WO2020199835A1 - 微流体控制系统及其制作方法、检测方法 - Google Patents

微流体控制系统及其制作方法、检测方法 Download PDF

Info

Publication number
WO2020199835A1
WO2020199835A1 PCT/CN2020/077774 CN2020077774W WO2020199835A1 WO 2020199835 A1 WO2020199835 A1 WO 2020199835A1 CN 2020077774 W CN2020077774 W CN 2020077774W WO 2020199835 A1 WO2020199835 A1 WO 2020199835A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
substrate
electrode
control system
sample
Prior art date
Application number
PCT/CN2020/077774
Other languages
English (en)
French (fr)
Inventor
崔皓辰
姚文亮
蔡佩芝
赵莹莹
肖月磊
赵楠
古乐
耿越
庞凤春
廖辉
车春城
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020199835A1 publication Critical patent/WO2020199835A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic

Definitions

  • the embodiments of the present disclosure relate to a microfluidic control system and its manufacturing method and detection method.
  • Microfluidic control technology can achieve precise control and manipulation of tiny droplets.
  • Digital microfluidic control based on dielectric wetting technology is driven by electrical signals. It has the advantages of strong driving force, easy control, simple chip structure, and high degree of automation. It is an important part of the laboratory system on a chip.
  • Electrohydrodynamic drive is a technology that uses alternating electric fields to drive fluid movement. According to the different driving principles, it can be divided into AC electroosmosis effect and AC heating effect.
  • the AC electroosmosis effect acts on the ions and the particles that can be polarized on the surface of the electrode in the fluid, and the movement of the fluid is driven by the movement of the particles.
  • the alternating current electric heating effect uses the conductive fluid to generate the Joule heating effect, which leads to the change of the electrical properties of the solution. Under the action of the uneven electric field, a net charge is generated in the fluid, which triggers the force of the electric field and drives the fluid movement.
  • the microfluidic control system includes a first substrate and a second substrate that are opposed to each other, wherein the second substrate includes a sampling area and a detection area, and the first The substrate includes an opening corresponding to the sampling area of the second substrate, configured to allow a sample to enter the sampling area from the opening, and the sampling area is configured to drive into the sampling area. The sample moves to the detection area.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a driving electrode, wherein the driving electrode is disposed on the sampling area of the second substrate and configured to drive all the driving electrodes entering the sampling area. The sample moves to the detection area.
  • the driving electrode includes two sets of opposed finger electrodes.
  • the two sets of opposed finger electrodes include a first finger electrode and a second finger electrode; the first finger electrode includes a plurality of second finger electrodes.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a driver, wherein the driver is configured to input an alternating current signal to the driving electrode.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a first hydrophilic layer, wherein the first hydrophilic layer is disposed on the sampling area of the second substrate and disposed on the driving electrode. On the side close to the first substrate.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a second hydrophilic layer, wherein the second hydrophilic layer is provided on the first substrate and the sample injection of the second substrate.
  • the area corresponds to the area on the surface.
  • the detection area of the second substrate includes a liquid storage area, and the liquid storage area is arranged adjacent to the sampling area for storing slave The sample entered into the sampling area.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a storage electrode, wherein the storage electrode is disposed in the liquid storage area for promoting the sample to enter the liquid storage area.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a control electrode, wherein the control electrode is disposed on the detection area of the second substrate and configured to control the detection of the sample.
  • control electrode is a square block electrode, a rectangular block electrode, a circular block electrode, or an oval block electrode.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a dielectric layer, wherein the dielectric layer is disposed on the detection area of the second substrate and is disposed near the control electrode. Said one side of the first substrate.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a first hydrophobic layer, wherein the first hydrophobic layer is disposed on a side of the dielectric layer close to the first substrate.
  • the microfluidic control system provided by at least one embodiment of the present disclosure further includes a second hydrophobic layer, wherein the second hydrophobic layer is provided on the first substrate corresponding to the detection area of the second substrate On the surface of the area.
  • At least one embodiment of the present disclosure provides a method for manufacturing a microfluidic control system, including: providing a first substrate and a second substrate, wherein the second substrate includes a sampling area and a detection area, and the sampling area is configured as The sample that can drive into the sample injection area to move to the detection area; the first substrate includes an opening; and opposes the first substrate and the second substrate, wherein the The opening corresponds to the sampling area of the second substrate, so that a sample can enter the sampling area from the opening.
  • the detection area includes a liquid storage area, and the liquid storage area is arranged adjacent to the sample injection area; the manufacturing method further includes: A driving electrode is arranged in the sampling area, a control electrode is arranged in the detection area, and a storage electrode is arranged in the liquid storage area.
  • the method for manufacturing a microfluidic control system further includes: arranging an intermediary on the detection area of the second substrate and the control electrode and the side of the electrode away from the second substrate.
  • An electrical layer, a first hydrophobic layer is provided on the side of the dielectric layer away from the second substrate, and on the surface of the area of the first substrate corresponding to the detection area on the second substrate A second hydrophobic layer is provided.
  • the method for manufacturing a microfluidic control system further includes: arranging a first profiling area on the sampling area of the second substrate and on the side of the driving electrode away from the second substrate.
  • a water layer, and a second hydrophilic layer is provided on the surface of the region of the first substrate corresponding to the sample injection region on the second substrate.
  • At least one embodiment of the present disclosure also provides a detection method using a microfluidic control system.
  • the microfluidic control system includes a first substrate and a second substrate opposed to each other, and the second substrate includes a sampling area and a detection area,
  • the first substrate includes an opening corresponding to the sampling area of the second substrate;
  • the detection method includes: injecting a sample into the sampling area through the opening; controlling the sampling area, To drive the sample in the sample injection area to move to the detection area; and to control the detection of the sample through the detection area.
  • the sampling area of the second substrate is provided with drive electrodes
  • the detection area of the second substrate is provided with control electrodes
  • the detection area It includes a liquid storage area which is arranged adjacent to the sample injection area and is provided with storage electrodes; wherein, controlling the sample injection area includes: applying a voltage to the driving electrode of the sample injection area to control all The sample moves to the detection area; controlling the detection of the sample through the detection area includes: applying a voltage to a storage electrode of the liquid storage area to promote the sample to enter the liquid storage area; and The control electrode applies a voltage to control the detection of the sample.
  • Fig. 1 is a schematic diagram of a microfluidic control system provided by at least one embodiment of the present disclosure
  • Figure 2 is a side view of the microfluidic control system shown in Figure 1;
  • Fig. 3 is a schematic diagram of the operation of the microfluidic control system shown in Fig. 1;
  • FIG. 4A is a flowchart of a manufacturing method of a microfluidic control system provided by at least one embodiment of the present disclosure
  • 4B is a flowchart of a method for manufacturing a microfluidic control system provided by at least one embodiment of the present disclosure
  • 5A is a flowchart of a detection method using a microfluidic control system provided by at least one embodiment of the present disclosure.
  • FIG. 5B is a flowchart of a detection method using a microfluidic control system provided by at least one embodiment of the present disclosure.
  • Microfluidic control devices are the key components of lab-on-a-chip, which are used in various devices that require precise fluid control, such as protein chips, DNA chips, drug delivery systems, micro integrated analysis systems, and micro Reactor etc.
