WO2020199941A1 - 基于条间法向力分布特征的边坡稳定性极限平衡计算方法 - Google Patents

基于条间法向力分布特征的边坡稳定性极限平衡计算方法 Download PDF

Info

Publication number
WO2020199941A1
WO2020199941A1 PCT/CN2020/080451 CN2020080451W WO2020199941A1 WO 2020199941 A1 WO2020199941 A1 WO 2020199941A1 CN 2020080451 W CN2020080451 W CN 2020080451W WO 2020199941 A1 WO2020199941 A1 WO 2020199941A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
bars
bar
limit equilibrium
normal force
Prior art date
Application number
PCT/CN2020/080451
Other languages
English (en)
French (fr)
Inventor
吴顺川
韩龙强
张小强
程海勇
任义
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Priority to US17/274,792 priority Critical patent/US20220049447A1/en
Publication of WO2020199941A1 publication Critical patent/WO2020199941A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Abstract

本发明涉及基于条间法向力分布特征的边坡稳定性极限平衡计算方法,属于边坡稳定性技术领域。本发明针对传统极限平衡条分法在分析边坡稳定性时未考虑条间法向力分布形式,即不同推力线作用位置对安全系数的影响,在既有的极限平衡条分法基础上,进一步考虑条间法向力分布特征,即推力线作用位置的分布,提出的考虑条间法向力分布特征的改进极限平衡计算方法,运用本发明提出的改进极限平衡Spencer法计算深凹滑面结果发现,改进极限平衡法与传统极限平衡法在安全系数方面误差较大,误差值高达20%左右,本发明方法具有简便、可靠的特点,将为边坡稳定性分析提供更准确的结果,不仅可以提高工程安全性,而且能节省施工成本,提高工程经济效益。

