WO2020200942A1 - Verfahren zur schnellen initialisierung eines elektrischen energiespeichersystems - Google Patents

Verfahren zur schnellen initialisierung eines elektrischen energiespeichersystems Download PDF

Info

Publication number
WO2020200942A1
WO2020200942A1 PCT/EP2020/058267 EP2020058267W WO2020200942A1 WO 2020200942 A1 WO2020200942 A1 WO 2020200942A1 EP 2020058267 W EP2020058267 W EP 2020058267W WO 2020200942 A1 WO2020200942 A1 WO 2020200942A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnosis
energy storage
electrical energy
storage system
predefined
Prior art date
Application number
PCT/EP2020/058267
Other languages
English (en)
French (fr)
Inventor
Dietrich Wentland
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN202080026674.2A priority Critical patent/CN113613938A/zh
Priority to US17/601,224 priority patent/US20220161661A1/en
Publication of WO2020200942A1 publication Critical patent/WO2020200942A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is based on a method for rapid initialization of an electrical energy storage system, a corresponding device and a corresponding electrical energy storage unit according to the independent claims.
  • a method for the rapid initialization of an electrical energy storage system is disclosed.
  • At least one predefined diagnosis of the electrical energy storage system is carried out in order to achieve a predefined first degree of diagnosis coverage.
  • all diagnoses can be carried out that are prescribed in order to achieve a diagnostic coverage of 100%.
  • the diagnostic coverage indicates, for example, how often the corresponding diagnoses were carried out. For example, if diagnoses are not carried out over a longer period of time, the degree of diagnosis coverage deteriorates.
  • a diagnosis can for example consist in checking whether a circuit present in the electrical energy storage system is still functioning correctly, for example if the circuit is used for voltage measurement.
  • transistors are usually switched accordingly in this circuit and recorded voltages are measured in the closed and open state of the transistors. These voltages are checked; depending on the circuit, they must be the same, lower or higher than a predefined value or must correspond to the predefined value.
  • an achieved second degree of diagnostic coverage is determined based on the at least one diagnosis carried out in the aforementioned step and is stored in a first data memory in a third step, for example to be able to be read out by a diagnostic unit, for example an OBD diagnostic device .
  • the first data storage for example in a battery management control device.
  • a fourth step at most part of the at least one predefined diagnosis of the above-mentioned step is carried out in order to achieve a predefined third diagnosis coverage, for example 80%.
  • an achieved fourth degree of diagnostic coverage is determined based on the part of the at least one predefined diagnosis carried out in the aforementioned step, and in a sixth step, the achieved fourth degree of diagnostic coverage is stored in a second data memory, for example to be read out by a diagnostic device to be able to.
  • the stored second degree of diagnostic coverage can be overwritten if the first data memory and the second data memory are the same.
  • This procedure is advantageous because it reduces the time for a new diagnosis of the electrical energy storage system and at the same time ensures its safety. At the same time, it is clear how high the diagnostic coverage is and whether it meets any legal requirements. With a switch-on process followed by a switch-off process and a switch-on process of the electrical energy storage system, electrical energy can be called up more quickly.
  • the electrical energy storage system expediently comprises a plurality of electrical energy storage units. This is advantageous in order to be able to provide high electrical power.
  • An electrical energy storage unit can in particular be understood to mean an electrochemical battery cell and / or a battery module with at least one electrochemical battery cell and / or a battery pack with at least one battery module.
  • the electrical energy storage unit can be a lithium-based battery cell or a lithium-based battery module or a lithium-based battery pack.
  • the electrical energy storage unit can be a lithium-ion battery cell or a lithium-ion battery module or a lithium-ion battery pack.
  • the battery cell can be of the lithium-polymer accumulator, nickel-metal hydride accumulator, lead-acid accumulator, lithium-air accumulator or lithium-sulfur accumulator or, more generally, an accumulator of any electrochemical composition.
  • a capacitor is also possible as an electrical energy storage unit.
  • the step of carrying out at most a part of the at least one predefined diagnosis is expediently started within a predefined time span from the execution or termination of the step of carrying out the at least one predefined diagnosis.
  • This period of time can be, for example, 60 s, in particular 10 s. This is advantageous because it makes use of the fact that the electrical energy storage system has probably not changed noticeably in the previously defined period of time and thus some of the diagnoses can be saved.
  • the predefined period of time is set in an advantageous manner depending on the characteristics of the electrical energy storage system.
  • the predefined third degree of diagnostic coverage is expediently defined as a function of a time span that has passed since the execution or termination of the step of performing the at least one predefined diagnosis. This is advantageous because the probability that a change in the electrical energy storage system relevant for the diagnosis has occurred generally increases with the time that has passed. It is therefore sensible and advantageous to require a higher degree of diagnostic coverage for a longer period of time, which results in a more comprehensive diagnosis. For example, in most countries it is required that a degree of diagnostic coverage of at least 33% is achieved, ie if the energy storage system is restarted three times, a diagnosis must be carried out at least once.
  • a diagnosis of the circuit for current measurement is carried out every second restart and a corresponding diagnosis of the temperature measurement every third time, since the temperature measurement is more favorable and occurs more than once and the sensor failure probability is generally lower.
  • the fourth to sixth steps are expediently only carried out if the electrical energy storage system has previously worked without errors which can be diagnosed according to the first step. This is advantageous because it ensures that the security of the electrical energy storage system is guaranteed, even when diagnoses are performed less.
  • the electrical energy storage system is started and the first three steps are carried out, ie all relevant diagnostics are made. The energy storage system then runs without errors. Now it is switched off and switched on again a short time later.
  • the permissible time span for the time between switching off and switching on can be defined, for example, to 1 s, in particular to 300 ms to 500 ms.
  • the system ran error-free shortly before it was switched off and on again.
  • diagnoses can be omitted in order to make the electrical energy storage system available more quickly.
  • the at least one predefined diagnosis expediently comprises a diagnosis of a temperature of the electrical energy storage system and / or a diagnosis of an electrical voltage of the electrical energy storage system and / or a diagnosis of an electrical current of the electrical energy storage system. This is advantageous because these diagnoses ensure that the electrical energy storage system functions reliably and safely.
  • the diagnosis of a temperature of the electrical energy storage system expediently includes a plausibility check of a measured temperature and / or a diagnosis of the temperature measurement chain. This is advantageous because it allows both measured values and sensors to be recorded by the diagnosis and errors can be determined in each case.
  • the diagnosis of an electrical voltage of the electrical energy storage system expediently includes a plausibility check of a measured electrical voltage and / or a diagnosis of the voltage measurement chain. This is advantageous because it allows both measured values and sensors to be recorded by the diagnosis and errors can be determined in each case.