  • fluid control such as protein chips, DNA chips, drug delivery systems, micro integrated analysis systems, and micro Reactor etc.
  • hydrophobicity which is hydrophobic, it is very difficult to add samples from the outside.
  • the embodiments of the present disclosure provide a microfluidic control system, a manufacturing method thereof, and a detection method.
  • the microfluidic control system can realize automatic sample addition, which can be used to solve technical problems such as difficulty in external sample addition of a closed digital microfluidic control device .
  • FIG. 1 shows a schematic diagram of a microfluidic control system provided by at least one embodiment of the present disclosure.
  • Fig. 2 shows a side view of the microfluidic control system shown in Fig. 1.
  • the microfluidic control system includes a first substrate 10 (for example, the upper substrate is shown as an example in the figure) and a second substrate 20 (for example, the lower substrate is shown as an example in the figure).
  • the second substrate 20 includes a sampling area 21 and a detection area 22
  • the first substrate 10 includes an opening 11 corresponding to the sampling area 21 of the second substrate 20, and is configured to allow a sample to enter the sampling area 21 from the opening 11,
  • the sampling area 21 is configured to drive the sample entering the sampling area 21 to move to the detection area 22.
  • the microfluidic control system also has the sampling area 21 and the detection area 22 correspondingly.
  • the part indicated by the dashed frame on the left is the sampling area 21, and the part indicated by the dashed frame on the right is the detection area 22.
  • the sampling area 21 includes two sets of driving electrodes D arranged oppositely, and a voltage can be applied to the driving electrodes to drive the sample entering the sampling area 21 to move to the detection area 22.
  • a voltage can be applied to the driving electrodes to drive the sample entering the sampling area 21 to move to the detection area 22.
  • an alternating current signal may be applied to the two sets of driving electrodes D to drive the sample entering the sampling area 21 to move.
  • the driving electrode D may be a finger electrode structure, such as an asymmetric finger electrode structure, which includes two sets of oppositely arranged finger electrodes.
  • the width of the electrode strips in the two sets of driving electrodes may be different.
  • the two groups of driving electrodes D include a first finger electrode D1 and a second finger electrode D2.
  • the first finger electrode D1 includes a plurality of first strip electrodes
  • the second finger electrode D2 includes a plurality of second strip electrodes.
  • Electrodes, a plurality of first strip electrodes and a plurality of second strip electrodes are alternately arranged in the direction from the sample injection area 21 to the detection area 22, that is, the strip electrodes in the two sets of driving electrodes D extend from the sample injection area 21
  • the directions to the detection area 22 are arranged crosswise.
  • each strip electrode of the narrower driving electrode may have a width of 5-10 ⁇ m and a length of 8 mm.
  • the width of each strip electrode of the wider driving electrode ie, the second finger electrode D2 may be about five times the width of the narrower strip electrode, for example, about 50-100 ⁇ m.
  • the length of the wider strip electrode and the length of the narrower strip electrode may be substantially the same.
  • the distance between the narrower strip-shaped electrodes and the wider strip-shaped electrodes arranged in a cross can be 5-10 ⁇ m.
  • the microfluidic control system further includes a driver 211 (refer to FIG. 3).
  • the driver 211 is signally connected to the driving electrode D and configured to input an alternating current signal to the driving electrode D.
  • the detection area 22 may include a liquid storage area 23 which is arranged adjacent to the sample injection area 21 and is used to store the sample entered from the sample injection area 21.
  • the liquid storage area 23 is provided with a storage electrode 231, and by applying a voltage to the storage electrode 231, the sample can be promoted to quickly enter the liquid storage area 23 from the sample injection area 21 (detailed later).
  • a control electrode 221 is provided in the detection area 22.
  • the control electrode 221 is provided on a side of the liquid storage area 23 away from the sample injection area 21 to control the detection of the sample.
  • the control electrode 221 may be composed of a plurality of square block electrodes, rectangular block electrodes, circular block electrodes, or oval block electrodes.
  • FIG. 1 shows that the control electrode 221 is composed of a plurality of square block electrodes.
  • the side length of each block electrode may be 3 mm. The length of the liquid storage area (that is, the size of the liquid storage area in the vertical direction in FIG.
  • the liquid storage area may be 2-4 times, for example about 3 times, the total length of the control electrode, for example, the length of the liquid storage area may be about 9- 10mm, the width of the liquid storage area (that is, the size of the liquid storage area in the horizontal direction in Figure 1) can be 5-10 mm.
  • the microfluidic control system may further include a hydrophilic layer.
  • the hydrophilic layer includes a first hydrophilic layer 212 and a second hydrophilic layer 213.
  • the first hydrophilic layer 212 is disposed on the second substrate 20.
  • the sample injection area 21 of the drive electrode D is disposed on the side of the driving electrode D close to the first substrate 10; the second hydrophilic layer 213 is disposed on the area of the first substrate 10 corresponding to the sample injection area 21 of the second substrate 20 On the surface. This is beneficial for the sample to quickly enter the sample injection area 21 from the opening 11.
  • the microfluidic control system may further include a dielectric layer 222 and a hydrophobic layer.
  • the dielectric layer 222 is disposed on the detection area 22 of the second substrate 20 and disposed on the control electrode 221 near the first substrate 10.
  • the hydrophobic layer includes a first hydrophobic layer 223 and a second hydrophobic layer 224.
  • the first hydrophobic layer 223 is disposed on the side of the dielectric layer 222 close to the first substrate 10; the second hydrophobic layer 224 is disposed on the side of the first substrate 10.
  • the structure of the microfluidic control system from bottom to top is: the second substrate 20, the driving electrode D, the first hydrophilic layer 212, the fluid channel 214 (ie, the first substrate 10 and the space between the second substrate 20), the second hydrophilic layer 213, and the first substrate 10.
  • the sample injection port is located in the first substrate 10 corresponding to the sample injection area 21, and is used to allow the fluid sample to enter the microfluidic control system from the outside.
  • an opening 11 may be formed at the first substrate 10 corresponding to the sample injection area 21 as a sample injection port.
  • the structure of the microfluidic control system from bottom to top is: the second substrate 20, the electrode array (such as the metal electrode array), the dielectric layer 222, the first hydrophobic layer 223, and the fluid channel 14.
  • the metal electrode array includes a storage electrode 231 located in the liquid storage area 23 and a control electrode 221 located outside the liquid storage area 23.
  • the first substrate 10 and the second substrate 20 can be made of hydrophilic materials.
  • the first substrate 10 and the second substrate 20 of the sample injection area 21 do not need to be formed Hydrophilic layer. Therefore, the process steps for manufacturing the microfluidic control system can be reduced.
  • FIG. 3 shows the working schematic diagram of the microfluidic control system shown in FIG. 1.
  • a sample for example, a fluid sample
  • a sample injection port for example, the opening 11 in the first substrate 10
  • a sample application tool such as a pipette 12.
  • the sample enters the sample injection area 21 first. Since the sample injection port is located at the first substrate 10 corresponding to the sample injection area 21, and the surface of the first substrate 10 corresponding to the sample injection area 21 is hydrophilic, the fluid sample can easily enter the microfluidic control system in.
  • the driver 211 is used to apply electrical signals, such as alternating current electrical signals, to the two sets of opposing drive electrodes.
  • electrical signals such as alternating current electrical signals
  • the amplitude of the alternating current signal can be 1-10V, and the frequency can be 1-100kHz.
  • the specific value can be determined according to the nature of the fluid sample being driven and the electrode material selected. Driven by the AC signal, the fluid sample will move laterally to the right, that is, to the detection area, and gradually move to the liquid storage area in the detection area.
  • the detection area 22 has a hydrophobic surface. Therefore, when the fluid sample is close to the liquid storage area 23 of the detection area 22, for example, 50--50 can be applied to the storage electrode 231 located in the liquid storage area 23.
  • the voltage of 100V changes the surface to have hydrophilicity, thereby promoting the sample to enter the liquid storage area 23, for example, enabling the fluid sample to flow into the liquid storage area 23 smoothly.
  • the automatic sample addition of the microfluidic control system is completed. Then various operations such as droplet generation, driving, and detection can be performed in the detection area 22. I will not repeat them here.