Description

基于条间法向力分布特征的边坡稳定性极限平衡计算方法 技术领域
本发明涉及基于条间法向力分布特征的边坡稳定性极限平衡计算方法,属于边坡稳定性技术领域。
背景技术
极限平衡条分法是岩土工程领域普遍应用的一种边坡稳定性分析方法,其原理是把岩土体划分为一系列条块,按照极限平衡原则,对各条块进行受力分析,求解边坡安全系数。极限平衡法根据不同的平衡条件和不同的条间力假设,又可分为Fellenius法、简化Bishop法、Spencer法和Morgenstern-Price法等。Duncan、吴顺川等对以上各种极限平衡条分法的计算精度做了对比分析,并指出了不同方法的适用范围。针对极限平衡条分法中存在的问题,国内外学者进行了许多研究与改进,比如陈祖煜在总结土坡极限平衡条分法基础上,提出了条分法的普遍平衡方程式,解决了可能遇见的数值收敛问题;朱大勇等人重新推导了更为简洁实用的安全系数计算公式,解决了极限平衡法条分法中的计算不收敛问题,提高了计算速度与精度;邹广电等基于塑性力学原理,考虑所有条间力作用,提出了一种与传统极限平衡法衔接的改进条分法。刘秀军根据经典土压力理论和条块端部的边界条件,对条间力夹角进行求解,省去了传统Spencer法盲目假定一系列夹角值的复杂性。王振等引入“剪应力-剪切位移本构模型”,建立一种可以考虑岩土体抗剪能力与剪切位移关系的改进Janbu法。郑颖人等定义一个滑动面相对于条块界面的形状参数,对Sarma法的条间剪力方程进行了修正。Fredlund、陈祖煜等人将二维极限平衡法引申到三维,对滑动面应力进行合理假设,使得计算结果更符合实际。
现有技术中对极限平衡条分法进行了各种修正与优化,但鲜有考虑条间法向力分布特征,即合力推力线作用位置不同时的极限平衡方法。传统条分法假设推力作用线的位置位于条块底部,忽略了其他位置对计算结果的影响。事实上,条块间法向力的分布形式对计算结果的影响是不可忽略的。
发明内容
本发明针对传统极限平衡条分法在分析边坡稳定性时未考虑条间法向力分布形式,即不同推力线作用位置对安全系数的影响,在既有的极限平衡条分法基础上,进一步考虑条间法向力分布特征,即推力线作用位置的分布,提供一种基于条间法向力分布特征的边坡稳定性极限平衡计算方法,本发明为边坡稳定性的极限平衡法增加了一种更加完整、应用普遍、使用效果好的计算方法,避免了非必要或者过量的施作边坡保护措施,对边坡稳定性计算方法 具有现实意义。
基于条间法向力分布特征的边坡稳定性极限平衡计算方法,具体步骤如下:
(1)对于给定滑体,垂直划分成若干个宽度相等的条块,传统极限平衡Spencer法中,设各条块间的作用力相互平行,即θ i=θ为常量,条块两侧条间合力ΔP,即条块两侧面的条间力之差,为:
Figure PCTCN2020080451-appb-000001
△P i为条块i两侧条间合力,P i为条块i的条间作用力,P i+1为条块i+1的条间作用力,E i为P i的法向分力,c i为条块i的粘聚力,l i为条块i的底面长度,F为安全系数,W i为条块i的重度,
Figure PCTCN2020080451-appb-000002
为条块i的内摩擦角,θ i为条间作用力P i与其法向分力E i的夹角,各条块间的作用力相互平行,即θ i=θ为常量;
(2)滑面为圆弧滑面时,对于整个边坡,各条块条间力合力总和为0,即:
∑(P i+1-P i)=0         (2)
(3)在条块力矩平衡求解过程中,设各条块条间合力ΔP作用在条块底面,故它在滑动面切向的分力为:(P i+1-P i)cos(α i-θ),切向分力到转动中心O的力臂为R i,建立整体力矩平衡方程为:
∑(P i+1-P i)cos(α i-θ)R i=0       (3)
(4)条间法向力沿条块深度方向为均匀分布、三角形分布、梯形分布或半正弦分布,根据定积分及合力矩原理可知,条间法向力沿条块深度方向呈均匀分布、梯形分布或半正弦分布时,其合力作用点位于条块底部以上1/2处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
R' i=R i-1/2h icos α i         (4)
而条间法向力沿条块深度方向呈三角形分布时,其合力作用点位于条块底部以上1/3处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
R″ i=R i-1/3h icos α i          (5)
将式(4)的R' i代入式(3)中,建立整体力矩平衡方程为:
∑ΔPcos(α i-θ)(R i-1/2h icosα i)=0     (6)
将式(5)的R″ i代入式(3)中,建立整体力矩平衡方程为:
∑ΔPcos(α i-θ)(R i-1/3h icosα i)=0        (7)
其中,h i为条块高度;
(5)在给定滑体的图上量出条块中心高h i及条块底面倾角α i,选择不同的θ值,并对不同θ值,根据式(1)求满足整体力平衡的安全系数F f,根据式(6)或式(7)求满足整体力矩平衡的安全系数的F m
(6)根据步骤(5)中求得的F f和F m绘制F f~θ及F m~θ关系曲线,两条曲线交点即为同时满足力和力矩平衡的F和θ,相应的F即为所求安全系数。
本发明的有益效果是:
(1)本发明以传统极限平衡Spencer法为基础,考虑条间法向力分布特征的改进Spencer极限平衡法,运用本发明提出的改进极限平衡Spencer法计算深凹滑面结果发现,改进极限平衡法与传统极限平衡法在安全系数方面误差较大,误差值高达20%左右;
(2)本发明方法具有简便、可靠的特点,将为边坡稳定性分析提供更准确的结果,不仅可以提高工程安全性,而且能节省施工成本,提高工程经济效益。
附图说明
图1为Spencer法计算模型的边坡条块划分示意图;
图2为Spencer法计算模型第i个条块受力示意图;
图3为条间法向力分布形式(均匀分布);
图4为条间法向力分布形式(三角形分布);
图5为条间法向力分布形式(梯形分布);
图6为条间法向力分布形式(半正弦分布);
图7为实施例3合力作用点位于条块底部以上1/2处时的第i个条块受力示意图;
图8为实施例2合力作用点位于条块底部以上1/3处时的第i个条块受力示意图;
图9为安全系数F的求法示意图;
图10为实施例2~3与对比例的浅层滑动模型;
图11为实施例2~3与对比例的浅层滑动模型滑面3的安全系数F计算结果图;
图12为实施例2~3与对比例的深层滑动模型;
图13为实施例2~3与对比例的深层滑动模型滑面3的安全系数F计算结果图;
图14为实施例2~3与对比例的深层滑动模型滑面6的安全系数F计算结果图;
图15为实施例4中分别采用实施例2~3、对比例的方法对深基坑进行计算的计算结果对比图;
图16为实施例5中分别采用实施例2与对比例的计算方法对支护方案一进行计算的计算结果对比图;
图17为实施例5中分别采用实施例2与对比例的计算方法对支护方案二进行计算的计算结果对比图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:基于条间法向力分布特征的边坡稳定性极限平衡计算方法,具体步骤如下:
(1)对于给定滑体,垂直划分成若干个宽度相等的条块(见图1),传统极限平衡Spencer法中,Spencer法计算模型第i个条块受力示意图见图2,设各条块间的作用力相互平行,即θ i=θ为常量,条块两侧条间合力ΔP,即条块两侧面的条间力之差,为:
Figure PCTCN2020080451-appb-000003
(2)滑面为圆弧滑面时,对于整个边坡,各条块条间力合力总和为0,即:
∑(P i+1-P i)=0         (2)
(3)在条块力矩平衡求解过程中,设各条块条间合力ΔP作用在条块底面,故它在滑动面切向的分力为:(P i+1-P i)cos(α i-θ),切向分力到转动中心O的力臂为R i,建立整体力矩平衡方程为:
∑(P i+1-P i)cos(α i-θ)R i=0        (3)
(4)条间法向力沿条块深度方向为均匀分布(见图3)、三角形分布(见图4)、梯形分布(见图5)或半正弦分布(见图6),根据定积分及合力矩原理可知,条间法向力沿条块深度方向呈均匀分布、梯形分布或半正弦分布时,其合力作用点位于条块底部以上1/2处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
R' i=R i-1/2h icos α i         (4)
而条间法向力沿条块深度方向呈三角形分布时,其合力作用点位于条块底部以上1/3处, 条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
R″ i=R i-1/3h icos α i            (5)
将式(4)的R' i代入式(3)中,建立整体力矩平衡方程为:
∑ΔPcos(α i-θ)(R i-1/2h icos α i)=0     (6)
将式(5)的R″ i代入式(3)中,建立整体力矩平衡方程为:
∑ΔPcos(α i-θ)(R i-1/3h icosα i)=0        (7)
其中,h i为条块高度;
(5)在给定滑体的图上量出条块中心高h i及条块底面倾角α i,选择不同的θ值,并对不同θ值,根据式(1)求满足整体力平衡的安全系数F f,根据式(6)或式(7)求不同法向力分布形式下满足整体力矩平衡的安全系数的F m
(6)根据步骤(5)中求得的F f和F m绘制F f~θ及F m~θ关系曲线,两条曲线交点即为同时满足力和力矩平衡的F和θ,相应的F即为所求安全系数(见图9)。
对比例:传统极限平衡Spencer法的边坡稳定性极限平衡计算方法,具体步骤如下:
(1)对于给定滑体,垂直划分成若干个宽度相等的条块(见图1),传统极限平衡Spencer法中,Spencer法计算模型第i个条块受力示意图见图2,设各条块间的作用力相互平行,即θ i=θ为常量,条块两侧条间合力ΔP,即条块两侧面的条间力之差,为:
Figure PCTCN2020080451-appb-000004
(2)滑面为圆弧滑面时,对于整个边坡,各条块条间力合力总和为0,即:
∑(P i+1-P i)=0         (2)
(3)在条块力矩平衡求解过程中,设各条块条间合力ΔP作用在条块底面,故它在滑动面切向的分力为:(P i+1-P i)cos(α i-θ),切向分力到转动中心O的力臂为R i,建立整体力矩平衡方程为:
∑(P i+1-P i)cos(α i-θ)R i=0        (3)
(4)当滑面为圆弧形状时,即R i为圆弧半径,且对所有条块都是常数,上式可写成:
∑(P i+1-P i)cos(α i-θ)=0          (4)