  • the diagnosis of an electrical current of the electrical energy storage system expediently comprises a plausibility check of a measured electrical current and / or a diagnosis of the current measuring chain. This is advantageous because it enables the diagnosis to record both measured values and sensors and errors can be identified in each case.
  • the diagnostic coverage is expediently defined as the IUMPR rate. This is advantageous because certain quotas are required for this, which can differ from country to country. The respective diagnostic requirements can therefore always be met.
  • the IUMPR rate is preferably greater than or equal to 33%.
  • the disclosure also relates to a device for operating an electrical energy storage system, comprising at least one means, in particular an electronic battery management control device, which is set up to carry out the above-mentioned steps.
  • a battery management control device can in particular be an electronic control unit in the form of an electronic control device which, for example, is a microcontroller and / or an application-specific hardware component, e.g. an ASIC, but can also include a programmable logic controller.
  • the invention also relates to an electrical energy storage system which comprises the above-mentioned device. This enables the advantages mentioned above to be realized.
  • FIG. 1 shows a flow chart of the disclosed method according to a first embodiment
  • FIG. 2 shows a flow chart of the disclosed method according to a second embodiment
  • FIG. 3 shows a flow chart of the disclosed method according to a third embodiment
  • FIG. 4 shows a schematic representation of the disclosed device according to a first embodiment.
  • FIG. 1 shows a flow chart of the disclosed method according to a first embodiment.
  • a first step Sil at least one predefined diagnosis of the electrical energy storage system is carried out, with at least one predefined first value for the degree of diagnosis coverage being achieved by the at least one predefined diagnosis.
  • an achieved second value for the diagnostic coverage is determined, which depends on the at least one predefined diagnosis carried out in the first step Sil. This value can therefore also be greater than the predefined first value, which is to be understood as the minimum value.
  • a third step S13 the second value obtained for the degree of diagnostic coverage is stored in a first data memory in order to be able to call it up, for example, as part of a so-called onboard diagnosis.
  • part of the at least one diagnosis carried out in the first step Sil is then carried out in order to achieve a predefined third value for the degree of diagnosis coverage. Not all of the diagnoses carried out in the first step S 1 are therefore carried out, although at least the predefined third value for the degree of diagnosis coverage that is acceptable for the application is achieved.
  • an achieved fourth value for the degree of diagnostic coverage is determined which is dependent on the part of the at least one diagnosis carried out in the fourth step S14. This value can therefore also be greater than the predefined third value, which is to be understood as the minimum value.
  • a sixth step S16 the achieved fourth value for the diagnostic coverage is stored in a second data memory in order to be able to read it out, for example, as part of a so-called onboard diagnosis.
  • Figure 2 shows a flow chart of the disclosed method according to a second embodiment.
  • the steps Sil to S16 are also carried out here, the fourth step S14 being started within a predefined time period TI from the end of the first step Sil.
  • the predefined period of time TI is defined specifically for the application. For example, in the case of a battery system as an electrical energy storage system that includes several battery cells, it can be in the range from 0 s to 60 s.
  • a check can take place as to whether, for example, a predefined condition has been met within the predefined time period TI. This condition can be, for example, that an ignition has been actuated in order to start a vehicle in which the electrical energy storage system is installed.
  • FIG. 3 shows a flow chart of the disclosed method according to a third embodiment.
  • a first step S31 diagnoses relating to a temperature, an electrical voltage and an electrical current are carried out.
  • a temperature of the electrical energy storage system is recorded and checked for plausibility, for example by means of recording by a plurality of temperature sensors.
  • a diagnosis of the temperature measurement chain is carried out, which can include, for example, a self-diagnosis of the temperature sensors in order to diagnose incorrect detection or falsification of temperature measurement values.
  • an electrical voltage of the electrical energy storage system is detected and checked for plausibility, for example by means of a detection by a plurality of voltage sensors and / or by means of a comparison of a conventional voltage range of the electrical energy storage system. If the detected voltage is outside this usual voltage range, which for battery cells, for example, is in the range between 2.5 V to 4.2 V, then there is an anomaly and the operation of the electrical energy storage system may be at least restricted or completely prevented. Furthermore, a diagnosis of the voltage measurement chain is carried out, which can include, for example, self-diagnosis of the voltage sensors in order to diagnose incorrect detection or falsification of voltage measurement values.
  • an electrical current of the electrical energy storage system is recorded and checked for plausibility, for example by means of a recording by a plurality of current sensors and / or by means of a comparison of a usual current range of the electrical energy storage system. If the recorded current is outside of this usual current range, which for example for battery cells is in the range from 0 A to 200 A, in particular in the range from 0 A to 10 A, if no electrical energy is required to propel a vehicle , then there is an anomaly and the operation of the electrical energy storage system is possibly at least restricted or completely prevented. Furthermore, a diagnosis of the current measuring chain is carried out, which can include, for example, a self-diagnosis of the current sensors in order to diagnose incorrect detection or falsification of measured current values. These diagnoses achieve at least one predefined first value for the degree of diagnostic coverage.
  • the first step S31 can be preceded by a triggering fulfillment of a condition, for example switching on the ignition of a vehicle, this then triggering the first step S31. This switching on can also precede accordingly in any other of the embodiments described here.
  • a second step S32 the second value for the degree of diagnosis coverage achieved by the diagnoses carried out in the first step S31 is determined.
  • the second value is greater than or equal to the first value required in the first step S31.
  • a third step S33 the second value thus obtained for the diagnostic coverage is stored in a first data memory.
  • a fourth step S34 only some of the diagnoses described in the first step S31 are carried out, here the diagnosis of the temperature and the electrical voltage as described above, these diagnoses achieving at least a predefined third value of the degree of diagnosis coverage.
  • the fourth step S34 can be preceded by a triggering fulfillment of a condition, for example switching on the ignition of the vehicle again, this then triggering the fourth step S34. This renewed switching on can also precede accordingly in each of the other embodiments described here.
  • a fourth value for the degree of diagnosis coverage obtained by the diagnoses in the fourth step S34 is determined.
  • the fourth value is greater than or equal to the third value required in the fourth step S34.
  • FIG. 4 shows a schematic representation of the disclosed device 41 according to a first embodiment.
  • the device 41 comprises a means 44 which is set up to carry out the disclosed method.
  • Corresponding measured values for example for voltage, current and temperature, are recorded by one or more corresponding sensors 42 and sent to the
  • Device 41 is transmitted, where it evaluates the means 44 and, if necessary, uses it in the diagnoses.
  • the device 41 then controls an electronic power component 43, for example an inverter, based on the diagnostic result or results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)