  • At least one embodiment of the present disclosure also provides a manufacturing method of a microfluidic control system. As shown in FIG. 4A, the manufacturing method includes step S31 and step S32.
  • Step S31 Provide a first substrate and a second substrate.
  • the second substrate includes a sampling area and a detection area.
  • the sampling area is configured to drive the sample entering the sampling area to move to the detection area; the first substrate includes an opening.
  • Step S32 Oppose the first substrate and the second substrate.
  • the opening of the first substrate corresponds to the sampling area of the second substrate, so that the sample can enter the sampling area from the opening.
  • the first substrate and the second substrate may adopt any form of substrates such as glass substrates and resin substrates, which are not limited in the embodiments of the present disclosure.
  • the detection area includes a liquid storage area, and the liquid storage area is arranged adjacent to the sampling area; in this case, the manufacturing method further includes: setting a driving electrode in the sampling area, setting a control electrode in the detection area, and Set electrodes in the reservoir area.
  • the driving electrode in the sampling area is configured to drive the sample entering the sampling area to move to the detection area
  • the control electrode in the detection area is configured to control the detection of the sample
  • the electrode in the liquid storage area is configured to facilitate the smooth entry of the sample into the liquid storage area.
  • the preparation method further includes: disposing a dielectric layer on the detection area of the second substrate and the side of the control electrode and the electrode away from the second substrate, and on the side of the dielectric layer away from the second substrate A first hydrophobic layer is provided, and a second hydrophobic layer is provided on the surface of the area of the first substrate corresponding to the detection area on the second substrate. This facilitates the detection of samples.
  • the preparation method further includes: disposing a first hydrophilic layer on the sampling area of the second substrate and on the side of the driving electrode away from the second substrate, and on the first substrate and the second substrate.
  • a second hydrophilic layer is provided on the surface of the area corresponding to the upper sample injection area. This is beneficial for the sample to quickly enter the injection area.
  • FIG. 4B shows a flowchart of a method for manufacturing a microfluidic control system provided by an embodiment of the present disclosure.
  • the manufacturing method of the microfluidic control system includes steps S41 to S42.
  • Step S41 the second substrate is divided into a detection area and a sample injection area, a drive electrode is arranged in the sample injection area, and a liquid storage area and a control electrode are arranged in the detection area, and the liquid storage area is similar to the sampling area. Adjacent to and provided with electrodes.
  • step S42 an opening is provided in a region of the first substrate corresponding to the sample injection region on the second substrate, for allowing a sample to enter the microfluidic control system from the outside through the opening.
  • the driving electrode, the control electrode and the electrode located in the liquid storage area can be formed on the second substrate through the same patterning process.
  • the driving electrode, the control electrode and the electrode located in the liquid storage area can be formed of the same material, which can include (but is not limited to) nickel (Ni), copper (Cu), lead (Pb), platinum (Pt), gold ( Au), titanium (Ti) and other metals and their alloys.
  • the driving electrode, the control electrode, and the electrode located in the liquid storage area may also be formed by different patterning processes, and include the same material or different materials.
  • step S41 may further include disposing a dielectric layer on the surface of the detection area on the second substrate opposite to the first substrate, disposing a first hydrophobic layer on the dielectric layer, And a first hydrophilic layer is provided on the surface of the sample injection area on the second substrate opposite to the first substrate.
  • Step S42 may further include: disposing a second hydrophobic layer on the surface of the area of the first substrate corresponding to the detection area on the second substrate, and performing sample injection on the first substrate and the second substrate.
  • a second hydrophilic layer is provided on the surface of the area corresponding to the area.
  • the first substrate and the second substrate may be formed of a hydrophilic material.
  • the surface of the sample injection area on the second substrate opposite to the first substrate may be omitted.
  • At least one embodiment of the present disclosure also provides a detection method using a microfluidic control system.
  • the microfluidic control system may be the microfluidic control system provided by an embodiment of the present disclosure, and includes a first substrate 10 and a second substrate 20 opposed to each other.
  • the second substrate 20 includes a sampling area 21 and a detection area 22, and the first substrate 10 includes an opening 11 corresponding to the sampling area 21 of the second substrate 20.
  • the detection method includes step S61-step S63.
  • Step S61 Inject the sample into the sample injection area through the opening.
  • Step S62 Control the sampling area to drive the sample in the sampling area to move to the detection area.
  • Step S63 Control the detection of the sample through the detection area.
  • the sampling area 21 of the second substrate 20 of the microfluidic control system is provided with a driving electrode D
  • the detection area 22 of the second substrate 20 is provided with a control electrode 221
  • the detection area 22 includes a liquid storage area 23
  • the liquid storage area 23 is arranged adjacent to the sampling area 11 and is provided with a storage electrode 231; at this time, the detection method may include: injecting the sample into the sampling area 21 through the opening 11; applying to the driving electrode D of the sampling area 21 The voltage is applied to control the movement of the sample to the detection area 22; the voltage is applied to the storage electrode 231 of the liquid storage area 23 to promote the sample to enter the liquid storage area 23; and the voltage is applied to the control electrode 221 to control the detection of the sample.
  • FIG. 5B shows a flowchart of a detection method using a microfluidic control system provided by at least one embodiment of the present disclosure.
  • the detection method using the microfluidic control system includes steps S51-S54.
  • the microfluidic control system includes a first substrate 10 and a second substrate 20.
  • the second substrate 20 is divided into a sample injection area 21 and a detection area 22.
  • the sample injection area 21 on the second substrate 20 is provided with driving electrodes.
  • the detection area 22 on the second substrate 20 is provided with a liquid storage area 23 and a control electrode 221.
  • the liquid storage area 23 is adjacent to the sample injection area 21 and is provided with a storage electrode 231.
  • the first substrate An area of 10 corresponding to the sample injection area 21 on the second substrate 20 is provided with an opening 11.
  • Step S51 Inject a fluid sample into the microfluidic control system through the opening 11.
  • step S52 the fluid sample is controlled to move to the detection area 22 by a voltage applied to the driving electrode D located in the sample injection area 21.
  • step S53 the fluid sample is controlled to enter the liquid storage area 23 by the voltage applied to the storage electrode 231 located in the liquid storage area 23.
  • step S54 the detection of the fluid sample is controlled by the voltage applied to the control electrode 221 located in the detection area 22.
  • the microfluidic control system provided by the embodiments of the present disclosure can overcome the problem that the fluid sample is difficult to enter the microfluidic control system due to the hydrophobic surface.
  • the driving effect of the fluid in electrohydrodynamics transports the fluid sample to the detection area, thereby realizing the automatic sample addition process of the microfluidic control system.
  • the embodiments of the present disclosure integrate the driving electrode structure and the microfluidic control electrode structure without changing the structure of the existing microfluidic control chip, and take advantage of the advantage that the surface of the driving electrode does not need to be hydrophobicized, and the fluid sample is first Add the sample injection area, and then use the AC electroosmosis and AC electrothermal effects to drive the fluid sample to the detection area, adding an automatic sample injection function to the microfluidic control system.
  • the structure design of the driving electrode is simple, and no special process is required. It only needs to apply a specific voltage signal to realize the fluid drive without affecting the functionality of the microfluidic control system. And completeness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种微流体控制系统及其制作方法、检测方法,微流体控制系统包括第一基板(10)和第二基板(20),第二基板(20)包括进样区域(21)和检测区域(22),第一基板(10)包括与第二基板(20)的进样区域(21)相对应的开口(11),配置为使样本从开口(11)进入进样区域(21),进样区域(21)配置为可驱动进入进样区域(21)的样本向检测区域(22)移动。