(5)在给定滑体的图上量出条块中心高h i及条块底面倾角α i,选择不同的θ值,并对不同θ值,根据式(1)求满足整体力平衡的安全系数F f,根据式(4)求满足整体力矩平衡的安全系数的F m
(6)根据步骤(5)中求得的F f和F m绘制F f~θ及F m~θ关系曲线,两条曲线交点即为同时满足力和力矩平衡的F和θ,相应的F即为所求安全系数(见图9)。
实施例2:基于条间法向力分布特征的边坡稳定性极限平衡计算方法,具体步骤如下:
(1)对于给定滑体,垂直划分成若干个宽度相等的条块(见图1),传统极限平衡Spencer法中,Spencer法计算模型第i个条块受力示意图见图2,设各条块间的作用力相互平行,即θ i=θ为常量,条块两侧条间合力ΔP,即条块两侧面的条间力之差,为:
Figure PCTCN2020080451-appb-000005
(2)滑面为圆弧滑面时,对于整个边坡,各条块条间力合力总和为0,即:
∑(P i+1-P i)=0               (2)
(3)在条块力矩平衡求解过程中,设各条块条间合力ΔP作用在条块底面,故它在滑动面切向的分力为:(P i+1-P i)cos(α i-θ),切向分力到转动中心O的力臂为R i,建立整体力矩平衡方程为:
∑(P i+1-P i)cos(α i-θ)R i=0         (3)
(4)条间法向力沿条块深度方向为三角形分布(见图4),根据定积分及合力矩原理可知,条间法向力沿条块深度方向呈三角形分布时,其合力作用点位于条块底部以上1/3处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
R″ i=R i-1/3h icos α i          (4)
将式(4)的R″ i代入式(3)中,建立整体力矩平衡方程为:
∑ΔPcos(α i-θ)(R i-1/3h icos α i)=0     (5)
其中,h i为条块高度;
(5)在给定滑体的图上量出条块中心高h i及条块底面倾角α i,选择不同的θ值,并对不同θ值,根据式(1)求满足整体力平衡的安全系数F f,根据式(5)求满足整体力矩平衡的安全系数的F m
(6)根据步骤(5)中求得的F f和F m绘制F f~θ及F m~θ关系曲线,两条曲线交点即为同时满足力和力矩平衡的F和θ,相应的F即为所求安全系数(见图9)。
实施例3:基于条间法向力分布特征的边坡稳定性极限平衡计算方法,具体步骤如下:
(1)对于给定滑体,垂直划分成若干个宽度相等的条块(见图1),传统极限平衡Spencer法中,Spencer法计算模型第i个条块受力示意图见图2,设各条块间的作用力相互平行,即θ i=θ为常量,条块两侧条间合力ΔP,即条块两侧面的条间力之差,为:
Figure PCTCN2020080451-appb-000006
(2)滑面为圆弧滑面时,对于整个边坡,各条块条间力合力总和为0,即:
∑(P i+1-P i)=0       (2)
(3)在条块力矩平衡求解过程中,设各条块条间合力ΔP作用在条块底面,故它在滑动面切向的分力为:(P i+1-P i)cos(α i-θ),切向分力到转动中心O的力臂为R i,建立整体力矩平衡方程为:
∑(P i+1-P i)cos(α i-θ)R i=0            (3)
(4)条间法向力沿条块深度方向为均匀分布(见图3)、梯形分布(见图5)或半正弦分布(见图6),根据定积分及合力矩原理可知,条间法向力沿条块深度方向呈均匀分布、梯形分布或半正弦分布时,其合力作用点位于条块底部以上1/2处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
R' i=R i-1/2h icos α i          (4)
将式(4)的R' i代入式(3)中,建立整体力矩平衡方程为:
∑ΔPcos(α i-θ)(R i-1/2h icos α i)=0      (5)
其中,h i为条块高度;
(5)在给定滑体的图上量出条块中心高h i及条块底面倾角α i,选择不同的θ值,并对不同θ值,根据式(1)求满足整体力平衡的安全系数F f,根据式(5)求满足整体力矩平衡的安全系数的F m
(6)根据步骤(5)中求得的F f和F m绘制F f~θ及F m~θ关系曲线,两条曲线交点即为同时满足力和力矩平衡的F和θ,相应的F即为所求安全系数(见图9);
建立坡角为45°,坡高20m的浅层圆弧滑动模型,如图10所示,其力学参数如表1,
表1 岩土体强度参数
Figure PCTCN2020080451-appb-000007
分别采用对比例的传统Spencer法和实施例2、实施例3的基于条间法向力分布特征的边坡稳定性极限平衡计算方法求解边坡安全系数,实施例2中假设条间法向力沿条块深度方向呈三角形分布,条间合力作用于条块底部以上1/3处,实施例3中假设条间法向力沿条块深度方向呈均匀分布、梯形分布或半正弦分布,条间合力作用于条块底部以上1/2处,采用对比例的传统Spencer法和实施例2、实施例3的基于条间法向力分布特征的边坡稳定性极限平衡计算方法对滑面1、2和3进行计算,表中F s、F s1、F s2分别代表对比例的传统Spencer法计算安全系数、实施例2基于条间法向力分布特征的边坡稳定性极限平衡计算方法的安全系数和实施例3基于条间法向力分布特征的边坡稳定性极限平衡计算方法的安全系数;Δ1、Δ2分别表示实施例2基于条间法向力分布特征的边坡稳定性极限平衡计算方法的安全系数、实施例3基于条间法向力分布特征的边坡稳定性极限平衡计算方法的安全系数与传统Spencer法计算安全系数的改变量,计算结果见表2,