Abstract

Es wird ein Verfahren zur schnellen Initialisierung eines elektrischen Energiespeichersystems, umfassend die nachfolgenden Schritte, beschrieben. a) Durchführen mindestens einer vordefinierten Diagnose des elektrischen Energiespeichersystems, um mindestens einen vordefinierten ersten Diagnoseabdeckungsgrad zu erzielen; b) Ermitteln eines erzielten zweiten Diagnoseabdeckungsgrades basierend auf der in Schritt a) durchgeführten mindestens einen Diagnose; c) Speichern des erzielten zweiten Diagnoseabdeckungsgrades in einem ersten Datenspeicher; d) Durchführen höchstens eines Teils der mindestens einen vordefinierten Diagnose von Schritt a), um mindestens einen vordefinierten dritten Diagnoseabdeckungsgrad zu erzielen; e) Ermitteln eines erzielten vierten Diagnoseabdeckungsgrades basierend auf dem in Schritt d) durchgeführten Teil der mindestens einen vordefinierten Diagnose; f) Speichern des erzielten vierten Diagnoseabdeckungsgrades in einem zweiten Datenspeicher. Weiterhin wird eine entsprechende Vorrichtung und ein entsprechendes elektrisches Energiespeichersystem beschrieben.

Description

Beschreibung
Verfahren zur schnellen Initialisierung eines elektrischen Energiespeichersys- tems
Die vorliegende Erfindung geht aus von einem Verfahren zur schnellen Initialisie rung eines elektrischen Energiespeichersystems, einer entsprechenden Vorrich tung und einer entsprechenden elektrischen Energiespeichereinheit gemäß den unabhängigen Patentansprüchen.
Stand der Technik
Im Zuge der zunehmenden Elektrifizierung, insbesondere von Kraftfahrzeugen, kommt elektrischen Energiespeichern eine immer größer werdende Bedeutung zu. Dabei gibt es unterschiedliche Stufen der Elektrifizierung. Es gibt beispiels weise elektrisch angetriebenen Fahrzeuge ohne und mit Verbrennungsmotor so wie Fahrzeuge, bei denen ein Elektromotor den Antrieb des Fahrzeugs nur zeit weise übernimmt beziehungsweise den Verbrennungsmotor unterstützt. Diese unterschiedlichen Ausprägungen der Elektrifizierung weisen typischerweise un terschiedliche Spannungsniveaus und unterschiedliche Ausgestaltungen der ver wendeten elektrischen Energiespeichereinheiten auf.
Um die Sicherheit eines entsprechenden elektrischen Energiespeichersystems zu gewährleisten, werden an dem elektrischen Energiespeichersystem umfas sende Diagnosen durchgeführt, welche beispielsweise Temperaturniveau, Span nungsniveau und Stromniveau beziehungsweise die damit verbundenen Mess ketten und/oder die damit erfassten Messwerte betreffen. Dadurch wird bei Ein schalten eines Fahrzeugs beziehungsweise vor Abruf von elektrischer Energie aus dem elektrischen Energiespeichersystem festgestellt, ob dessen Sicherheit und Verfügbarkeit gewährleistet ist. Die Durchführung dieser Diagnosen benötigt eine gewisse Zeit, in der ein Abruf elektrischer Energie oder eine entsprechende Einspeicherung elektrischer Ener gie in das elektrische Energiespeichersystem nicht möglich ist. In dieser Zeit steht das elektrische Energiespeichersystem somit nicht zur Verfügung und ein entsprechendes Fahrzeug kann nicht betrieben werden.
Offenbarung der Erfindung
Vorteile der Erfindung
Offenbart wird ein Verfahren zur schnellen Initialisierung eines elektrischen Ener giespeichersystems.
Dabei wird in einem ersten Schritt mindestens eine vordefinierte Diagnose des elektrischen Energiespeichersystems durchgeführt, um einen vordefinierten ers ten Diagnoseabdeckungsgrad zu erzielen. Dabei können beispielsweise alle Di agnose durchgeführt werden, die vorgeschrieben sind, um somit einen Diagnose abdeckungsgrad von 100 % zu erzielen. Der Diagnoseabdeckungsgrad gibt da bei beispielsweise an, wie oft entsprechende Diagnosen durchgeführt wurden. Werden Diagnosen beispielsweise über einen längeren Zeitraum nicht ausge führt, verschlechtert sich der Diagnoseabdeckungsgrad.
Eine Diagnose kann beispielsweise darin bestehen, dass überprüft wird, ob eine in dem elektrischen Energiespeichersystem vorhandene Schaltung noch korrekt funktioniert, beispielsweise wenn die Schaltung zur Spannungsmessung genutzt wird. Dazu werden in dieser Schaltung meist Transistoren entsprechend geschal tet und erfasste Spannungen im geschlossenem und geöffnetem Zustand der Transistoren gemessen. Diese Spannungen werden überprüft, wobei sie je nach Schaltung gleich, kleiner oder größer einem vordefinierten Wert sein müssen o- der dem vordefinierten Wert entsprechen müssen.
Weiterhin wird in einem zweiten Schritt ein erzielter zweiter Diagnoseabde ckungsgrad basierend auf der im vorgenannten Schritt durchgeführten mindes tens eine Diagnose ermittelt und in einem dritten Schritt in einem ersten Daten speicher gespeichert, um beispielsweise von einer Diagnoseeinheit ausgelesen werden zu können, beispielsweise einem OBD-Diagnosegerät. Dabei kann der erste Datenspeicher beispielsweise in einem Batteriemanagementsteuergerät vorhanden sein.
Anschließend, beispielsweise abhängig von einer Bedingung, beispielsweise Ausschalten und Anschalten der Zündung über Klemme 15, wird in einem vierten Schritt höchstens ein Teil der mindestens einen vordefinierten Diagnose des oben genannten Schrittes durchgeführt, um einen vordefinierten dritten Diagno seabdeckungsgrad zu erzielen, beispielsweise 80 %.
Weiterhin wird in einem fünften Schritt ein erzielter vierter Diagnoseabdeckungs grad basierend auf dem im vorgenannten Schritt durchgeführten Teil der mindes tens einen vordefinierten Diagnose ermittelt und in einem sechsten Schritt wird der erzielte vierte Diagnoseabdeckungsgrad in einem zweiten Datenspeicher ge speichert, um beispielsweise von einem Diagnosegerät ausgelesen werden zu können. Dabei kann durch das Speichern des vierten Diagnoseabdeckungsgra des der gespeicherte zweite Diagnoseabdeckungsgrad überschrieben werden, wenn der erste Datenspeicher und der zweiten Datenspeicher gleich sind.