Description

微流体控制系统及其制作方法、检测方法
本申请要求于2019年03月29日递交的中国专利申请第201910249617.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种微流体控制系统及其制作方法、检测方法。
背景技术
微流体控制技术能够实现对微小液滴的精准控制和操控。基于介电润湿技术的数字微流体控制采用电学信号驱动,具有驱动力强、操控简便、芯片结构简单、自动化程度高等优点,是片上实验室系统的重要组成部分。
电流体动力驱动是一种利用交变电场来驱动流体运动的技术。根据驱动原理的不同,又可分为交流电渗效应和交流电热效应。交流电渗效应作用于流体中位于电极表面的离子和可被极化的粒子,通过粒子的运动来带动流体的移动。交流电热效应利用导电流体产生焦耳热效应,导致溶液电属性的变化,在不均匀电场的作用下,流体中产生净电荷,引发电场作用力,带动流体运动。
发明内容
本公开至少一个实施例提供一种微流体控制系统,微流体控制系统该包括对置的第一基板和第二基板,其中,所述第二基板包括进样区域和检测区域,所述第一基板包括与所述第二基板的所述进样区域相对应的开口,配置为使样本从所述开口进入所述进样区域,所述进样区域配置为可驱动进入所述进样区域的所述样本向所述检测区域移动。
例如,本公开至少一个实施例提供的微流体控制系统还包括驱动电极,其中,所述驱动电极设置在所述第二基板的所述进样区域,配置为驱动进入所述进样区域的所述样本向所述检测区域移动。
例如,本公开至少一个实施例提供的微流体控制系统中,所述驱动电极 包括两组相对设置的指状电极。
例如,本公开至少一个实施例提供的微流体控制系统中,所述两组相对设置的指状电极包括第一指状电极和第二指状电极;所述第一指状电极包括多个第一条状电极,所述第二指状电极包括多个第二条状电极,所述多个第一条状电极与所述多个第二条状电极沿从所述进样区域到所述检测区域的方向交替排布。
例如,本公开至少一个实施例提供的微流体控制系统还包括驱动器,其中,所述驱动器配置为向所述驱动电极输入交流电信号。
例如,本公开至少一个实施例提供的微流体控制系统还包括第一亲水层,其中,所述第一亲水层设置在所述第二基板的进样区域,并设置在所述驱动电极的靠近所述第一基板的一侧。
例如,本公开至少一个实施例提供的微流体控制系统还包括第二亲水层,其中,所述第二亲水层设置在所述第一基板的与所述第二基板的所述进样区域相对应的区域的表面上。
例如,本公开至少一个实施例提供的微流体控制系统中,所述第二基板的所述检测区域包括储液区,所述储液区与所述进样区域相邻设置,用于存储从所述进样区域进入的所述样本。
例如,本公开至少一个实施例提供的微流体控制系统还包括存储电极,其中,所述存储电极设置在所述储液区,用于促进所述样本进入所述储液区。
例如,本公开至少一个实施例提供的微流体控制系统还包括控制电极,其中,所述控制电极设置在所述第二基板的所述检测区域,配置为控制对所述样本的检测。
例如,本公开至少一个实施例提供的微流体控制系统中,所述控制电极是正方形块状电极、矩形块状电极、圆形块状电极或者椭圆形块状电极。
例如,本公开至少一个实施例提供的微流体控制系统还包括介电层,其中,所述介电层设置在所述第二基板的所述检测区域,且设置在所述控制电极的靠近所述第一基板的一侧。
例如,本公开至少一个实施例提供的微流体控制系统还包括第一疏水层,其中,所述第一疏水层设置在所述介电层的靠近所述第一基板的一侧。
例如,本公开至少一个实施例提供的微流体控制系统还包括第二疏水层,其中,所述第二疏水层设置在所述第一基板的与所述第二基板的所述检 测区域相对应的区域的表面上。
本公开至少一个实施例提供一种微流体控制系统的制作方法,包括:提供第一基板和第二基板,其中,所述第二基板包括进样区域和检测区域,所述进样区域配置为可驱动进入所述进样区域的样本向所述检测区域移动;所述第一基板包括开口;以及对置所述第一基板和所述第二基板,其中,所述第一基板的所述开口与所述第二基板的所述进样区域相对应,以使样本可从所述开口进入所述进样区域。
例如,本公开至少一个实施例提供的微流体控制系统的制作方法中,所述检测区域包括储液区,所述储液区与进样区域相邻设置;所述制作方法还包括:在所述进样区域设置驱动电极,在所述检测区域设置控制电极,以及在所述储液区设置存储电极。
例如,本公开至少一个实施例提供的微流体控制系统的制作方法还包括:在所述第二基板的检测区域以及所述控制电极和所述电极的远离所述第二基板的一侧设置介电层,在所述介电层的远离所述第二基板的一侧设置第一疏水层,以及在所述第一基板的与所述第二基板上的检测区域相对应的区域的表面上设置第二疏水层。
例如,本公开至少一个实施例提供的微流体控制系统的制作方法还包括:在所述第二基板的进样区域以及在所述驱动电极的远离所述第二基板的一侧设置第一亲水层,以及在所述第一基板的与所述第二基板上的进样区域相对应的区域的表面上设置第二亲水层。
本公开至少一个实施例还提供一种使用微流体控制系统的检测方法,所述微流体控制系统包括对置的第一基板和第二基板,所述第二基板包括进样区域和检测区域,所述第一基板包括与所述第二基板的所述进样区域相对应的开口;所述检测方法包括:将样本通过所述开口注入到所述进样区域;控制所述进样区域,以驱动所述进样区域内的所述样本向所述检测区域移动;以及通过所述检测区域控制对所述样本的检测。
例如,本公开至少一个实施例提供的使用微流体控制系统的检测方法中,所述第二基板的进样区域设置有驱动电极,所述第二基板的检测区域设置控制电极,所述检测区域包括储液区,所述储液区与所述进样区域相邻设置并且设置有存储电极;其中,控制所述进样区域包括:向所述进样区域的驱动电极施加电压,以控制所述样本向所述检测区域移动;通过所述检测区 域控制对所述样本的检测包括:向所述储液区的存储电极施加电压,以促进所述样本进入所述储液区;以及向所述控制电极施加电压,以控制对所述样本的检测。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是本公开至少一实施例提供的微流体控制系统的示意图;
图2是图1所示的微流体控制系统的侧视图;
图3是图1所示的微流体控制系统的工作示意图;
图4A是本公开至少一实施例提供的微流体控制系统的制作方法的流程图;
图4B是本公开至少一实施例提供的微流体控制系统的制作方法的流程图;
图5A是本公开至少一实施例提供的使用微流体控制系统的检测方法的流程图;以及
