip”) 113 that outputs a pixel signal corresponding to incident light, and a pixel signal. It includes a signal processing chip 111 and a memory chip 112 that stores pixel signals.
  • the imaging chip 113, the signal processing chip 111, and the memory chip 112 are laminated and electrically connected to each other by a conductive bump 109 such as Cu.
  • the incident light is mainly incident in the Z-axis plus direction indicated by the white arrow.
  • the surface on the side where the incident light is incident is referred to as the back surface.
  • the coordinate axis 120 the left direction of the paper surface orthogonal to the Z axis is defined as the X-axis plus direction, and the Z-axis and the front direction of the paper surface orthogonal to the X-axis are defined as the Y-axis plus direction.
  • the coordinate axes 120 are displayed so that the orientation of each figure can be understood with reference to the coordinate axes 120 of FIG.
  • An example of the image pickup chip 113 is a back-illuminated MOS (Metal Oxide Semiconductor) image sensor.
  • the PD (photodiode) layer 106 is arranged on the back surface side of the wiring layer 108.
  • the PD layer 106 has a plurality of PD 104s arranged two-dimensionally and accumulating charges according to incident light, and a transistor 105 provided corresponding to the PD 104.
  • a color filter 102 is provided on the incident side of the incident light in the PD layer 106 via the passivation film 103.
  • the color filter 102 has a plurality of types that transmit different wavelength regions from each other, and has a specific arrangement corresponding to each of the PD 104. The arrangement of the color filters 102 will be described later.
  • a set of a color filter 102, a PD 104, and a transistor 105 forms one pixel.
  • a microlens 101 is provided on the incident side of the incident light in the color filter 102 corresponding to each pixel.
  • the microlens 101 collects incident light toward the corresponding PD 104.
  • the wiring layer 108 has a wiring 107 that transmits a pixel signal from the PD layer 106 to the signal processing chip 111.
  • the wiring 107 may have multiple layers, and may be provided with passive elements and active elements.
  • a plurality of bumps 109 are arranged on the surface of the wiring layer 108.
  • the plurality of bumps 109 are aligned with the plurality of bumps 109 provided on the facing surfaces of the signal processing chip 111, and the imaging chip 113 and the signal processing chip 111 are aligned by being pressurized or the like.
  • the bumps 109 are joined together and electrically connected.
  • a plurality of bumps 109 are arranged on the surfaces of the signal processing chip 111 and the memory chip 112 facing each other. These bumps 109 are aligned with each other, and the signal processing chip 111 and the memory chip 112 are pressurized, so that the aligned bumps 109 are joined to each other and electrically connected.
  • the bonding between the bumps 109 is not limited to Cu bump bonding by solid phase diffusion, but micro bump bonding by solder melting may be adopted. Further, for example, about one bump 109 may be provided for one block described later. Therefore, the size of the bump 109 may be larger than the pitch of the PD 104. Further, in the peripheral region other than the pixel region in which the pixels are arranged, a bump larger than the bump 109 corresponding to the pixel region may be provided together.
  • the signal processing chip 111 has TSVs (Through Silicon Vias) 110 that connect circuits provided on the front and back surfaces to each other.
  • TSVs Three Silicon Vias
  • the TSV 110 is preferably provided in the peripheral region. Further, the TSV 110 may also be provided in the peripheral area of the image pickup chip 113 and the memory chip 112.
  • FIG. 2 is a diagram illustrating a pixel arrangement of the imaging chip 113.
  • (A) is a plan view schematically showing an imaging surface 200 which is the back surface of the imaging chip 113
  • (b) is an enlarged plan view of a part area 200a of the imaging surface 200.
  • a large number of pixels 201 are arranged two-dimensionally on the imaging surface 200.
  • Each pixel 201 has a color filter (not shown).
  • the color filter consists of three types of red (R), green (G), and blue (B), and the notations "R", "G", and "B” in (b) are the color filters of pixel 201. Represents the type of.
  • pixels 201 having such color filters are arranged according to a so-called Bayer array.
  • the pixel 201 having a red filter photoelectrically converts the incident light in the red wavelength band and outputs a light receiving signal (photoelectric conversion signal).
  • the pixel 201 having a green filter photoelectrically converts the incident light in the green wavelength band and outputs a received signal.
  • the pixel 201 having a blue filter photoelectrically converts the incident light in the blue wavelength band and outputs a received signal.
  • the image sensor 100 is configured to be individually controllable for each block 202 composed of a total of four pixels 201 of two adjacent pixels ⁇ 2 pixels. For example, when two blocks 202 different from each other start charge accumulation at the same time, one block 202 reads out the charge, that is, reads out the received light signal 1/30 second after the start of charge accumulation, and the other block 202 reads out the received signal. The charge can be read out 1/15 second after the start of charge accumulation. In other words, the image sensor 100 can set a different exposure time (charge accumulation time, so-called shutter speed) for each block 202 in one image pickup.
  • exposure time charge accumulation time, so-called shutter speed
  • the image sensor 100 can make the amplification factor (so-called ISO sensitivity) of the image pickup signal different for each block 202 in addition to the above-mentioned exposure time.
  • the image sensor 100 can change the timing of starting charge accumulation and the timing of reading a received signal for each block 202. That is, the image sensor 100 can change the frame rate at the time of moving image imaging for each block 202.
  • the image sensor 100 is configured so that the image pickup conditions (control conditions) such as the exposure time, amplification factor, and frame rate can be made different for each block 202.
  • the image pickup conditions control conditions
  • the exposure time can be made different for each block 202.
  • the amplification factor by the amplifier circuit can be controlled independently for each amplifier circuit.
  • the signal amplification factor (ISO sensitivity) can be made different for each block 202.
  • the imaging conditions (control conditions) that can be made different for each block 202 include the frame rate, gain, resolution (thinning rate), and the number of lines to be added to add the pixel signals. Or the number of addition columns, charge accumulation time or number of times, digitization bits, etc.
  • the control parameter may be a parameter in image processing after acquiring an image signal from a pixel.
  • the image pickup condition for example, a liquid crystal panel having a section that can be independently controlled for each block 202 (one section corresponds to one block 202) is provided in the image pickup element 100, and the image sensor 100 can be turned on and off. If it is used as an optical filter, the brightness (aperture value) can be controlled for each block 202.
  • the number of pixels 201 constituting the block 202 does not have to be the above-mentioned 2 ⁇ 2 4 pixels.
  • the block 202 may have at least two or more pixels 201, and conversely, may have more than four pixels 201.
  • FIG. 3 is a circuit diagram of the imaging chip 113.
  • a rectangle typically surrounded by a dotted line represents a circuit corresponding to one pixel 201.
  • the rectangle surrounded by the alternate long and short dash line corresponds to one block 202 (202-1 to 202-4). It should be noted that at least a part of each transistor described below corresponds to the transistor 105 of FIG.
  • the reset transistor 303 of the pixel 201 is turned on / off in units of blocks 202. Further, the transfer transistor 302 of the pixel 201 is also turned on / off in units of blocks 202.
  • reset wiring 300-1 for turning on / off the four reset transistors 303 corresponding to the upper left block 202-1 is provided, and the four transfer transistors corresponding to the block 202-1 are provided.
  • TX wiring 307-1 for supplying a transfer pulse to 302 is also provided.
  • the reset wiring 300-3 for turning on / off the four reset transistors 303 corresponding to the lower left block 202-3 is provided separately from the reset wiring 300-1.
  • the TX wiring 307-3 for supplying the transfer pulse to the four transfer transistors 302 corresponding to the block 202-3 is provided separately from the TX wiring 307-1.
  • reset wiring 300-2 and TX wiring 307-2, and reset wiring 300-4 and TX wiring 307-4 are provided in each block 202, respectively.
  • the 16 PD 104s corresponding to each pixel 201 are connected to the corresponding transfer transistors 302, respectively.
  • a transfer pulse is supplied to the gate of each transfer transistor 302 via the TX wiring for each block 202.
  • the drain of each transfer transistor 302 is connected to the source of the corresponding reset transistor 303, and the so-called floating diffusion FD between the drain of the transfer transistor 302 and the source of the reset transistor 303 is connected to the gate of the corresponding amplification transistor 304.
  • each reset transistor 303 is commonly connected to the Vdd wiring 310 to which the power supply voltage is supplied.
  • a reset pulse is supplied to the gate of each reset transistor 303 via the reset wiring for each block 202.
  • each amplification transistor 304 is commonly connected to the Vdd wiring 310 to which the power supply voltage is supplied. Also, the source of each amplification transistor 304 is connected to the drain of the corresponding selection transistor 305. The gate of each selection transistor 305 is connected to a decoder wiring 308 to which a selection pulse is supplied. The decoder wiring 308 is provided independently for each of the 16 selection transistors 305.
  • the load current source 311 supplies current to the output wiring 309. That is, the output wiring 309 for the selection transistor 305 is formed by the source follower.
  • the load current source 311 may be provided on the imaging chip 113 side or the signal processing chip 111 side.
  • each PD 104 converts the received incident light into an electric charge and accumulates it. After that, when the transfer pulse is applied again while the reset pulse is not applied, the accumulated charge is transferred to the floating diffusion FD, and the potential of the floating diffusion FD changes from the reset potential to the signal potential after charge accumulation. ..
  • the selection pulse is applied to the selection transistor 305 through the decoder wiring 308, the fluctuation of the signal potential of the floating diffusion FD is transmitted to the output wiring 309 via the amplification transistor 304 and the selection transistor 305.
  • the pixel signal corresponding to the reset potential and the signal potential is output from the unit pixel to the output wiring 309.
  • the reset wiring and the TX wiring are common to the four pixels forming the block 202. That is, the reset pulse and the transfer pulse are simultaneously applied to the four pixels in the block 202, respectively. Therefore, all the pixels 201 forming a certain block 202 start the charge accumulation at the same timing and end the charge accumulation at the same timing. However, the pixel signal corresponding to the accumulated charge is selectively output from the output wiring 309 by sequentially applying the selection pulse to each selection transistor 305.
  • the charge accumulation start timing can be controlled for each block 202.
  • images can be taken at different timings between different blocks 202.
  • FIG. 4 is a block diagram showing a configuration example of the image sensor 100.
  • the analog multiplexer 411 sequentially selects 16 PD 104s forming the block 202, and outputs each pixel signal to the output wiring 309 provided corresponding to the block 202.
  • the multiplexer 411 is formed on the imaging chip 113 together with the PD 104.
  • the pixel signal output via the multiplexer 411 is CDS and A / by a signal processing circuit 412 formed on the signal processing chip 111, which performs correlated double sampling (CDS) and analog / digital (A / D) conversion. D conversion is performed.
  • CDS correlated double sampling
  • a / D analog / digital
  • the A / D converted pixel signal is passed to the demultiplexer 413 and stored in the pixel memory 414 corresponding to each pixel.
  • the demultiplexer 413 and the pixel memory 414 are formed on the memory chip 112.
  • the arithmetic circuit 415 processes the pixel signal stored in the pixel memory 414 and hands it over to the image processing unit in the subsequent stage.
  • the arithmetic circuit 415 may be provided on the signal processing chip 111 or the memory chip 112.
  • FIG. 4 shows the connections for the four blocks 202, in reality, these exist for each of the four blocks 202 and operate in parallel.
  • the arithmetic circuit 415 does not have to exist for each of the four blocks 202.
  • one arithmetic circuit 415 sequentially refers to the values of the pixel memory 414 corresponding to each of the four blocks 202 for processing. You may.
  • output wiring 309 is provided corresponding to each of the blocks 202. Since the image sensor 100 has an image pickup chip 113, a signal processing chip 111, and a memory chip 112 stacked on top of each other, by using an electrical connection between the chips using bumps 109 for these output wirings 309, each chip is placed in the plane direction. Wiring can be routed without making it large.
  • FIG. 5 is an explanatory diagram showing an example of a block configuration of an electronic device.
  • the electronic device 500 is, for example, a camera with a built-in lens.
  • the electronic device 500 includes an image pickup optical system 501, an image pickup element 100, a control unit 502, a liquid crystal monitor 503, a memory card 504, an operation unit 505, a DRAM 506, a flash memory 507, and a recording unit 508.
  • the control unit 502 includes a detection unit that detects camera shake and subject blur as described later.
  • the image pickup optical system 501 is composed of a plurality of lenses, and forms a subject image on the image pickup surface 200 of the image pickup element 100.
  • the imaging optical system 501 is shown as a single lens.
  • the image sensor 100 is, for example, an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device), and outputs an image pickup signal by imaging a subject image imaged by the image pickup optical system 501.
  • the control unit 502 is an electronic circuit that controls each part of the electronic device 500, and includes a processor that executes a program, peripheral circuits such as an image processing circuit, and various sensors such as an acceleration sensor.
  • a predetermined control program is written in advance in the flash memory 507, which is a non-volatile storage medium.
  • the processor of the control unit 502 controls each unit by reading and executing the control program from the flash memory 507.
  • This control program uses DRAM 506, which is a volatile storage medium, as a working area.
  • the liquid crystal monitor 503 is a display device using a liquid crystal panel.
  • the control unit 502 causes the image sensor 100 to repeatedly image the subject image at predetermined intervals (for example, 1/60 second). Then, various image processes are applied to the image pickup signal output from the image pickup element 100 to create a so-called through image, which is displayed on the liquid crystal monitor 503.
  • the liquid crystal monitor 503 displays, for example, a setting screen for setting imaging conditions (control conditions).
  • the control unit 502 creates an image file to be described later based on the image pickup signal output from the image pickup element 100, and records the image file on the memory card 504 which is a portable recording medium.
  • the operation unit 505 has various operation members such as push buttons, and outputs an operation signal to the control unit 502 in response to the operation of these operation members.
  • the recording unit 508 is composed of, for example, a microphone, converts an environmental sound into an audio signal, and inputs it to the control unit 502.
  • the control unit 502 does not record the moving image file on the memory card 504, which is a portable recording medium, but a recording medium (not shown) such as an SSD (Solid State Drive) or a hard disk built in the electronic device 500. It may be recorded in.
  • a recording medium such as an SSD (Solid State Drive) or a hard disk built in the electronic device 500. It may be recorded in.
  • the number of non-imaging regions in the optical black pixel region is equal to or greater than the number of imaging regions in the imaging pixel region, and the non-imaging regions are arranged at positions different from the imaging pixel regions. Be prepared.
  • FIG. 6 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the first embodiment.
  • the x direction is the row direction and the y direction is the column direction.
  • the imaging surface 200 shown in FIG. 2 has an imaging pixel region 600 and an optical black pixel region 610.
  • the image pickup pixel area 600 is a region in which image pickup pixels 6 having a plurality of PD 104s and the like that accumulate charges according to incident light are arranged in a two-dimensional manner.
  • the optical black pixel has the same structure as the pixel arranged in the imaging pixel region, but the PD 104 is a light-shielded pixel.
  • the optical black pixel region 610 is, for example, a region in which optical black pixels are arranged one-dimensionally or two-dimensionally.
  • the imaging region is, for example, a set of one or more blocks 202.
  • the imaging pixel region 600 is composed of two rows and two columns of imaging regions 600-11, 600-12, 600-21, and 600-22.
  • the imaging pixel area 600 may be composed of m rows and n columns other than 2 rows and 2 columns (m and n are integers of 1 or more, but the imaging region 600 is 2 or more).
  • imaging regions 600-11, 600-12, 600-21, and 600-22 are not distinguished, they are referred to as imaging regions 600-ij.
  • Each imaging region 600-ij can be controlled under different control conditions from the other imaging regions 600-ij.
  • the optical black pixel region 610 is composed of a plurality of non-imaging regions 610-L1-610-L4 and 610-C1-610-C4 that do not image the subject.
  • Each of the non-imaging regions 610-L1-610-L4 and 610-C1-610-C4 includes, for example, at least one of a PD-less optical black pixel group and a PD-bearing optical black pixel group, which will be described later.
  • the PD-less optical black pixel group or the PD-bearing optical black pixel group in each of the non-imaging regions 610-L1-610-L4 and 610-C1-610-C4 is, for example, the same as the block 202 described with reference to FIG.
  • each pixel is provided in a two-dimensionally arranged configuration.
  • the optical black pixel group without PD or the optical black pixel group with PD has a configuration that can be controlled under different control conditions for each of the non-imaging regions 610-L1-610-L4 and 610-C1-610-C4. Be prepared.
  • the non-imaging region including the PD-less optical black pixel group is also referred to as a light-shielding pixel region.
  • the plurality of non-imaging regions 610-L1 to 610-L4 are non-imaging regions existing in the column direction. When the non-imaging region group existing in the column direction is not distinguished, it is expressed as the non-imaging region 610-Lp.
  • the plurality of non-imaging regions 610-C1 to 610-C4 are groups of non-imaging regions existing in the row direction.
  • non-imaging area 610-Cq When the non-imaging area group existing in the row direction is not distinguished, it is expressed as the non-imaging area 610-Cq.
  • non-imaging regions 610-pq When a plurality of non-imaging regions 610-L1-610-L4 and 610-C1-610-C4 are not distinguished, they are referred to as non-imaging regions 610-pq.
  • One non-imaging region 610-pq includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the optical black pixel region 610 is adjacent to the outside of the imaging pixel region 600.
  • the optical black pixel region 610 is provided at the right end and the lower end of the image pickup pixel region 600.
  • the position of the optical black pixel region 610 may be at least one of the upper end, the lower end, the right end, and the left end of the imaging pixel region 600.
  • the optical black pixel region 610 includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the group of optical black pixels with PD is a set of optical black pixels with PD.
  • the optical black pixel with PD is a black pixel having PD 104.
  • an optical black pixel with PD is a pixel having a light-shielding layer that blocks the incident light of a subject.
  • the PD-less optical black pixel group is a set of PD-less optical black pixels.
  • the PD-less optical black pixel is a black pixel having no PD 104.
  • the number of non-imaging regions 610-pq is equal to or greater than the number of imaging regions 600-ij.
  • the number of non-imaging regions 610-pq is eight, and the number of imaging regions 600-ij is four.
  • the non-imaging area 610-Cq is arranged in 2 rows and 2 columns.
  • the non-imaging regions 610-C1 and 610-C3 are arranged in the column direction, and the PD-free optical black pixel group in the non-imaging region 610-C1 and the PD-less optical black pixel group in the non-imaging region 610-C3. And are adjacent.
  • the non-imaging regions 610-C2 and 610-C4 are arranged in the column direction, and the PD-free optical black pixel group in the non-imaging region 610-C2 and the PD-less optical in the non-imaging region 610-C4 are arranged. Is adjacent to the black pixel group.
  • the PD-less optical black pixel group in the non-imaging region 610-Cq is not separated, the number of arrangements of the PD-less optical black pixel group can be reduced, and the manufacturing cost can be reduced.
  • FIG. 7 is a circuit diagram showing a circuit configuration of an imaging pixel region 600 and an optical black pixel region 610 in the row direction according to the first embodiment.
  • FIG. 8 is a circuit diagram showing a circuit configuration of an imaging pixel region 600 and an optical black pixel region 610 in the column direction according to the first embodiment.
  • the pixel 201 of the image pickup pixel area 600 is defined as the image pickup pixel 201-1
  • the pixel 201 of the optical black pixel area 610 is the optical black pixel 201-2 with PD and the optical black pixel 201 without PD. Let it be -3.