Dieses Vorgehen ist vorteilhaft, da dadurch die Zeit bei einer erneuten Diagnose des elektrischen Energiespeichersystems reduziert wird und gleichzeitig dessen Sicherheit sichergestellt wird. Gleichzeitig ist nachvollziehbar, wie hoch der Diag noseabdeckungsgrad ist und ob er etwaige gesetzliche Anforderungen erfüllt. Bei einem Einschaltvorgang mit anschließendem Abschaltvorgang und wieder einem Einschaltvorgang des elektrischen Energiespeichersystems ist ein schnelleres Abrufen elektrischer Energie möglich.
Weitere vorteilhafte Ausführungsformen der vorliegenden Erfindung sind Gegen stand der Unteransprüche.
Zweckmäßigerweise umfasst das elektrische Energiespeichersystem mehrere elektrische Energiespeichereinheiten. Dies ist vorteilhaft, um eine hohe elektri sche Leistung bereitstellen zu können. Unter einer elektrischen Energiespeicher einheit kann insbesondere eine elektrochemische Batteriezelle und/oder ein Bat teriemodul mit mindestens einer elektrochemischen Batteriezelle und/oder ein Batteriepack mit mindestens einem Batteriemodul verstanden werden. Zum Bei spiel kann die elektrische Energiespeichereinheit eine lithiumbasierte Batterie- zelle oder ein lithiumbasiertes Batteriemodul oder ein lithiumbasiertes Batterie pack sein. Insbesondere kann die elektrische Energiespeichereinheit eine Li- thium-lonen-Batteriezelle oder ein Lithium-Ionen-Batteriemodul oder ein Lithium- Ionen- Batteriepack sein. Weiterhin kann die Batteriezelle vom Typ Lithium-Poly- mer-Akkumulator, Nickel-Metallhydrid-Akkumulator, Blei-Säure-Akkumulator, Li- thium-Luft-Akkumulator oder Lithium-Schwefel-Akkumulator beziehungsweise ganz allgemein ein Akkumulator beliebiger elektrochemischer Zusammensetzung sein. Auch ein Kondensator ist als elektrische Energiespeichereinheit möglich.
Zweckmäßigerweise wird der Schritt des Durchführens höchstens eines Teils der mindestens einen vordefinierten Diagnose innerhalb einer vordefinierten Zeit spanne ab Ausführung oder Beendigung des Schritts des Durchführens der min destens einen vordefinierten Diagnose gestartet. Dies Zeitspanne kann beispiels weise 60 s, insbesondere 10 s, betragen. Dies ist vorteilhaft, da dadurch die Tat sache genutzt wird, dass sich das elektrische Energiespeichersystem in der vor definierten Zeitspanne wahrscheinlich nicht merklich verändert hat und somit ein Teil der Diagnosen eingespart werden kann. Die vordefinierte Zeitspanne wird in vorteilhafter Weise je nach Ausprägung des elektrischen Energiespeichersys tems festgelegt.
Zweckmäßigerweise wird der vordefinierte dritte Diagnoseabdeckungsgrad in Ab hängigkeit von einer seit der Ausführung oder Beendigung des Schritts des Durchführens der mindestens einen vordefinierten Diagnose verstrichenen Zeit spanne definiert. Dies ist vorteilhaft, da sich die Wahrscheinlichkeit, dass eine für die Diagnose relevante Änderung des elektrischen Energiespeichersystems ein getreten ist, mit der verstrichenen Zeit im Allgemeinen erhöht. Somit ist es sinn voll und vorteilhaft, bei einer größeren Zeitspanne einen höheren Diagnoseabde ckungsgrad zu fordern, welcher in umfassenderen Diagnose resultiert. Beispiels weise wird in den meisten Ländern gefordert, dass ein Diagnoseabdeckungsgrad von mindestens 33% erreicht wird, d.h. bei drei Neustarts des Energiespeicher systems muss mindestens einmal eine Diagnose durchgeführt werden. Beispiels weise ist somit denkbar, dass eine Diagnose der Schaltung für Strommessung bei jedem zweiten Neustart durchgeführt wird und eine entsprechende Diagnose der Temperaturmessung jedes dritte Mal, da die Temperaturmessung günstiger ist und mehrfach vorliegt und die Sensorausfallwarscheinlichkeit im Allgemeinen kleiner ist. Zweckmäßigerweise werden die vierten bis sechsten Schritte nur durchgeführt, wenn das elektrische Energiespeichersystem vorher ohne Fehler, welche gemäß dem ersten Schritt diagnostizierbar sind, funktioniert hat. Dies ist vorteilhaft, da dadurch sichergestellt wird, dass die Sicherheit des elektrischen Energiespei chersystem gewährleistet ist, auch bei einer reduzierten Durchführung von Diag nosen. Beispielsweise wird das elektrische Energiespeichersystem gestartet und die ersten drei Schritte werden durchgeführt, d.h. alle relevanten Diagnose ge macht. Das Energiespeichersystem läuft anschließend ohne Fehler. Jetzt wird es abgeschaltet und kurze Zeit später wieder angeschaltet. Die zulässige Zeit spanne für die Zeit zwischen Ausschalten und Einschalten kann beispielsweise zu 1 s, insbesondere zu 300 ms bis 500 ms definiert werden. Das System lief so mit kurz vor dem Aus- und erneuten Einschalten fehlerfrei. Somit ist die genannte Bedingung erfüllt und Diagnosen können ausgelassen werden, um das elektri sche Energiespeichersystem schneller verfügbar zu machen.
Zweckmäßigerweise umfasst die mindestens eine vordefinierte Diagnose eine Diagnose einer Temperatur des elektrischen Energiespeichersystems und/oder eine Diagnose einer elektrischen Spannung des elektrischen Energiespeicher systems und/oder eine Diagnose eines elektrischen Stromes des elektrischen Energiespeichersystems. Dies ist vorteilhaft, da durch diese Diagnosen ein zu verlässiges und sicheres Funktionieren des elektrischen Energiespeichersystems sichergestellt wird.