表2 对比例、实施例2和实施例3的计算结果对比表
Figure PCTCN2020080451-appb-000008
由表2可知,当边坡为浅层滑动时,条间法向力分布形式对安全系数有一定影响,随着条间力作用点位置的提高,安全系数变大,但改变量不明显;实施例2~3与对比例的浅层滑动模型滑面3的安全系数F计算结果图见图11,从图11中可知,图中力矩平衡安全系数曲线近似水平,表明条间切向力对边坡安全系数影响较小;而力平衡安全系数曲线为单调上升, 随条间切向力的增加,力安全系数随θ的增加而增加,即力平衡安全系数对条间切向力较为敏感,不合理的假定将带来严重误差;另外,考虑不同条间法向力分布形式,随着合力作用点的提高,最终安全系数对应的条间力夹角θ变大,即条间切向力在边坡稳定性中发挥的作用变大;
建立深基坑滑动模型,基坑深20m,如图12所示,力学参数如表1所示,考虑到基坑失稳滑面位置主要有两种,一种位于基坑壁,如图12中的滑面1、滑面2和滑面3,另一种贯穿基坑底,如图12中的滑面4、滑面5和滑面6;采用对比例的传统Spencer法和实施例2、实施例3的基于条间法向力分布特征的边坡稳定性极限平衡计算方法对滑面1、2、3、4、5和6进行计算,结果如表3所示;
表3 不同方法计算结果对比表
Figure PCTCN2020080451-appb-000009
由表3可知,针对深基坑工程,当滑面位于坑壁时,随着条间力作用点位置的提高,安全系数降低,降幅最大可达18%;当滑面贯通坑底时,随着条间力作用点位置提高,安全系数变大,增幅最大约10%;实施例2~3与对比例的深层滑动模型滑面3的安全系数F计算结果图见图13,实施例2~3与对比例的深层滑动模型滑面6的安全系数F计算结果图见图14;另外,相比浅层滑面,深层滑面力矩安全系数对条间切向力的变化更为敏感;力平衡安全系数曲线仍为单调上升,近似成正比关系;考虑不同条间法向力分布形式,当滑面位于坑壁时,随着合力作用点的提高,最终安全系数对应的条间力夹角θ变小,即条间切向力在边坡稳定性中发挥的作用变小;当滑面贯通坑底时,随着合力作用点的提高,最终安全系数对应的条间力夹角θ变大,即条间切向力在边坡稳定性中发挥的作用变大。
实施例4:根据文献“周勇,郭楠,杨校辉,等.某桩锚支护深基坑超挖变形分析与加固处理[J].地下空间与工程学报,2015(S1):211-216”中某深基坑案例,基坑最终开挖深度为-15.7m,地层分布从上至下依次为杂填土层、湿陷性黄土层、非湿陷性黄土层和卵石层,各层土体厚度和物理力学参数见表4;
表4 各层土体物理力学参数
Figure PCTCN2020080451-appb-000010
采用对比例的传统Spencer法和实施例2、实施例3的基于条间法向力分布特征的边坡稳定性极限平衡计算方法计算此基坑稳定性,结果如图15所示,根据图15可知,采用传统Spencer法计算的安全系数为1.03>1,虽然不满足规范要求,但尚处于稳定状态;而采用实施例2的基于条间法向力分布特征的边坡稳定性极限平衡计算方法的计算结果为0.997,采用实施例3的基于条间法向力分布特征的边坡稳定性极限平衡计算方法的计算结果为0.980,均小于1,因此发生滑塌;可见,传统Spencer法计算结果不利于工程安全,而实施例2和实施例3的考虑条间法向力分布特征的改进Spencer法更符合实际。
实施例5:依据文献“佘清荣.建阳某深基坑支护结构优化设计[J].福建建筑,2018,1:46-49.”中某高边坡案例,坡高12m,共分两级边坡开挖,每级高6m,坡率均为1:1,坡顶超载值15kPa,土层主要为素填土和全风化片岩,各层土体厚度和物理力学参数见表5;
表5 各层土体物理力学参数
Figure PCTCN2020080451-appb-000011
设计的支护方案主要有两种:①一级边坡布设四排锚杆,长度分别为12m、12m、15m、18m,二级边坡布设三排长度为18m的锚杆,单孔设计拉力除最底下两根为80kN,其余皆为100kN;②一级边坡布设两排长15m的锚索,设计拉力100kN,二级边坡布设两排长15m的锚索,设计拉力80kN;锚杆水平间距均为1.2m,竖向间距均为1.5m;
分别采用实施例2和对比例的计算方法对两种支护方案的支护效果进行验证,其稳定性进行计算的计算结果对比图见图16(方案一)和图17(方案二),由图可知,采用传统Spencer法对方案一加固后边坡的安全系数计算结果为1.32>1.30,满足规范要求;对方案二加固后的计算的结果为1.27<1.30,不满足规范要求;因此,实际工程中选用支护方案一对边坡进行支护;
而采用改进Spencer法(滑体范围内主要为素填土,选取实施例2的计算法,假设条间法 向力为三角形分布)对两种方案加固效果进行计算可得:方案一加固后的计算结果为1.36>1.30,满足规范要求;方案二加固后的计算结果为1.31>1.30,同样满足规范要求;因此,若采用实施例2的计算方法进行计算,可为该工程节约近50%的支护成本,经济效益更加客观。
以上是对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (1)