图5B是本公开至少一实施例提供的使用微流体控制系统的检测方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他 元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
微流体控制器件是芯片上实验室(lab-on-a-chip)的关键部件,应用于要求精密流体控制的各种器件,诸如蛋白质芯片、DNA芯片、药物输送系统、微型综合分析系统和微反应器等。然而,由于数字微流体控制芯片的表面和盖板均采用疏水处理,从而具有疏水性,导致从外部加样十分困难。
本公开的实施例提供一种微流体控制系统及其制作方法、检测方法,该微流体控制系统可实现自动加样,从而可用于解决封闭式数字微流体控制器件难以从外部加样等技术问题。
例如,图1示出了本公开至少一实施例提供的微流体控制系统的示意图。图2示出了图1所示的微流体控制系统的侧视图。
如图1和图2所示,该微流体控制系统包括对置的第一基板10(例如图中示出为上基板作为示例)和第二基板20(例如图中示出为下基板作为示例),第二基板20包括进样区域21和检测区域22,第一基板10包括与第二基板20的进样区域21相对应的开口11,配置为使样本从开口11进入进样区域21,进样区域21配置为可驱动进入进样区域21的样本向检测区域22移动。例如,对应于第二基板20的进样区域21和检测区域22,微流体控制系统也相应地具有进样区域21和检测区域22。
例如,在图1和图2示出的微流体控制系统中,左侧虚线框指示的部分为进样区域21,右侧虚线框指示的部分为检测区域22。
例如,进样区域21包括两组相对设置的驱动电极D,可通过对该驱动电极施加电压,来驱动进入进样区域21的样本向检测区域22移动。例如,在一些示例中,可对这两组驱动电极D施加交流电信号,以驱动进入进样区域21的样本移动。
例如,在一些实施例中,驱动电极D可以是指状电极结构,例如非对称的指状电极结构,包括两组相对设置的指状电极。例如,两组驱动电极中的电极条的宽度可以不同。例如,两组驱动电极D包括第一指状电极D1和第二指状电极D2,第一指状电极D1包括多个第一条状电极,第二指状电极D2包括多个第二条状电极,多个第一条状电极与多个第二条状电极沿从进 样区域21到检测区域22的方向交替排布,即两组驱动电极D中的条状电极沿从进样区域21到检测区域22的方向交叉排列。
例如,在一些示例中,较窄的驱动电极(即第一指状电极D1)的每个条状电极的宽度可以为5-10μm,长度为8mm。较宽的驱动电极(即第二指状电极D2)的每个条状电极的宽度可以为较窄的条状电极的宽度的五倍左右,例如为约50-100μm。例如,较宽的条状电极的长度与较窄的条状电极的长度可以基本相同。例如,交叉排列的较窄的条状电极与较宽的条状电极之间的间距可以为5-10μm。
需要说明的是,上面给出的数值以及数值范围仅作为举例,本公开的实施例对此不做限定,本领域技术人员可以根据具体的产品需求调整上述数值以及数值范围。
例如,在一些实施例中,微流体控制系统还包括驱动器211(参考图3),驱动器211与驱动电极D信号连接,配置为向驱动电极D输入交流电信号。
例如,在一些实施例中,检测区域22可以包括储液区23,储液区23与进样区域21相邻设置,用于存储从进样区域21进入的样品。例如,储液区23设置有存储电极231,通过对存储电极231施加电压,可促进样品快速从进样区域21进入储液区23(稍后详述)。
例如,检测区域22内设置有控制电极221,例如,控制电极221设置在储液区23的远离进样区域21的一侧,用于控制对样本的检测。例如,在一些示例中,控制电极221可以由多个正方形块状电极、长方形块状电极、圆形块状电极或者椭圆形块状电极组成。例如,图1示出为控制电极221由多个正方形的块状电极组成。例如,每个块状电极的边长可以为3mm。储液区的长度(即储液区在图1中竖直方向的尺寸)可以为控制电极的总长度的2-4倍,例如约3倍,例如,储液区的长度可以为约9-10mm,储液区的宽度(即储液区在图1中水平方向的尺寸)可以为5-10mm。
需要说明的是,上面给出的数值以及数值范围仅作为举例,本公开的实施例已对此不做限定,本领域技术人员可以根据具体的产品需求调整上述数值以及数值范围。
例如,在一些实施例中,微流体控制系统还可以包括亲水层,该亲水层包括第一亲水层212和第二亲水层213,第一亲水层212设置在第二基板20的进样区域21,并设置在驱动电极D的靠近第一基板10的一侧;第二亲水 层213设置在第一基板10的与第二基板20的进样区域21相对应的区域的表面上。由此有利于样本从开口11快速进入进样区域21。
例如,在一些实施例中,微流体控制系统还可以包括介电层222和疏水层,介电层222设置在第二基板20的检测区域22,且设置在控制电极221的靠近第一基板10的一侧。例如,疏水层包括第一疏水层223和第二疏水层224,第一疏水层223设置在介电层222的靠近第一基板10的一侧;第二疏水层224设置在第一基板10的与第二基板20的检测区域23相对应的区域的表面上。
例如,如图2所示,在进样区域21,微流体控制系统的结构从下至上依次为:第二基板20、驱动电极D、第一亲水层212、流体通道214(即第一基板10和第二基板20之间的空间)、第二亲水层213、第一基板10。加样口位于与进样区域21相对应的第一基板10中,用于使流体样本从外部进入所述微流体控制系统中。具体地,可以在与进样区域21相对应的第一基板10处形成开口11以作为加样口。
如图2所示,在检测区域22,微流体控制系统的结构从下至上依次为:第二基板20、电极阵列(例如金属电极阵列)、介电层222、第一疏水层223、流体通道14、第二疏水层224和第一基板10。所述金属电极阵列包括位于储液区23的存储电极231和位于储液区23之外的控制电极221。
例如,在另一些实施例中,第一基板10和第二基板20可以采用具有亲水性的材料制作,此时,进样区域21的第一基板10和第二基板20上就不需要形成亲水层。由此,可以减少制作微流体控制系统的工艺步骤。
例如,图3示出了图1所示的微流体控制系统的工作示意图。
下面,结合图3,对本公开实施例提供的微流体控制系统的加样过程进行介绍。
首先,利用例如移液器12等加样工具将样本(例如流体样本)通过位于进样区域21的加样口(例如第一基板10中的开口11)注入到封闭的微流体控制系统中。例如,样本首先进入到进样区域21。由于加样口位于与进样区域21相对应的第一基板10处,并且与进样区域21相对应的第一基板10的表面具有亲水性,因此流体样本能够容易地进入微流体控制系统中。