  • the pixel 201 has a transfer transistor 302, a reset transistor 303, an amplification transistor 304, a selection transistor 305, and a floating diffusion FD.
  • the imaging pixel 201-1 further includes a red (R), G (green), or blue (B) color filter 102 and a PD 104.
  • the PD-presence optical black pixel 201-2 further has a light-shielding layer 700 and a PD 104.
  • the PD-less optical black pixel 201-3 has neither a filter nor a PD 104.
  • the imaging pixel 201-1 generates an electric charge according to the amount of light incident on the color filter 102.
  • the optical black pixel 201-2 with PD has a light-shielding layer 700, it does not generate an electric charge according to the amount of incident light, but it generates an electric charge corresponding to thermal noise.
  • the potential of the floating diffusion FD is set to substantially the same potential as Vdd.
  • the reset transistor 303 eliminates the electrons accumulated in the floating diffusion FD.
  • the selection transistor 304 When the control signals SEL_C, SEL_O1 and SEL_O2 from the drive circuit 711 are given to the gate of the selection transistor 305, the selection transistor 304 outputs a current to the column readout lines 701 to 703 at the amplified voltage.
  • the column read lines 701-1 to 701-4 in FIG. 8 correspond to the column read lines 701 in FIG.
  • a pixel signal corresponding to the electric charge generated by the PD 104 is output.
  • a signal corresponding to the voltage level corresponding to thermal noise is output from the column readout line 702.
  • a signal corresponding to the reference black level is output from the column readout line 703.
  • the column readout lines 701 to 703 are connected to the signal processing unit 710 via a CDS circuit, an AD conversion circuit, or the like (not shown).
  • the signal processing unit 710 inputs a signal corresponding to the amount of charge photoelectrically converted in the imaging pixel 211-1.
  • the signal processing unit 710 inputs a signal corresponding to the thermal noise detected in the optical black pixel 201-2 with PD.
  • the signal processing unit 710 uses the signal from the PD-less optical black pixel 201-3 as a reference for the black level of the imaging pixel 201-1.
  • the signal processing unit 710 subtracts the output signal from the optical black pixel 201-2 with PD or the output signal from the optical black pixel 201-3 without PD from the output signal from the imaging pixel 201-1. Perform black level correction. As a result, noise such as dark current is removed.
  • the signal processing unit 710 may be realized by a circuit, or may be realized by the processor executing a program stored in the memory.
  • the drive circuit 711 (not shown in FIG. 8) supplies control signals TX, RST, and SEL as signal pulses to the gates of the transfer transistor 302, the reset transistor 303, and the selection transistor 305. As a result, the transfer transistor 302, the reset transistor 303, and the selection transistor 305 are turned on.
  • the control unit 712 (not shown in FIG. 8) controls the drive circuit 711.
  • the control unit 712 controls the transfer transistor 302, the reset transistor 303, and the selection transistor 305 by controlling the pulse timing of the transfer transistor 302, the reset transistor 303, and the selection transistor 305 to each gate. Further, the control unit 712 controls the operation of the signal processing unit 710.
  • FIG. 9 is a timing chart showing the operation of the block 202 according to the first embodiment.
  • the drive circuit 711 controls the transfer transistor 302 and the reset transistor 303 at the same timing in one block 202. However, with respect to the pixel 201 provided with the color filter 102 having the same spectral characteristics, the drive circuit 711 shifts the timing for each pixel 201 to output the pixel signal from the selection transistor 305.
  • the drive circuit 711 turns on each reset transistor 303 (RST) of one block 202 at time t2. As a result, the potential of the gate of each amplification transistor 304 is reset. The drive circuit 711 keeps each reset transistor 303 (RST) in the ON state from time t2 to time t5.
  • the drive circuit 711 turns on all the transfer transistors 302 in one block 202 at time t3. As a result, first, the electric charge accumulated in the PD 104 existing in the block 202 is reset.
  • the drive circuit 711 turns off each reset transistor 303 (RST) at time t5.
  • the drive circuit 711 then turns on all the transfer transistors 302 in one block 202 again at time t7.
  • the charges accumulated in the PD 104 existing in one block 202 are transferred to the corresponding floating diffusion FDs, respectively.
  • the pixel 201 having the PD 104 in one block 202 accumulates electric charges. That is, the period from time t3 to time t7 is the charge accumulation period of the pixel 201 having the PD 104.
  • the drive circuit 711 turns on the transfer transistors 302 in sequence after time t8.
  • the charges accumulated in the PD 104 in one block 202 are transferred to, for example, the column readout lines 701 to 703, respectively.
  • the charges accumulated in the other PD 104 in the other block 202 are transferred to the column read lines 701 to 703, respectively.
  • the transfer operation is executed for each pixel 201 in one block 202.
  • the pixel signals of each pixel 201 included in one block 202 are output to the column readout lines 701 to 703, respectively.
  • each imaging region 600-ij has a configuration in which imaging pixels 6 are arranged in a two-dimensional manner.
  • the imaging pixels 6 in each imaging region 600-ij have, for example, the same configuration as the block 202 described with reference to FIG. 2, and each imaging region 600-ij can be controlled under different control conditions.
  • all the imaging pixels 6 of the imaging region 600-ij, which are connected to the control line (TX wiring 307, etc.) of each imaging region 600-ij, are included inside, and the outer edge has the shortest length.
  • the non-imaging region 610-pq is located outside this closed region 60.
  • Control conditions are set for each imaging region 600-ij.
  • the control condition A is set in the imaging region 600-11, 600-21
  • the control condition B is set in the imaging region 600-12, 600-22.
  • the control condition A is set in the non-imaging region 610-L1,610-L3,610-C1,610-C3, and the non-imaging region 610-C2,610-L4,610-C2,610-C4.
  • Control condition B is set.
  • Control conditions A and B are different control conditions. Specifically, for example, if the control condition A is the exposure time and the control condition B is the ISO sensitivity, the control conditions A and B are different types of control conditions. Further, if the control condition A is the exposure time: 1/4 second and the control condition B is the exposure time: 1/250 second, the control conditions A and B are different control conditions of the same type.
  • the dotted lines with black circles at both ends indicate that the imaging area 600-ij where the black circles are located and the non-imaging area 610-pq correspond in the black level correction in the row direction.
  • the imaging area 600-ij where the black circles are located is the "reference source imaging area 600-ij" for black level correction
  • the non-imaging area 610-pq where the black circles are located is the "referenced non-imaging area 610-pq" for black level correction.
  • Pixel groups arranged in the row direction are selected at the same timing in the row selection circuit or block 202 unit, and a pixel signal is output. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination non-imaging region 610-pq have a correlation with respect to dark current and the like. Therefore, when the output signal from the reference source imaging region 600-ij is corrected for black level, the output signal from the reference source imaging region 600-ij is subtracted by using the output signal of the reference destination non-imaging region 610-pq. This makes it possible to perform highly accurate black level correction according to the reference source imaging region 600-ij.
  • the alternate long and short dash line with black circles at both ends indicates that the imaging region 600-ij in which the black circles are located and the non-imaging region 610-pq correspond to each other in the black level correction.
  • the pixel groups arranged in the column direction are connected to a common column readout line to output an analog signal, and are converted into a digital signal by a common A / D converter.
  • the reference source imaging region 600-ij and the reference destination non-imaging region 610-pq have a correlation with respect to dark current and the like. Therefore, when correcting the black level of the output signal from the reference source imaging region 600-ij, the output signal from the reference source imaging region 600-ij is subtracted by using the output signal from the reference destination non-imaging region 610-pq. By doing so, it is possible to perform highly accurate black level correction according to the reference source imaging region 600-ij.
  • the number of non-imaging regions 610-pq is equal to or greater than the number of imaging regions 600-ij. Therefore, one imaging region 600-ij can correspond to one or more non-imaging regions 610-pq in black level correction.
  • the black level correction it may be set in advance whether to use the output signal of the non-imaging region 610-pq in the row direction or the column direction with respect to the imaging region 600-ij, and each imaging. It may be set according to the control conditions of the region 600-ij and each non-imaging region 610-pq. Alternatively, the larger, smaller, or average value of the output signals of the non-imaging region 610-pq in both the row direction and the column direction may be adopted with respect to the imaging region 600-ij.
  • the “reference source imaging region 600-ij” and the “reference destination non-imaging region 610-pq” are selected at the same timing in the row selection circuit or block 202 unit, or are common A.
  • An example of converting to a digital signal by a / D converter is shown, but the present invention is not limited to this.
  • "reference source imaging region 600-ij" and “reference destination non-imaging region 610-pq" are not selected at the same timing in the row selection circuit or block 202 unit, and digital signals are used by a common A / D converter. It may be a configuration that is not converted to.
  • the “reference source imaging region 600-ij” and the “reference destination non-imaging region 610-pq” are controlled under the same control conditions, so that the “reference source imaging region 600-ij” is used. Since there is a correlation between "" and "reference destination non-imaging region 610-pq” regarding dark current and the like, the output signal from the reference source imaging region 600-ij and the output signal from the reference destination non-imaging region 610-pq are used. By using and subtracting, highly accurate black level correction according to the reference source imaging region 600-ij becomes possible.
  • FIG. 10 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the first embodiment.
  • FIG. 10 is also an example in which the number of non-imaging regions 610 is equal to or greater than the number of imaging regions 600, which is the same as that of FIG.
  • the non-imaging regions 610-C2, 610-L6, 610-C7, 610-C8 are replaced with the non-imaging regions 610-C2, 610-L4, 610-C2, 610-C4 shown in FIG.
  • the configuration arranged in the direction is shown.
  • Control condition A is set in the non-imaging regions 610-C5 and 610-L6, and control condition B is set in the non-imaging regions 610-C7 and 610-L8.
  • the correspondence between the reference source imaging region 600-ij and the reference non-imaging region 610-pq is as shown by the alternate long and short dash lines with black circles at both ends and the alternate long and short dash line with black circles at both ends, as in FIG. Since the non-imaging regions 610-C5, 610-L6, 610-C7, 610-C8 are arranged in only one row in the row direction, the area of the imaging pixel region 600 can be increased as compared with FIG.
  • FIG. 11 is an explanatory diagram showing the relationship 3 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the first embodiment.
  • FIG. 11 is also an example in which the number of non-imaging regions 610 is equal to or greater than the number of imaging regions 600, which is the same as that of FIG.
  • control condition A is set in the imaging region 600-11
  • control condition B is set in the imaging region 600-12
  • control condition C is set in the imaging region 600-21
  • the imaging region 600- The control condition D is set in 22.
  • the non-imaging region 610-C5, 610-L6, 610-C7, 610-C8 Indicates a configuration in which is arranged in the row direction.
  • Control condition A is set in the non-imaging area 610-C5
  • control condition C is set in the non-imaging area 610-L6
  • control condition B is set in the non-imaging area 610-C5
  • the non-imaging area 610- Control condition D is set in C8.
  • control condition A is set in the non-imaging region 610-L1
  • control condition B is set in the non-imaging region 610-L2
  • control condition C is set in the non-imaging region 610-L3
  • the non-imaging region is set.
  • the control condition D is set in 610-L4.
  • Control conditions A to D are different control conditions. Further, the correspondence relationship between the reference source imaging region 600-ij and the reference destination non-imaging region 610-pq is as shown by the alternate long and short dash line with black circles at both ends and the alternate long and short dash line with black circles at both ends, as in FIG.
  • the area of the imaging pixel region 600 can be increased as compared with FIG. Further, the number of different control conditions can be set up to the number of imaging regions. In FIGS. 6, 10 and 11, the number of imaging regions 600 is four, but in FIGS. 6 and 10, the number of different control conditions is two, A and B.
  • FIG. 11 four different control conditions, A to D, are set. In this way, it is possible to set the number of control conditions in proportion to the number of imaging regions 600. Therefore, various control conditions can be combined, and the degree of freedom in shooting can be improved.
  • FIG. 12 is a block diagram showing another example of the optical black pixel 201-2 with PD according to the first embodiment.
  • the output of PD104 is connected to the input of PD104.
  • the configuration is the same as that shown in FIGS. 7 and 8 except that the ground is short-circuited between the PD 104 and the transfer transistor 302.
  • the electric charge due to photoelectric conversion is basically not accumulated in PD104. Even if the electric charge is accumulated in the PD 104, the electric charge is not read out as a pixel signal, but the electric charge due to a dark current or the like is accumulated in the floating diffusion FD.
  • the black level correction is performed for each of the imaging regions 600-ij of the imaging pixel region 600 by using the non-imaging region 610-pq outside the correlated imaging pixel region 600. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • all the imaging pixels 6 of the imaging region 600-ij which are connected to the control line (TX wiring 307, etc.) of each imaging region 600-ij, are included inside, and the outer edge has the shortest length.
  • a closed region 60 as specified.
  • the non-imaging region 610-pq is located outside this closed region 60. This makes it possible to uniformly arrange the imaging pixels 6 inside each imaging region 600-ij. Therefore, it is possible to ensure high quality for the image generated by the imaging pixels 6 in each imaging region 600-ij without the occurrence of so-called defective pixels.
  • Example 2 has a relationship in which the number of non-imaging regions in the optical black pixel region, which will be described later, is smaller than the number of imaging regions in the imaging pixel region.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 13 is an explanatory diagram showing the relationship between the control condition of the imaging pixel region 600 and the control condition of the optical black pixel region according to the second embodiment.
  • the optical black pixel region 610 is composed of a plurality of non-imaging regions 610-L1 to 610-L2 that do not image the subject.
  • the plurality of non-imaging regions 610-L1 to 610-L2 are non-imaging regions existing in the column direction. When the non-imaging region group is not distinguished, it is expressed as the non-imaging region 610-Lp.
  • the optical black pixel region 610 is adjacent to the outside of the imaging pixel region 600. In FIG. 13, as an example, it is provided at the right end of the imaging pixel region 600. The position of the optical black pixel region 610 may be at least one of the right end and the left end of the image pickup pixel region 600. Further, the number of non-imaging regions 610-Lp is smaller than the number of imaging regions 600-ij. In FIG. 13, the number of non-imaging regions 610-Lp is two, and the number of imaging regions 600-ij is four.
  • Control conditions are set for each imaging region 600-ij.
  • the control condition A is set in the imaging region 600-11,600-12
  • the control condition B is set in the imaging region 600-21,600-22.
  • the control condition A is set in the non-imaging region 610-L1
  • the control condition B is set in the non-imaging region 610-L2.
  • the dotted lines of the black circles at both ends indicate that the imaging region 600-ij where the black circles are located and the non-imaging region 610-pq correspond in the black level correction in the row direction.
  • the imaging area 600-ij where the black circles are located is the "reference source imaging area 600-ij" for black level correction
  • the non-imaging area 610-pq where the black circles are located is the "referenced non-imaging area 610-pq" for black level correction.
  • Pixel groups arranged in the row direction are selected at the same timing in the row selection circuit or block 202 unit, and a pixel signal is output. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination non-imaging region 610-Lp have a correlation with respect to dark current and the like. Therefore, when correcting the black level of the output signal from the reference source imaging region 600-ij, the output signal from the reference source imaging region 600-ij is subtracted by using the output signal from the reference destination non-imaging region 610-Lp. By doing so, the black level can be corrected according to the reference source imaging region 600-ij.
  • the number of non-imaging regions 610-Lp is smaller than the number of imaging regions 600-ij. Therefore, one imaging region 600-ij can correspond to one or more non-imaging regions 610-Lp in black level correction. Further, although the black level correction is performed for each line, it may be performed for each area. That is, each signal level in the imaging region 600-11 may be corrected by the average value of the signal outputs in the non-imaging region 610-L1.
  • FIG. 14 is an explanatory diagram showing an example of the correction table according to the second embodiment.
  • the correction table 1400 is a table in which a correlation value 1405 is set for each combination of the reference source imaging region 1401, the reference source control condition 1402, the reference destination non-imaging region 1403, and the reference destination control condition 1404.
  • the reference source imaging region 600-ij is stored as a value in the reference source imaging region 1401.
  • the control condition of the reference source imaging region 600-ij is stored as a value.
  • the non-imaging region 610-Lp which is the reference destination of the reference source imaging region 600-ij is stored as a value.
  • the control condition of the non-imaging region 610-Lp is stored as a value.
  • the correlation value 1405 is a value (correlation value) indicating the correlation between the reference source imaging region 1401 in which the reference source control condition 1402 is set and the reference destination non-imaging region 1403 in which the reference destination control condition 1404 is set.
  • r ijX, LpY
  • X is the reference source control condition 1402
  • Y is the reference destination control condition 1404.
  • the correlation value r (ijX, LpY) may simply be referred to as the correlation value r.
  • B is an adjustment value that is arbitrarily set, and is a value that is determined for each image sensor 100.
  • the calculation using the above equation (1) is executed by, for example, the signal processing unit 810 described later.
  • the correlation value r tends to be close to 1.0 if the reference source imaging region 1401 and the reference destination non-imaging region 1403 are in the same row.
  • the reference source imaging region 1401 is the imaging region 600-11 and the reference non-imaging region 1403 is the non-imaging region 610-L1
  • the reference non-imaging region 1403 is the non-imaging region 610-L2.
  • the correlation value r is closer to 1.0. This is because if the rows are the same, they are read by the column reading line at the same timing.
  • the correlation value r tends to be closer to 1.0 as the reference source imaging region 1401 and the reference destination non-imaging region 1403 are closer to each other.
  • the reference source imaging region 1401 is the imaging region 600-12
  • the reference destination non-imaging region 1403 is the non-imaging region 610-L1
  • the reference source imaging region 1401 is the imaging region 600-11.
  • the correlation value r is close to 1.0. This is because it is considered that the closer the pixel positions are, the more similar their characteristics are.
  • the correlation value r is the same as the reference source control condition 1402 and the reference destination control condition 1404, it becomes a value close to 1.0. Specifically, for example, when the reference source control condition 1402 and the reference destination control condition 1404 are the same type but have different values, the reference source control condition 1402 and the reference destination control condition 1404 are different from each other. , The correlation value r is close to 1.0. This is because if the control conditions are the same, the operating conditions of the reference source imaging region 1401 and the operating conditions of the reference non-imaging region 1403 are the same.
  • the noise component correction target using the correlation value r may be limited to the reference source imaging region 1401 which is not adjacent to the reference non-imaging region 1403.
  • the reference source imaging region 1401 becomes the imaging region 600-11.
  • the imaging region 600-12 is adjacent to the imaging region 610-L1, it is not set in the reference source imaging region 1401.
  • the image area to be corrected is limited, so that the data in the correction table 1400 becomes small.
  • FIG. 15 is a circuit diagram showing a circuit configuration of an imaging pixel region 600 and an optical black pixel region 610 in the column direction.
  • the circuit configurations of the imaging pixel region 600 and the optical black pixel region 610 in the row direction are the same as those in FIG.
  • the pixel 201 of the imaging pixel area 600 is defined as the imaging pixel 201-1
  • the pixel 201 of the optical black pixel region 610 is the optical black pixel 201-2 with PD and the optical black pixel 201 without PD. Let it be -3.
  • the selection transistor 304 When the control signals SEL_C, SEL_O1 and SEL_O2 from the drive circuit 811 are given to the gate of the selection transistor 305, the selection transistor 304 outputs a current to the column readout lines 701 to 703 at the amplified voltage.