Zweckmäßigerweise umfasst die Diagnose einer Temperatur des elektrischen Energiespeichersystems eine Plausibilisierung einer gemessenen Temperatur und/oder eine Diagnose der Temperaturmesskette. Dies ist vorteilhaft, da dadurch sowohl Messwerte als auch Sensoren von der Diagnose erfasst werden und jeweils Fehler festgestellt werden können.
Zweckmäßigerweise umfasst die Diagnose einer elektrischen Spannung des elektrischen Energiespeichersystems eine Plausibilisierung einer gemessenen elektrischen Spannung und/oder eine Diagnose der Spannungsmesskette. Dies ist vorteilhaft, da dadurch sowohl Messwerte als auch Sensoren von der Diag nose erfasst werden und jeweils Fehler festgestellt werden können. Zweckmäßigerweise umfasst die Diagnose eines elektrischen Stromes des elektrischen Energiespeichersystems eine Plausibilisierung eines gemessenen elektrischen Stromes und/oder eine Diagnose der Strommesskette. Dies ist vor teilhaft, da dadurch sowohl Messwerte als auch Sensoren von der Diagnose er fasst werden und jeweils Fehler festgestellt werden können.
Zweckmäßigerweise ist der Diagnoseabdeckungsgrad als lUMPR-Quote defi niert. Dies ist vorteilhaft, da hierfür bestimmte Quoten vorgeschrieben sind, die sich je nach Land unterscheiden können. Somit können immer die jeweiligen Di agnoseanforderungen erfüllt werden.
Vorzugsweise ist die lUMPR-Quote größer gleich 33%.
Weiterhin ist Gegenstand der Offenbarung eine Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems, umfassend mindestens ein Mittel, insbe sondere ein elektronisches Batteriemanagementsteuergerät, das eingerichtet ist, die oben genannten Schritte auszuführen. Dadurch können die oben genannten Vorteile realisiert werden. Unter einem Batteriemanagementsteuergerät kann ins besondere eine elektronische Steuereinheit in der Ausprägung als ein elektroni sches Steuergerät, welches beispielsweise einen Mikrocontroller und/oder einen applikationsspezifischen Hardwarebaustein, z.B. einen ASIC, umfasst, verstan den werden, aber ebenso kann darunter eine speicherprogrammierbare Steue rung fallen.
Weiterhin ist Gegenstand der Erfindung ein elektrisches Energiespeichersystem, welches die oben genannte Vorrichtung umfasst. Dadurch können die oben ge nannten Vorteile realisiert werden.
Kurze Beschreibung der Zeichnungen
Vorteilhafte Ausführungsformen der Erfindung sind in den Figuren dargestellt und in der nachfolgenden Beschreibung näher ausgeführt.
Es zeigen: Figur 1 ein Flussdiagramm des offenbarten Verfahrens gemäß einer ersten Aus führungsform;
Figur 2 ein Flussdiagramm des offenbarten Verfahrens gemäß einer zweiten Ausführungsform;
Figur 3 ein Flussdiagramm des offenbarten Verfahrens gemäß einer dritten Aus führungsform;
Figur 4 eine schematische Darstellung der offenbarten Vorrichtung gemäß einer ersten Ausführungsform.
Ausführungsformen der Erfindung
Gleiche Bezugszeichen bezeichnen in allen Figuren gleiche Vorrichtungskompo nenten oder gleiche Verfahrensschritte.
Figur 1 zeigt ein Flussdiagramm des offenbarten Verfahrens gemäß einer ersten Ausführungsform. In einem ersten Schritt Sil wird mindestens eine vordefinierte Diagnose des elektrischen Energiespeichersystems durchgeführt, wobei durch die mindestens eine vordefinierte Diagnose mindestens ein vordefinierter erster Wert für den Diagnoseabdeckungsgrad erreicht wird.
In einem zweiten Schritt S12 wird ein erzielter zweiter Wert für den Diagnoseab deckungsgrad ermittelt, welcher von der im ersten Schritt Sil durchgeführten mindestens einen vordefinierten Diagnose abhängt. Daher kann dieser Wert auch größer sein als der vordefinierte erste Wert, welcher als Mindestwert zu ver stehen ist.
In einem dritten Schritt S13 wird der erzielte zweite Wert für den Diagnoseabde ckungsgrad in einem ersten Datenspeicher gespeichert, um ihn beispielsweise im Rahmen einer sogenannten Onboard-Diagnose abrufen zu können. In einem vierten Schritt S14 wird anschließend ein Teil der im ersten Schritt Sil durchgeführten mindestens einen Diagnose durchgeführt, um einen vordefinier ten dritten Wert für den Diagnoseabdeckungsgrad zu erzielen. Es werden somit nicht alle der im ersten Schritt Sil durchgeführten Diagnose durchgeführt, wobei dennoch mindestens der für den Anwendungsfall akzeptable vordefinierte dritte Wert für den Diagnoseabdeckungsgrad erreicht wird.
In einem fünften Schritt S15 wird ein erzielter vierter Wert für den Diagnoseabde ckungsgrad ermittelt, welcher von dem im vierten Schritt S14 durchgeführten Teil der mindestens einen Diagnose abhängig ist. Daher kann dieser Wert auch grö ßer sein als der vordefinierte dritte Wert, welcher als Mindestwert zu verstehen ist.
In einem sechsten Schritt S16 wird der erzielte vierte Wert für den Diagnoseab deckungsgrad in einem zweiten Datenspeicher gespeichert, um ihn beispiels weise im Rahmen einer sogenannten Onboard-Diagnose auslesen zu können.
Figur 2 zeigt ein Flussdiagramm des offenbarten Verfahrens gemäß einer zwei ten Ausführungsform.