  1. 基于条间法向力分布特征的边坡稳定性极限平衡计算方法,其特征在于,具体步骤如下:
    (1)对于给定滑体,垂直划分成若干个宽度相等的条块,传统极限平衡Spencer法中,设各条块间的作用力相互平行,即θ i=θ为常量,条块两侧条间合力ΔP,即条块两侧面的条间力之差,为:
    Figure PCTCN2020080451-appb-100001
    其中,△P i为条块i两侧条间合力,P i为条块i的条间作用力,P i+1为条块i+1的条间作用力,E i为P i的法向分力,c i为条块i的粘聚力,l i为条块i的底面长度,F为安全系数,W i为条块i的重度,
    Figure PCTCN2020080451-appb-100002
    为条块i的内摩擦角,θ i为条间作用力P i与其法向分力E i的夹角,各条块间的作用力相互平行,即θ i=θ为常量;
    (2)滑面为圆弧滑面时,对于整个边坡,各条块条间力合力总和为0,即:
    ∑(P i+1-P i)=0  (2)
    (3)在条块力矩平衡求解过程中,设各条块条间合力ΔP作用在条块底面,故它在滑动面切向的分力为:(P i+1-P i)cos(α i-θ),切向分力到转动中心O的力臂为R i,建立整体力矩平衡方程为:
    ∑(P i+1-P i)cos(α i-θ)R i=0  (3)
    (4)条间法向力沿条块深度方向为均匀分布、三角形分布、梯形分布或半正弦分布,根据定积分及合力矩原理可知,条间法向力沿条块深度方向呈均匀分布、梯形分布或半正弦分布时,其合力作用点位于条块底部以上1/2处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
    R′ i=R i-1/2h icosα i  (4)
    而条间法向力沿条块深度方向呈三角形分布时,其合力作用点位于条块底部以上1/3处,条间合力ΔP在滑动面上的切向分力到转动中心O的力臂为:
    R″ i=R i-1/3h icosα i  (5)
    将式(4)的R′ i代入式(3)中,建立整体力矩平衡方程为:
    ∑ΔP cos(α i-θ)(R i-1/2h icosα i)=0  (6)
    将式(5)的R″ i代入式(3)中,建立整体力矩平衡方程为:
    ∑ΔP cos(α i-θ)(R i-1/3h icosα i)=0  (7)
    其中,h i为条块高度;
    (5)在给定滑体的图上量出条块中心高h i及条块底面倾角α i,选择不同的θ值,并对不同θ值,根据式(1)求满足整体力平衡的安全系数F f,根据式(6)或式(7)求满足整体力矩平衡的安全系数的F m
    (6)根据步骤(5)中求得的F f和F m绘制F f~θ及F m~θ关系曲线,两条曲线交点即为同时满足力和力矩平衡的F和θ,相应的F即为所求安全系数。
PCT/CN2020/080451 2019-04-03 2020-03-20 基于条间法向力分布特征的边坡稳定性极限平衡计算方法 WO2020199941A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/274,792 US20220049447A1 (en) 2019-04-03 2020-03-20 Slope stability limit equilibrium calculation method based on distribution characteristics of an interslice normal force