  • the column read lines 1503-1 to 1503-4 in FIG. 15 correspond to the column read lines 703 in FIG.
  • black level correction is performed using the non-imaging region 610-Lp that correlates with the imaging region 600-ij. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • Example 3 will be described.
  • the image sensor in which the same control conditions are set in the same row is shown, but in the third embodiment, the image sensor in which the same control conditions are set in the same row is shown.
  • the same configurations as those in the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 16 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the third embodiment.
  • FIG. 17 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the third embodiment. 16 and 17 are similar to FIG. 13, and are examples in which the number of non-imaging regions 610 is smaller than the number of imaging regions 600.
  • control condition B is set in the imaging region 600-12 and the non-imaging region 610-L1
  • control condition A is set in the imaging region 600-22 and the non-imaging region 610-L2.
  • control condition B is set in the imaging region 600-12 and the non-imaging region 610-L1
  • control condition C is set in the imaging region 600-21
  • the imaging region 600-22 and the non-imaging region are set.
  • Control condition D is set in 610-L2.
  • the signal processing unit 810 can calculate the black level correction with high accuracy using the above equation (1).
  • black level correction is performed for each of the imaging regions 600-ij of the imaging pixel region 600 by using the non-imaging region 610-Lq outside the correlated imaging pixel region 600. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • Example 4 will be described.
  • the image sensor in which the same control conditions are set in the same row is shown, but in the fourth embodiment, the image sensor in which the same control conditions are set in the same column is shown.
  • the same configurations as those of Examples 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 18 is an explanatory diagram showing the relationship between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fourth embodiment.
  • the optical black pixel region 610 is composed of a plurality of non-imaging regions 610-C1 to 610-C2 that do not image the subject.
  • the plurality of non-imaging regions 610-C1 to 610-C2 are non-imaging regions existing in the column direction. When the non-imaging region group is not distinguished, it is expressed as non-imaging region 610-Cq.
  • the optical black pixel region 610 is adjacent to the outside of the imaging pixel region 600. In FIG. 18, as an example, it is provided on the lower end side of the imaging pixel region 600.
  • the position of the optical black pixel region 610 may be at least one of the upper end side and the lower end side of the imaging pixel region 600.
  • the number of non-imaging areas 610-Cq is smaller than the number of imaging areas 600-ij.
  • the number of non-imaging regions 610-Cq is two, and the number of imaging regions 600-ij is four.
  • Control conditions are set for each imaging region 600-ij.
  • the control condition A is set in the imaging region 600-11, 600-21
  • the control condition B is set in the imaging region 600-12, 600-22.
  • the control condition A is set in the non-imaging region 610-C1
  • the control condition B is set in the non-imaging region 610-C2.
  • the dotted lines with black circles at both ends indicate that the imaging area 600-ij where the black circles are located and the non-imaging area 610-pq correspond in the black level correction in the row direction.
  • the imaging area 600-ij where the black circles are located is the "reference source imaging area 600-ij" for black level correction
  • the non-imaging area 610-pq where the black circles are located is the "referenced non-imaging area 610-pq" for black level correction.
  • the pixel groups arranged in the column direction are connected to a common column readout line to output analog signals, and are converted into digital signals by a common A / D converter. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination non-imaging region 610-Cq have a correlation (high) with respect to dark current and the like. Therefore, when correcting the black level of the output signal from the reference source imaging region 600-ij, the output signal from the reference source imaging region 600-ij is subtracted by the output signal of the reference destination non-imaging region 610-Cq. , Highly accurate black level correction according to the reference source imaging region 600-ij is possible.
  • the number of non-imaging regions 610-Cq is smaller than the number of imaging regions 600-ij. Therefore, one imaging region 600-ij can correspond to one or more non-imaging regions 610-Cq in black level correction.
  • FIG. 19 is an explanatory diagram showing an example of the correction table according to the fourth embodiment.
  • the correction table 1900 is a table in which a correlation value 1405 is set for each combination of the reference source imaging region 1401, the reference source control condition 1402, the reference destination non-imaging region 1403, and the reference destination control condition 1404.
  • the reference destination non-imaging region 1403 the non-imaging region 610-Cq which is the reference destination of the reference source imaging region 600-ij is stored as a value.
  • the control condition of the non-imaging region 610-Cq is stored as a value.
  • the correlation value 1405 is a value (correlation value) indicating the correlation between the reference source imaging region 1401 in which the reference source control condition 1402 is set and the reference destination non-imaging region 1403 in which the reference destination control condition 1404 is set.
  • r ijX, CqY
  • X is the reference source control condition 1402
  • Y is the reference destination control condition 1404.
  • the correlation value r (ijX, CqY) may simply be referred to as the correlation value r.
  • the correlation value r is close to 1.0 when the reference source imaging region 1401 and the reference destination non-imaging region 1403 are in the same column.
  • the reference source imaging region 1401 is the imaging region 600-11 and the reference non-imaging region 1403 is the non-imaging region 610-C1
  • the reference non-imaging region 1403 is the non-imaging region 610-C2.
  • the correlation value r is closer to 1.0. This is because if they are in the same column, they are read by the same column reading line.
  • the correlation value r becomes closer to 1.0 as the reference source imaging region 1401 and the reference destination non-imaging region 1403 are closer to each other.
  • the reference source imaging region 1401 is the imaging region 600-21
  • the reference non-imaging region 1403 is the non-imaging region 610-C1
  • the reference source imaging region 1401 is the imaging region 600-11.
  • the correlation value r is close to 1.0. This is because it is considered that the closer the pixel positions are, the more similar their characteristics are.
  • the noise component correction target using the correlation value r may be limited to the reference source imaging region 1401 which is not adjacent to the reference non-imaging region 1403.
  • the reference source imaging region 1401 becomes the imaging region 600-11.
  • the imaging region 600-21 is adjacent to the imaging region 610-C1, it is not set in the reference source imaging region 1401. As a result, the image area to be corrected is limited, so that the data in the correction table 1900 becomes smaller.
  • FIG. 20 is a circuit diagram showing a circuit configuration of an imaging pixel region 600 and an optical black pixel region 610 in the row direction.
  • the circuit configuration of the imaging pixel region 600 and the optical black pixel region 610 in the column direction is the same as that in FIG.
  • the selection transistor 304 When the control signals SEL_C, SEL_O1 and SEL_O2 from the drive circuit 811 are given to the gate of the selection transistor 305, the selection transistor 304 outputs a current to the column readout lines 701 to 703 at the amplified voltage.
  • the column read lines 701-1 to 701-4 in FIG. 10 correspond to the column read lines 702 and 703 in FIG. 20.
  • black level correction is performed for each of the imaging regions 600-ij of the imaging pixel region 600 by using the non-imaging region 610-Cq outside the correlated imaging pixel region 600. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • Example 5 will be described.
  • the image sensor in which the same control conditions are set in the same row is shown, but in the fifth embodiment, the image sensor in which different control conditions are set in the same row is shown.
  • the same components as those of Examples 1 to 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 21 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fifth embodiment.
  • FIG. 22 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region and the control condition of the optical black pixel region according to the fifth embodiment. 21 and 22 are also similar to FIG. 18, and are examples in which the number of non-imaging regions 610 is smaller than the number of imaging regions 600.
  • control condition B is set in the imaging region 600-21 and the non-imaging region 610-C1
  • control condition A is set in the imaging region 600-22 and the non-imaging region 610-C2.
  • the control condition of the non-imaging region 610-C1 which is the reference non-imaging region 1403 of the imaging region 600-11 is A
  • the non-imaging region is The control condition of 610-C1
  • the control condition of the non-imaging region 610-C2 which is the reference non-imaging region 1403 of the imaging region 600-12
  • the control of the non-imaging region 610-C2 is controlled.
  • the condition is A instead of B.
  • control condition B is set in the imaging region 600-21 and the non-imaging region 610-C1
  • control condition C is set in the imaging region 600-12
  • the imaging region 600-22 and the non-imaging region are set.
  • Control condition D is set in 610-C2.
  • the signal processing unit 810 can perform black level correction with high accuracy using the above equation (1).
  • the black level correction is performed for each of the imaging regions 600-ij of the imaging pixel region 600 by using the non-imaging region 610-Cq outside the correlated imaging pixel region 600. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • Example 6 has a relationship that the number of non-imaging regions in the optical black pixel region, which will be described later, is smaller than the number of imaging regions in the imaging pixel region.
  • the same configurations as those of Examples 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 23 is an explanatory diagram showing the relationship 1 between the control condition of the imaging pixel region 600 and the control condition of the optical black pixel region according to the sixth embodiment.
  • the imaging region is, for example, a set of one or more blocks 202.
  • the imaging pixel area 600 has 4 rows and 4 columns of imaging regions 600-11 to 600-14, 600-21 to 600-24, 600-31 to 600-34, 600-. It is composed of 41 to 600-44.
  • the imaging pixel area 600 may be composed of m rows and n columns other than 4 rows and 4 columns (m and n are integers of 1 or more, but the imaging region 600 is 2 or more).
  • imaging regions 600-11 to 600-14, 600-21 to 600-24, 600-31 to 600-34, and 600-41 to 600-44 are not distinguished, they are referred to as imaging regions 600-ij.
  • the optical black pixel region 610 is composed of a plurality of non-imaging regions 610-11, 610-13, 610-22, 610-24, 610-31, 610-33, 610-42, and 610-44 that do not image the subject. Will be done.
  • the non-imaging area 610-11, 610-134, 610-122, 610-24, 610-31, 610-33, 610-42, and 610-44 are not distinguished, it is referred to as the non-imaging area 610-ij.
  • the non-imaging region 610-ij is provided in the imaging region 600-ij existing in rows and columns i.
  • each imaging region 600-ij has a configuration in which imaging pixels 6 are arranged in a two-dimensional manner.
  • the imaging pixels 6 in each imaging region 600-ij have, for example, the same configuration as the block 202 described with reference to FIG. 2, and each imaging region 600-ij can be controlled under different control conditions.
  • an imaging region 600-ij in which the non-imaging region 610-ij is arranged inside and an imaging region 600-ij in which the non-imaging region 610-ij is not arranged inside are provided. ..
  • all the imaging pixels 6 of the imaging region 600-11 connected to the control line (TX wiring 307, etc.) of the imaging region 600-11 are included inside, and the outer edge is the shortest.
  • a closed region 60 that is specified to be of length In this case, the non-imaging region 610-11 is arranged inside the closed region 60.
  • all the imaging pixels 6 of the imaging region 600-121 connected to the control line (TX wiring 307, etc.) of the imaging region 600-12 are included inside, and the outer edge is Consider a closed region 60 that is specified to have the shortest length. In this case, the non-imaging region 610-ij is not arranged inside the closed region 60.
  • the configuration shown in FIG. 23 includes an imaging region (imaging region 600-11, imaging region 600-13, imaging region 600-22, etc.) in which the non-imaging region 610-ij is arranged internally, and a non-imaging region. It includes an imaging region (imaging region 600-12, imaging region 600-14, imaging region 600-21, etc.) in which 610-ij is not arranged inside.
  • the imaging region 600-ij including the optical black pixel region 610 is arranged discretely.
  • the imaging region 600-ij including the optical black pixel region 610 is arranged in a staggered pattern, for example.
  • the optical black pixel region 610 is arranged in a staggered pattern within the imaging pixel region 600, for example. If the number of imaging regions including the non-imaging region 610-ij is less than the number of imaging regions 600-ij, the arrangement is not limited to the staggered arrangement.
  • One non-imaging region 610-ij includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the optical black pixel region 610 includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the number of imaging regions including the non-imaging region 610-ij is smaller than the number of imaging regions 600-ij. In FIG. 23, the number of non-imaging regions 610-ij is eight, and the number of imaging regions 600-ij is 16.
  • Control conditions are set for each imaging region 600-ij and each non-imaging region 610-ij.
  • the control conditions for the non-imaging region 610-ij are the same as the control conditions for the imaging region 600-ij including the non-imaging region 610-ij.
  • the control condition of the non-imaging region 610-11 is B, and the control condition of the imaging region 600-11 including the non-imaging region 610-11 is also B.
  • the non-imaging area 610-ij defines the imaging area 600-ij including the non-imaging area 610-ij as the "reference source imaging area 600-ij". Therefore, for example, the non-imaging region 610-11 is the reference imaging region of the imaging region 600-11 including the non-imaging region 610-11, and the imaging region 600-12 not including the non-imaging region 610-11. It is also a reference imaging area.
  • Pixel groups arranged in the row direction are selected at the same timing in the row selection circuit or block 202 unit, and a pixel signal is output. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination non-imaging region 610-ij have a correlation with respect to dark current and the like. Therefore, when correcting the black level of the output signal from the reference source imaging region 600-ij, the output signal from the reference source imaging region 600-ij is subtracted from the output signal from the reference destination non-imaging region 610-ij. As a result, highly accurate black level correction according to the reference source imaging region 600-ij becomes possible.
  • the alternate long and short dash line with black circles at both ends indicates that the imaging region 600-ij where the black circles are located refers to the control condition of the non-imaging region 610-ij in the column direction.
  • the non-imaging region 610-ij defines the imaging region 600-ij including the non-imaging region 610-ij as the "reference source imaging region 600-ij". Therefore, for example, the non-imaging region 610-31 is the reference imaging region of the imaging region 600-31 including the non-imaging region 610-31, and the imaging region 600-21 not including the non-imaging region 610-31. It is also a reference imaging area.
  • the pixel groups arranged in the column direction are connected to a common column readout line, output analog signals in units of blocks 202, and are converted into digital signals by a common A / D converter. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination non-imaging region 610-ij have a correlation with respect to dark current and the like. Therefore, when the output signal from the reference source imaging region 600-ij is corrected to the black level, the output signal from the reference source imaging region 600-ij is subtracted by using the output signal from the reference non-imaging region 610-ij. By doing so, it is possible to perform highly accurate black level correction according to the reference source imaging region 600-ij.
  • the number of non-imaging regions 610-ij is smaller than the number of imaging regions 600-ij. Therefore, one non-imaging region 610-ij can correspond to one or more imaging regions 600-ij in black level correction.
  • which direction of the non-imaging region 610-ij in the row direction or the column direction is set as the reference destination with respect to the imaging region 600-ij may be set in advance, and each imaging region 600-ij and It may be set according to the control condition of each non-imaging region 610-pq.
  • the larger, smaller, or average value of the output signals of the non-imaging region 610-pq in both the row direction and the column direction may be adopted with respect to the imaging region 600-ij.
  • the optical black pixel region does not have to be arranged outside the imaging pixel region 600, so that the image sensor is prevented from becoming large. be able to. Further, since the optical black pixel region does not have to be arranged outside the imaging pixel region 600, the area of the imaging pixel region 600 can be expanded by that amount.
  • FIG. 24 is an explanatory diagram showing the relationship 2 between the control condition of the imaging pixel region 600 and the control condition of the optical black pixel region 610 according to the sixth embodiment.
  • FIG. 24 is also an example in which the number of non-imaging regions 610-ij is equal to or greater than the number of imaging regions 600-ij, as in FIG. 23.
  • the non-imaging region 610-ij is not provided in the four imaging regions 600-22, 600-23, 600-32, 600-33 located in the center of the imaging pixel region 600.
  • the reason is that the main subject image is reflected in the center of the imaging pixel area 600, and the image plane phase difference detection pixels that focus the main subject are in the surrounding imaging areas 600-11 to 600-14, 600-21. , 600-24, 600-31,600-34, 600-41-600-44.
  • the non-imaging region 610-ij is a defective pixel in generating an image, interpolation is required and there is a high possibility that the image quality will deteriorate. Therefore, the non-imaging region 610-ij is not arranged in the vicinity of the central region where it is highly likely that the main subject is present, or the non-imaging region 610-ij is arranged outside the central region in the central region. It may be larger than the non-imaging area 610-ij to be arranged. Further, the non-imaging region 610-ij may increase as the distance from the central region increases to the outside.
  • the non-imaging area 610-ij may be provided at the edge of the imaging pixel area 600 (outside the imaging area 600-ij) or in the imaging area 600-ij closer to the edge than the center of the imaging pixel area 600. Good. Further, the non-imaging region 610-ij may be provided not only in the center of the imaging pixel region 600 but also in the imaging region 600-ij in which the number of pixels of the image plane phase difference detection pixels in the imaging pixel region 600 is a predetermined number or less.
  • the image plane phase difference detection pixel may be provided in the image pickup area 600-ij in which the number of pixels of the image plane phase difference detection pixel is relatively small.
  • the circuit configurations of the imaging pixel region 600 and the optical black pixel region 610 in the row direction are as shown in FIG. 9, and the circuit configurations of the imaging pixel region 600 and the optical black pixel region 610 in the column direction are shown in FIG. As shown.
  • the signal processing unit 710 uses the signal output from the imaging pixel 201-1 existing around the PD-less optical black pixel 201-3 to generate a signal at the position of the PD-less optical black pixel 201-3. It may be interpolated. As the interpolation method used by the signal processing unit 710, an interpolation method by median processing, an interpolation method based on a gradient, or an adaptive color plane interpolation method may be used. The same applies to the image plane phase difference detection pixels.
  • FIG. 25 is an explanatory diagram showing an example of the correction table according to the sixth embodiment.
  • the correction table 2500 is a table in which a correlation value 1405 is set for each combination of the reference source imaging region 1401, the reference source control condition 1402, the reference destination non-imaging region 1403, and the reference destination control condition 1404.
  • the reference source imaging region 600-ij is stored as a value in the reference source imaging region 1401.
  • the control condition of the reference source imaging region 600-ij is stored as a value.
  • the non-imaging region 610-Lp which is the reference destination of the reference source imaging region 600-ij is stored as a value.
  • the control condition of the non-imaging region 610-ij is stored as a value.
  • the correlation value 1405 is a value (correlation value) indicating the correlation between the reference source imaging region 1401 in which the reference source control condition 1402 is set and the reference destination non-imaging region 1403 in which the reference destination control condition 1404 is set.
  • r ijX, ijY
  • X is the reference source control condition 1402
  • Y is the reference destination control condition 1404.
  • the correlation value r (ijX, ijY) may simply be referred to as the correlation value r.
  • the correlation value r is close to 1.0 when the reference destination non-imaging region 1403 includes the reference source imaging region 1401.
  • the reference source imaging region 1401 is the imaging region 600-11 and the reference non-imaging region 1403 is the non-imaging region 610-11
  • the reference non-imaging region 1403 is the non-imaging region 610-12.
  • the correlation value r is closer to 1.0. This is because when the reference destination non-imaging region 1403 includes the reference source imaging region 1401, the reference destination non-imaging region 1403 is read by the same column readout line.
  • the correlation value r is close to 1.0 if the reference source imaging region 1401 and the reference destination non-imaging region 1403 are in the same row.
  • the reference non-imaging region 1403 is the non-imaging region 610-22.
  • the correlation value r is closer to 1.0. This is because if the rows are the same, they are read by the column reading line at the same timing.
  • the correlation value r becomes closer to 1.0 as the reference source imaging region 1401 and the reference destination non-imaging region 1403 are closer to each other.
  • the reference source imaging region 1401 is the imaging region 600-11
  • the reference non-imaging region 1403 is the non-imaging region 610-12
  • the reference source imaging region 1401 is the imaging region 600-14.
  • the correlation value r is close to 1.0. This is because it is considered that the closer the pixel positions are, the more similar their characteristics are.