接着,采用驱动器211给两组相对设置的驱动电极施加电信号,例如交流电信号。例如,交流电信号的幅值可以为1-10V,频率可以为1-100kHz, 具体数值可以根据所驱动的流体样本的性质和选用的电极材料决定。在交流信号的驱动下,流体样本将会产生向右侧的横向移动,即向检测区域移动,并逐渐移动到位于检测区域的储液区。
与具有亲水表面的进样区域21不同,检测区域22具有疏水表面,因此当流体样本靠近检测区域22的储液区23时,例如,可以给位于储液区23的存储电极231施加50-100V的电压,使其表面改变成具有亲水性,从而促进样本进入储液区23,例如使流体样本能够顺利地流入储液区23中。
在流体样本进入储液区23后,就完成了微流体控制系统的自动加样。然后可以在检测区域22进行液滴生成、驱动、检测等各种操控。在此不再赘述。
本公开至少一实施例还提供一种微流体控制系统的制作方法,如图4A所示,该制作方法包括步骤S31和步骤S32。
步骤S31:提供第一基板和第二基板。第二基板包括进样区域和检测区域,进样区域配置为可驱动进入进样区域的样本向检测区域移动;第一基板包括开口。
步骤S32:对置第一基板和第二基板。当第一基板和第二基板对置后,第一基板的开口与第二基板的进样区域相对应,以使样本可从开口进入进样区域。
例如,第一基板和第二基板可以采用玻璃基板、树脂基板等任意形式的基板,本公开的实施例对此不做限定。
例如,在一些实施例中,检测区域包括储液区,储液区与进样区域相邻设置;此时,制作方法还包括:在进样区域设置驱动电极,在检测区域设置控制电极,以及在储液区设置电极。进样区域中的驱动电极配置为驱动进入进样区域的样本向检测区域移动,检测区域的控制电极配置为控制对样本的检测,储液区的电极配置为促进样本顺利进入储液区。
例如,在一些实施例中,制备方法还包括:在第二基板的检测区域以及控制电极和电极的远离第二基板的一侧设置介电层,在介电层的远离第二基板的一侧设置第一疏水层,以及在第一基板的与第二基板上的检测区域相对应的区域的表面上设置第二疏水层。由此有利于对样本进行检测。
例如,在一些实施例中,制备方法还包括:在第二基板的进样区域以及在驱动电极的远离第二基板的一侧设置第一亲水层,以及在第一基板的与第 二基板上的进样区域相对应的区域的表面上设置第二亲水层。由此有利于样本快速进入进样区域。
示例性地,图4B示出了本公开实施例提供的微流体控制系统的制作方法的流程图。
如图4B所示,该微流体控制系统的制作方法包括步骤S41至S42。
步骤S41,将第二基板划分为检测区域和进样区域,在所述进样区域设置驱动电极,并且在所述检测区域设置储液区和控制电极,所述储液区与进样区域相邻设置并且设置有电极。
步骤S42,在所述第一基板的与所述第二基板上的进样区域相对应的区域设置开口,用于使样本从外部通过所述开口进入所述微流体控制系统中。
步骤S41中,可以通过同一构图工艺在第二基板上形成驱动电极、控制电极和位于储液区的电极。驱动电极、控制电极和位于储液区的电极可以使用相同的材料形成,该材料可以包括(但不限于)镍(Ni)、铜(Cu)、铅(Pb)、铂(Pt)、金(Au)、钛(Ti)等金属及其合金。例如,在本公开的其他实施例中,驱动电极、控制电极和位于储液区的电极也可以通过不同的构图工艺形成,并包括相同的材料或者不同的材料。
例如,在一些实施例中,步骤S41还可以包括在所述第二基板上的检测区域的与第一基板相对的表面上设置介电层,在所述介电层上设置第一疏水层,以及在所述第二基板上的进样区域的与第一基板相对的表面上设置第一亲水层。步骤S42还可以包括:在第一基板的与第二基板上的检测区域相对应的区域的表面上设置第二疏水层,以及在所述第一基板的与所述第二基板上的进样区域相对应的区域的表面上设置第二亲水层。
例如,在另一些实施例中,第一基板和第二基板可以采用具有亲水性的材料形成,此时,可以省略在所述第二基板上的进样区域的与第一基板相对的表面上设置第一亲水层以及在所述第一基板的与所述第二基板上的进样区域相对应的区域设置第二亲水层的工艺步骤。
本公开至少一实施例还提供一种使用微流体控制系统的检测方法,该微流体控制系统可以为本公开实施例提供的微流体控制系统,包括对置的第一基板10和第二基板20,第二基板20包括进样区域21和检测区域22,第一基板10包括与第二基板20的所述进样区域21相对应的开口11。如图5A所示,该检测方法包括步骤S61-步骤S63。
步骤S61:将样本通过开口注入到进样区域。
步骤S62:控制进样区域,以驱动进样区域内的样本向检测区域移动。
步骤S63:通过检测区域控制对样本的检测。
由此可实现样本的自动加样以及检测。
例如,在一些实施例中,微流体控制系统的第二基板20的进样区域21设置有驱动电极D,第二基板20的检测区域22设置控制电极221,检测区域22包括储液区23,储液区23与进样区域11相邻设置并且设置有存储电极231;此时,检测方法可以包括:将样本通过开口11注入到进样区域21中;向进样区域21的驱动电极D施加电压,以控制样本向检测区域22移动;向储液区23的存储电极231施加电压,以促进样本进入储液区23;以及向控制电极221施加电压,以控制对样本的检测。
示例性地,图5B示出了本公开至少一实施例提供的使用微流体控制系统的检测方法的流程图。
如图5B所示,该使用微流体控制系统的检测方法包括步骤S51-S54。
例如,微流体控制系统包括第一基板10和第二基板20,所述第二基板20划分为进样区域21和检测区域22,所述第二基板20上的进样区域21设置有驱动电极D,所述第二基板20上的检测区域22设置有储液区23和控制电极221,所述储液区23与进样区域21相邻设置并且设置有存储电极231,所述第一基板10的与所述第二基板20上的进样区域21相对应的区域设置有开口11。
步骤S51,将流体样本通过所述开口11注入到微流体控制系统中。
步骤S52,通过施加到位于进样区域21的驱动电极D的电压控制所述流体样本向检测区域22移动。
步骤S53,通过施加到位于储液区23的存储电极231的电压控制流体样本进入储液区23。
步骤S54,通过施加到位于检测区域22的控制电极221的电压控制流体样本的检测。
本公开实施例提供的微流体控制系统可以克服由于表面具有疏水性而导致的流体样本难以进入微流体控制系统中的问题,通过将驱动电极结构与微流体控制电极结构集成到同一芯片上,利用电流体动力学中对流体的驱动效应将流体样本输运至检测区域,从而实现了微流体控制系统的自动加样过 程。