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910266211.2A CN109914379B (zh) 2019-04-03 2019-04-03 基于条间法向力分布特征的边坡稳定性极限平衡计算方法
CN201910266211.2 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020199941A1 true WO2020199941A1 (zh) 2020-10-08

Family

ID=66968450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080451 WO2020199941A1 (zh) 2019-04-03 2020-03-20 基于条间法向力分布特征的边坡稳定性极限平衡计算方法

Country Status (3)

Country Link
US (1) US20220049447A1 (zh)
CN (1) CN109914379B (zh)
WO (1) WO2020199941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113177344A (zh) * 2021-05-27 2021-07-27 同济大学 一种基于降雨入渗的边坡稳定性数值模拟方法
CN114427232A (zh) * 2022-01-14 2022-05-03 中铁二院工程集团有限责任公司 高原强震区松散土斜坡路堤加固系统及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109914379B (zh) * 2019-04-03 2020-01-14 昆明理工大学 基于条间法向力分布特征的边坡稳定性极限平衡计算方法
CN111368458B (zh) * 2020-03-23 2021-04-02 青岛理工大学 一种基坑开挖边坡安全系数的计算方法
CN111651901B (zh) * 2020-06-29 2023-03-07 中国有色金属工业昆明勘察设计研究院有限公司 一种昔格达地层岩质边坡动力稳定性的时程分析方法
CN111898067B (zh) * 2020-07-06 2023-07-21 河海大学 一种优化滑坡条间推力的去条块Janbu条分法
CN111914330B (zh) * 2020-08-07 2022-06-17 合肥市市政设计研究总院有限公司 基于图解试算法的土岩结合边坡稳定分析方法
CN113836708B (zh) * 2021-09-10 2023-02-14 中国电建集团华东勘测设计研究院有限公司 一种滑坡稳定性分析及抗滑桩设计推力计算方法
CN114757028B (zh) * 2022-04-15 2023-12-19 辽宁工程技术大学 一种确定露天煤矿含顺倾软弱夹层边坡主滑方向的方法
CN115858996B (zh) * 2023-02-09 2023-06-09 西南交通大学 基于分段式滑坡的安全系数计算方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103485353A (zh) * 2013-09-24 2014-01-01 昆明理工大学 基于全局最优化的边坡稳定性分析条分法
JP2015071858A (ja) * 2013-10-01 2015-04-16 富士通エフ・アイ・ピー株式会社 斜面安定計算装置、計算方法、及びプログラム
CN107330224A (zh) * 2017-07-24 2017-11-07 中国地质大学(武汉) 一种分条间作用力倾角非假定的边坡稳定性分析条分法
CN109914379A (zh) * 2019-04-03 2019-06-21 昆明理工大学 一种基于条间法向力分布特征的边坡稳定性极限平衡计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607332B2 (en) * 2001-08-30 2003-08-19 Soo-Yong Kang Method of reinforcing slope reverse analysis technique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103485353A (zh) * 2013-09-24 2014-01-01 昆明理工大学 基于全局最优化的边坡稳定性分析条分法
JP2015071858A (ja) * 2013-10-01 2015-04-16 富士通エフ・アイ・ピー株式会社 斜面安定計算装置、計算方法、及びプログラム
CN107330224A (zh) * 2017-07-24 2017-11-07 中国地质大学(武汉) 一种分条间作用力倾角非假定的边坡稳定性分析条分法
CN109914379A (zh) * 2019-04-03 2019-06-21 昆明理工大学 一种基于条间法向力分布特征的边坡稳定性极限平衡计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EDITED BY WU, SHUNCHUAN: "Non-official translation: Slope Engineering", METALLURGICAL INDUSTRY PRESS, no. September 2017, 1st edition, 30 September 2017 (2017-09-30), DOI: 20200608195813Y *
LIU, XIUJUN: "The Improvement of Spencer Method on Slope Stability Analysis", GEOTECHNICAL ENGINEERING TECHNIQUE, vol. 30, no. 4,, 31 August 2016 (2016-08-31), ISSN: 1007-2993, DOI: 20200608200002Y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113177344A (zh) * 2021-05-27 2021-07-27 同济大学 一种基于降雨入渗的边坡稳定性数值模拟方法
CN114427232A (zh) * 2022-01-14 2022-05-03 中铁二院工程集团有限责任公司 高原强震区松散土斜坡路堤加固系统及方法