  • the correlation value r is the same as the reference source control condition 1402 and the reference destination control condition 1404, the correlation value r is close to 1.0. Specifically, for example, when the reference source control condition 1402 and the reference destination control condition 1404 are the same type but have different values, the reference source control condition 1402 and the reference destination control condition 1404 are different from each other. , The correlation value r is close to 1.0. This is because it is considered that the more the control conditions are the same, the more similar the operating conditions of the reference source imaging region 1401 and the operating conditions of the reference non-imaging region 1403 are.
  • black level correction is performed for each of the imaging regions 600-ij of the imaging pixel region 600 by using the non-imaging region 610-pq outside the correlated imaging pixel region 600. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • the optical black pixel region 610 is provided outside the image pickup pixel region 600 in the sixth embodiment.
  • the same parts as those in the sixth embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 26 is an explanatory diagram showing the relationship between the control conditions of the imaging pixel region and the control conditions of the optical black pixel region.
  • the optical black pixel region 610 exists inside and outside the imaging pixel region 600.
  • an optical black pixel region 610 (hereinafter, referred to as an internal optical black pixel region 610) existing in the imaging pixel region 600 will be described.
  • the internal optical black pixel region 610 includes a plurality of internal non-imaging regions 610-11 to 610-14, 610-21, 610-24, 610-31, 610-34, 610-41, 610-44 that do not image the subject. Consists of. When the internal non-imaging area 610-11 to 610-14, 610-21, 610-24, 610-31, 610-34, 610-41, and 610-44 are not distinguished, it is referred to as the internal non-imaging area 610-ij. ..
  • the internal non-imaging region 610-ij is provided in the imaging region 600-ij existing in rows and columns i.
  • the imaging region 600 in which the internal optical black pixel region 610 is arranged is shown, but the internal optical black pixel region 610 is arranged in a staggered pattern in the imaging pixel region 600, for example. If the number of internal non-imaging regions 610-ij is less than the number of imaging regions 600-ij, the arrangement is not limited to the staggered arrangement.
  • One internal non-imaging area 610-ij includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the optical black pixel region 610 includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the group of optical black pixels with PD is a set of optical black pixels with PD.
  • the optical black pixel with PD is a black pixel having PD 104.
  • an optical black pixel with PD is a pixel having a light-shielding layer that blocks the incident light of a subject.
  • the number of internal non-imaging areas 610-ij is smaller than the number of imaging areas 600-ij.
  • the number of internal non-imaging regions 610-ij is 12, and the number of imaging regions 600-ij is 16.
  • an optical black pixel region 610 (hereinafter, referred to as an external optical black pixel region 610) existing outside the imaging pixel region 600 will be described.
  • the external optical black pixel region 610 is composed of a plurality of external non-imaging regions 610-L1 to 610-L2 and 610-C1 to 610-C2 that do not image the subject.
  • the plurality of external non-imaging regions 610-L1 to 610-L2 are groups of external non-imaging regions existing in the column direction. When the external non-imaging region group existing in the column direction is not distinguished, it is expressed as an external non-imaging region 610-Lp.
  • a plurality of external non-imaging regions 610-C1 to 610-C2 are external non-imaging regions existing in the row direction.
  • the non-imaging region group existing in the row direction is not distinguished, it is expressed as an external non-imaging region 610-Cq.
  • a plurality of external non-imaging regions 610-L1-610-L2 and 610-C1-610-C2 are not distinguished, they are referred to as external non-imaging regions 610-pq.
  • One external non-imaging region 610-pq like the internal non-imaging region 610-ij, includes an optical black pixel group with PD and an optical black pixel group without PD.
  • the external optical black pixel region 610 is adjacent to the outside of the imaging pixel region 600, like the internal optical black pixel region 610.
  • the external optical black pixel region 610 is provided at the right end and the lower end of the image pickup pixel region 600.
  • the position of the external optical black pixel region 610 may be at least one of the upper end, the lower end, the right end, and the left end of the imaging pixel region 600.
  • the external optical black pixel region 610 has an optical black pixel group with PD and an optical black pixel group without PD, similarly to the internal optical black pixel region 610. Further, the number of external non-imaging regions 610-pq is, for example, equal to or greater than the number of imaging regions 600-ij in which the internal non-imaging region 600-ij does not exist. In FIG. 26, the number of external non-imaging regions 610-pq is four, and the number of imaging regions 600-ij is four.
  • control conditions set in the imaging pixel area 600 and the optical black pixel area 610 will be described. Control conditions are set for each imaging region 600-ij, each internal non-imaging region 610-ij, and each external non-imaging region 610-pq.
  • control condition B is set in the imaging regions 600-11 to 600-14, 600-211, 600-24, 600-31, 600-34, 600-11 to 600-14, and the imaging region 600-22. , 600-23, 600-32, 600-33, for example, control condition A is set.
  • control conditions for the internal non-imaging region 610-ij are the same as the control conditions for the imaging region 600-ij including the internal non-imaging region 610-ij.
  • the control condition of the internal non-imaging region 610-11 is B
  • the control condition of the imaging region 600-11 including the internal non-imaging region 610-11 is also B.
  • control condition A is set in the external non-imaging region 610-L1,610-L2,610-C1,610-C2.
  • the dotted lines with black circles at both ends indicate that the imaging area 600-ij where the black circles are located and the non-imaging area 610-pq correspond in the black level correction in the row direction.
  • the imaging area 600-ij where the black circles are located is the "reference source imaging area 600-ij" for black level correction
  • the non-imaging area 610-pq where the black circles are located is the "referenced non-imaging area 610-pq" for black level correction.
  • the internal non-imaging area 610-ij refers to the imaging area 600-ij including the internal non-imaging area 610-ij as "reference source imaging area 600-ij". To do. Therefore, for example, the internal non-imaging region 610-11 is a reference imaging region of the imaging region 600-11 including the internal non-imaging region 610-11.
  • Pixel groups arranged in the row direction are selected at the same timing in the row selection circuit or block 202 unit, and a pixel signal is output. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination external non-imaging region 610-Lp have a correlation with respect to dark current and the like. The same applies between the reference source imaging region 600-ij and the reference destination internal non-imaging region 610-ij. Therefore, when the black level of the output signal from the reference source imaging region 600-ij is corrected, the output signal from the reference source imaging region 600-ij is used as the reference external non-imaging region 610-Lp or the reference internal non-imaging region. By subtracting using the output signal of 610-ij, highly accurate black level correction according to the reference source imaging region 600-ij becomes possible.
  • the alternate long and short dash line with black circles at both ends indicates that the imaging region 600-ij where the black circles are located refers to the control conditions of the external non-imaging region 610-Cq in the column direction.
  • the pixel groups arranged in the column direction are connected to a common column readout line to output analog signals, and are converted into digital signals by a common A / D converter. Therefore, it is considered that the reference source imaging region 600-ij and the reference destination external non-imaging region 610-Cq have a correlation with respect to dark current and the like. The same applies between the reference source imaging region 600-ij and the reference destination internal non-imaging region 610-ij.
  • the output signal from the reference source imaging region 600-ij is used as the reference external non-imaging region 610-Cq or the reference internal non-imaging region.
  • the number of internal non-imaging regions 610-ij is smaller than the number of imaging regions 600-ij. Therefore, one internal non-imaging region 610-ij can correspond to one or more imaging regions 600-ij in black level correction. It should be noted that it may be set in advance whether the external non-imaging region 610-pq in the row direction or the column direction is referred to with respect to the imaging region 600-ij, and each imaging region 600-ij And may be set according to the control conditions of each non-imaging region 610-pq. Alternatively, the larger, smaller, or average value of the output signals of the non-imaging region 610-pq in both the row direction and the column direction may be adopted with respect to the imaging region 600-ij.
  • each of the imaging regions 600-ij at the center of the imaging pixel region 600 refers to the external non-imaging region 610-pq, and each of the imaging regions 600-ij around the center is an imaging region.
  • the internal non-imaging region 610-ij existing in 600-ij is referred to.
  • the reason is that the main subject image is reflected in the center of the effective imaging region 600, and the image plane phase difference detection pixels that focus the main subject are in the surrounding imaging regions 600-11 to 600-14, 600-21. , 600-24, 600-31,600-34, 600-41-600-44.
  • FIG. 27 is an explanatory diagram showing an example of the correction table according to the seventh embodiment.
  • the correction table 2700 is a table in which a correlation value 1405 is set for each combination of the reference source imaging region 1401, the reference source control condition 1402, the reference destination non-imaging region 1403, and the reference destination control condition 1404.
  • the reference source imaging region 600-ij is stored as a value in the reference source imaging region 1401.
  • the control condition of the reference source imaging region 600-ij is stored as a value.
  • the internal non-imaging region 610-ij or the external non-imaging region 610-pq which is the reference destination of the reference source imaging region 600-ij, is stored as a value.
  • the control condition of the internal non-imaging region 610-ij or the external non-imaging region 610-pq is stored as a value.
  • the correlation value 1405 is a value (correlation value) indicating the correlation between the reference source imaging region 1401 in which the reference source control condition 1402 is set and the reference destination non-imaging region 1403 in which the reference destination control condition 1404 is set.
  • r ijX, ijY
  • the correlation value r ijX, LpY
  • the correlation value r ijX, CqY
  • X is the reference source control condition 1402
  • Y is the reference destination control condition 1404.