本公开的实施例在不改变现有的微流体控制芯片结构的前提下,将驱动电极结构与微流体控制电极结构集成在一起,利用驱动电极表面不需要进行疏水处理的优势,将流体样本首先加入进样区域,然后再利用交流电渗和交流电热效应将流体样本驱动至检测区域,为微流体控制系统增加了自动加样的功能。
此外,本公开实施例提供的微流体控制系统中,驱动电极的结构设计简单,无需任何特殊工艺,只需通过施加特定的电压信号来实现流体驱动,并不会影响微流体控制系统的功能性和完整性。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种微流体控制系统,包括对置的第一基板和第二基板,
    其中,所述第二基板包括进样区域和检测区域,所述第一基板包括与所述第二基板的所述进样区域相对应的开口,配置为使样本从所述开口进入所述进样区域,所述进样区域配置为可驱动进入所述进样区域的所述样本向所述检测区域移动。
  2. 如权利要求1所述的微流体控制系统,还包括驱动电极,
    其中,所述驱动电极设置在所述第二基板的所述进样区域,配置为驱动进入所述进样区域的所述样本向所述检测区域移动。
  3. 如权利要求2所述的微流体控制系统,其中,所述驱动电极包括两组相对设置的指状电极。
  4. 如权利要求3所述的微流体控制系统,其中,所述两组相对设置的指状电极包括第一指状电极和第二指状电极;
    所述第一指状电极包括多个第一条状电极,所述第二指状电极包括多个第二条状电极,所述多个第一条状电极与所述多个第二条状电极沿从所述进样区域到所述检测区域的方向交替排布。
  5. 如权利要求2-4任一所述的微流体控制系统,还包括驱动器,
    其中,所述驱动器配置为向所述驱动电极输入交流电信号。
  6. 如权利要求2-5任一所述的微流体控制系统,还包括第一亲水层,
    其中,所述第一亲水层设置在所述第二基板的进样区域,并设置在所述驱动电极的靠近所述第一基板的一侧。
  7. 如权利要求6所述的微流体控制系统,还包括第二亲水层,
    其中,所述第二亲水层设置在所述第一基板的与所述第二基板的所述进样区域相对应的区域的表面上。
  8. 如权利要求1-7任一所述的微流体控制系统,其中,所述第二基板的所述检测区域包括储液区,所述储液区与所述进样区域相邻设置,用于存储从所述进样区域进入的所述样本。
  9. 如权利要求8所述的微流体控制系统,还包括存储电极,
    其中,所述存储电极设置在所述储液区,用于促进所述样本进入所述储液区。
  10. 如权利要求1-9任一所述的微流体控制系统,还包括控制电极,
    其中,所述控制电极设置在所述第二基板的所述检测区域,配置为控制对所述样本的检测。
  11. 如权利要求10所述的微流体控制系统,其中,所述控制电极是正方形块状电极、矩形块状电极、圆形块状电极或者椭圆形块状电极。
  12. 如权利要求10或11所述的微流体控制系统,还包括介电层,
    其中,所述介电层设置在所述第二基板的所述检测区域,且设置在所述控制电极的靠近所述第一基板的一侧。
  13. 如权利要求12所述的微流体控制系统,还包括第一疏水层,
    其中,所述第一疏水层设置在所述介电层的靠近所述第一基板的一侧。
  14. 如权利要求13所述的微流体控制系统,还包括第二疏水层,
    其中,所述第二疏水层设置在所述第一基板的与所述第二基板的所述检测区域相对应的区域的表面上。
  15. 一种微流体控制系统的制作方法,包括:
    提供第一基板和第二基板,其中,所述第二基板包括进样区域和检测区域,所述进样区域配置为可驱动进入所述进样区域的样本向所述检测区域移动;所述第一基板包括开口;以及
    对置所述第一基板和所述第二基板,其中,所述第一基板的所述开口与所述第二基板的所述进样区域相对应,以使样本可从所述开口进入所述进样区域。
  16. 如权利要求15所述的微流体控制系统的制作方法,其中,所述检测区域包括储液区,所述储液区与进样区域相邻设置;
    所述制作方法还包括:
    在所述进样区域设置驱动电极,
    在所述检测区域设置控制电极,以及
    在所述储液区设置存储电极。
  17. 如权利要求16所述的微流体控制系统的制作方法,还包括:
    在所述第二基板的检测区域以及所述控制电极和所述存储电极的远离所述第二基板的一侧设置介电层,
    在所述介电层的远离所述第二基板的一侧设置第一疏水层,以及
    在所述第一基板的与所述第二基板上的检测区域相对应的区域的表面 上设置第二疏水层。
  18. 如权利要求16或17所述的微流体控制系统的制作方法,还包括:
    在所述第二基板的进样区域以及在所述驱动电极的远离所述第二基板的一侧设置第一亲水层,以及
    在所述第一基板的与所述第二基板上的进样区域相对应的区域的表面上设置第二亲水层。
  19. 一种使用微流体控制系统的检测方法,所述微流体控制系统包括对置的第一基板和第二基板,所述第二基板包括进样区域和检测区域,所述第一基板包括与所述第二基板的所述进样区域相对应的开口;
    所述检测方法包括:
    将样本通过所述开口注入到所述进样区域;
    控制所述进样区域,以驱动所述进样区域内的所述样本向所述检测区域移动;以及
    通过所述检测区域控制对所述样本的检测。
  20. 如权利要求19所述的检测方法,其中,所述第二基板的进样区域设置有驱动电极,所述第二基板的检测区域设置控制电极,所述检测区域包括储液区,所述储液区与所述进样区域相邻设置并且设置有存储电极;
    其中,控制所述进样区域包括:
    向所述进样区域的驱动电极施加电压,以控制所述样本向所述检测区域移动;
    通过所述检测区域控制对所述样本的检测包括:
    向所述储液区的存储电极施加电压,以促进所述样本进入所述储液区;以及
    向所述控制电极施加电压,以控制对所述样本的检测。
PCT/CN2020/077774 2019-03-29 2020-03-04 微流体控制系统及其制作方法、检测方法 WO2020199835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910249617.XA CN111744563A (zh) 2019-03-29 2019-03-29 微流体控制系统及其制作方法
CN201910249617.X 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199835A1 true WO2020199835A1 (zh) 2020-10-08