Also Published As

Publication number Publication date
CN109914379A (zh) 2019-06-21
CN109914379B (zh) 2020-01-14
US20220049447A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020199941A1 (zh) 基于条间法向力分布特征的边坡稳定性极限平衡计算方法
Liu et al. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand
Lin et al. Directly searching method for slip plane and its influential factors based on critical state of slope
CN107844650B (zh) 基于全结构面屈服法的坝肩安全系数计算方法
CN103603670B (zh) 超深覆土盾构穿越复杂地层施工方法
CN104965987B (zh) 一种膨胀土地基土膨胀引起桩位移和内力的测量方法
Jin et al. The use of improved radial movement optimization to calculate the ultimate bearing capacity of a nonhomogeneous clay foundation adjacent to slopes
CN107577836B (zh) 一种软土地层中隧道上方覆土压力的确定方法
Yang et al. Limit analysis of supporting pressure in tunnels with regard to surface settlement
CN208618426U (zh) 一种悬臂桩-微型群桩式抗滑结构体系
CN107687173A (zh) 一种新型h型简支抗滑桩及其建造方法
JP7282428B1 (ja) ピット掘削によるピット外の地層沈降曲線を予測する計算方法
CN110674553A (zh) 一种预应力锚索埋入式桩计算方法
CN205444126U (zh) 一种特殊地形上混凝土面板堆石坝结构
CN214836361U (zh) 一种纠偏盾构机滚动角的装置
CN113221204A (zh) 展臂式排水抗滑桩及其结构计算方法
CN110457855B (zh) 部分淹没有效粘聚力-有效摩擦角均质边坡临界库水位分析的解析方法
Zhang et al. Optimization of geometric shape of Xiamen arch dam
CN107313406B (zh) 岩前混凝土重力坝布置结构及其布置方法
CN207062964U (zh) 一种h型支座式抗滑桩
CN206800224U (zh) 一种双幅t型刚构桥背塔斜拉加固结构
CN205934913U (zh) 一种抗拔防腐蚀桩
Song Study on Influencing Factors of Vertical Bearing Capacity of Bored Cast-in-situ Pile and Promoting Measures
CN111090904A (zh) 一种基于广义双剪应力屈服准则的土压力计算方法
Zhang et al. Model Test of Mechanical Characteristics of Cantilever Retaining Wall with Mutual Anchor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782799

Country of ref document: EP

Kind code of ref document: A1