  • the correlation value r (ijX, ijY), the correlation value r (ijX, LpY), or the correlation value r (ijX, CqY) may be simply referred to as the correlation value r.
  • the output signal from the reference destination internal non-imaging area 610-ij or the reference destination external non-imaging area 610-pq is Q
  • the corrected noise component is P
  • the correlation value r is close to 1.0 when the reference destination non-imaging region 1403 includes the reference source imaging region 1401.
  • the reference non-imaging region 1403 is the non-imaging region 610-12.
  • the correlation value r is closer to 1.0. This is because when the reference destination non-imaging region 1403 includes the reference source imaging region 1401, the reference destination non-imaging region 1403 is read by the same column readout line.
  • the correlation value r is close to 1.0 if the reference source imaging region 1401 and the reference destination non-imaging region 1403 are in the same row.
  • the reference non-imaging region 1403 is the non-imaging region 610-22.
  • the correlation value r is closer to 1.0. This is because if the rows are the same, they are read by the column reading line at the same timing.
  • the correlation value r becomes closer to 1.0 as the reference source imaging region 1401 and the reference destination non-imaging region 1403 are closer to each other.
  • the reference source imaging region 1401 is the imaging region 600-11
  • the reference non-imaging region 1403 is the non-imaging region 610-12
  • the reference source imaging region 1401 is the imaging region 600-14.
  • the correlation value r is close to 1.0. This is because it is considered that the closer the pixel positions are, the more similar their characteristics are.
  • the correlation value r is the same as the reference source control condition 1402 and the reference destination control condition 1404, the correlation value r is close to 1.0. Specifically, for example, when the reference source control condition 1402 and the reference destination control condition 1404 are the same type but have different values, the reference source control condition 1402 and the reference destination control condition 1404 are different from each other. , The correlation value r is close to 1.0. This is because it is considered that the more the control conditions are the same, the more similar the operating conditions of the reference source imaging region 1401 and the operating conditions of the reference non-imaging region 1403 are.
  • black level correction is performed for each of the imaging regions 600-ij of the imaging pixel region 600 by using the non-imaging region 610-pq outside the correlated imaging pixel region 600. It becomes possible to execute. Therefore, it is possible to improve the accuracy of the black level correction for each of the imaging regions 600-ij.
  • the present invention is not limited to the above contents, and may be any combination thereof.
  • other aspects considered within the scope of the technical idea of the present invention are also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

撮像装置は、被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子と、前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記遮光画素領域に設定された、前記撮像領域に設定された第1制御条件とは異なる第2制御条件と、に基づいて補正する信号処理部と、を有する。

Description

撮像装置および制御プログラム
 本発明は、撮像装置および制御プログラムに関する。
 特許文献1は、フォトダイオードが配置されたオプチカルブラック領域と、フォトダイオードが配置されていないオプチカルブラック領域とを有する電荷結合素子を開示する。しかしながら、特許文献1の電荷結合素子は、異なる撮像条件が設定された複数の撮像領域については考慮されていない。
特開2006‐303856号公報
 本開示技術の撮像装置は、被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子と、前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記遮光画素領域に設定された、前記撮像領域に設定された第1制御条件とは異なる第2制御条件と、に基づいて補正する信号処理部と、を有する。
 本開示技術の撮像装置は、被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子と、前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記撮像領域の配置位置と、前記遮光画素領域の配置位置と、に基づいて補正する信号処理部と、を有する。
 本開示技術の制御プログラムは、被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子の制御をプロセッサに実行させる制御プログラムであって、前記プロセッサに、前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記遮光画素領域に設定された、前記撮像領域に設定された第1制御条件とは異なる第2制御条件と、に基づいて補正させる。
 本開示技術の制御プログラムは、被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子の制御をプロセッサに実行させる制御プログラムであって、前記プロセッサに、前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記撮像領域の配置位置と、前記遮光画素領域の配置位置と、に基づいて補正させる。
図1は、積層型撮像素子の断面図である。 図2は、撮像チップの画素配列を説明する図である。 図3は、撮像チップの回路図である。 図4は、撮像素子の構成例を示すブロック図である。 図5は、電子機器のブロック構成例を示す説明図である。 図6は、撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。 図7は、行方向における撮像画素領域と光学的黒画素領域の回路構成を示す回路図である。 図8は、列方向における撮像画素領域と光学的黒画素領域の回路構成を示す回路図である。 図9は、ブロックの動作を示すタイミングチャートである。 図10は、撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。 図11は、撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係3を示す説明図である。 図12は、PD有り光学的黒画素の他の例を示すブロック図である。 図13は、実施例2にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係を示す説明図である。 図14は、実施例2にかかる補正テーブルの一例を示す説明図である。 図15は、列方向における撮像画素領域と光学的黒画素領域の回路構成を示す回路図である。 図16は、実施例3にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。 図17は、実施例3にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。 図18は、実施例4にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係を示す説明図である。 図19は、実施例4にかかる補正テーブルの一例を示す説明図である。 図20は、行方向における撮像画素領域と光学的黒画素領域の回路構成を示す回路図である。 図21は、実施例5にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。 図22は、実施例5にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。 図23は、実施例6にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。 図24は、実施例6にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。 図25は、実施例6にかかる補正テーブルの一例を示す説明図である。 図26は、撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係を示す説明図である。 図27は、実施例7にかかる補正テーブルの一例を示す説明図である。
 <撮像素子の構成例>
 本明細書の実施例に示す電子機器に搭載される撮像素子は積層型撮像素子である。この積層型撮像素子は、複数の異なる撮像領域ごとに異なる撮像条件(制御条件)が設定可能である。初めに、複数の異なる撮像領域ごとに異なる撮像条件(制御条件)が設定可能な積層型撮像素子の構造について説明する。なお、この積層型撮像素子は、本願出願人が先に出願した特願2012-139026号に記載されているものである。電子機器は、たとえば、デジタルカメラやデジタルビデオカメラなどの撮像装置である。
 図1は、積層型撮像素子100の断面図である。積層型撮像素子(以下、単に、「撮像素子」)100は、入射光に対応した画素信号を出力する裏面照射型撮像チップ(以下、単に、「撮像チップ」)113と、画素信号を処理する信号処理チップ111と、画素信号を記憶するメモリチップ112とを備える。これら撮像チップ113、信号処理チップ111およびメモリチップ112は積層されており、Cuなどの導電性を有するバンプ109により互いに電気的に接続される。
 なお、図1に示すように、入射光は主に白抜き矢印で示すZ軸プラス方向へ向かって入射する。本実施形態においては、撮像チップ113において、入射光が入射する側の面を裏面と称する。また、座標軸120に示すように、Z軸に直交する紙面左方向をX軸プラス方向、Z軸およびX軸に直交する紙面手前方向をY軸プラス方向とする。以降のいくつかの図においては、図1の座標軸120を基準として、それぞれの図の向きがわかるように座標軸120を表示する。
 撮像チップ113の一例は、裏面照射型のMOS(Metal Oxide Semiconductor)イメージセンサである。PD(フォトダイオード)層106は、配線層108の裏面側に配されている。PD層106は、二次元的に配され、入射光に応じた電荷を蓄積する複数のPD104、および、PD104に対応して設けられたトランジスタ105を有する。
 PD層106における入射光の入射側にはパッシベーション膜103を介してカラーフィルタ102が設けられる。カラーフィルタ102は、互いに異なる波長領域を透過する複数の種類を有しており、PD104のそれぞれに対応して特定の配列を有している。カラーフィルタ102の配列については後述する。カラーフィルタ102、PD104およびトランジスタ105の組が、一つの画素を形成する。
 カラーフィルタ102における入射光の入射側には、それぞれの画素に対応して、マイクロレンズ101が設けられる。マイクロレンズ101は、対応するPD104へ向けて入射光を集光する。
 配線層108は、PD層106からの画素信号を信号処理チップ111に伝送する配線107を有する。配線107は多層であってもよく、また、受動素子および能動素子が設けられてもよい。
 配線層108の表面には複数のバンプ109が配される。当該複数のバンプ109が信号処理チップ111の対向する面に設けられた複数のバンプ109と位置合わせされて、撮像チップ113と信号処理チップ111とが加圧などされることにより、位置合わせされたバンプ109同士が接合されて、電気的に接続される。
 同様に、信号処理チップ111およびメモリチップ112の互いに対向する面には、複数のバンプ109が配される。これらのバンプ109が互いに位置合わせされて、信号処理チップ111とメモリチップ112とが加圧などされることにより、位置合わせされたバンプ109同士が接合されて、電気的に接続される。
 なお、バンプ109間の接合には、固相拡散によるCuバンプ接合に限らず、はんだ溶融によるマイクロバンプ結合を採用してもよい。また、バンプ109は、たとえば、後述する一つのブロックに対して一つ程度設ければよい。したがって、バンプ109の大きさは、PD104のピッチよりも大きくてもよい。また、画素が配列された画素領域以外の周辺領域において、画素領域に対応するバンプ109よりも大きなバンプを併せて設けてもよい。
 信号処理チップ111は、表裏面にそれぞれ設けられた回路を互いに接続するTSV(シリコン貫通電極)110を有する。TSV110は、周辺領域に設けられることが好ましい。また、TSV110は、撮像チップ113の周辺領域、メモリチップ112にも設けられてよい。
 図2は、撮像チップ113の画素配列を説明する図である。特に、撮像チップ113を裏面側から観察した様子を示す。(a)は、撮像チップ113の裏面である撮像面200を模式的に示す平面図であり、(b)は、撮像面200の一部領域200aを拡大した平面図である。(b)に示すように、撮像面200には、画素201が二次元状に多数配列されている。
 画素201は、それぞれ不図示の色フィルタを有している。色フィルタは、赤(R)、緑(G)、青(B)の3種類からなり、(b)における「R」、「G」、および「B」という表記は、画素201が有する色フィルタの種類を表している。(b)に示すように、撮像素子100の撮像面200には、このような各色フィルタを備えた画素201が、いわゆるベイヤー配列に従って配列されている。
 赤フィルタを有する画素201は、入射光のうち、赤色の波長帯の光を光電変換して受光信号(光電変換信号)を出力する。同様に、緑フィルタを有する画素201は、入射光のうち、緑色の波長帯の光を光電変換して受光信号を出力する。また、青フィルタを有する画素201は、入射光のうち、青色の波長帯の光を光電変換して受光信号を出力する。
 撮像素子100は、隣接する2画素×2画素の計4つの画素201から成るブロック202ごとに、個別に制御可能に構成されている。たとえば、互いに異なる2つのブロック202について、同時に電荷蓄積を開始したときに、一方のブロック202では電荷蓄積開始から1/30秒後に電荷の読み出し、すなわち受光信号の読み出しを行い、他方のブロック202では電荷蓄積開始から1/15秒後に電荷の読み出しを行うことができる。換言すると、撮像素子100は、1回の撮像において、ブロック202ごとに異なる露光時間(電荷蓄積時間であり、いわゆるシャッタースピード)を設定することができる。
 撮像素子100は、上述した露光時間以外にも、撮像信号の増幅率(いわゆるISO感度)をブロック202ごとに異ならせることが可能である。撮像素子100は、電荷蓄積を開始するタイミングや受光信号を読み出すタイミングをブロック202ごとに変化させることができる。すなわち、撮像素子100は、動画撮像時のフレームレートをブロック202ごとに変化させることができる。
 以上をまとめると、撮像素子100は、ブロック202ごとに、露光時間、増幅率、フレームレートなどの撮像条件(制御条件)を異ならせることが可能に構成されている。たとえば、画素201が有する不図示の光電変換部から撮像信号を読み出すための不図示の読み出し線が、ブロック202ごとに設けられ、ブロック202ごとに独立して撮像信号を読み出し可能に構成すれば、ブロック202ごとに露光時間(シャッタースピード)を異ならせることができる。
 また、光電変換された電荷により生成された撮像信号を増幅する不図示の増幅回路をブロック202ごとに独立して設け、増幅回路による増幅率を増幅回路ごとに独立して制御可能に構成すれば、ブロック202ごとに信号の増幅率(ISO感度)を異ならせることができる。
 また、ブロック202ごとに異ならせることが可能な撮像条件(制御条件)は、上述した撮像条件(制御条件)のほか、フレームレート、ゲイン、解像度(間引き率)、画素信号を加算する加算行数または加算列数、電荷の蓄積時間または蓄積回数、デジタル化のビット数などである。さらに、制御パラメータは、画素からの画像信号取得後の画像処理におけるパラメータであってもよい。
 また、撮像条件(制御条件)は、たとえば、ブロック202ごとに独立して制御可能な区画(1区画が1つのブロック202に対応する)を有する液晶パネルを撮像素子100に設け、オンオフ可能な減光フィルタとして利用すれば、ブロック202ごとに明るさ(絞り値)を制御することが可能になる。
 なお、ブロック202を構成する画素201の数は、上述した2×2の4画素でなくてもよい。ブロック202は、少なくとも2個以上の画素201を有していればよいし、逆に、4個より多くの画素201を有していてもよい。
 図3は、撮像チップ113の回路図である。図3において、代表的に点線で囲む矩形が、1つの画素201に対応する回路を表す。また、一点鎖線で囲む矩形が1つのブロック202(202-1~202-4)に対応する。なお、以下に説明する各トランジスタの少なくとも一部は、図1のトランジスタ105に対応する。
 上述したように、画素201のリセットトランジスタ303は、ブロック202単位でオン/オフされる。また、画素201の転送トランジスタ302も、ブロック202単位でオン/オフされる。図3に示す例において、左上ブロック202-1に対応する4つのリセットトランジスタ303をオン/オフするためのリセット配線300-1が設けられており、同ブロック202-1に対応する4つの転送トランジスタ302に転送パルスを供給するためのTX配線307-1も設けられる。
 同様に、左下ブロック202-3に対応する4つのリセットトランジスタ303をオン/オフするためのリセット配線300-3が、上記リセット配線300-1とは別個に設けられる。また、同ブロック202-3に対応する4つの転送トランジスタ302に転送パルスを供給するためのTX配線307-3が、上記TX配線307-1と別個に設けられる。
 右上ブロック202-2や右下ブロック202-4についても同様に、それぞれリセット配線300-2とTX配線307-2、およびリセット配線300-4とTX配線307-4が、それぞれのブロック202に設けられている。
 各画素201に対応する16個のPD104は、それぞれ対応する転送トランジスタ302に接続される。各転送トランジスタ302のゲートには、上記ブロック202ごとのTX配線を介して転送パルスが供給される。各転送トランジスタ302のドレインは、対応するリセットトランジスタ303のソースに接続されるとともに、転送トランジスタ302のドレインとリセットトランジスタ303のソース間のいわゆるフローティングディフュージョンFDが、対応する増幅トランジスタ304のゲートに接続される。
 各リセットトランジスタ303のドレインは、電源電圧が供給されるVdd配線310に共通に接続される。各リセットトランジスタ303のゲートには、上記ブロック202ごとのリセット配線を介してリセットパルスが供給される。
 各増幅トランジスタ304のドレインは、電源電圧が供給されるVdd配線310に共通に接続される。また、各増幅トランジスタ304のソースは、対応する選択トランジスタ305のドレインに接続される。各選択トランジスタ305のゲートには、選択パルスが供給されるデコーダ配線308に接続される。デコーダ配線308は、16個の選択トランジスタ305に対してそれぞれ独立に設けられる。
 そして、各々の選択トランジスタ305のソースは、共通の出力配線309に接続される。負荷電流源311は、出力配線309に電流を供給する。すなわち、選択トランジスタ305に対する出力配線309は、ソースフォロアにより形成される。なお、負荷電流源311は、撮像チップ113側に設けてもよいし、信号処理チップ111側に設けてもよい。
 ここで、電荷の蓄積開始から蓄積終了後の画素出力までの流れを説明する。上記ブロック202ごとのリセット配線を通じてリセットパルスがリセットトランジスタ303に印加され、同時に上記ブロック202(202-1~202-4)ごとのTX配線を通じて転送パルスが転送トランジスタ302に印加されると、上記ブロック202ごとに、PD104およびフローティングディフュージョンFDの電位がリセットされる。
 各PD104は、転送パルスの印加が解除されると、受光する入射光を電荷に変換して蓄積する。その後、リセットパルスが印加されていない状態で再び転送パルスが印加されると、蓄積された電荷はフローティングディフュージョンFDへ転送され、フローティングディフュージョンFDの電位は、リセット電位から電荷蓄積後の信号電位になる。
 そして、デコーダ配線308を通じて選択パルスが選択トランジスタ305に印加されると、フローティングディフュージョンFDの信号電位の変動が、増幅トランジスタ304および選択トランジスタ305を介して出力配線309に伝わる。これにより、リセット電位と信号電位とに対応する画素信号は、単位画素から出力配線309に出力される。
 上述したように、ブロック202を形成する4画素に対して、リセット配線とTX配線が共通である。すなわち、リセットパルスと転送パルスはそれぞれ、同ブロック202内の4画素に対して同時に印加される。したがって、あるブロック202を形成するすべての画素201は、同一のタイミングで電荷蓄積を開始し、同一のタイミングで電荷蓄積を終了する。ただし、蓄積された電荷に対応する画素信号は、それぞれの選択トランジスタ305に選択パルスが順次印加されることにより、選択的に出力配線309から出力される。
 このように、ブロック202ごとに電荷蓄積開始タイミングを制御することができる。換言すると、異なるブロック202間では、異なったタイミングで撮像することができる。
 図4は、撮像素子100の構成例を示すブロック図である。アナログのマルチプレクサ411は、ブロック202を形成する16個のPD104を順番に選択して、それぞれの画素信号を当該ブロック202に対応して設けられた出力配線309へ出力させる。マルチプレクサ411は、PD104と共に、撮像チップ113に形成される。
 マルチプレクサ411を介して出力された画素信号は、信号処理チップ111に形成された、相関二重サンプリング(CDS)やアナログ/デジタル(A/D)変換を行う信号処理回路412により、CDSおよびA/D変換が行われる。A/D変換された画素信号は、デマルチプレクサ413に引き渡され、それぞれの画素に対応する画素メモリ414に格納される。デマルチプレクサ413および画素メモリ414は、メモリチップ112に形成される。
 演算回路415は、画素メモリ414に格納された画素信号を処理して後段の画像処理部に引き渡す。演算回路415は、信号処理チップ111に設けられてもよいし、メモリチップ112に設けられてもよい。なお、図4では4つのブロック202の分の接続を示すが、実際にはこれらが4つのブロック202ごとに存在して、並列で動作する。