Die Schritte Sil bis S16 werden auch hier ausgeführt, wobei der vierte Schritt S14 innerhalb einer vordefinierten Zeitspanne TI ab Beendigung des ersten Schrittes Sil gestartet wird. Die vordefinierte Zeitspanne TI wird dabei anwen dungsspezifisch festgelegt. Sie kann beispielsweise im Falles eines Batteriesys tems als elektrisches Energiespeichersystem, das mehrere Batteriezellen um fasst, im Bereich von 0 s bis 60 s liegen. Zusätzlich kann vor dem vierten Schritt S14 eine Überprüfung erfolgen, ob beispielsweise innerhalb der vordefinierten Zeitspanne TI eine vordefinierte Bedingung erfüllt wurde. Diese Bedingung kann beispielsweise sein, dass eine Zündung betätigt wurde, um ein Fahrzeug zu star ten, in das das elektrische Energiespeichersystem eingebaut ist. Das Betätigen der Zündung kann erstmals bereits vor dem ersten Schritt Sil stattgefunden ha ben, sodass dann beispielsweise vor dem vierten Schritt S14 ein erneutes Betäti gen überprüft wird. Dies ist vorteilhaft, um ein schnelleres Abrufen von elektri scher Energie zu ermöglichen, wenn das Fahrzeug in der Zwischenzeit wieder über die Zündung ausgeschaltet wurde. Figur 3 zeigt ein Flussdiagramm des offenbarten Verfahrens gemäß einer dritten Ausführungsform. In einem ersten Schritt S31 werden Diagnosen betreffend eine Temperatur, eine elektrische Spannung und einen elektrischen Strom durchge führt. Dazu wird eine Temperatur des elektrischen Energiespeichersystems er fasst und plausibilisiert, beispielsweise mittels einer Erfassung durch mehrere Temperatursensoren. Weiterhin wird eine Diagnose der Temperaturmesskette durchgeführt, welche beispielsweise eine Selbstdiagnose der Temperatursenso ren umfassen kann, um eine fehlerhafte Erfassung beziehungsweise Verfäl schung von Temperaturmesswerten zu diagnostizieren.
Weiterhin wird eine elektrische Spannung des elektrischen Energiespeichersys tems erfasst und plausibilisiert, beispielsweise mittels einer Erfassung durch mehrere Spannungssensoren und/oder mittels eines Abgleichs eines üblichen Spannungsbereichs des elektrischen Energiespeichersystems. Wenn somit die erfasste Spannung außerhalb dieses üblichen Spannungsbereichs liegt, welcher beispielsweise für Batteriezellen im Bereich zwischen 2,5 V bis 4,2 V liegt, dann liegt eine Anomalie vor und der Betrieb des elektrischen Energiespeichersystems wird gegebenenfalls zumindest eingeschränkt oder vollständig unterbunden. Wei terhin wird eine Diagnose der Spannungsmesskette durchgeführt, welche bei spielsweise eine Selbstdiagnose der Spannungssensoren umfassen kann, um eine fehlerhafte Erfassung beziehungsweise Verfälschung von Spannungsmess werten zu diagnostizieren.
Weiterhin wird ein elektrischer Strom des elektrischen Energiespeichersystems erfasst und plausibilisiert, beispielsweise mittels einer Erfassung durch mehrere Stromsensoren und/oder mittels eines Abgleichs eines üblichen Strombereichs des elektrischen Energiespeichersystems. Wenn somit der erfasste Strom außer halb dieses üblichen Strombereichs liegt, welcher beispielsweise für Batteriezel len betragsmäßig im Bereich von 0 A bis 200 A liegt, insbesondere im Bereich von 0 A bis 10 A, wenn keine elektrische Energie für einen Vortrieb eines Fahr zeugs abgerufen wird, dann liegt eine Anomalie vor und der Betrieb des elektri schen Energiespeichersystems wird gegebenenfalls zumindest eingeschränkt o- der vollständig unterbunden. Weiterhin wird eine Diagnose der Strommesskette durchgeführt, welche beispielsweise eine Selbstdiagnose der Stromsensoren umfassen kann, um eine fehlerhafte Erfassung beziehungsweise Verfälschung von Strommesswerten zu diagnostizieren. Diese Diagnose erzielen dabei mindestens einen vordefinierten ersten Wert für den Diagnoseabdeckungsgrad.
Dem ersten Schritt S31 kann eine auslösende Erfüllung einer Bedingung, bei spielweise ein Einschalten der Zündung eines Fahrzeugs, vorausgehen, wobei dies dann den ersten Schritt S31 auslöst. Dieses Einschalten kann auch bei jeder anderen der hier beschriebenen Ausführungsformen entsprechend vorausgehen.
In einem zweiten Schritt S32 wird der durch die im ersten Schritt S31 durchge führten Diagnosen erzielte zweite Wert für den Diagnoseabdeckungsgrad ermit telt. Der zweite Wert ist dabei größer oder gleich dem im ersten Schritt S31 ge forderten ersten Wert.
In einem dritten Schritt S33 wird der so erzielte zweite Wert für den Diagnoseab deckungsgrad in einem ersten Datenspeicher gespeichert.
In einem vierten Schritt S34 wird nur noch ein Teil der bei dem ersten Schritt S31 beschriebenen Diagnosen ausgeführt, hier die Diagnose der Temperatur und der elektrischen Spannung wie vorstehend beschrieben, wobei diese Diagnosen min destens einen vordefinierten dritten Wert des Diagnoseabdeckungsgrades erzie len.
Dem vierten Schritt S34 kann eine auslösende Erfüllung einer Bedingung, bei spielweise ein erneutes Einschalten der Zündung des Fahrzeugs, vorausgehen, wobei dies dann den vierten Schritt S34 auslöst. Dieses erneute Einschalten kann auch bei jeder anderen der hier beschriebenen Ausführungsformen ent sprechend vorausgehen.
In einem fünften Schritt S35 wird ein durch die Diagnosen im vierten Schritt S34 erzielter vierter Wert für den Diagnoseabdeckungsgrad ermittelt. Der vierte Wert ist dabei größer oder gleich dem im vierten Schritt S34 geforderten dritten Wert.
In einem sechsten Schritt S36 wird der so erzielte zweite Wert für den Diagnose abdeckungsgrad in einem zweiten Datenspeicher gespeichert. Figur 4 zeigt eine schematische Darstellung der offenbarten Vorrichtung 41 ge mäß einer ersten Ausführungsform. Die Vorrichtung 41 umfasst dabei ein Mittel 44, das eingerichtet ist, das offenbarte Verfahren auszuführen. Dabei werden durch einen oder mehrere entsprechenden Sensoren 42 entsprechende Mess- werte, beispielsweise für Spannung, Strom und Temperatur, erfasst und an die
Vorrichtung 41 übermittelt, wo sie das Mittel 44 auswertet und gegebenenfalls in den Diagnosen verwendet. Anschließend steuert die Vorrichtung 41 basierend auf dem oder den Diagnoseergebnissen ein leistungselektronisches Bauteil 43, beispielsweise einen Wechselrichter, an.