Family

ID=72664663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077774 WO2020199835A1 (zh) 2019-03-29 2020-03-04 微流体控制系统及其制作方法、检测方法

Country Status (2)

Country Link
CN (1) CN111744563A (zh)
WO (1) WO2020199835A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389840A (zh) * 2010-07-06 2012-03-28 夏普株式会社 阵列元件电路和有源矩阵器件
CN103249486A (zh) * 2010-09-09 2013-08-14 弗劳恩霍夫应用研究促进协会 微流体装置、微流体计量供给系统以及用于微流体测量和计量供给的方法
CN103492078A (zh) * 2011-02-24 2014-01-01 格拉斯哥大学校董事会 用于流体样本的表面声波处理的射流装置、射流装置的用途以及制造射流装置的方法
US20160252517A1 (en) * 2013-10-11 2016-09-01 The Regents Of The University Of California Biomolecular interaction detection devices and methods
US20170089899A1 (en) * 2015-09-28 2017-03-30 Cyclic Solutions, LLC Microfluidic capture and detection of biological analytes
CN108465491A (zh) * 2018-03-12 2018-08-31 京东方科技集团股份有限公司 微流控芯片、生物检测装置和方法
CN109261233A (zh) * 2018-11-19 2019-01-25 京东方科技集团股份有限公司 微流控芯片

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020309A1 (en) * 1999-09-13 2001-03-22 Aclara Biosciences, Inc. Side light activated microfluid channels
CA2769320C (en) * 2009-08-02 2021-01-26 Qvella Corporation Cell concentration, capture and lysis devices and methods of use thereof
CN103983794B (zh) * 2013-02-12 2016-06-15 李木 一种微流控芯片及一种微流控方法
CN109078661B (zh) * 2018-08-09 2020-06-23 京东方科技集团股份有限公司 微流控芯片及其检测和驱动方法、片上实验室系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389840A (zh) * 2010-07-06 2012-03-28 夏普株式会社 阵列元件电路和有源矩阵器件
CN103249486A (zh) * 2010-09-09 2013-08-14 弗劳恩霍夫应用研究促进协会 微流体装置、微流体计量供给系统以及用于微流体测量和计量供给的方法
CN103492078A (zh) * 2011-02-24 2014-01-01 格拉斯哥大学校董事会 用于流体样本的表面声波处理的射流装置、射流装置的用途以及制造射流装置的方法
US20160252517A1 (en) * 2013-10-11 2016-09-01 The Regents Of The University Of California Biomolecular interaction detection devices and methods
US20170089899A1 (en) * 2015-09-28 2017-03-30 Cyclic Solutions, LLC Microfluidic capture and detection of biological analytes
CN108465491A (zh) * 2018-03-12 2018-08-31 京东方科技集团股份有限公司 微流控芯片、生物检测装置和方法
CN109261233A (zh) * 2018-11-19 2019-01-25 京东方科技集团股份有限公司 微流控芯片

Also Published As

Publication number Publication date
CN111744563A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Urbanski et al. Fast ac electro-osmotic micropumps with nonplanar electrodes
US8037903B2 (en) Micromachined electrowetting microfluidic valve
Zhu et al. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface
US8834695B2 (en) Droplet manipulations on EWOD microelectrode array architecture
JP4642909B2 (ja) エレクトロウェッティング方式の技術を用いて小滴を操作するための方法および装置
CN107699485B (zh) 微电极流控芯片及可调参数单细胞电穿孔装置
JP4997571B2 (ja) マイクロ流体デバイスおよびそれを用いた分析装置
US7591936B2 (en) Microfluidic device wherein the liquid/fluid interface is stabilized
TWI510296B (zh) 介質上電潤濕微電極陣列結構上的液滴處理方法
CN106215984B (zh) 基于介电泳作用的微流控芯片
CN108215498A (zh) 药液吐出装置和药液滴下装置
US20110056834A1 (en) Dielectrophoresis-based microfluidic system
KR101598847B1 (ko) 액적의 직접 충전 및 전기영동에 기반한 전기천공 기기, 장치 및 방법
US11052391B2 (en) Reconfigurable microfluidic device and method of manufacturing the same
Ren et al. Flexible particle flow‐focusing in microchannel driven by droplet‐directed induced‐charge electroosmosis
WO2022227268A1 (zh) 一种微流控芯片
CN108405004A (zh) 一种液滴生成控制方法及其系统
WO2020199835A1 (zh) 微流体控制系统及其制作方法、检测方法
DE102010043030A1 (de) Mikrofluidische Vorrichtung und mikrofluidisches Verfahren zur Verarbeitung von Biopartikeln
CN114632561B (zh) 混合式数字微流控芯片及液滴驱动方法
KR100826584B1 (ko) 바이오칩 분석을 위한 유체 채널링 액츄에이터
CN109806803A (zh) 一种具有电润湿阈门的微流体混合装置及其控制方法
Chen et al. Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics
CN115895877A (zh) 一种用于反向灭杀的微流控芯片检测系统
US20240165610A1 (en) Microfluidic chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782566

Country of ref document: EP

Kind code of ref document: A1