 ただし、演算回路415は4つのブロック202ごとに存在しなくてもよく、たとえば、一つの演算回路415がそれぞれの4つのブロック202に対応する画素メモリ414の値を順に参照しながらシーケンシャルに処理してもよい。
 上記の通り、ブロック202のそれぞれに対応して出力配線309が設けられている。撮像素子100は撮像チップ113、信号処理チップ111およびメモリチップ112を積層しているので、これら出力配線309にバンプ109を用いたチップ間の電気的接続を用いることにより、各チップを面方向に大きくすることなく配線を引き回すことができる。
 <電子機器のブロック構成例>
 図5は、電子機器のブロック構成例を示す説明図である。電子機器500は、たとえば、レンズ一体型のカメラである。電子機器500は、撮像光学系501と、撮像素子100と、制御部502と、液晶モニタ503と、メモリカード504と、操作部505と、DRAM506と、フラッシュメモリ507と、録音部508とを備える。制御部502は、後述するように手ブレや被写体ブレを検出する検出部を含む。
 撮像光学系501は、複数のレンズから構成され、撮像素子100の撮像面200に被写体像を結像させる。なお、図5では、便宜上、撮像光学系501を1枚のレンズとして図示している。
 撮像素子100は、たとえば、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などの撮像素子であり、撮像光学系501により結像された被写体像を撮像して撮像信号を出力する。制御部502は、電子機器500の各部を制御する電子回路であり、プログラムを実行するプロセッサ、画像処理回路のような周辺回路、加速度センサのような各種センサを含む。
 不揮発性の記憶媒体であるフラッシュメモリ507には、予め所定の制御プログラムが書き込まれている。制御部502のプロセッサは、フラッシュメモリ507から制御プログラムを読み込んで実行することにより、各部の制御を行う。この制御プログラムは、揮発性の記憶媒体であるDRAM506を作業用領域として使用する。
 液晶モニタ503は、液晶パネルを利用した表示装置である。制御部502は、所定周期(たとえば60分の1秒)ごとに撮像素子100に繰り返し被写体像を撮像させる。そして、撮像素子100から出力された撮像信号に種々の画像処理を施していわゆるスルー画を作成し、液晶モニタ503に表示する。液晶モニタ503には、上記のスルー画以外に、たとえば撮像条件(制御条件)を設定する設定画面などが表示される。
 制御部502は、撮像素子100から出力された撮像信号に基づき、後述する画像ファイルを作成し、可搬性の記録媒体であるメモリカード504に画像ファイルを記録する。操作部505は、プッシュボタンなどの種々の操作部材を有し、それら操作部材が操作されたことに応じて制御部502に操作信号を出力する。
 録音部508は、たとえば、マイクロフォンにより構成され、環境音を音声信号に変換して制御部502に入力する。なお、制御部502は、可搬性の記録媒体であるメモリカード504に動画ファイルを記録するのではなく、電子機器500に内蔵されたSSD(Solid State Drive)やハードディスクのような不図示の記録媒体に記録してもよい。
 上記図1~図5までは、以下に示す各実施例に共通する部分について説明した。これから、各実施例にかかる撮像素子および撮像装置について説明する。
 実施例1は、光学的黒画素領域内の非撮像領域の数が、撮像画素領域内の撮像領域の数以上であり、非撮像領域が撮像画素領域とは異なる位置に配置されている構成を備える。
 <撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係>
 つぎに、実施例1にかかる撮像画素領域の制御条件、光学的黒画素領域の制御条件、および、撮像画素領域と光学的黒画素領域の配置について図6、図10、図11を用いて説明する。図10および図11では、図6との相違点に着目して説明するため、図6と同一箇所については説明を省略する。
 図6は、実施例1にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。図6では、x方向を行方向、y方向を列方向とする。図2で示した撮像面200は、撮像画素領域600と、光学的黒画素領域610と、を有する。ここで、撮像画素領域600とは、入射光に応じた電荷を蓄積する複数のPD104等を有する撮像画素6が2次元状に配列された領域である。光学的黒画素とは、撮像画素領域に配置された画素と同じ構造であるが、PD104が遮光された画素である。光学的黒画素領域610とは、たとえば、光学的黒画素が1次元または2次元状に配列された領域である。
 撮像領域は、たとえば、1以上のブロック202の集合である。図6では、説明を単純化するため、撮像画素領域600は、2行2列の撮像領域600-11、600-12、600-21、600-22により構成される。ただし、撮像画素領域600は、2行2列以外のm行n列(m、nは、1以上の整数。ただし撮像領域600は2個以上)により構成されてもよい。撮像領域600-11、600-12、600-21、600-22を区別しない場合、撮像領域600-ijと表記する。各撮像領域600-ijは、他の撮像領域600-ijと異なる制御条件で制御することが可能である。
 光学的黒画素領域610は、被写体を撮像しない複数の非撮像領域610-L1~610-L4、610-C1~610-C4により構成される。各非撮像領域610-L1~610-L4、610-C1~610-C4は、たとえば、後述するPD無し光学的黒画素群とPD有り光学的黒画素群のすくなとも一方を備える。
 各非撮像領域610-L1~610-L4、610-C1~610-C4のPD無し光学的黒画素群またはPD有り光学的黒画素群は、たとえば、図3を用いて説明したブロック202と同様に、各画素が2次元状に配置された構成を備える。PD無し光学的黒画素群またはPD有り光学的黒画素群は、非撮像領域610-L1~610-L4、610-C1~610-C4ごとに、異なる制御条件で制御することが可能な構成を備える。
 ここで、各実施例において、PD無し光学的黒画素群を備える非撮像領域については、遮光画素領域とも称する。複数の非撮像領域610-L1~610-L4は列方向に存在する非撮像領域群である。列方向に存在する非撮像領域群を区別しない場合は、非撮像領域610-Lpと表記する。複数の非撮像領域610-C1~610-C4は行方向に存在する非撮像領域群である。
 行方向に存在する非撮像領域群を区別しない場合は、非撮像領域610-Cqと表記する。複数の非撮像領域610-L1~610-L4、610-C1~610-C4を区別しない場合、非撮像領域610-pqと表記する。1つの非撮像領域610-pqは、PD有り光学的黒画素群およびPD無し光学的黒画素群を含む。
 光学的黒画素領域610は、撮像画素領域600の外部に隣接する。図6では、例として、光学的黒画素領域610は、撮像画素領域600の右端および下端に設けられる。光学的黒画素領域610の配置位置は、撮像画素領域600の上端、下端、右端および左端の少なくともいずれか1つでよい。
 光学的黒画素領域610は、PD有り光学的黒画素群と、PD無し光学的黒画素群と、を有する。PD有り光学的黒画素群とは、PD有り光学的黒画素の集合である。PD有り光学的黒画素は、PD104を有する黒画素である。具体的には、たとえば、PD有り光学的黒画素は、被写体光の入射を遮る遮光層を有する画素である。
 PD無し光学的黒画素群とは、PD無し光学的黒画素の集合である。PD無し光学的黒画素は、PD104を有しない黒画素である。PD有り光学的黒画素からの出力またはPD無し光学的黒画素からの出力信号を、撮像画素からの出力信号から減算することにより、黒レベル補正が実行され、暗電流成分等のノイズが除去される。
 また、非撮像領域610-pqの数は、撮像領域600-ijの数以上有する。図6では、非撮像領域610-pqの数は8個であり、撮像領域600-ijの数は4個である。
 また、非撮像領域610-Cqは、2行2列で配置されている。非撮像領域610-C1,610-C3は、列方向に配列されており、非撮像領域610-C1のPD無し光学的黒画素群と、非撮像領域610-C3のPD無し光学的黒画素群と、が隣接する。同様に、非撮像領域610-C2,610-C4は、列方向に配列されており、非撮像領域610-C2のPD無し光学的黒画素群と、非撮像領域610-C4のPD無し光学的黒画素群と、が隣接する。このように、非撮像領域610-CqのPD無し光学的黒画素群は分離されていないため、PD無し光学的黒画素群の配列数を削減でき、製造コストの低減化を図ることができる。
 <撮像画素領域600と光学的黒画素領域610の回路構成>
 図7は、実施例1にかかる行方向における撮像画素領域600と光学的黒画素領域610の回路構成を示す回路図である。図8は、実施例1にかかる列方向における撮像画素領域600と光学的黒画素領域610の回路構成を示す回路図である。図7および図8において、撮像画素領域600の画素201を撮像画素201-1とし、光学的黒画素領域610の画素201を、PD有り光学的黒画素201-2、PD無し光学的黒画素201-3とする。
 画素201は、転送トランジスタ302と、リセットトランジスタ303と、増幅トランジスタ304と、選択トランジスタ305と、フローティングディフュージョンFDと、を有する。撮像画素201-1は、さらに、赤(R)、G(緑)、または青(B)のカラーフィルタ102と、PD104と、を有する。PD有り光学的黒画素201-2は、さらに、遮光層700と、PD104と、を有する。PD無し光学的黒画素201-3は、フィルタもPD104も有しない。
 撮像画素201-1は、カラーフィルタ102を介して入射した光の光量に応じて電荷を生成する。一方、PD有り光学的黒画素201-2は、遮光層700を有するので、入射した光の光量に応じては電荷を生成しないが、熱雑音に相当する電荷を生成する。
 撮像画素201-1およびPD有り光学的黒画素201-2の転送トランジスタ302は、そのゲートに駆動回路711からの制御信号TX_C、TX_O1が与えられると、PD104に蓄積された電荷をフローティングディフュージョンFDに転送する。PD無し光学的黒画素201-3の転送トランジスタ302は、そのゲートに駆動回路711からの制御信号TX_O2が与えられても、PD104に起因する電荷は発生しない。
 リセットトランジスタ303は、そのゲートに駆動回路711からの制御信号RSTが与えられると、フローティングディフュージョンFDの電位をVddとほぼ同じ電位にする。たとえば、リセットトランジスタ303は、フローティングディフュージョンFDに蓄積された電子を排除する。
 選択トランジスタ305は、そのゲートに駆動回路711からの制御信号SEL_C、SEL_O1,SEL_O2が与えられると、増幅トランジスタ304が増幅した電圧で電流を列読出し線701~703に出力する。図8の列読出し線701-1~701-4は、図7の列読出し線701に相当する。
 列読出し線701からは、PD104で生成された電荷に応じた画素信号が出力される。列読出し線702からは、熱雑音に相当する電圧レベルに応じた信号が出力される。列読出し線703からは、基準となる黒レベルに応じた信号が出力される。列読出し線701~703は、図示しないCDS回路およびAD変換回路等を介して、信号処理部710に接続される。
 信号処理部710は、撮像画素201-1において光電変換された電荷量に対応する信号を入力する。信号処理部710は、PD有り光学的黒画素201-2において検出された熱雑音に対応する信号を入力する。信号処理部710は、PD無し光学的黒画素201-3からの信号を、撮像画素201-1の黒レベルの基準にする。
 信号処理部710は、撮像画素201-1からの出力信号から、PD有り光学的黒画素201-2からの出力信号またはPD無し光学的黒画素201-3からの出力信号を減算することにより、黒レベル補正を実行する。これにより、暗電流等のノイズが除去される。なお、信号処理部710は、回路により実現されてもよく、メモリに記憶されたプログラムをプロセッサが実行することにより実現されてもよい。
 駆動回路711(図8では図示省略)は、転送トランジスタ302、リセットトランジスタ303および選択トランジスタ305の各ゲートへ信号パルスとなる制御信号TX,RST,SELを供給する。これにより、転送トランジスタ302、リセットトランジスタ303および選択トランジスタ305はオン状態になる。
 制御部712(図8では図示省略)は、駆動回路711を制御する。制御部712は、転送トランジスタ302、リセットトランジスタ303および選択トランジスタ305の各ゲートへのパルスタイミングを制御することにより、転送トランジスタ302、リセットトランジスタ303および選択トランジスタ305を制御する。また、制御部712は、信号処理部710の動作を制御する。
 <ブロック202の動作を示すタイミングチャート>
 図9は、実施例1にかかるブロック202の動作を示すタイミングチャートである。駆動回路711は、1つのブロック202において、転送トランジスタ302およびリセットトランジスタ303を、同じタイミングで制御する。ただし、同じ分光特性のカラーフィルタ102が設けられた画素201に関しては、駆動回路711は、画素201毎にタイミングをずらして選択トランジスタ305から画素信号を出力させる。
 たとえば、駆動回路711は、時刻t2において1つのブロック202の各リセットトランジスタ303(RST)をオンにする。これにより、各増幅トランジスタ304のゲートの電位がリセットされる。駆動回路711は、時刻t2から時刻t5までの間、各リセットトランジスタ303(RST)をオンの状態に保つ。
 駆動回路711は、時刻t3において、1つのブロック202におけるすべての転送トランジスタ302をオンにする。これにより、まず、ブロック202に存在するPD104に蓄積されていた電荷がリセットされる。
 駆動回路711は、時刻t5において、各リセットトランジスタ303(RST)をオフにする。その後、駆動回路711は、時刻t7において、1つのブロック202におけるすべての転送トランジスタ302を再びオンにする。これにより、1つのブロック202に存在するPD104に蓄積された電荷が、各々対応するフローティングディフュージョンFDにそれぞれ転送される。
 時刻t3から時刻t7の期間において、1つのブロック202内のPD104を有する画素201は、電荷を蓄積する。すなわち、時刻t3から時刻t7の期間がPD104を有する画素201の電荷蓄積期間となる。
 駆動回路711は、時刻t8以降、転送トランジスタ302を順次オンにする。本例では、時刻t8において、1つのブロック202におけるPD104に蓄積された電荷が、たとえば、列読出し線701~703にそれぞれ転送される。
 また、時刻t9において、他のブロック202における他のPD104に蓄積された電荷が列読出し線701~703にそれぞれ転送される。当該転送動作は、1つのブロック202内の画素201ごとに実行される。これにより、1つのブロック202に含まれる各画素201の画素信号が、それぞれ列読出し線701~703へ出力される。
 図6に戻り、撮像領域600-ijと非撮像領域610-pqの位置関係について説明する。前述のとおり、各撮像領域600-ijは、撮像画素6が2次元状に配列された構成を備える。各撮像領域600-ijの撮像画素6は、たとえば、図2を用いて説明したブロック202と同様の構成を備え、撮像領域600-ijごとに、異なる制御条件で制御することが可能である。
 ここで、各撮像領域600-ijが有する制御線(TX配線307等)に接続された、撮像領域600-ijが有するすべての撮像画素6を内含し、かつ、外縁が最短の長さになるように特定される閉領域60を考える。非撮像領域610-pqは、この閉領域60の外側に位置する。このような構成を備えることにより、各撮像領域600-ijの内側に撮像画素6を一様に配置することが可能となる。したがって、所謂欠陥画素が生じることなく、各撮像領域600-ijの撮像画素6で生成する画像について高い品質を確保することが可能となる。
 つぎに、撮像画素領域600および光学的黒画素領域610に設定される制御条件および、黒レベル補正について説明する。各撮像領域600-ijには制御条件が設定される。たとえば、撮像領域600-11,600-21には制御条件Aが設定され、撮像領域600-12,600-22には制御条件Bが設定される。同様に、非撮像領域610-L1,610-L3,610-C1,610-C3には制御条件Aが設定され、非撮像領域610-C2,610-L4,610-C2,610-C4には制御条件Bが設定される。
 制御条件A,Bは互いに異なる制御条件である。具体的には、たとえば、制御条件Aが露光時間で制御条件BがISO感度であれば、制御条件A,Bは互いに種類が異なる制御条件である。また、制御条件Aが露光時間:1/4秒で制御条件Bが露光時間:1/250秒であれば、制御条件A,Bは互いに同種の異なる制御条件である。
 両端黒丸の点線は、行方向において、黒丸が位置する撮像領域600-ijと非撮像領域610-pqとが、黒レベル補正において対応することを示す。黒丸が位置する撮像領域600-ijを、黒レベル補正の「参照元撮像領域600-ij」、黒丸が位置する非撮像領域610-pqを、黒レベル補正の「参照先非撮像領域610-pq」と称す(後述の両端黒丸の一点鎖線も同様)。
 行方向に配列された画素群は、行選択回路またはブロック202単位で同一タイミングで選択されて、画素信号を出力する。したがって、参照元撮像領域600-ijと参照先非撮像領域610-pqとは、暗電流等に関する相関性があると考えられる。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-pqの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 また、両端黒丸の一点鎖線は、列方向において、黒丸が位置する撮像領域600-ijと非撮像領域610-pqとが、黒レベル補正において対応することを示す。列方向に配列された画素群は、共通の列読出し線に接続されて各々アナログ信号を出力し、共通のA/D変換器でデジタル信号に変換される。
 したがって、参照元撮像領域600-ijと参照先非撮像領域610-pqとは、暗電流等に関する相関性があると考えられる。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-pqからの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 上述したように、非撮像領域610-pqの数は、撮像領域600-ijの数以上有する。したがって、1つの撮像領域600-ijは、1以上の非撮像領域610-pqと、黒レベル補正において対応することができる。なお、黒レベル補正において、撮像領域600-ijに対し、行方向および列方向のいずれの方向の非撮像領域610-pqの出力信号を用いるかは、あらかじめ設定されてもよく、また、各撮像領域600-ijと各非撮像領域610-pqの制御条件に応じて設定してもよい。または、撮像領域600-ijに対し、行方向および列方向の両方向の非撮像領域610-pqの出力信号のうち、大きい方、小さい方、または平均値を採用してもよい。
 また、上述した例では、「参照元撮像領域600-ij」と「参照先非撮像領域610-pq」とが、行選択回路またはブロック202単位で同一タイミングで選択される、または、共通のA/D変換器でデジタル信号に変換される例を示したがこれに限られない。たとえば、「参照元撮像領域600-ij」と「参照先非撮像領域610-pq」とが、行選択回路またはブロック202単位で同一タイミングで選択されず、共通のA/D変換器でデジタル信号に変換されない構成であってもよい。
 このような構成であっても、「参照元撮像領域600-ij」と「参照先非撮像領域610-pq」とが、同じ制御条件で制御されることにより、「参照元撮像領域600-ij」と「参照先非撮像領域610-pq」とで暗電流等に関する相関性が生じるため、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-pqからの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 図10は、実施例1にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。図10も、図6と同等、非撮像領域610の数が撮像領域600の数以上存在する例である。図10では、図6に示した非撮像領域610-C2,610-L4,610-C2,610-C4に替え、非撮像領域610-C5,610-L6,610-C7,610-C8が行方向に配列された構成を示す。
 非撮像領域610-C5,610-L6には制御条件Aが設定され、非撮像領域610-C7,610-L8には制御条件Bが設定される。参照元撮像領域600-ijと参照先非撮像領域610-pqとの対応関係は、図6と同様、両端黒丸点線および両端黒丸一点鎖線で示した通りである。非撮像領域610-C5,610-L6,610-C7,610-C8が行方向に1行だけ配列されているため、図6に比べて、撮像画素領域600の面積を大きくすることができる。
 図11は、実施例1にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係3を示す説明図である。図11も、図6と同等、非撮像領域610の数が撮像領域600の数以上存在する例である。図11では、撮像領域600-11には制御条件Aが設定され、撮像領域600-12には制御条件Bが設定され、撮像領域600-21には制御条件Cが設定され、撮像領域600-22には制御条件Dが設定される。
 また、図11では、図6に示した非撮像領域610-C2,610-L4,610-C2,610-C4に替え、非撮像領域610-C5,610-L6,610-C7,610-C8が行方向に配列された構成を示す。非撮像領域610-C5には制御条件Aが設定され、非撮像領域610-L6には制御条件Cが設定され、非撮像領域610-C5には制御条件Bが設定され、非撮像領域610-C8には制御条件Dが設定される。
 また、非撮像領域610-L1には制御条件Aが設定され、非撮像領域610-L2には制御条件Bが設定され、非撮像領域610-L3には制御条件Cが設定され、非撮像領域610-L4には制御条件Dが設定される。
 制御条件A~Dは、互いに異なる制御条件である。また、参照元撮像領域600-ijと参照先非撮像領域610-pqとの対応関係は、図6と同様、両端黒丸点線および両端黒丸一点鎖線で示した通りである。
 非撮像領域610-C5,610-L6,610-C7,610-C8が行方向に1行だけ配列されているため、図6に比べて、撮像画素領域600の面積を大きくすることができる。また、異なる制御条件の数は、最大で撮像領域の数まで設定可能である。図6、図10、図11では、撮像領域600の数がいずれも4個であるが、図6および図10では、異なる制御条件の数は、A,Bの2個である。
 これに対し、図11では、異なる制御条件として、A~Dの4個が設定される。このように、撮像領域600の数に比例して制御条件の数を設定することが可能である。したがって、様々な制御条件を組み合わせることができ、撮影の自由度の向上を図ることができる。
 <PD有り光学的黒画素201-2の他の例>
 図12は、実施例1にかかるPD有り光学的黒画素201-2の他の例を示すブロック図である。PD有り光学的黒画素201-4は、PD104の出力がPD104の入力に接続される。なお、PD104および転送トランジスタ302の間と接地とが短絡される点以外は、図7および図8に示した構成と同様である。
 したがって、PD104には光電変換に起因する電荷は基本的には蓄積されない。なお、仮にPD104に蓄積されたとしても、当該電荷は画素信号として読み出されることは無いが、暗電流等に起因する電荷がフローティングディフュージョンFDに蓄積されることになる。
 以上説明したように、実施例1によれば、撮像画素領域600の撮像領域600-ijの各々について、相関性のある撮像画素領域600外の非撮像領域610-pqを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 また、各撮像領域600-ijが有する制御線(TX配線307等)に接続された、撮像領域600-ijが有するすべての撮像画素6を内含し、かつ、外縁が最短の長さになるように特定される閉領域60を考える。非撮像領域610-pqは、この閉領域60の外側に位置する。これにより、各撮像領域600-ijの内側に撮像画素6を一様に配置することが可能となる。したがって、所謂欠陥画素が生じることなく、各撮像領域600-ijの撮像画素6で生成する画像について高い品質を確保することが可能となる。
 実施例2は、後述する光学的黒画素領域内の非撮像領域の数が、撮像画素領域内の撮像領域の数よりも少ないという関係である。実施例1と同一構成には同一符号を付し、その説明を省略する。
 <撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係>
 図13は、実施例2にかかる撮像画素領域600の制御条件と光学的黒画素領域の制御条件との関係を示す説明図である。光学的黒画素領域610は、被写体を撮像しない複数の非撮像領域610-L1~610-L2により構成される。複数の非撮像領域610-L1~610-L2は列方向に存在する非撮像領域群である。非撮像領域群を区別しない場合は、非撮像領域610-Lpと表記する。
 光学的黒画素領域610は、撮像画素領域600の外部に隣接する。図13では、例として、撮像画素領域600の右端に設けられる。光学的黒画素領域610の配置位置は、撮像画素領域600の右端および左端の少なくともいずれか1つでよい。また、非撮像領域610-Lpの数は、撮像領域600-ijの数より少ない。図13では、非撮像領域610-Lpの数は2個であり、撮像領域600-ijの数は4個である。
 つぎに、撮像画素領域600および光学的黒画素領域610に設定される制御条件について説明する。各撮像領域600-ijには制御条件が設定される。たとえば、撮像領域600-11,600-12には制御条件Aが設定され、撮像領域600-21,600-22には制御条件Bが設定される。同様に、非撮像領域610-L1には制御条件Aが設定され、非撮像領域610-L2には制御条件Bが設定される。
 図6と同様に、両端黒丸の点線は、行方向において、黒丸が位置する撮像領域600-ijと非撮像領域610-pqとが、黒レベル補正において対応することを示す。黒丸が位置する撮像領域600-ijを、黒レベル補正の「参照元撮像領域600-ij」、黒丸が位置する非撮像領域610-pqを、黒レベル補正の「参照先非撮像領域610-pq」と称す(後述の両端黒丸の一点鎖線も同様)。