Claims

Ansprüche
1. Verfahren zur schnellen Initialisierung eines elektrischen Energiespeichersys tems, umfassend die Schritte:
a) Durchführen mindestens einer vordefinierten Diagnose des elektrischen Energiespeichersystems, um mindestens einen vordefinierten ersten Di agnoseabdeckungsgrad zu erzielen;
b) Ermitteln eines erzielten zweiten Diagnoseabdeckungsgrades basierend auf der in Schritt a) durchgeführten mindestens einen Diagnose;
c) Speichern des erzielten zweiten Diagnoseabdeckungsgrades in einem ersten Datenspeicher;
d) Durchführen höchstens eines Teils der mindestens einen vordefinierten Diagnose von Schritt a), um mindestens einen vordefinierten dritten Diag noseabdeckungsgrad zu erzielen;
e) Ermitteln eines erzielten vierten Diagnoseabdeckungsgrades basierend auf dem in Schritt d) durchgeführten Teil der mindestens einen vordefi nierten Diagnose;
f) Speichern des erzielten vierten Diagnoseabdeckungsgrades in einem zweiten Datenspeicher.
2. Verfahren gemäß Anspruch 1, wobei das elektrische Energiespeichersystem mehrere elektrische Energiespeichereinheiten, insbesondere Batteriezellen, umfasst.
3. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei Schritt d) in nerhalb einer vordefinierten Zeitspanne, insbesondere innerhalb von 60 s, ab Ausführung oder Beendigung von Schritt a) gestartet wird.
4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der vordefi nierte dritte Diagnoseabdeckungsgrad in Abhängigkeit von einer seit Schritt a) verstrichenen Zeitspanne definiert wird.
5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Schritte d) bis e) nur durchgeführt werden, wenn das elektrische Energiespeichersys tem vorher ohne Fehler, welche gemäß Schritt a) diagnostizierbar sind, funk tioniert hat.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die mindes tens eine vordefinierte Diagnose eine Diagnose einer Temperatur des elektri schen Energiespeichersystems und/oder eine Diagnose einer elektrischen Spannung des elektrischen Energiespeichersystems und/oder eine Diagnose eines elektrischen Stromes des elektrischen Energiespeichersystems um fasst.
7. Verfahren gemäß Anspruch 6, wobei die Diagnose einer Temperatur des elektrischen Energiespeichersystems eine Plausibilisierung einer gemesse nen Temperatur und/oder eine Diagnose der Temperaturmesskette umfasst.
8. Verfahren gemäß Anspruch 6, wobei die Diagnose einer elektrischen Span nung des elektrischen Energiespeichersystems eine Plausibilisierung einer gemessenen elektrischen Spannung und/oder eine Diagnose der Span nungsmesskette umfasst.
9. Verfahren gemäß Anspruch 6, wobei die Diagnose eines elektrischen Stro mes des elektrischen Energiespeichersystems eine Plausibilisierung eines gemessenen elektrischen Stromes und/oder eine Diagnose der Strommess kette umfasst.
10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Diagno seabdeckungsgrad als lUMPR-Quote definiert wird.
11. Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems, umfas send mindestens ein Mittel, insbesondere ein elektronisches Batteriemanage mentsteuergerät, das eingerichtet ist, die Schritte des Verfahrens nach einem der Ansprüche 1 bis 10 auszuführen.
12. Elektrisches Energiespeichersystem, umfassend eine Vorrichtung nach An spruch 11.
PCT/EP2020/058267 2019-04-02 2020-03-25 Verfahren zur schnellen initialisierung eines elektrischen energiespeichersystems WO2020200942A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080026674.2A CN113613938A (zh) 2019-04-02 2020-03-25 用于使电蓄能系统快速初始化的方法
US17/601,224 US20220161661A1 (en) 2019-04-02 2020-03-25 Method for the rapid initialization of an electrical energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019204637.1A DE102019204637A1 (de) 2019-04-02 2019-04-02 Verfahren zur schnellen Initialisierung eines elektrischen Energiespeichersystems
DE102019204637.1 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020200942A1 true WO2020200942A1 (de) 2020-10-08

Family

ID=69954073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058267 WO2020200942A1 (de) 2019-04-02 2020-03-25 Verfahren zur schnellen initialisierung eines elektrischen energiespeichersystems

Country Status (4)

Country Link
US (1) US20220161661A1 (de)
CN (1) CN113613938A (de)
DE (1) DE102019204637A1 (de)
WO (1) WO2020200942A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121713A1 (de) 2022-08-26 2024-02-29 Compleo Charging Solutions Ag Betriebsverfahren für eine Versorgungsstation und Verwendung eines Temperatursensors als Diebstahlindikator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339361A2 (de) * 2009-12-25 2011-06-29 Kabushiki Kaisha Toshiba Batteriediagnosevorrichtung und -verfahren
EP2639096A1 (de) * 2010-11-10 2013-09-18 Nissan Motor Co., Ltd Diagnosevorrichtung für fahrzeugbatterien
US20130320989A1 (en) * 2011-03-07 2013-12-05 Hitachi, Ltd. Battery state estimation method and battery control system
US20170253140A1 (en) * 2016-03-02 2017-09-07 Ford Global Technologies, Llc Battery cell state of charge initialization in a presence of voltage measurement uncertainty

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6651202B1 (en) * 1999-01-26 2003-11-18 Lsi Logic Corporation Built-in self repair circuitry utilizing permanent record of defects
JP5386075B2 (ja) * 2007-09-28 2014-01-15 株式会社日立製作所 多直列電池制御システム
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
DE102012215343A1 (de) * 2012-08-29 2014-05-28 Continental Automotive Gmbh Verfahren zum Durchführen einer Sicherheitsfunktion eines Fahrzeugs und System zum Durchführen des Verfahrens
KR102156403B1 (ko) * 2016-11-24 2020-09-15 주식회사 엘지화학 배터리 관리 장치
US10164559B1 (en) * 2017-06-16 2018-12-25 GM Global Technology Operations LLC System and method for measuring and diagnosing initial offsets of an analog input sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339361A2 (de) * 2009-12-25 2011-06-29 Kabushiki Kaisha Toshiba Batteriediagnosevorrichtung und -verfahren
EP2639096A1 (de) * 2010-11-10 2013-09-18 Nissan Motor Co., Ltd Diagnosevorrichtung für fahrzeugbatterien
US20130320989A1 (en) * 2011-03-07 2013-12-05 Hitachi, Ltd. Battery state estimation method and battery control system
US20170253140A1 (en) * 2016-03-02 2017-09-07 Ford Global Technologies, Llc Battery cell state of charge initialization in a presence of voltage measurement uncertainty

Also Published As

Publication number Publication date
CN113613938A (zh) 2021-11-05
DE102019204637A1 (de) 2020-10-08
US20220161661A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
EP2485914B1 (de) Verfahren zur initialisierung und zum betrieb eines batteriemanagementsystems
EP2419990B1 (de) Erweiterte batteriediagnose bei traktionsbatterien
EP3022568B1 (de) Bordnetz und verfahren zum betreiben eines bordnetzes
DE102013224509A1 (de) Elektrische Energiespeichervorrichtung und Verfahren zum Betreiben einer elektrischen Energiespeichervorrichtung
DE102019219427A1 (de) Verfahren zum Überwachen eines Energiespeichers in einem Kraftfahrzeug
DE102020003878A1 (de) Hochvolt-Bordnetz für ein zumindest teilweise elektrisch betriebenes Kraftfahrzeug, sowie Verfahren
DE102005025616B4 (de) Verfahren zur Überwachung und/oder Steuerung oder Regelung der Spannung einzelner Zellen in einem Zellstapel
WO2020200942A1 (de) Verfahren zur schnellen initialisierung eines elektrischen energiespeichersystems
DE102005004174B4 (de) Verfahren zur Diagnose einer Kraftfahrzeugbatterie
DE102013214817A1 (de) Verfahren zur Diagnose eines Zustands einer Batterie
DE102018220045A1 (de) Verfahren zur Ermittlung eines Zustandes eines Thermomanagementsystems eines elektrischen Energiespeichers sowie entsprechende Vorrichtung, entsprechender elektrischer Energiespeicher, entsprechendes Computerprogramm und entsprechendes maschinenlesbares Speichermedium
DE102005031254A1 (de) Verfahren zur Erkennung vorgebbarer Größen eines elektrischen Speichers
DE102012003100A1 (de) Stromintegrator für HV-Batterien
DE102016121630B4 (de) Verfahren und vorrichtung zur zustandsüberwachung einer starterbatterie eines kraftfahrzeugs
DE102022200785A1 (de) Vorrichtung und Verfahren zur Diagnose eines Batteriefehlers
DE102009054547B4 (de) Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie
DE102017209674A1 (de) Verfahren und Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems sowie elektrisches Energiespeichersystem mit der Vorrichtung und entsprechende Verwendung
DE102013214292A1 (de) Ladezustandserkennung elektrochemischer Speicher
DE102020203245A1 (de) Verfahren zur Bestimmung eines Modellfehlers eines mathematischen Modells einer elektrischen Energiespeichereinheit
DE102015200321A1 (de) Verfahren zur Überwachung einer Batterie sowie Überwachungseinrichtung
DE102019201968A1 (de) Batterieeinheit und Verfahren zum Betrieb einer Batterieeinheit
DE102018000581A1 (de) Verfahren zum Betreiben einer Balancer-Vorrichtung für ein Balancing von mehreren Batteriezellen einer Hochvoltbatterie sowie Balancer-Vorrichtung
DE102013201451A1 (de) Verfahren und System zur Batteriediagnose
DE102012221936A1 (de) Diagnosevorrichtung und Diagnoseverfahren für eine elektrische Energiequelle
DE102019207013A1 (de) Verfahren zur Fehlerdetektion in einem elektrischen Energiespeichersystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20713638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20713638

Country of ref document: EP

Kind code of ref document: A1