 行方向に配列された画素群は、行選択回路またはブロック202単位で同一タイミングで選択されて、画素信号を出力する。したがって、参照元撮像領域600-ijと参照先非撮像領域610-Lpとは、暗電流等に関する相関性があると考えられる。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-Lpからの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じて黒レベル補正が可能となる。
 上述したように、非撮像領域610-Lpの数は、撮像領域600-ijの数よりも少ない。したがって、1つの撮像領域600-ijは、1以上の非撮像領域610-Lpと、黒レベル補正において対応することができる。また、黒レベル補正は行ごとに実行されたが、領域毎に実行されてもよい。すなわち、非撮像領域610-L1の信号の出力を平均した値により、撮像領域600-11の各信号レベルを補正することとしてもよい。
 <補正テーブル>
 図14は、実施例2にかかる補正テーブルの一例を示す説明図である。補正テーブル1400は、参照元撮像領域1401、参照元制御条件1402、参照先非撮像領域1403、および参照先制御条件1404の組み合わせごとに相関値1405が設定されたテーブルである。参照元撮像領域1401には、値として、参照元撮像領域600-ijが記憶される。参照元制御条件1402には、値として、参照元撮像領域600-ijの制御条件が記憶される。参照先非撮像領域1403には、値として、参照元撮像領域600-ijの参照先となる非撮像領域610-Lpが記憶される。参照先制御条件1404には、値として非撮像領域610-Lpの制御条件が記憶される。
 相関値1405には、値として、参照元制御条件1402が設定された参照元撮像領域1401と、参照先制御条件1404が設定された参照先非撮像領域1403との相関関係を示す値(相関値r(ijX,LpY)。Xは参照元制御条件1402、Yは参照先制御条件1404。)が記憶される。
 なお、相関値r(ijX,LpY)を単に相関値rを称する場合もある。相関値rは、1.0に近いほど、参照元撮像領域1401と参照先非撮像領域1403との相関が高いことを示し、1.0から離れるほど、参照元撮像領域1401と参照先非撮像領域1403との相関が低いことを示す。
 ここで、参照先非撮像領域610-LpにおけるPD有り光学的黒画素からの出力またはPD無し光学的黒画素からの出力をQ、補正後のノイズ成分をPとする。PとQとの関係は、下記式(1)により表現される。
 P=r×Q+b・・・(1)
 bは任意に設定される調整値であり、撮像素子100ごとに決まる値である。上記式(1)を用いた計算は、たとえば、後述する信号処理部810で実行される。
 相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが同一行であれば1.0に近い値となる傾向にある。たとえば、図13において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-L1であれば、参照先非撮像領域1403が非撮像領域610-L2の場合に比べて、相関値rは1.0に近い値となる。同一行であれば、同一タイミングで列読出し線で読み出されるからである。
 また、相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが近接するほど1.0に近い値となる傾向にある。たとえば、図13において、参照元撮像領域1401が撮像領域600-12の場合、参照先非撮像領域1403が非撮像領域610-L1であれば、参照元撮像領域1401が撮像領域600-11の場合に比べて、相関値rは1.0に近い値となる。画素位置が近いほど、それらの特性が類似すると考えられるからである。
 また、相関値rは、参照元制御条件1402と参照先制御条件1404と同じであると1.0に近い値となる。具体的には、たとえば、参照元制御条件1402と参照先制御条件1404とが同種でかつ値が異なる制御条件の場合、参照元制御条件1402と参照先制御条件1404とが異種の場合に比べて、相関値rは1.0に近い値になる。制御条件が同種であれば、参照元撮像領域1401の動作条件と参照先非撮像領域1403の動作条件とが同じであるからである。
 なお、相関値rを用いたノイズ成分の補正対象は、参照先非撮像領域1403と隣接していない参照元撮像領域1401に制限してもよい。たとえば、参照先非撮像領域1403が非撮像領域610-L1である場合、参照元撮像領域1401は撮像領域600-11になる。この場合、撮像領域600-12は、撮像領域610-L1に隣接しているため、参照元撮像領域1401に設定されない。これにより、補正対象撮像領域が制限されるため、補正テーブル1400のデータが小さくなる。
 <撮像画素領域600と光学的黒画素領域610の回路構成>
 図15は、列方向における撮像画素領域600と光学的黒画素領域610の回路構成を示す回路図である。行方向における撮像画素領域600と光学的黒画素領域610の回路構成については図11と同一である。図11および図15において、撮像画素領域600の画素201を撮像画素201-1とし、光学的黒画素領域610の画素201を、PD有り光学的黒画素201-2、PD無し光学的黒画素201-3とする。
 選択トランジスタ305は、そのゲートに駆動回路811からの制御信号SEL_C、SEL_O1,SEL_O2が与えられると、増幅トランジスタ304が増幅した電圧で電流を列読出し線701~703に出力する。図15の列読出し線1503-1~1503-4は、図9の列読出し線703に相当する。
 以上説明したように、実施例2によれば、撮像画素領域600の撮像領域600-ijの各々について、撮像領域600-ijと相関性のある非撮像領域610-Lpを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 実施例3について説明する。実施例2では、同一行に同一制御条件が設定された撮像素子を示したが、実施例3では、同一行に異なる制御条件が設定された撮像素子を示す。実施例1および実施例2と同一構成には同一符号を付し、その説明を省略する。
 図16は、実施例3にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。図17は、実施例3にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。図16および図17も、図13と同等、非撮像領域610の数が撮像領域600の数よりも少ない例である。
 図16では、撮像領域600-12および非撮像領域610-L1には制御条件Bが設定され、撮像領域600-22および非撮像領域610-L2には制御条件Aが設定される。
 図13との相違点は、図13では、撮像領域600-11の参照先非撮像領域1403である非撮像領域610-L1の制御条件がAであるのに対し、図16では、非撮像領域610-L1の制御条件がAではなくBである点である。同様に、図13では、撮像領域600-21の参照先非撮像領域1403である非撮像領域610-L2の制御条件がAであるのに対し、図16では、非撮像領域610-L2の制御条件がBではなくAである点である。
 また、図17では、撮像領域600-12および非撮像領域610-L1には制御条件Bが設定され、撮像領域600-21には制御条件Cが設定され、撮像領域600-22および非撮像領域610-L2には制御条件Dが設定される。
 図13との相違点は、図13では、撮像領域600-11の参照先非撮像領域1403である非撮像領域610-L1の制御条件がAであるのに対し、図17では、非撮像領域610-L1の制御条件がAではなくBである点である。同様に、図13では、撮像領域600-21の参照先非撮像領域1403である非撮像領域610-L2の制御条件がAであるのに対し、図17では非撮像領域610-L2の制御条件がAではなくDである点である。
 このような場合でも、相関値rを適切に設定することにより、信号処理部810は、上記式(1)を用いて黒レベル補正を高精度に算出することができる。
 以上説明したように、実施例3によれば、撮像画素領域600の撮像領域600-ijの各々について、相関性のある撮像画素領域600外の非撮像領域610-Lqを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 実施例4について説明する。実施例2では、同一行に同一制御条件が設定された撮像素子を示したが、実施例4では、同一列に同一制御条件が設定された撮像素子を示す。実施例1~実施例3と同一構成には同一符号を付し、その説明を省略する。
 <撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係>
 図18は、実施例4にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係を示す説明図である。光学的黒画素領域610は、被写体を撮像しない複数の非撮像領域610-C1~610-C2により構成される。複数の非撮像領域610-C1~610-C2は列方向に存在する非撮像領域群である。非撮像領域群を区別しない場合は、非撮像領域610-Cqと表記する。
 光学的黒画素領域610は、撮像画素領域600の外部に隣接する。図18では、例として、撮像画素領域600の下端側に設けられる。光学的黒画素領域610の配置位置は、撮像画素領域600の上端側および下端側の少なくともいずれか1つでよい。
 また、非撮像領域610-Cqの数は、撮像領域600-ijの数より少ない。図18では、非撮像領域610-Cqの数は2個であり、撮像領域600-ijの数は4個である。
 つぎに、撮像画素領域600および光学的黒画素領域610に設定される制御条件について説明する。各撮像領域600-ijには制御条件が設定される。たとえば、撮像領域600-11,600-21には制御条件Aが設定され、撮像領域600-12,600-22には制御条件Bが設定される。同様に、非撮像領域610-C1には制御条件Aが設定され、非撮像領域610-C2には制御条件Bが設定される。
 両端黒丸の点線は、行方向において、黒丸が位置する撮像領域600-ijと非撮像領域610-pqとが、黒レベル補正において対応することを示す。黒丸が位置する撮像領域600-ijを、黒レベル補正の「参照元撮像領域600-ij」、黒丸が位置する非撮像領域610-pqを、黒レベル補正の「参照先非撮像領域610-pq」と称す(後述の両端黒丸の一点鎖線も同様)。
 列方向に配列された画素群は、共通の列読出し線に接続されて各々アナログ信号を出力し、共通のA/D変換器でデジタル信号に変換される。したがって、参照元撮像領域600-ijと参照先非撮像領域610-Cqとは、暗電流等に関する相関性がある(高い)と考えられる。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-Cqの出力信号で減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 上述したように、非撮像領域610-Cqの数は、撮像領域600-ijの数よりも少ない。したがって、1つの撮像領域600-ijは、1以上の非撮像領域610-Cqと、黒レベル補正において対応することができる。
 <補正テーブル>
 図19は、実施例4にかかる補正テーブルの一例を示す説明図である。補正テーブル1900は、参照元撮像領域1401、参照元制御条件1402、参照先非撮像領域1403、および参照先制御条件1404の組み合わせごとに相関値1405が設定されたテーブルである。参照先非撮像領域1403には、値として、参照元撮像領域600-ijの参照先となる非撮像領域610-Cqが記憶される。参照先制御条件1404には、値として非撮像領域610-Cqの制御条件が記憶される。
 相関値1405には、値として、参照元制御条件1402が設定された参照元撮像領域1401と、参照先制御条件1404が設定された参照先非撮像領域1403との相関関係を示す値(相関値r(ijX,CqY)。Xは参照元制御条件1402、Yは参照先制御条件1404。)が記憶される。
 なお、相関値r(ijX,CqY)を単に相関値rを称する場合もある。相関値rは、1.0に近いほど、参照元撮像領域1401と参照先非撮像領域1403との相関が高いことを示し、1.0から離れるほど、参照元撮像領域1401と参照先非撮像領域1403との相関が低いことを示す。
 ここで、参照先非撮像領域610-CqにおけるPD有り光学的黒画素からの出力または、PD無し光学的黒画素からの出力をQ、補正後のノイズ成分をPとする。PとQとの関係は、上記式(1)により表現される。
 相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが同一列であると1.0に近い値となる。たとえば、図18において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-C1であれば、参照先非撮像領域1403が非撮像領域610-C2の場合に比べて、相関値rは1.0に近い値となる。同一列であれば、同一の列読出し線で読み出されるからである。
 また、相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが近接するほど1.0に近い値となる。たとえば、図18において、参照元撮像領域1401が撮像領域600-21の場合、参照先非撮像領域1403が非撮像領域610-C1であれば、参照元撮像領域1401が撮像領域600-11の場合に比べて、相関値rは1.0に近い値となる。画素位置が近いほど、それらの特性が類似すると考えられるからである。
 なお、相関値rを用いたノイズ成分の補正対象は、参照先非撮像領域1403と隣接していない参照元撮像領域1401に制限してもよい。たとえば、参照先非撮像領域1403が非撮像領域610-C1である場合、参照元撮像領域1401は撮像領域600-11になる。
 この場合、撮像領域600-21は、撮像領域610-C1に隣接しているため、参照元撮像領域1401に設定されない。これにより、補正対象撮像領域が制限されるため、補正テーブル1900のデータ小さくなる。
 <撮像画素領域600と光学的黒画素領域610の回路構成>
 図20は、行方向における撮像画素領域600と光学的黒画素領域610の回路構成を示す回路図である。列方向における撮像画素領域600と光学的黒画素領域610の回路構成は、図10と同一である。
 選択トランジスタ305は、そのゲートに駆動回路811からの制御信号SEL_C、SEL_O1,SEL_O2が与えられると、増幅トランジスタ304が増幅した電圧で電流を列読出し線701~703に出力する。図10の列読出し線701-1~701-4は、図20の列読出し線702、703に相当する。
 以上説明したように、実施例4によれば、撮像画素領域600の撮像領域600-ijの各々について、相関性のある撮像画素領域600外の非撮像領域610-Cqを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 実施例5について説明する。実施例4では、同一列に同一制御条件が設定された撮像素子を示したが、実施例5では、同一列に異なる制御条件が設定された撮像素子を示す。実施例1~4と同一構成には同一符号を付し、その説明を省略する。
 図21は、実施例5にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。図22は、実施例5にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係2を示す説明図である。図21および図22も、図18と同等、非撮像領域610の数が撮像領域600の数よりも少ない例である。
 図21では、撮像領域600-21および非撮像領域610-C1には制御条件Bが設定され、撮像領域600-22および非撮像領域610-C2には制御条件Aが設定される。
 図18との相違点は、図18では、撮像領域600-11の参照先非撮像領域1403である非撮像領域610-C1の制御条件がAであるのに対し、図21では、非撮像領域610-C1の制御条件がAではなくBである点である。同様に、図18では、撮像領域600-12の参照先非撮像領域1403である非撮像領域610-C2の制御条件がBであるのに対し、図21では、非撮像領域610-C2の制御条件がBではなくAである点である。
 また、図22では、撮像領域600-21および非撮像領域610-C1には制御条件Bが設定され、撮像領域600-12には制御条件Cが設定され、撮像領域600-22および非撮像領域610-C2には制御条件Dが設定される。
 図18との相違点は、図18では、撮像領域600-11の参照先非撮像領域1403である非撮像領域610-C1の制御条件がAであるのに対し、図22では、非撮像領域610-C1の制御条件がAではなくBである点である。同様に、図18では、撮像領域600-12の参照先非撮像領域1403である非撮像領域610-C2の制御条件がBであるのに対し、図22では、非撮像領域610-C2の制御条件がBではなくDである点である。
 このような場合でも、相関値rを適切に設定することにより、信号処理部810は、上記式(1)を用いて黒レベル補正を高精度に行うことができる。
 以上説明したように、実施例5によれば、撮像画素領域600の撮像領域600-ijの各々について、相関性のある撮像画素領域600外の非撮像領域610-Cqを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 実施例6は、後述する光学的黒画素領域内の非撮像領域の数が、撮像画素領域内の撮像領域の数よりも少ないという関係である。実施例1~5と同一構成には同一符号を付し、その説明を省略する。
 <撮像画素領域600の制御条件と光学的黒画素領域610の制御条件との関係>
 実施例6にかかる撮像画素領域600の制御条件と光学的黒画素領域610の制御条件との関係について図23~図24を用いて説明する。この関係は、光学的黒画素領域610は、撮像画素領域600内に設けられ、かつ、光学的黒画素領域610内の非撮像領域の数が、撮像画素領域600内の撮像領域の数より少ないという関係である。図24では、図23との相違点に着目して説明するため、図23と同一箇所については説明を省略する。
 図23は、実施例6にかかる撮像画素領域600の制御条件と光学的黒画素領域の制御条件との関係1を示す説明図である。撮像領域は、たとえば、1以上のブロック202の集合である。図23では、説明を単純化するため、撮像画素領域600は、4行4列の撮像領域600-11~600-14、600-21~600-24、600-31~600-34、600-41~600-44により構成される。ただし、撮像画素領域600は、4行4列以外のm行n列(m、nは、1以上の整数。ただし撮像領域600は2個以上)により構成されてもよい。撮像領域600-11~600-14、600-21~600-24、600-31~600-34、600-41~600-44を区別しない場合、撮像領域600-ijと表記する。
 光学的黒画素領域610は、被写体を撮像しない複数の非撮像領域610-11、610-13、610-22、610-24、610-31、610-33、610-42、610-44により構成される。非撮像領域610-11、610-134、610-122、610-24、610-31、610-33、610-42、610-44を区別しない場合、非撮像領域610-ijと表記する。非撮像領域610-ijは、i行j列に存在する撮像領域600-ijに設けられる。
 撮像領域600-ijと非撮像領域610-ijの位置関係について詳細に説明する。前述のとおり、各撮像領域600-ijは、撮像画素6が2次元状に配列された構成を備える。各撮像領域600-ijの撮像画素6は、たとえば、図2を用いて説明したブロック202と同様の構成を備え、撮像領域600-ijごとに、異なる制御条件で制御することが可能である。実施例6に示す構成においては、非撮像領域610-ijが内部に配置された撮像領域600-ijと、非撮像領域610-ijが内部に配置されていない撮像領域600-ijと、を備える。
 図23に示す構成において、撮像領域600-11が有する制御線(TX配線307等)に接続された、撮像領域600-11が有するすべての撮像画素6を内含し、かつ、外縁が最短の長さになるように特定される閉領域60を考える。この場合、閉領域60の内側に非撮像領域610-11が配置されている。また、図23に示す構成において、撮像領域600-12が有する制御線(TX配線307等)に接続された、撮像領域600-121が有するすべての撮像画素6を内含し、かつ、外縁が最短の長さになるように特定される閉領域60を考える。この場合、閉領域60の内側には非撮像領域610-ijが配置されていない。
 このように、図23に示す構成は、非撮像領域610-ijが内部に配置された撮像領域(撮像領域600-11、撮像領域600-13、撮像領域600-22等)と、非撮像領域610-ijが内部に配置されていない撮像領域(撮像領域600-12、撮像領域600-14、撮像領域600-21等)とを備える。
 このような構成を備えることにより、非撮像領域610-ijが内部に配置された撮像領域600-ijにおいては、「参照元撮像領域600-ij」と「参照先非撮像領域610-pq」とで暗電流等に関する強い相関性によって高精度な黒レベル補正が実行される。そして、非撮像領域610-ijが内部に配置されていない撮像領域600-ijにおいては、隣接する撮像領域600-ij内に配置された非撮像領域610-ijの出力信号を用いて黒レベル補正が実行される。これにより、所謂欠陥画素が生じない。したがって、撮像領域600-ijの撮像画素6で生成する画像について高い品質を確保することが可能となる。
 図23に示すように、光学的黒画素領域610を含む撮像領域600-ijは、離散的に配置される。光学的黒画素領域610を含む撮像領域600-ijは、たとえば、千鳥状に配置される。光学的黒画素領域610は、たとえば、撮像画素領域600内で千鳥状に配置される。非撮像領域610-ijを含む撮像領域の数が、撮像領域600-ijの数より少なければ、千鳥配置に限定されない。
 1つの非撮像領域610-ijは、PD有り光学的黒画素群およびPD無し光学的黒画素群を含む。光学的黒画素領域610は、PD有り光学的黒画素群と、PD無し光学的黒画素群と、を有する。また、非撮像領域610-ijを含む撮像領域の数は、撮像領域600-ijの数より少ない。図23では、非撮像領域610-ijの数は8個であり、撮像領域600-ijの数は16個である。
 つぎに、撮像画素領域600および光学的黒画素領域610に設定される制御条件について説明する。各撮像領域600-ijおよび各非撮像領域610-ijには制御条件が設定される。非撮像領域610-ijの制御条件は、非撮像領域610-ijを含む撮像領域600-ijの制御条件と同一である。たとえば、非撮像領域610-11の制御条件はBであり、非撮像領域610-11を含む撮像領域600-11の制御条件もBである。
 また、両端黒丸の点線では表記していないが、非撮像領域610-ijは、非撮像領域610-ijを含む撮像領域600-ijを「参照元撮像領域600-ij」とする。したがって、たとえば、非撮像領域610-11は、非撮像領域610-11を含む撮像領域600-11の参照先撮像領域であり、かつ、非撮像領域610-11を含まない撮像領域600-12の参照先撮像領域でもある。
 行方向に配列された画素群は、行選択回路またはブロック202単位で同一タイミングで選択されて、画素信号を出力する。したがって、参照元撮像領域600-ijと参照先非撮像領域610-ijとは、暗電流等に関する相関性があると考えられる。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-ijからの出力信号で減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 また、両端黒丸の一点鎖線は、列方向において、黒丸が位置する撮像領域600-ijが非撮像領域610-ijの制御条件を参照することを示す。また、両端黒丸の一点鎖線では表記していないが、非撮像領域610-ijは、非撮像領域610-ijを含む撮像領域600-ijを「参照元撮像領域600-ij」とする。したがって、たとえば、非撮像領域610-31は、非撮像領域610-31を含む撮像領域600-31の参照先撮像領域であり、かつ、非撮像領域610-31を含まない撮像領域600-21の参照先撮像領域でもある。
 列方向に配列された画素群は、共通の列読出し線に接続されてブロック202単位で各々アナログ信号を出力し、共通のA/D変換器でデジタル信号に変換される。したがって、参照元撮像領域600-ijと参照先非撮像領域610-ijとは、暗電流等に関する相関性があると考えられる。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先非撮像領域610-ijからの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 上述したように、非撮像領域610-ijの数は、撮像領域600-ijの数よりも少ない。したがって、1つの非撮像領域610-ijは、1以上の撮像領域600-ijと、黒レベル補正において対応することができる。なお、撮像領域600-ijに対し、行方向および列方向のいずれの方向の非撮像領域610-ijを参照先にするかは、あらかじめ設定されてもよく、また、各撮像領域600-ijと各非撮像領域610-pqの制御条件に応じて設定してもよい。または、撮像領域600-ijに対し、行方向および列方向の両方向の非撮像領域610-pqの出力信号のうち、大きい方、小さい方、または平均値を採用してもよい。
 また、非撮像領域600-ijを撮像領域600-ij内に設けたことにより、光学的黒画素領域を撮像画素領域600の外側に配置しなくてもよいため、撮像素子が大きくなることを防ぐことができる。また、光学的黒画素領域を撮像画素領域600の外側に配置しなくてもよいため、その分撮像画素領域600の面積を拡大することができる。
 図24は、実施例6にかかる撮像画素領域600の制御条件と光学的黒画素領域610の制御条件との関係2を示す説明図である。図24も、図23と同様、非撮像領域610-ijの数が撮像領域600-ijの数以上存在する例である。図24では、撮像画素領域600の中央に位置する4つの撮像領域600-22,600-23,600-32,600-33に、非撮像領域610-ijが設けられていない。
 その理由は、撮像画素領域600の中央では、主要被写体像が映りこんだり、また、主要被写体を合焦する像面位相差検出画素が周囲の撮像領域600-11~600-14、600-21,600-24、600-31,600-34、600-41~600-44よりも多く存在したりするからである。
 非撮像領域610-ijは、画像を生成する上では欠陥画素となるため、補間が必要となり、画質が劣化する可能性が高くなる。そのため、主要被写体が存在する可能性が高いと考えられる中央領域付近には、非撮像領域610-ijを配置しないか、中央領域よりも外側に配置する非撮像領域610-ijを、中央領域に配置する非撮像領域610-ijよりも多くすることとしてもよい。また、中央領域から外側に離間するにつれて、非撮像領域610-ijが多くなるようにしてもよい。
 なお、非撮像領域610-ijは、撮像画素領域600の端辺(撮像領域600-ijの外側)、または、撮像画素領域600の中央よりも端辺に近い撮像領域600-ijに設けてもよい。また、撮像画素領域600の中央に限らず、非撮像領域610-ijは、撮像画素領域600のうち像面位相差検出画素の画素数が所定数以下の撮像領域600-ijに設けてもよく、撮像画素領域600のうち像面位相差検出画素の画素数が相対的に少ない撮像領域600-ijに設けてもよい。
 <撮像画素領域600と光学的黒画素領域610の回路構成>
 行方向における撮像画素領域600と光学的黒画素領域610の回路構成は、図9に示した通りであり、列方向における撮像画素領域600と光学的黒画素領域610の回路構成は、図10に示した通りである。
 なお、信号処理部710は、PD無し光学的黒画素201-3の周囲に存在する撮像画素201-1から出力される信号を用いて、PD無し光学的黒画素201-3の位置における信号を補間してもよい。信号処理部710が用いる補間方法は、メジアン処理による補間方法、勾配に基づく補間方法、または、適応型カラーブレーン補間(Adaptive Color Plane Interpolation)法を用いてよい。また、像面位相差検出画素についても同様である。
 <補正テーブル>
 図25は、実施例6にかかる補正テーブルの一例を示す説明図である。補正テーブル2500は、参照元撮像領域1401、参照元制御条件1402、参照先非撮像領域1403、および参照先制御条件1404の組み合わせごとに相関値1405が設定されたテーブルである。
 参照元撮像領域1401には、値として、参照元撮像領域600-ijが記憶される。参照元制御条件1402には、値として、参照元撮像領域600-ijの制御条件が記憶される。参照先非撮像領域1403には、値として、参照元撮像領域600-ijの参照先となる非撮像領域610-Lpが記憶される。参照先制御条件1404には、値として非撮像領域610-ijの制御条件が記憶される。
 相関値1405には、値として、参照元制御条件1402が設定された参照元撮像領域1401と、参照先制御条件1404が設定された参照先非撮像領域1403との相関関係を示す値(相関値r(ijX,ijY)。Xは参照元制御条件1402、Yは参照先制御条件1404。)が記憶される。
 なお、相関値r(ijX,ijY)を単に相関値rを称する場合もある。相関値rは、1.0に近いほど、参照元撮像領域1401と参照先非撮像領域1403との相関が高いことを示し、1.0から離れるほど、参照元撮像領域1401と参照先非撮像領域1403との相関が低いことを示す。
 ここで、参照先非撮像領域610-ijにおけるPD有り光学的黒画素からの出力またはPD無し光学的黒画素からの出力をQ、補正後のノイズ成分をPとする。PとQとの関係は、上記式(1)により表現される。
 相関値rは、参照先非撮像領域1403が参照元撮像領域1401を含む場合、1.0に近い値となる。たとえば、図23において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-11であれば、参照先非撮像領域1403が非撮像領域610-12の場合に比べて、相関値rは1.0に近い値となる。参照先非撮像領域1403が参照元撮像領域1401を含む場合、同一の列読出し線で読み出されるからである。
 相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが同一行であれば1.0に近い値となる。たとえば、図23において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-11であれば、参照先非撮像領域1403が非撮像領域610-22の場合に比べて、相関値rは1.0に近い値となる。同一行であれば、同一タイミングで列読出し線で読み出されるからである。
 また、相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが近接するほど1.0に近い値となる。たとえば、図23において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-12であれば、参照元撮像領域1401が撮像領域600-14の場合に比べて、相関値rは1.0に近い値となる。画素位置が近いほど、それらの特性が類似すると考えられるからである。
 また、相関値rは、参照元制御条件1402と参照先制御条件1404と同じであれば1.0に近い値となる。具体的には、たとえば、参照元制御条件1402と参照先制御条件1404とが同種でかつ値が異なる制御条件の場合、参照元制御条件1402と参照先制御条件1404とが異種の場合に比べて、相関値rは1.0に近い値になる。制御条件が同種であるほど、参照元撮像領域1401の動作条件と参照先非撮像領域1403の動作条件とが類似すると考えられるからである。
 以上説明したように、実施例7によれば、撮像画素領域600の撮像領域600-ijの各々について、相関性のある撮像画素領域600外の非撮像領域610-pqを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 <撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係>
 つぎに、実施例7にかかる撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係について説明する。実施例7は、実施例6において撮像画素領域600外にも光学的黒画素領域610を設けた構成である。実施例6と同一箇所には同一符号を付し、その説明を省略する。
 図26は、撮像画素領域の制御条件と光学的黒画素領域の制御条件との関係を示す説明図である。光学的黒画素領域610は、撮像画素領域600の内外に存在する。まず、撮像画素領域600内に存在する光学的黒画素領域610(以下、内部光学的黒画素領域610と称す)について説明する。
 内部光学的黒画素領域610は、被写体を撮像しない複数の内部非撮像領域610-11~610-14、610-21、610-24、610-31、610-34、610-41、610-44により構成される。内部非撮像領域610-11~610-14、610-21、610-24、610-31、610-34、610-41、610-44を区別しない場合、内部非撮像領域610-ijと表記する。内部非撮像領域610-ijは、i行j列に存在する撮像領域600-ijに設けられる。
 図26においては、内部光学的黒画素領域610が配置される撮像領域600を示しているが、内部光学的黒画素領域610は、たとえば、撮像画素領域600内で千鳥状に配置される。内部非撮像領域610-ijの数が、撮像領域600-ijの数より少なければ、千鳥配置に限定されない。
 1つの内部非撮像領域610-ijは、PD有り光学的黒画素群およびPD無し光学的黒画素群を含む。光学的黒画素領域610は、PD有り光学的黒画素群と、PD無し光学的黒画素群と、を有する。PD有り光学的黒画素群とは、PD有り光学的黒画素の集合である。PD有り光学的黒画素は、PD104を有する黒画素である。具体的には、たとえば、PD有り光学的黒画素は、被写体光の入射を遮る遮光層を有する画素である。
 また、内部非撮像領域610-ijの数は、撮像領域600-ijの数より少ない。図26では、内部非撮像領域610-ijの数は12個であり、撮像領域600-ijの数は16個である。
 つぎに、撮像画素領域600外に存在する光学的黒画素領域610(以下、外部光学的黒画素領域610と称す)について説明する。
 外部光学的黒画素領域610は、被写体を撮像しない複数の外部非撮像領域610-L1~610-L2、610-C1~610-C2により構成される。複数の外部非撮像領域610-L1~610-L2(図26では例として2個)は列方向に存在する外部非撮像領域群である。列方向に存在する外部非撮像領域群を区別しない場合は、外部非撮像領域610-Lpと表記する。
 複数の外部非撮像領域610-C1~610-C2(図26では例として2個)は行方向に存在する外部非撮像領域群である。行方向に存在する非撮像領域群を区別しない場合は、外部非撮像領域610-Cqと表記する。複数の外部非撮像領域610-L1~610-L2、610-C1~610-C2を区別しない場合、外部非撮像領域610-pqと表記する。1つの外部非撮像領域610-pqは、内部非撮像領域610-ijと同様、PD有り光学的黒画素群およびPD無し光学的黒画素群を含む。
 外部光学的黒画素領域610は、内部光学的黒画素領域610と同様、撮像画素領域600の外部に隣接する。図26では、例として、外部光学的黒画素領域610は、撮像画素領域600の右端および下端に設けられる。外部光学的黒画素領域610の配置位置は、撮像画素領域600の上端、下端、右端および左端の少なくともいずれか1つでよい。
 外部光学的黒画素領域610は、内部光学的黒画素領域610と同様、PD有り光学的黒画素群と、PD無し光学的黒画素群と、を有する。また、外部非撮像領域610-pqの数は、たとえば、内部非撮像領域600-ijが存在しない撮像領域600-ijの数以上有する。図26では、外部非撮像領域610-pqの数は4個であり、撮像領域600-ijの数は4個である。
 つぎに、撮像画素領域600および光学的黒画素領域610に設定される制御条件について説明する。各撮像領域600-ij、各内部非撮像領域610-ij、および各外部非撮像領域610-pqには制御条件が設定される。
 撮像領域600-11~600-14,600-21,600-24,600-31,600-34,600-11~600-14には、たとえば、制御条件Bが設定され、撮像領域600-22,600-23,600-32,600-33には、たとえば、制御条件Aが設定される。
 内部非撮像領域610-ijの制御条件は、内部非撮像領域610-ijを含む撮像領域600-ijの制御条件と同一である。たとえば、内部非撮像領域610-11の制御条件はBであり、内部非撮像領域610-11を含む撮像領域600-11の制御条件もBである。外部非撮像領域610-L1,610-L2,610-C1,610-C2には、たとえば、制御条件Aが設定される。
 両端黒丸の点線は、行方向において、黒丸が位置する撮像領域600-ijと非撮像領域610-pqとが、黒レベル補正において対応することを示す。黒丸が位置する撮像領域600-ijを、黒レベル補正の「参照元撮像領域600-ij」、黒丸が位置する非撮像領域610-pqを、黒レベル補正の「参照先非撮像領域610-pq」と称す(後述の両端黒丸の一点鎖線も同様)。
 また、両端黒丸の点線や一点鎖線では表記していないが、内部非撮像領域610-ijは、内部非撮像領域610-ijを含む撮像領域600-ijを「参照元撮像領域600-ij」とする。したがって、たとえば、内部非撮像領域610-11は、内部非撮像領域610-11を含む撮像領域600-11の参照先撮像領域である。
 行方向に配列された画素群は、行選択回路またはブロック202単位で同一タイミングで選択されて、画素信号を出力する。したがって、参照元撮像領域600-ijと参照先外部非撮像領域610-Lpとは、暗電流等に関する相関性があると考えられる。参照元撮像領域600-ijと参照先内部非撮像領域610-ijとの間でも同様である。このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先外部非撮像領域610-Lpまたは参照先内部非撮像領域610-ijの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 また、両端黒丸の一点鎖線は、列方向において、黒丸が位置する撮像領域600-ijが外部非撮像領域610-Cqの制御条件を参照することを示す。
 列方向に配列された画素群は、共通の列読出し線に接続されて各々アナログ信号を出力し、共通のA/D変換器でデジタル信号に変換される。したがって、参照元撮像領域600-ijと参照先外部非撮像領域610-Cqとは、暗電流等に関する相関性があると考えられる。参照元撮像領域600-ijと参照先内部非撮像領域610-ijとの間でも同様である。
 このため、参照元撮像領域600-ijからの出力信号を黒レベル補正する場合、参照元撮像領域600-ijからの出力信号を、参照先外部非撮像領域610-Cqまたは参照先内部非撮像領域610-ijの出力信号を用いて減算することにより、参照元撮像領域600-ijに応じた高精度な黒レベル補正が可能となる。
 上述したように、内部非撮像領域610-ijの数は、撮像領域600-ijの数よりも少ない。したがって、1つの内部非撮像領域610-ijは、1以上の撮像領域600-ijと、黒レベル補正において対応することができる。なお、撮像領域600-ijに対し、行方向および列方向のいずれの方向の外部非撮像領域610-pqを参照先にするかは、あらかじめ設定されてもよく、また、各撮像領域600-ijと各非撮像領域610-pqの制御条件に応じて設定してもよい。または、撮像領域600-ijに対し、行方向および列方向の両方向の非撮像領域610-pqの出力信号のうち、大きい方、小さい方、または平均値を採用してもよい。
 特に、図26では、撮像画素領域600の中心の撮像領域600-ijの各々は、外部非撮像領域610-pqを参照先とし、当該中心の周囲の撮像領域600-ijの各々は、撮像領域600-ijに存在する内部非撮像領域610-ijを参照先とする。その理由は、有効撮像領域600の中央では、主要被写体像が映りこんだり、また、主要被写体を合焦する像面位相差検出画素が周囲の撮像領域600-11~600-14、600-21,600-24、600-31,600-34、600-41~600-44よりも多く存在したりするからである。
 <補正テーブル>
 図27は、実施例7にかかる補正テーブルの一例を示す説明図である。補正テーブル2700は、参照元撮像領域1401、参照元制御条件1402、参照先非撮像領域1403、および参照先制御条件1404の組み合わせごとに相関値1405が設定されたテーブルである。
 参照元撮像領域1401には、値として、参照元撮像領域600-ijが記憶される。参照元制御条件1402には、値として、参照元撮像領域600-ijの制御条件が記憶される。参照先非撮像領域1403には、値として、参照元撮像領域600-ijの参照先となる内部非撮像領域610-ijまたは外部非撮像領域610-pqが記憶される。参照先制御条件1404には、値として内部非撮像領域610-ijまたは外部非撮像領域610-pqの制御条件が記憶される。
 相関値1405には、値として、参照元制御条件1402が設定された参照元撮像領域1401と、参照先制御条件1404が設定された参照先非撮像領域1403との相関関係を示す値(相関値r(ijX,ijY)、相関値r(ijX,LpY)、または相関値r(ijX,CqY)。Xは参照元制御条件1402、Yは参照先制御条件1404。)が記憶される。
 なお、相関値r(ijX,ijY)、相関値r(ijX,LpY)、または相関値r(ijX,CqY)を単に相関値rを称する場合もある。相関値rは、1.0に近いほど、参照元撮像領域1401と参照先非撮像領域1403との相関が高いことを示し、1.0から離れるほど、参照元撮像領域1401と参照先非撮像領域1403との相関が低いことを示す。
 ここで、参照先内部非撮像領域610-ijまたは参照先外部非撮像領域610-pqからの出力信号をQ、補正後のノイズ成分をPとする。PとQとの関係は、上記式(1)により表現される。
 相関値rは、参照先非撮像領域1403が参照元撮像領域1401を含む場合、1.0に近い値となる。たとえば、図26において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-11であれば、参照先非撮像領域1403が非撮像領域610-12の場合に比べて、相関値rは1.0に近い値となる。参照先非撮像領域1403が参照元撮像領域1401を含む場合、同一の列読出し線で読み出されるからである。
 相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが同一行であれば1.0に近い値となる。たとえば、図26において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-11であれば、参照先非撮像領域1403が非撮像領域610-22の場合に比べて、相関値rは1.0に近い値となる。同一行であれば、同一タイミングで列読出し線で読み出されるからである。
 また、相関値rは、参照元撮像領域1401と参照先非撮像領域1403とが近接するほど1.0に近い値となる。たとえば、図26において、参照元撮像領域1401が撮像領域600-11の場合、参照先非撮像領域1403が非撮像領域610-12であれば、参照元撮像領域1401が撮像領域600-14の場合に比べて、相関値rは1.0に近い値となる。画素位置が近いほど、それらの特性が類似すると考えられるからである。
 また、相関値rは、参照元制御条件1402と参照先制御条件1404と同じであれば1.0に近い値となる。具体的には、たとえば、参照元制御条件1402と参照先制御条件1404とが同種でかつ値が異なる制御条件の場合、参照元制御条件1402と参照先制御条件1404とが異種の場合に比べて、相関値rは1.0に近い値になる。制御条件が同種であるほど、参照元撮像領域1401の動作条件と参照先非撮像領域1403の動作条件とが類似すると考えられるからである。
 以上説明したように、実施例7によれば、撮像画素領域600の撮像領域600-ijの各々について、相関性のある撮像画素領域600外の非撮像領域610-pqを用いて黒レベル補正を実行することが可能となる。したがって、撮像領域600-ijの各々について黒レベル補正の高精度化を図ることができる。
 なお、本発明は上記の内容に限定されるものではなく、これらを任意に組み合わせたものであっても良い。また、本発明の技術的思想の範囲で考えられるその他の態様も本発明の範囲に含まれる。
100 撮像素子,102 カラーフィルタ,104 PD,201 画素,201-1 撮像画素,201-2 PD有り光学的黒画素,201-2 PD無し光学的黒画素,202 ブロック,600 撮像画素領域,600-ij 撮像領域,610 光学的黒画素領域,610-pq 非撮像領域,900 遮光層、910 信号処理部、911 駆動回路、912 制御部

Claims (10)

  1.  被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子と、
     前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記遮光画素領域に設定された、前記撮像領域に設定された第1制御条件とは異なる第2制御条件と、に基づいて補正する信号処理部と、
     を有する撮像装置。
  2.  請求項1に記載の撮像装置において、
     前記信号処理部は、前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記第1制御条件と、前記第2制御条件と、に基づいて補正する、撮像装置。
  3.  被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子と、
     前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記撮像領域の配置位置と、前記遮光画素領域の配置位置と、に基づいて補正する信号処理部と、
     を有する撮像装置。
  4.  請求項2または3に記載の撮像装置において、
     前記撮像領域は、第1撮像領域と、前記第1撮像領域と異なる第2撮像領域を含み、
     前記信号処理部は、前記第1撮像領域の光電変換部から出力された信号を、前記第2撮像領域から信号を補正する値とは異なる値で補正する撮像装置。
  5.  請求項4に記載の撮像装置において、
     前記第2撮像領域が、前記第1撮像領域よりも前記遮光画素領域に近い場合、前記第2撮像領域から信号を補正する値は、前記第1撮像領域の光電変換部から出力された信号補正する値よりも所定値に近い、撮像装置。
  6.  請求項1から5のいずれか一つに記載の撮像装置であって、
     前記信号処理部により信号が補正される前記撮像領域と、前記補正される信号の補正に用いる信号を出力する前記遮光画素領域とは、所定方向に配列されている、撮像装置。
  7.  請求項6に記載の撮像素子であって、
     前記所定方向は、前記撮像領域および前記補正に用いる信号を出力する前記遮光画素領域を構成する画素群からの出力信号の読出し方向である、撮像装置。
  8.  請求項6に記載の撮像素子であって、
     前記所定方向は、前記信号が補正される撮像領域および前記補正に用いる信号を出力する前記遮光画素領域を構成する画素群からの出力信号の読出し方向に直交する方向である、撮像装置。
  9.  被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子の制御をプロセッサに実行させる制御プログラムであって、
     前記プロセッサに、
     前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記遮光画素領域に設定された、前記撮像領域に設定された第1制御条件とは異なる第2制御条件と、に基づいて補正させる、
     制御プログラム。
  10.  被写体からの光を光電変換する光電変換部を有する撮像領域と、遮光された光電変換部を有する遮光画素領域と、を有する撮像素子の制御をプロセッサに実行させる制御プログラムであって、
     前記プロセッサに、
     前記撮像領域の光電変換部からの信号を、前記遮光画素領域の光電変換部からの信号と、前記撮像領域の配置位置と、前記遮光画素領域の配置位置と、に基づいて補正させる、
     制御プログラム。
PCT/JP2019/014398 2019-03-29 2019-03-29 撮像装置および制御プログラム WO2020202414A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014398 WO2020202414A1 (ja) 2019-03-29 2019-03-29 撮像装置および制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014398 WO2020202414A1 (ja) 2019-03-29 2019-03-29 撮像装置および制御プログラム

Publications (1)

Publication Number Publication Date
WO2020202414A1 true WO2020202414A1 (ja) 2020-10-08

Family

ID=72666729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014398 WO2020202414A1 (ja) 2019-03-29 2019-03-29 撮像装置および制御プログラム

Country Status (1)

Country Link
WO (1) WO2020202414A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092660A (ja) * 2013-10-01 2015-05-14 株式会社ニコン 撮像装置、撮像装置の制御方法、電子機器、電子機器の制御方法、及び制御プログラム
JP2017118342A (ja) * 2015-12-24 2017-06-29 リコーイメージング株式会社 撮影装置
WO2018020857A1 (ja) * 2016-07-27 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092660A (ja) * 2013-10-01 2015-05-14 株式会社ニコン 撮像装置、撮像装置の制御方法、電子機器、電子機器の制御方法、及び制御プログラム
JP2017118342A (ja) * 2015-12-24 2017-06-29 リコーイメージング株式会社 撮影装置
WO2018020857A1 (ja) * 2016-07-27 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法

Similar Documents

Publication Publication Date Title
JP7264187B2 (ja) 固体撮像装置およびその駆動方法、並びに電子機器
JP6761979B2 (ja) 撮像装置
JP6369233B2 (ja) 固体撮像素子及びその信号処理方法、並びに電子機器
JP6440844B2 (ja) 固体撮像装置
US9157988B2 (en) Method and apparatus for array camera pixel readout
US9584745B2 (en) Image sensors with N-row parallel readout capability
JP6457738B2 (ja) 固体撮像装置および撮像装置
JP6413233B2 (ja) 撮像装置および撮像素子
JP4736819B2 (ja) 物理情報取得方法および物理情報取得装置ならびに駆動装置
JP2023181484A (ja) 撮像素子
WO2018087975A1 (ja) 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器
WO2020202414A1 (ja) 撮像装置および制御プログラム
WO2020202413A1 (ja) 撮像素子および撮像装置
JP5893372B2 (ja) 固体撮像装置、撮像装置、および信号読み出し方法
JP4232485B2 (ja) 読出アドレス制御方法および装置、並びに半導体システムおよび撮像デバイス
JP7230946B2 (ja) 撮像素子、及び撮像装置
JP6825665B2 (ja) 撮像素子および撮像装置
WO2020203798A1 (ja) 撮像素子および撮像装置
JP5835963B2 (ja) 固体撮像装置、撮像装置、および信号読み出し方法
WO2022080467A1 (ja) 撮像素子、及び、撮像装置
JP6733714B2 (ja) 撮像装置
JP6597769B2 (ja) 撮像素子および撮像装置
JP6760907B2 (ja) 撮像素子及び撮像装置
JP6268782B2 (ja) 撮像素子および撮像装置
JP5945463B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP