WO2020199779A1 - 信息发送方法及装置 - Google Patents

信息发送方法及装置 Download PDF

Info

Publication number
WO2020199779A1
WO2020199779A1 PCT/CN2020/075953 CN2020075953W WO2020199779A1 WO 2020199779 A1 WO2020199779 A1 WO 2020199779A1 CN 2020075953 W CN2020075953 W CN 2020075953W WO 2020199779 A1 WO2020199779 A1 WO 2020199779A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission opportunity
transmission
time domain
information
opportunity
Prior art date
Application number
PCT/CN2020/075953
Other languages
English (en)
French (fr)
Inventor
任敏
韩祥辉
邓一伟
郝鹏
苟伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20785246.8A priority Critical patent/EP3952536A4/en
Priority to US17/598,376 priority patent/US20220191846A1/en
Publication of WO2020199779A1 publication Critical patent/WO2020199779A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • This application relates to the field of communications, for example, to a method and device for sending information.
  • 5G the 5th Generation mobile communication technology
  • 5G systems are committed to researching higher speeds (Gbps), massive links (1M/Km2), ultra-low latency (1ms), higher reliability, and hundred times energy efficiency Upgrade and other technical indicators to support new demand changes.
  • slot-based aggregation and non-scheduling slot-based repetitions are introduced to ensure coverage, which means that the terminal uses multiple time slots to repeatedly send transport blocks (Transport). Block, TB), and TB has the same time domain resource allocation on each time slot.
  • Transport blocks Block, TB
  • TB transport blocks
  • the length of the time slot that can be aggregated or repeated is 1/2/4/8.
  • the second stage of 5G in order to support the characteristics of ultra-high reliability and ultra-low delay transmission, and complete the transmission of low-latency and high-reliability services within a short transmission time, it is necessary to implement dynamic scheduling-based uplink aggregate transmission and scheduling-free The uplink repetitive transmission is enhanced, so mini-slot based is introduced to retransmit TB.
  • the embodiments of the present application provide an information sending method and device to at least solve the problem of how to use the transmission opportunity to send the transmission block in the related art.
  • an information sending method including:
  • an information sending device including:
  • the receiving module is configured to receive configuration information used to indicate that there are Q transmission opportunities for the same transport block in consecutive R time slots, where Q is an integer greater than or equal to 1, and R is an integer;
  • the sending module is configured to send the transmission block according to the configuration information.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • receiving configuration information indicating that the same transmission block has Q transmission opportunities in R consecutive time slots, and sending the transmission block according to the configuration information can solve how to use the transmission opportunity to send transmission in related technologies Block problem.
  • FIG. 1 is a block diagram of the hardware structure of a mobile terminal of an information sending method according to an embodiment of the present application
  • Fig. 2 is a flowchart of an information sending method according to an embodiment of the present application
  • FIG. 3 is a first schematic diagram of transmission opportunity #t according to an embodiment of the present application.
  • Fig. 4 is a first schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • Fig. 5 is a second schematic diagram of sending a transport block according to a preferred embodiment of the present application.
  • Fig. 6 is a third schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • Fig. 7 is a fourth schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • Fig. 8 is a fifth schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • FIG. 9 is a sixth schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • FIG. 10 is a seventh schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • Fig. 11 is a schematic diagram eight of sending a transmission block according to a preferred embodiment of the present application.
  • FIG. 12 is a schematic diagram 9 of sending a transmission block according to a preferred embodiment of the present application.
  • Figure 13 is a tenth schematic diagram of sending a transport block according to a preferred embodiment of the present application.
  • FIG. 14 is a schematic eleventh diagram of sending a transmission block according to a preferred embodiment of the present application.
  • Fig. 15 is a block diagram of an information sending device according to an embodiment of the present application.
  • FIG. 1 is a hardware structure block diagram of a mobile terminal of an information sending method according to an embodiment of the present application.
  • the mobile terminal 10 may include one or more (only in FIG. A) a processor 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data.
  • the above-mentioned mobile terminal may also include A transmission device 106 and an input/output device 108 for communication functions.
  • FIG. 1 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 may be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the message receiving method in the embodiment of the present application.
  • the processor 102 executes the computer programs stored in the memory 104 by running Various functional applications and data processing, namely to achieve the above methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network INterface CoNtroller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio FrequeNcy, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio FrequeNcy
  • FIG. 2 is a flowchart of an information sending method according to an embodiment of the present application. As shown in Fig. 2, the process includes the following steps:
  • Step S202 Receive configuration information used to indicate that the same transport block has Q transmission opportunities in R consecutive time slots, where Q is an integer greater than or equal to 1, and R is an integer, 0 ⁇ R ⁇ Q;
  • Step S204 Send the transmission block according to the configuration information.
  • receiving configuration information indicating that the same transmission block has Q transmission opportunities in consecutive R time slots, and sending the transmission block according to the configuration information can solve how to use transmission in related technologies. Opportunity to send transmission block problem.
  • the configuration information includes at least one of the following:
  • the t is the transmission opportunity index
  • the t is an integer
  • 0 ⁇ t ⁇ Q is the transmission opportunity index
  • sending the DMRS on the transmission opportunity #t includes:
  • the DMRS is sent on a time domain symbol corresponding to the transmission opportunity #t.
  • the configuration information may further include:
  • the frequency domain position of the transmission opportunity #t is the same as the frequency domain position of the second hop of the second hop of the previous transmission opportunity/the first hop of the first hop of the next transmission opportunity in the time domain.
  • the configuration information may further include:
  • the transmission opportunity is the transmission opportunity #t; wherein, the N is an integer greater than or equal to 1;
  • the transmission opportunity is transmission opportunity #t.
  • the L and X are integers greater than or equal to 1.
  • the predefined target code rate is notified by radio resource control RRC or downlink control information DCI, or obtained by the target code rate in the modulation and coding mode MCS index.
  • the configuration information includes:
  • Time domain resource information indicating the Q transmission opportunities
  • the transmission scheme indicating the Q transmission opportunities may include one of the following:
  • Transmission scheme 1 There are Q transmission opportunities in the same time slot, or on a segment of the same time slot for transmitting uplink information, or on consecutive R time slots;
  • Transmission scheme 2 There is only one transmission opportunity in a section of resources for transmitting uplink information in the same time slot.
  • the time domain resource information includes at least one of the following information combinations:
  • Information combination 1 the start symbol Si of the i-th transmission opportunity, the time domain duration Li of the i-th transmission opportunity, and the slot index of the i-th transmission opportunity, or the start symbol Si of the i-th transmission opportunity , The time domain duration Li of the i-th transmission opportunity and the slot index starting from the second transmission opportunity;
  • Information combination three the start symbol Si of the i-th transmission opportunity, the time domain duration Li of the i-th transmission opportunity, and a cross-slot indicator, where the cross-slot indicator is related to the number of transmission opportunities or the number of repetitions;
  • the i is an integer, 0 ⁇ i ⁇ Q.
  • the SLIVi is used to obtain the time domain start symbol Si and the time domain duration Li of the i-th transmission opportunity.
  • the time domain resource information is configured by a higher layer.
  • the time domain resource information is jointly indicated by the higher layer configuration and RRC signaling; or
  • the time domain resource information is jointly indicated by high-level configuration and DCI signaling.
  • the time slot index of the first transmission opportunity is determined by the timing, where the timing refers to the time from when DCI is sent in downlink to the physical uplink shared channel PUSCH is sent in uplink.
  • the cross-slot indication is a bitmap bitmap indication, which indicates that the current transmission opportunity crosses the time slot boundary by bit flipping, wherein the first bit in the cross-slot indication field indicates the time of the second transmission opportunity Slot index information.
  • the configuration information may be obtained through radio resource control RRC signaling or downlink control information DCI.
  • the terminal receives configuration information, and transmits the same PUSCH (Physical Uplink Shared Channel)/TB (Transport Block) repeatedly on one or more transmission opportunities in the same time slot according to the configuration information.
  • the same PUSCH/TB is repeatedly sent on one or more transmission opportunities in multiple consecutive time slots.
  • the mentioned PUSCH or transport block TB all refer to the information carried on the physical uplink shared channel.
  • the configuration information is obtained through any one of the following methods: RRC (Radio Resource Control, radio resource control) signaling, or DCI (Downlink Control Information, downlink control information) signaling.
  • RRC Radio Resource Control, radio resource control
  • DCI Downlink Control Information, downlink control information
  • the transmission opportunity #t is determined by one of the following methods, where #t is the index of the transmission opportunity, t is an integer, and 0 ⁇ t ⁇ Q.
  • #t is the index of the transmission opportunity
  • t is an integer
  • 0 ⁇ t ⁇ Q The actual repetition of #4 in Figure 3 is transmission opportunity #t.
  • the time domain symbol where the transmission opportunity #t is located is defined as an "isolated" symbol.
  • Method 1 If the time domain symbol of a certain transmission opportunity is less than the predefined value N, then the transmission opportunity is transmission opportunity #t, and the time domain symbol of transmission opportunity #t is the "isolated" symbol.
  • N takes different values according to different uplink waveforms. If the uplink is CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing, cyclic prefix-orthogonal frequency division multiplexing), then N is 2, if the uplink is SC-FDMA (Single-Carrier Frequency-Division Multiple Access, single carrier frequency Division multiple access), N is 3.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing, cyclic prefix-orthogonal frequency division multiplexing
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access, single carrier frequency Division multiple access
  • the predefined value N may be notified by RRC signaling or DCI signaling.
  • Fig. 3 is a schematic diagram 1 of transmission opportunity #t according to an embodiment of the present application.
  • nominal transmission opportunity #3 (nominal repetition#3) is divided into actual transmission opportunity # across the slot boundary. 3 and #4 (actual repetition, #3 and #4), then the time domain symbol of actual transmission opportunity #4 is less than 2, so it is transmission opportunity #t, where the time domain symbol of transmission opportunity #t is the "isolated" symbol .
  • FIG. 3 is a first schematic diagram of transmission opportunity #t according to an embodiment of the present application.
  • L 3, which is the time domain symbol length of the first actual transmission opportunity.
  • Method 3 If the target bit rate of the transport block size TBS carried on a certain transmission opportunity is greater than the predefined target bit rate, then the transmission opportunity is transmission opportunity #t, and the time domain symbol of transmission opportunity #t is "isolated" "symbol.
  • the predefined target code rate is notified by RRC or DCI, or obtained according to the target code rate in the MCS (Modulation and Coding Scheme) index.
  • TBS is determined by the time domain symbol length of the first transmission opportunity, and the predefined target code rate is 1/3, while the target code rate determined by the time domain symbol length of actual transmission opportunity #4 is 1. /2, so the time domain symbol length of actual transmission opportunity #4 is an "isolated" symbol.
  • the predefined target code rate is Y
  • the terminal behavior can be in any of the following ways.
  • Method 1 The terminal does not send any information on transmission opportunity #t, including service data, control data, random access information, and DMRS.
  • the time domain symbol position corresponding to transmission opportunity #t and the time domain symbol position corresponding to other transmission opportunities are not continuous in the time domain, then no information is sent on this transmission opportunity #t.
  • the transmission opportunity #t is not included in the number of repetitions and the repetition index. That is, skip the transmission opportunity #t, and sequentially number the transmission opportunity index on the next available transmission opportunity.
  • FIG. 4 is a schematic diagram 1 of sending a transmission block according to a preferred embodiment of the present application, as shown in FIG. 4.
  • the terminal sends DMRS on all time domain symbols corresponding to transmission opportunity #t;
  • the DMRS is sent on a time domain symbol corresponding to the terminal transmission opportunity #t.
  • Figure 5 is the second schematic diagram of sending a transmission block according to a preferred embodiment of the present application. As shown in Figure 5, in the same time slot, the position of the time domain symbol of the transmission opportunity #t and other transmission opportunities is in the time domain If it is continuous, a new transmission opportunity is formed, and the terminal sends a Physical Uplink Shared Channel (PUSCH) on the time domain symbol corresponding to the new transmission opportunity.
  • PUSCH Physical Uplink Shared Channel
  • transmission opportunity #t is not constituted, and the terminal transmits PUSCH including DMRS and service data/control data on non-transmission opportunity #t.
  • actual transmission opportunity #3 in FIG. 3, that is, actual transmission opportunity #3 is not transmission opportunity #t.
  • Figure 6 is the third schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • the base station enables the intra-repetition frequency hopping function, after the intra-repetition frequency hopping is enabled for a certain transmission opportunity, when the first hop or second hop time domain symbol is an isolated symbol, when the isolated symbol is sent DMRS, then the frequency domain position of the first hop or second hop of a certain transmission opportunity is the same as the frequency domain position of the previous consecutive transmission opportunity in the time domain or the subsequent consecutive transmission opportunity in the time domain.
  • transmission opportunity #2 After intra-repetition frequency hopping is enabled, the time domain symbol of the first hop is 1 symbol, the time domain symbol of the second hop is 5 symbols, and the DMRS carried on the first hop, and further the first hop is For isolated symbols, the frequency domain position of the first hop of transmission opportunity #2 is the same as the frequency domain position of the second hop of transmission opportunity #1.
  • the transmission opportunity time domain duration corresponding to normal repetition is 14 symbols, and additional DMRS is enabled, it is assumed that there are 3 DMRS in total, but after intra-repetition, a certain PUSCH transmission opportunity #1 is divided into 6 first hops Symbol and 8 symbols of the second hop. Then according to Rel-15 when the PUSCH is equal to 8 symbols, there are 3 DMRSs in the DMRS, so the total number of DMRSs transmitted in these two times is greater than the normal repetition PUSCH transmission, which enables low spectrum efficiency.
  • Figure 7 is a fourth schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • the base station enables the inter-repetition frequency hopping function, then after a certain transmission opportunity undergoes inter-repetition frequency hopping, That is, the frequency hopping between different transmission opportunities.
  • the inter-repetition frequency hopping is not performed for the transmission opportunity.
  • the frequency domain position of the transmission opportunity is the same as the frequency domain position of the previous transmission opportunity in the time domain, or the frequency domain position of the transmission opportunity is the same as the frequency domain position of the next transmission opportunity in the time domain.
  • transmission opportunity #4 is the aforementioned transmission opportunity #t, so the frequency domain position of transmission opportunity #4 has the same transmission opportunity #5.
  • Z takes different values according to different uplink waveforms. If the uplink is CP-OFDM, then Z is 2, and if the uplink is SC-FDMA, Z is 3.
  • the predefined value Z may be notified by RRC signaling or DCI signaling.
  • the terminal behavior can be any of the following One kind.
  • the collision between the transmission opportunity and the subframe means that all or part of the time domain symbols corresponding to the transmission opportunity are downlink or flexible symbols.
  • Fig. 8 is a schematic diagram 5 of sending a transmission block according to a preferred embodiment of the present application. As shown in Fig. 8, when symbol #8 and symbol #9 where transmission opportunity #2 is located collide with the subframe format, that is, uplink transmission encounters When the transmission direction of the subframe format is D or F, the terminal will extend transmission opportunity #2 backwards to symbols #10 to symbol #13 for transmission, without crossing period P. Symbol #6 ⁇ symbol #9 do not send any information.
  • Manner 2 Combine the uncolled symbols corresponding to the transmission opportunity to a certain consecutive transmission opportunity in the time domain. As shown in Fig. 9, symbol #6 and symbol #7 are merged into transmission opportunity #1 to form a new transmission opportunity #1. Further, non-collision means that the time domain symbol of the transmission opportunity is an uplink symbol.
  • FIG. 9 is a schematic diagram 6 of sending a transmission block according to a preferred embodiment of the present application. As shown in FIG. 9, uncollision symbols corresponding to transmission opportunity #2 are merged onto consecutive transmission opportunities #1 in the time domain. And the terminal also extends transmission opportunity #2 backwards to symbols #10 to symbol #13 for transmission, without crossing the period P.
  • Fig. 10 is a schematic diagram 7 of sending a transmission block according to a preferred embodiment of the present application. As shown in Fig. 10, for the collision symbols corresponding to transmission opportunity #2, that is, symbols #8 and symbol #9, no information is sent. The PUSCH is sent on the uncolled symbols corresponding to transmission opportunity #2, namely symbol #6 and symbol #7.
  • FIG. 11 is a schematic diagram of sending a transmission block according to a preferred embodiment of the present application.
  • the collision symbols corresponding to transmission opportunity #2 that is, symbol #8 and symbol #9
  • no information is sent.
  • Repeated transmission of PUSCH is sent on uncollision symbols corresponding to transmission opportunity #2, namely symbol #6 and symbol #7.
  • the terminal also extends transmission opportunity #2 backwards to symbols #10 to symbol #13 for transmission, without crossing the period P.
  • Manner 6 The terminal selects a set of resources that does not collide with the subframe format to send the transport block.
  • Manner 7 When the alignment time of a certain set of resources that does not collide with the subframe format is compared with the threshold A, and is less than or equal to the threshold A, the terminal selects to send the transmission block on the set of resources.
  • the alignment time refers to the time interval between the start position of the time domain symbol where the first transmission opportunity of a certain set of resources is located and the arrival of the service.
  • the terminal selects a certain set of configurations to send PUSCH according to the principle of minimum delay, where the alignment time is the first transmission opportunity
  • the time interval between the start position of the time domain symbol and the arrival of the service can adopt any one of Mode 1 to Mode 5.
  • the minimum delay means that the time interval between the start position of the time domain symbol where the first transmission opportunity of a certain set of resources is located and the arrival of the service is the smallest compared to other configurations of.
  • Fig. 12 is a schematic diagram 9 of sending a transmission block according to a preferred embodiment of the present application. As shown in Fig. 12, only configuration #4 of the 4 sets of configurations does not collide with the subframe format. Then the alignment time is compared with the threshold A and is smaller than the threshold A, then Just send the transport block on configuration #4. If the alignment time is compared with the threshold A and is greater than the threshold A, then the configuration #1 with the smallest alignment time is selected to send the transmission block.
  • Manner 8 The terminal selects the resource with the least number of collision symbols with the subframe format to send the transport block, as shown in configuration #4 in Figure 12.
  • the resource configuration is selected according to the principle of minimum alignment time to send the transport block.
  • the same transport block has Q transmission opportunities in consecutive R time slots, and the time domain resource information of the Q transmission opportunities can be obtained in any of the following ways: wherein the Q is an integer greater than or equal to 1, R is an integer of 0 ⁇ R ⁇ Q.
  • One transmission block is sent through Y repeated transmissions, wherein the time domain resource information of the Y repeated transmissions includes at least one of the following information combinations:
  • Information combination 1 the start symbol (Si) of the i-th transmission opportunity, the time domain duration (Li) of the i-th transmission opportunity, and the slot index of the i-th transmission opportunity. Or, the start symbol (Si) of the i-th transmission opportunity, the time domain duration (Li) of the i-th transmission opportunity, and the slot index from the second transmission opportunity.
  • the time domain start symbol (Si) and time domain duration (Li) of the i-th transmission opportunity can be obtained through SLIV, i is an integer, 0 ⁇ i ⁇ Q.
  • the time domain resource information is configured by a higher layer
  • time domain resource information is jointly indicated by high-level configuration and high-level control signaling. It may also be that the time domain resource information is jointly indicated by high-level configuration and dynamic control signaling.
  • the time slot index of the first transmission opportunity is determined by the timing (slot offsetK 2 ), where the timing refers to the time from when DCI is sent in the downlink to the PUSCH is sent in the uplink.
  • slot index 1 is the time slot index of the first transmission opportunity, which is obtained according to slot offset K 2 , which is the time from the downlink sending DCI to the uplink sending PUSCH.
  • slot index i can also be offset from the slot index of the previous slot index (i-1) transmission.
  • One transmission block is sent through Y repeated transmissions, wherein the time domain resource information of the Y repeated transmissions includes at least one of the following information combinations:
  • the time domain start symbol (Si) and time domain duration (Li) of the i-th transmission opportunity can be obtained through SLIV.
  • the cross-slot indication is related to the number of repeated transmissions/the number of transmission opportunities
  • the time domain resource information is configured by a higher layer
  • time domain resource information is jointly indicated by high-level configuration and high-level control signaling. It may also be that the time domain resource information is jointly indicated by high-level configuration and dynamic control signaling.
  • the cross-slot indication indicates the information of the time slot where the time domain resource SLIV of the current transmission opportunity is located.
  • the cross-slot indication field is composed of multiple bits, that is, bitmap indication. When the bits in this field are flipped, the time domain resource of the current transmission opportunity is represented by the time slot index where the SLIV is compared to the time domain resource of the previous transmission opportunity The slot index where SLIV is located has changed.
  • the first bit of the cross-slot indication indicates the slot index information of the second transmission opportunity. This is because the time slot information of the first transmission opportunity is determined according to the timing (slot offsetK 2 ), where the timing refers to the time from the downlink sending DCI to the uplink sending PUSCH.
  • the time domain symbol of the first transmission opportunity is in slot#1
  • the time domain symbol of the second transmission opportunity is in slot#2
  • the time domain symbol of the third transmission opportunity is in slot#2
  • the time domain symbol of the fourth transmission opportunity is The domain symbol is in slot#3.
  • Slot index 1 is the slot index of the first transmission opportunity, which is obtained according to slot offset K 2 .
  • bit flipping means crossing the slot boundary.
  • the predefined 0 is in the same slot, and 1 indicates that the bit is flipped and the slot boundary is crossed.
  • the time domain resource of the first transmission opportunity is in slot#1
  • the time domain resource of the second transmission opportunity is in slot#2
  • the time domain resource of the third transmission opportunity is in slot#3
  • the time domain resource of the fourth transmission opportunity The domain resource is in slot#3.
  • One transmission block is sent through Y repeated transmissions, wherein the time domain resource information of the Y repeated transmissions includes at least one of the following information combinations:
  • the time domain start symbol (Si) and time domain duration (Li) of the i-th transmission opportunity can be obtained through SLIV.
  • the time domain resource information is configured by a higher layer
  • time domain resource information is jointly indicated by high-level configuration and high-level control signaling. It may also be that the time domain resource information is jointly indicated by high-level configuration and dynamic control signaling.
  • the time domain resource information transmitted for the i-th implicitly indicates whether to cross the slot boundary. Further, it is determined whether the time domain symbols corresponding to the i-th transmission opportunity and the previous transmission opportunity or the previous multiple transmission opportunities overlap on the time domain symbols. If there is overlap, it means that the slot boundary is crossed; otherwise, it means that there is no slot boundary.
  • SLIV1 of the first transmission opportunity indicates that the start symbol is symbol #0, the duration of the time domain is 8, and the instant domain position is symbol #0 to symbol #8;
  • the SLIV2 of the second transmission opportunity indicates that the start symbol is symbol #9, the duration of the time domain is 4, and the instant domain position is symbol #9 to symbol #13, then the two transmission opportunities are in the same time slot. Because the two do not overlap, and the total time domain length of the two transmission opportunities does not exceed the total length of a time slot.
  • the two transmission opportunities are across slots Boundary, in different time slots.
  • the time slot index of the first transmission opportunity is determined by the timing, where the timing refers to the timing of sending DCI in the downlink to preparing the PUSCH in the uplink.
  • one parameter is introduced. That is, add a column to any of the tables 1 to 2 above to indicate the transmission scheme switching. For example, if this parameter is enabled or 1 means PUSCH transmission is carried out according to transmission scheme 1, only the first group of SLIV is valid at this time, this parameter is not enabled or 0 means PUSCH transmission is carried out according to transmission scheme 2, at this time multiple sets of SLIV are valid ,vice versa.
  • Transmission scheme 1 An uplink authorization schedules PUSCH for multiple repeated transmissions.
  • the one or more repeated transmissions of PUSCH can be in one time slot or on a section of resources that can transmit uplink information in the same time slot. It can also be in multiple timeslots that are continuously available. This transmission scheme is called mini-slot PUSCH repetitions.
  • the uplink authorization is obtained through any one of the following methods: RRC signaling or DCI.
  • a section of resources that can transmit uplink information in the same time slot means that there is more than one DL/UL conversion point in the time slot. As shown in FIG. 13, symbols #2 to #7 are time slots.
  • the first segment of the slot can transmit uplink information time domain resources
  • symbols #10 to symbol #13 are the second segment of the time slot can transmit uplink information time domain resources.
  • Transmission scheme 2 An uplink authorization schedules PUSCH repeated transmissions for multiple times. There can be only one PUSCH transmission on a section of resources that can transmit uplink information in the same time slot, and it can be used in multiple consecutive time slots. There are multiple PUSCH transmissions. This scheme is called multi-segment PUSCH.
  • the uplink authorization is obtained through any one of the following methods: RRC signaling or DCI.
  • a segment of resources that can transmit uplink information in the same time slot means that there are more than one downlink/uplink DL/UL conversion points in the time slot, as shown in FIG. 13, symbols #2 to symbols # 7 is the time domain resource that can transmit uplink information in the first segment of the time slot, and symbol #10 to symbol #13 are the time domain resources that can transmit uplink information in the second segment of the time slot.
  • the one or more repeated transmissions of PUSCH can be in one time slot, or on a section of resources that can transmit uplink information in the same time slot, or in Continuously obtain multiple time slots.
  • Fig. 14 is a schematic diagram eleventh of sending a transmission block according to a preferred embodiment of the present application.
  • the uplink grant scheduling is notified by RRC or by activated DCI, that is, when scheduling-free transmission, only the transmission block Configure a set of time-frequency domain resources, and repeat multiple times without crossing the period P, and the same period P corresponds to a hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, referred to as HARQ) ID.
  • the PUSCH transmission can be started at any position on the available time domain symbols in the period P.
  • the DMRS index of the first transmission opportunity and the remaining transmission opportunity are different. That is, the PUSCH carried on the first transmission opportunity uses DMRS i, and the PUSCH carried on the remaining transmission opportunities uses DMRS j.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of this application essentially or the part that contributes to the related technology can be embodied in the form of a software product, the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) )
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal device which can be a mobile phone, a computer, a server, or a network device, etc.
  • an information sending device is also provided, which is used to implement the above-mentioned embodiments and preferred implementations, and those that have been explained will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 15 is a block diagram of an information sending device according to an embodiment of the present application, as shown in Fig. 15, including:
  • the receiving module 152 is configured to receive configuration information used to indicate that the same transmission block has Q transmission opportunities in consecutive R time slots, where Q is an integer greater than or equal to 1, R is an integer, and 0 ⁇ R ⁇ Q;
  • the sending module 154 is configured to send the transmission block according to the configuration information.
  • the configuration information includes at least one of the following:
  • the t is the transmission opportunity index
  • the t is an integer
  • 0 ⁇ t ⁇ Q is the transmission opportunity index
  • the configuration information further includes:
  • the configuration information further includes:
  • the transmission opportunity is the transmission opportunity #t; wherein, the N is an integer greater than or equal to 1;
  • the transmission opportunity is transmission opportunity #t.
  • the configuration information includes:
  • Time domain resource information indicating the Q transmission opportunities
  • the time domain resource information includes at least one of the following information combinations:
  • Information combination 1 the start symbol Si of the i-th transmission opportunity, the time domain duration Li of the i-th transmission opportunity, and the slot index of the i-th transmission opportunity, or the start symbol Si of the i-th transmission opportunity , The time domain duration Li of the i-th transmission opportunity and the slot index starting from the second transmission opportunity;
  • Information combination three the start symbol Si of the i-th transmission opportunity, the time domain duration Li of the i-th transmission opportunity, and a cross-slot indicator, where the cross-slot indicator is related to the number of transmission opportunities;
  • Information combination four the start and length indicator value SLIVi of the i-th transmission opportunity and a cross-slot indicator, wherein the cross-slot indicator is related to the number of transmission opportunities, or the cross-slot indicator is related to the number of repetitions;
  • the i is an integer, 0 ⁇ i ⁇ Q.
  • the SLIVi is used to obtain the time domain start symbol Si and the time domain duration Li of the i-th transmission opportunity.
  • the time domain resource information is configured by a higher layer.
  • the time domain resource information is jointly indicated by the high-layer configuration and RRC signaling; or the time domain resource information is jointly indicated by the high-layer configuration and DCI signaling.
  • the time slot index of the first transmission opportunity is determined by the timing, where the timing refers to the time from when DCI is sent in downlink to the physical uplink shared channel PUSCH is sent in uplink.
  • the cross-slot indication is a bitmap bitmap indication, which indicates that the current transmission opportunity crosses the time slot boundary by bit flipping, wherein the first bit in the cross-slot indication field indicates the time of the second transmission opportunity Slot index information.
  • the transmission scheme includes one of the following:
  • Transmission scheme 1 There are Q transmission opportunities in the same time slot, or on a segment of the same time slot for transmitting uplink information, or on consecutive R time slots;
  • Transmission scheme 2 There is only one transmission opportunity in a section of resources for transmitting uplink information in the same time slot.
  • the receiving module 152 is further configured to:
  • the configuration information is acquired through radio resource control RRC signaling or downlink control information DCI.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules are combined in any combination The forms are located in different processors.
  • the embodiment of the present application also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for executing the following steps:
  • the above-mentioned storage medium may include, but is not limited to: U disk, read-only memory (Read-ONly Memory, ROM for short), random access memory (RaNdom Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • the embodiment of the present application also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • modules or steps of this application can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, can be executed in a different order than here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种信息发送方法及装置,其中,该方法包括:接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,根据所述配置信息发送所述传输块,可以解决相关技术中如何利用传输机会发送传输块的问题。

Description

信息发送方法及装置
本申请要求在2019年03月29日提交中国专利局、申请号为201910253316.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种信息发送方法及装置。
背景技术
目前第五代移动通信技术(5G,the 5th Generation mobile communication technology)的第一阶段的标准制定工作已经完成。从标准制定和技术发展的趋势来看,5G系统致力于研究更高速率(Gbps)、巨量链接(1M/Km2)、超低时延(1ms)、更高的可靠性、百倍的能量效率提升等技术指标以支撑新的需求变化。
5G的第一阶段为保证覆盖引入基于动态调度的时隙聚合(Slot-based aggregation)和免调度的时隙重复(Slot-based repetitions),是指终端利用多个时隙重复发送传输块(Transport Block,TB),并且TB在每个时隙上有相同的时域资源分配。目前可聚合或者可重复的时隙长度为1/2/4/8。到了5G的第二阶段为了支持超高可靠性和超低时延传输的特征,完成在较短传输时间内传输低时延高可靠的业务,需要对基于动态调度的上行聚合传输和免调度的上行重复传输进行增强,所以引入微时隙(Mini-slot based)重复发送TB。
针对相关技术中如何利用传输机会发送传输块的问题,尚未提出解决方案。
发明内容
本申请实施例提供了一种信息发送方法及装置,以至少解决相关技术中如何利用传输机会发送传输块的问题。
根据本申请的一个实施例,提供了一种信息发送方法,包括:
接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,所述R为整数,;
根据所述配置信息发送所述传输块。
根据本申请的另一个实施例,还提供了一种信息发送装置,包括:
接收模块,用于接收用于指示同一个传输块在连续R个时隙上有Q次传输 机会的配置信息,其中,所述Q为大于或等于1的整数,R为整数,;
发送模块,用于根据所述配置信息发送所述传输块。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本申请,接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,根据所述配置信息发送所述传输块,可以解决相关技术中如何利用传输机会发送传输块的问题。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一种信息发送方法的移动终端的硬件结构框图;
图2是根据本申请实施例的一种信息发送方法的流程图;
图3是根据本申请实施例的传输机会#t的示意图一;
图4是根据本申请优选实施例的发送传输块的示意图一;
图5是根据本申请优选实施例的发送传输块的示意图二;
图6是根据本申请优选实施例的发送传输块的示意图三;
图7是根据本申请优选实施例的发送传输块的示意图四;
图8是根据本申请优选实施例的发送传输块的示意图五;
图9是根据本申请优选实施例的发送传输块的示意图六;
图10是根据本申请优选实施例的发送传输块的示意图七;
图11是根据本申请优选实施例的发送传输块的示意图八;
图12是根据本申请优选实施例的发送传输块的示意图九;
图13是根据本申请优选实施例的发送传输块的示意图十;
图14是根据本申请优选实施例的发送传输块的示意图十一;
图15是根据本申请实施例的信息发送装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的一种信息发送方法的移动终端的硬件结构框图,如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的报文接收方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network INterface CoNtroller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio FrequeNcy,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种信息发送方法,应用于上述的移动终端。图2是根据本申请实施例的一种信息发送方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,所述R为整数,0<R≤Q;
步骤S204,根据所述配置信息发送所述传输块。
通过上述步骤S202至S204,接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,根据所述配置信息发送所述传输块,可以解决相关技术中如何利用传输机会发送传输块的问题。
在一可选的实施例中,所述配置信息包括以下至少之一:
在传输机会#t上不发送任何信息;
在所述传输机会#t上发送解调参考信息DMRS;
在同一个时隙内,将所述传输机会#t与在时域上连续的其他传输机会的时域资源组成新的传输机会;
在同一个时隙内,若所述传输机会#t的时域资源位置与其他传输机会的时域资源位置在时域上是非连续的,在所述传输机会#t上不发送DMRS或者不发送任何信息;
其中,所述t是传输机会索引,所述t为整数,0<t≤Q。
进一步地,在所述传输机会#t上发送所述DMRS包括:
在所述传输机会#t对应的所有时域符号上发送所述DMRS;或者,
在所述传输机会#t对应的一个时域符号上发送所述DMRS。
在另一可选的实施例中,所述配置信息还可以包括:
使能不同传输机会间跳频时,若某次传输机会为传输机会#t,该次传输机会不执行跳频。
可选地,所述传输机会#t的频域位置与时域上连续的前一次传输机会的第二跳second hop/后一次传输机会的第一跳first hop的频域位置相同。
在另一可选的实施例中,所述配置信息还可以包括:
通过以下方式之一确定所述传输机会#t:
当传输机会的时域资源小于预定义数值N时,所述传输机会为所述传输机会#t;其中,所述N为大于或等于1的整数;
当传输机会的时域资源小于M=f(L)时,所述传输机会为所述传输机会#t, 其中,L是名义的传输机会中的某一次传输机会的时域资源长度,第1次实际的传输机会的时域资源长度,所有实际传输机会的总时域资源长度,实际传输机会中最短时域资源长度,冗余版本RV={0,1,2,3}中任意一个对应的名义的或者实际的传输机会的时域资源长度,或者实际传输机会中最长时域资源长度;
当传输机会的目标码率大于预定义的目标码率时,所述传输机会为传输机会#t。
可选地,
Figure PCTCN2020075953-appb-000001
或者
Figure PCTCN2020075953-appb-000002
其中,所述L、X为大于或等于1的整数。
其中,所述预定义的目标码率通过无线资源控制RRC或下行控制信息DCI通知,或者通过调制编码方式MCS索引中的目标码率获得。
在另一可选的实施例中,所述配置信息包括:
指示所述Q次传输机会的时域资源信息;
指示所述Q次传输机会的传输方案,进一步地,所述传输方案可以包括以下之一:
传输方案1:在同一个时隙内,或者同一个时隙内的一段传输上行信息的资源上,或者在连续的R个时隙上有Q次传输机会;
传输方案2:在同一个时隙内的一段传输上行信息的资源上只有1次传输机会。
可选地,所述时域资源信息至少包含以下信息组合之一:
信息组合一:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及从第二次传输机会开始的时隙索引;
信息组合二:第i次传输机会的起始和长度指示值SLIVi以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始和长度指示值SLIVi以及从第二次传输机会开始的时隙索引;
信息组合三:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及跨时隙指示,其中,所述跨时隙指示与传输机会次数或重复次数相关;
信息组合四:第i次传输机会的起始和长度指示值SLIVi以及跨时隙指示;
信息组合五:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li;
信息组合六:第i次传输机会的起始和长度指示值SLIVi;
其中,所述i为整数,0<i≤Q。
可选地,所述SLIVi用于获得所述第i次传输机会的时域起始符号Si和时域持续长度Li。
可选地,所述时域资源信息由高层配置。
可选地,所述时域资源信息由所述高层配置及RRC信令联合指示;或者
所述时域资源信息由高层配置及DCI信令联合指示。
可选地,第一次传输机会的时隙索引由定时决定,其中,所述定时是指下行发送DCI到上行发送物理上行共享信道PUSCH的时间。
可选地,所述跨时隙指示是位图bitmap指示,通过比特翻转表示当前传输机会跨时隙边界,其中,所述跨时隙指示域中第1个比特表示第二次传输机会的时隙索引信息。
本申请实施例中,可以通过无线资源控制RRC信令或下行控制信息DCI获取所述配置信息。
本申请实施例,终端接收配置信息,根据配置信息在同一个时隙内一次或者多次传输机会上重复发送同一个PUSCH(Physical Uplink Shared Channel,物理上行共享信道)/TB(Transport Block)或者在连续可获得的多个时隙上的一次或者多次传输机会上重复发送同一个PUSCH/TB。其中,提到的PUSCH或者传输块TB都是指物理上行共享信道上承载的信息。所述配置信息是通过以下任意一种方式获得:RRC(Radio Resource Control,无线资源控制)信令,或者DCI(Downlink Control Information,下行控制信息)信令。下面以具体示例对本申请实施例进行详细描述。
而且本申请实施例中仅以上行传输为例来说明,可以理解的,该技术方案也能够用于下行,也能够用于4G或者5G的其他物理层信道,例如控制信道,随机接入信道,数据信道。
示例1
该实施例给出采用以下之一方式确定传输机会#t,其中#t是传输机会的索引,t为整数,0<t≤Q。图3中实际重复#4就是传输机会#t。在实施例中把传 输机会#t所在的时域符号定义为“孤立”符号。
方式1:如果某次传输机会的时域符号小于预定义数值N时,那么该传输机会就是传输机会#t,其中传输机会#t的时域符号就是“孤立”符号。
进一步的,N是大于或等于1的整数,例如N=2。
进一步的,N根据上行波形不同,取值不同。如果上行是CP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,循环前缀-正交频分复用),那么N是2,如果上行是SC-FDMA(Single-Carrier Frequency-Division Multiple Access,单载波频分多址),N是3。
进一步的,预定义数值N可以是RRC信令或者DCI信令通知。
图3是根据本申请实施例的传输机会#t的示意图一,如图3所示,名义的传输机会#3(nominal repetition#3)跨时隙边界(slot boundary)分成了实际的传输机会#3和#4(actual repetition,#3和#4),那么实际传输机会#4的时域符号小于2,所以是传输机会#t,其中传输机会#t所在的时域符号是“孤立”符号。
方式2:如果某次传输机会的时域符号小于M=f(L)时,那么该传输机会是传输机会#t,其中传输机会#t所在的时域符号就是“孤立”符号。
进一步的,L是名义上的传输机会中的某一次传输机会的时域符号长度;或者L是实际的第1次传输机会的时域符号长度;或者L是所有实际传输机会的总时域符号长度;或者L是实际传输机会中最短时域符号长度;或者L是RV(Redundancy Version,冗余版本)={0,1,2,3}中任意一个对应的名义的传输机会或者实际的传输机会的时域符号长度;或者L是实际传输机会中最长时域符号长度。
进一步的,
Figure PCTCN2020075953-appb-000003
或者
Figure PCTCN2020075953-appb-000004
其中X为大于或等于1的整数,例如X=2。
图3是根据本申请实施例的传输机会#t的示意图一,如图3所示,L=3,即是第1次实际传输机会的时域符号长度。X=2,那么
Figure PCTCN2020075953-appb-000005
那么实际传输机会#4的时域符号长度是1个符号小于f(L)=2,所以实际传输机会#4就是传输机会#t,并且实际传输机会#4的时域符号是“孤立”符号。
方式3:如果某次传输机会上承载的传输块大小TBS的目标码率大于预定义的目标码率时,那么该传输机会就是传输机会#t,并且传输机会#t的时域符号就是“孤立”符号。
进一步的,预定义的目标码率是RRC或者DCI通知,或者是根据MCS(Modulation and Coding Scheme,调制编码方式)索引中的目标码率获得。
如图3所示,TBS是由第一次传输机会的时域符号长度确定,并且预定义目标码率是1/3,而实际传输机会#4的时域符号长度确定的目标码率是1/2,所以实际传输机会#4的时域符号长度是“孤立”符号。
也可以是,预定义的目标码率是Y,Y可以是0~1任意数,包括小数。例如Y=0.98,如果某次名义的或者实际的传输机会确定的TBS对应的码率大于Y=0.98,那么该传输机会对应的时域长度是“孤立”符号。
示例2
对于实施例1中产生的传输机会#t以及该传输机会#t的时域符号是“孤立”符号时,终端行为可以是以下任意一种方式。
方式1:终端在传输机会#t上不发送任何信息,包括业务数据、控制数据、随机接入信息和DMRS等。
进一步的,在同一个时隙内,传输机会#t对应的时域符号位置与其他传输机会对应的时域符号位置在时域上是非连续的,那么该传输机会#t上不发送任何信息,包括业务数据、控制信息、随机接入信息和DMRS等。
进一步的,该传输机会#t不计入重复次数以及重复索引。即跳过该传输机会#t,在下一个可获得的传输机会上顺序编号该传输机会索引。
方式2:终端在传输机会#t上发送DMRS,图4是根据本申请优选实施例的发送传输块的示意图一,如图4所示。
进一步的,终端在传输机会#t对应的所有时域符号上发送DMRS;
也可以是,终端传输机会#t对应的一个时域符号上发送DMRS。
方式3:图5是根据本申请优选实施例的发送传输块的示意图二,如图5所示,在同一个时隙内,传输机会#t与其他传输机会的时域符号位置在时域上是连续的,那么组成新的传输机会,终端在新的传输机会对应的时域符号上发送物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)。
此外,如果不满足实施例1给出的方式,就不构成传输机会#t,那么终端 就在非传输机会#t上发送PUSCH包括DMRS和业务数据/控制数据。例如图3的实际传输机会#3,即实际传输机会#3不是传输机会#t。
示例3
图6是根据本申请优选实施例的发送传输块的示意图三,如图6所示,如果基站使能了在传输机会内intra-repetition跳频功能,即传输机会内的跳频,那么在某次传输机会上完成了intra-repetition跳频后,该传输机会的first hop或second hop的时域符号小于预定义的Z或者Z=f(L)时,该传输机会就不执行intra-repetition跳频。也就是指对于每次传输机会,跳频是否使能或者跳频图样可能都不一样。
进一步的,如果基站使能了intra-repetition跳频功能,对于某次传输机会使能了intra-repetition跳频后,first hop或second hop的时域符号是孤立符号时,当该孤立符号上发送DMRS,那么所述的某次传输机会的first hop或second hop的频域位置与时域上连续的前一个或者时域上连续的后一个传输机会的频域位置相同。图6中传输机会#2使能intra-repetition跳频后,first hop的时域符号是1个符号,second hop的时域符号是5个符号,并且first hop上承载的DMRS,进一步first hop是孤立符号,就将传输机会#2的first hop的频域位置与传输机会#1的second hop的频域位置相同。
进一步的,当norminal repetition对应的传输机会时域duration是14个符号,使能addtional DMRS,假定一共有3个DMRS,但是intra-repetition后,某次PUSCH的传输机会#1分成first hop的6个符号和second hop的8个符号。那么根据Rel-15中PUSCH等于8符号时,DMRS就有3个DMRS,那么这两次传输的总共DMRS个数大于norminal repetition的PUSCH传输,从而使能频谱效率低下。所以某次norminal repetition的PUSCH传输分成first hop和second hop,并且first hop和second hop总的DMRS数目大于某次norminal repetition的PUSCH传输的DMRS数目时,通过高层信令或者DCI不设置addtional DMRS。
图7是根据本申请优选实施例的发送传输块的示意图四,如图7所示,如果基站使能了inter-repetition跳频功能时,那么当某次传输机会经过inter-repetition跳频后,即不同传输机会间的跳频,该传输机会的时域资源小于预定义Z或者Z=f(L)时,该传输机会就不执行inter-repetition跳频。进一步的, 该传输机会的频域位置与时域上前一次传输机会的频域位置相同,或者该传输机会的频域位置与时域上后一次传输机会的频域位置相同。也可以是,该传输机会的频域位置与时域上连续的某次传输机会的频域位置相同。如图7,传输机会#4是上述传输机会#t,所以传输机会#4的频域位置有传输机会#5相同。
其中,Z为大于或等于1的整数,例如Z=2。
进一步的,Z根据上行波形不同,取值不同。如果上行是CP-OFDM,那么Z是2,如果上行是SC-FDMA,Z是3。
进一步的,预定义数值Z可以是RRC信令或者DCI信令通知。
其中,
Figure PCTCN2020075953-appb-000006
或者
Figure PCTCN2020075953-appb-000007
其中X为大于或等于1的整数,例如X=2。L是名义上的传输机会中的某一次传输机会的时域符号长度;或者L是实际的第1次传输机会的时域符号长度;或者L是所有实际传输机会的总时域符号长度;或者L是实际传输机会中最短时域符号长度;或者L是RV(Redundancy Version,冗余版本)={0,1,2,3}中任意一个对应的名义的传输机会或者实际的传输机会的时域符号长度;或者L是实际传输机会中最长时域符号长度。
示例4
对于免调度传输的type1(RRC信令调度的PUSCH传输类型)或者type2(由激活DCI调度的PUSCH传输类型),某套资源上传输机会与子帧格式发生了碰撞时,终端行为可以是以下任何一种。进一步的,传输机会与子帧发生碰撞是指,该传输机会对应的全部或者部分时域符号是下行或者灵活符号。
方式1:不跨周期P,将碰撞传输机会在时域上向后延续,如果在时域上向后延续就会跨周期P时,终端不会将碰撞传输就会在时域上向后延续。图8是根据本申请优选实施例的发送传输块的示意图五,如图8所示,传输机会#2所在的符号#8和符号#9与子帧格式发生了碰撞时,即上行传输遇到了子帧格式的传输方向是D或者F时,终端就将传输机会#2向后延续到符号#10~符号#13上来发送,不跨周期P。符号#6~符号#9不发送任何信息。
方式2:将传输机会对应的未碰撞的符号合并到时域上连续的某次传输机会上。如图9所示,符号#6和符号#7合并到传输机会#1中,组成新的传输机会 #1。进一步的,未碰撞是指传输机会的时域符号是上行符号。
方式3:图9是根据本申请优选实施例的发送传输块的示意图六,如图9所示,将传输机会#2对应的未碰撞的符号合并到时域上连续的传输机会#1上,并且终端还将传输机会#2向后延续到符号#10~符号#13上来发送,不跨周期P。
方式4:图10是根据本申请优选实施例的发送传输块的示意图七,如图10所示,对于传输机会#2对应的碰撞的符号即符号#8和符号#9上不发送信息,只在传输机会#2对应的未碰撞符号即符号#6和符号#7上发送PUSCH。
方式5:图11是根据本申请优选实施例的发送传输块的示意图八,如图11所示,对于传输机会#2对应的碰撞的符号即符号#8和符号#9上不发送信息,只在传输机会#2对应的未碰撞符号即符号#6和符号#7上发送PUSCH的重复传输。并且终端还将传输机会#2向后延续到符号#10~符号#13上来发送,不跨周期P。
方式6:终端选择没有与子帧格式碰撞的某套资源上发送传输块。
方式7:当没有与子帧格式碰撞的某套资源的对齐时间与门限A比较,小于等于门限A时,终端选择在该套资源上发送传输块。
其中,对齐时间是指某套资源的第一次传输机会所在的时域符号起始位置与业务到达之间的时间间隔。
当没有与子帧格式碰撞的某套资源的对齐时间与门限A比较,大于门限A时,终端按照延迟最小的原则选择某套配置发送PUSCH,其中,所述对齐时间为第一次传输机会所在时域符号起始位置与业务到达之间的时间间隔。进一步的,该套资源上终端发送传输块的行为可以采用方式1~方式5中任何一个。其中,延迟最小就是指某套资源的第一次传输机会所在时域符号起始位置相比于其他配置的第一次传输机会所在时域符号起始位置与业务到达之间的时间间隔是最小的。
图12是根据本申请优选实施例的发送传输块的示意图九,如图12所示,4套配置只有配置#4没有与子帧格式碰撞,那么对齐时间与门限A比较,小于门限A,那么就在配置#4上发送传输块。假如对齐时间与门限A比较,大于门限A,那么选择对齐时间最小的配置#1来发送传输块。
方式8:终端选择与子帧格式碰撞符号最少的资源上去发送传输块,如图12的配置#4。当遇到与子帧格式碰撞符号一样多的两个或多个资源配置时,就按照对齐时间最小的原则来选择使用哪套资源配置去发送传输块。
示例5
同一个传输块在连续R个时隙上有Q次传输机会,所述Q次传输机会的时域资源信息可以通过以下任何一种方式获得:其中,所述Q为大于或等于1的整数,R为0<R≤Q的整数。
方式1:
一个传输块通过Y次重复传输发送,其中所述Y次重复传输的时域资源信息至少包含以下信息组合之一:
信息组合一:第i次传输机会的起始符号(Si)、第i次传输机会的时域持续长度(Li)以及第i次传输机会所在的时隙索引。或者,第i次传输机会的起始符号(Si)、第i次传输机会的时域持续长度(Li)以及从第二次传输机会开始的时隙索引。
信息组合二:第i次传输机会的起始和长度指示值SLIVi以及第i次传输机会所在的时隙索引。或者,第i次传输机会的起始和长度指示值SLIVi以及从第二次传输机会开始的时隙索引。
其中,通过SLIV可以获得第i次传输机会的时域起始符号(Si)和时域持续长度(Li),i为整数,0<i≤Q。
所述时域资源信息由高层配置;
进一步,所述时域资源信息由高层配置及高层控制信令联合指示。也可以是,所述时域资源信息由高层配置及动态控制信令联合指示。
进一步的,第一次传输机会的时隙索引由定时(slot offsetK 2)决定,其中,定时是指下行发送DCI到上行发送PUSCH的时间。
所述的时域资源分配的高层配置如表1所示,需要注意的是,高层配置的时域资源分配参数中还包含其他的控制域,在此不再赘述。如表1所示,slot index 1就是第一次传输机会的时隙索引,根据slot offset K 2获得,即下行发送DCI到上行发送PUSCH的时间。
表1
Figure PCTCN2020075953-appb-000008
Figure PCTCN2020075953-appb-000009
进一步的,slot index i的取值可以是第i次传输机会所在的具体的slot index;如表1,Row index=1时,slot index 1=0表示第1次传输机会的时隙索引是slot#0;slot index 2=2表示第2次传输机会的时隙索引是slot#2。
进一步的,slot index i的取值也可以是相比第一次传输机会所在slot index的时隙偏置,如表1,Row index=2时,第一次传输机会在slot#1,slot2 index取值是2,就表示第2次传输机会的时隙索引是1+2=3,即在slot#3上。
进一步的,slot index i的取值也可以是相比前一次slot index(i-1)传输所在slot index的时隙偏置,例如第二次传输机会在slot#1,如果slot 3 index取值是0,就表示第3次重复是在1+0=1,即在slot#1,即同一个时隙内。
方式2:
一个传输块通过Y次重复传输发送,其中所述Y次重复传输的时域资源信息至少包含以下信息组合之一:
信息组合三:第i次传输机会的起始符号(Si)、第i次传输机会的时域持续长度(Li)以及跨时隙指示。
信息组合四:第i次传输机会的起始和长度指示值SLIVi以及跨时隙指示。
其中,通过SLIV可以获得第i次传输机会的时域起始符号(Si)和时域持续长度(Li)。
所述的跨时隙指示与重复传输次数/传输机会次数相关;
所述时域资源信息由高层配置;
进一步,所述时域资源信息由高层配置及高层控制信令联合指示。也可以是,所述时域资源信息由高层配置及动态控制信令联合指示。
所述跨时隙指示表示当前传输机会的时域资源SLIV所在时隙的信息。进一步的,跨时隙指示域由多个比特组成即位图bitmap指示,当该域内的比特翻转时表示当前传输机会的时域资源SLIV所在的时隙索引相比于前一个传输机会的时域资源SLIV所在时隙索引发生了变化。进一步的,跨时隙指示的第1个 比特表示第2次传输机会的时隙索引信息。因为第1次传输机会的时隙信息是根据定时(slot offsetK 2)决定,其中,定时是指下行发送DCI到上行发送PUSCH的时间。
如表2所示,entry=1的跨时隙指示的取值是110表示第一次传输机会与第二次传输机会不在一个slot内,第三次与第四次传输机会不在一个slot内。例如第1次传输机会的时域符号在slot#1,第2次传输机会的时域符号在slot#2,第3次传输机会的时域符号在slot#2,第4次传输机会的时域符号在slot#3。Slot index 1就是第一次传输机会的时隙索引,根据slot offset K 2获得。
还可以是,比特翻转表示跨slot边界。比如预定义0是在同一个slot内,1表示比特翻转、跨了slot边界。
如表2所示,entry=1的跨时隙指示的取值是110表示第一次传输机会与第二次传输机会不在同一个slot内,第三次与第四次传输机会不在同一个slot内。例如第1次传输机会的时域资源在slot#1,第2次传输机会的时域资源在slot#2,第3次传输机会的时域资源在slot#3,第4次传输机会的时域资源在slot#3。
表2
Figure PCTCN2020075953-appb-000010
方式3:
一个传输块通过Y次重复传输发送,其中所述Y次重复传输的时域资源信息至少包含以下信息组合之一:
信息组合五:第i次传输机会的起始符号(Si)、第i次传输机会的时域持续长度(Li)。
信息组合六:第i次传输机会的起始和长度指示值SLIVi。
其中,通过SLIV可以获得第i次传输机会的时域起始符号(Si)和时域持续长度(Li)。
所述时域资源信息由高层配置;
进一步,所述时域资源信息由高层配置及高层控制信令联合指示。也可以是,所述时域资源信息由高层配置及动态控制信令联合指示。
所述的第i次传输的时域资源信息隐含指示是否跨slot边界。进一步的,判断第i次传输机会与前一次传输机会或者前多次传输机会对应的时域符号是否在时域符号上存在重叠,若存在重叠,表示跨slot边界,否则表示没有跨slot边界。
例如,第一次传输机会的SLIV1指示起始符号是符号#0,时域持续长度为8,即时域位置为符号#0~符号#8;第二次传输机会的SLIV2指示起始符号是符号#9,时域持续长度是4,即时域位置为符号#9~符号#13,那么这两次传输机会在同一个时隙内。因为两者没有重叠,并且两次传输机会的总时域长度没有超过一个时隙总长。
如果第二次传输机会的SLIV2指示起始符号是符号#4,时域持续长度是6,即时域位置为符号#4~符号#10,存在时域重叠,则两次传输机会是跨时隙边界,在不同时隙内。
进一步的,第一次传输机会的时隙索引由定时决定,其中,定时是指下行发送DCI到上行准备PUSCH的定时。
方式4:
对于方式1~方式3中的任何一种方式,都引入1个参数。即在上述表1~表2中任何一个表格中加入一列来表示传输方案切换。例如该参数使能或者为1表示是按照传输方案1进行PUSCH发送,这时候只有第一组SLIV有效,该参数不使能或者为0表示按照传输方案2进行PUSCH发送,这时候多组SLIV有效,反之亦然。
传输方案1:一个上行授权调度PUSCH多次重复传输,所述的1个或多个重复传输PUSCH可以在一个时隙内,也可以在同一个时隙内的一段可以传输上行信息的资源上,也可以是在连续的可获得多个时隙内,这种传输方案称为 mini-slot PUSCH repetitions。所述上行授权是通过以下任意一种方式获得:RRC信令,或者DCI。进一步的,所述同一个时隙内的一段可以传输上行信息的资源是指该时隙内有大于1次的DL/UL转换点,如图13所示,符号#2~符号#7是时隙内第一段可以传输上行信息的时域资源,符号#10~符号#13是该时隙内第二段可以传输上行信息的时域资源。
传输方案2:一个上行授权调度PUSCH多次重复传输,同一个时隙内的一段可以传输上行信息的资源上只能有1次所述PUSCH传输,在连续的可获得的多个时隙内可以有多次所述PUSCH传输。这种方案称为multi-segment PUSCH。所述上行授权是通过以下任意一种方式获得:RRC信令,或者DCI。进一步的,所述同一个时隙内的一段可以传输上行信息的资源是指该时隙内有大于1次的下行/上行DL/UL转换点,如图13所示,符号#2~符号#7是时隙内第一段可以传输上行信息的时域资源,符号#10~符号#13是该时隙内第二段可以传输上行信息的时域资源。
无论是方式1~方式4,对于免调度PUSCH重复传输时,当某次传输机会与子帧格式存在冲突时,则对冲突的符号跳过,将所述传输机会对应的可用符号上分为多个连续的重复发送PUSCH。图13是根据本申请优选实施例的发送传输块的示意图十,如图13所示,第2次传输机会的时域指示SLIV在符号#8起始,L=6,但是符号#8和符号#9与子帧格式冲突,所以跳过,第2次传输机会就从符号#10开始传输,跨时隙边界分成实际传输机会#2和实际传输机会#3,总长度是6个符号。
示例6
一个上行授权调度PUSCH多次重复传输,所述的1个或多个重复传输PUSCH可以在一个时隙内,也可以在同一个时隙内的一段可以传输上行信息的资源上,也可以是在连续的可获得多个时隙内。
图14是根据本申请优选实施例的发送传输块的示意图十一,如图14所示,所述上行授权调度是RRC通知或者由激活DCI通知,即是免调度传输时,对该传输块只配置一套时频域资源,并且多次重复不跨周期P,并且同一个周期P对应一个混合自动重传请求(Hybrid Automatic Repeat reQuest,简称为HARQ)ID。周期P内可用的时域符号上可以任意位置起始传输PUSCH。进一步的,第一次传输机会和剩余传输机会的DMRS index不相同。即第一次传 输机会上承载的PUSCH使用DMRS i,剩余传输机会上承载的PUSCH使用DMRS j。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例2
在本实施例中还提供了一种信息发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图15是根据本申请实施例的信息发送装置的框图,如图15所示,包括:
接收模块152,用于接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,R为整数,0<R≤Q;
发送模块154,用于根据所述配置信息发送所述传输块。
可选地,所述配置信息包括以下至少之一:
在传输机会#t上不发送任何信息;
在所述传输机会#t上发送解调参考信息DMRS;
在同一个时隙内,将所述传输机会#t与在时域上连续的其他传输机会的时域资源组成新的传输机会;
在同一个时隙内,若所述传输机会#t的时域资源位置与其他传输机会的时域资源位置在时域上是非连续的,在所述传输机会#t上不发送DMRS或者不发送任何信息;
其中,所述t是传输机会索引,所述t为整数,0<t≤Q。
可选地,所述配置信息还包括:
使能不同传输机会间跳频时,若某次传输机会为传输机会#t,该次传输机会不执行跳频。
可选地,所述配置信息还包括:
通过以下方式之一确定所述传输机会#t:
当传输机会的时域资源小于预定义数值N时,所述传输机会为所述传输机会#t;其中,所述N为大于或等于1的整数;
当传输机会的时域资源小于M=f(L)时,所述传输机会为所述传输机会#t,其中,L是名义的传输机会中的某一次传输机会的时域资源长度,第1次实际的传输机会的时域资源长度,所有实际传输机会的总时域资源长度,实际传输机会中最短时域资源长度,冗余版本RV={0,1,2,3}中任意一个对应的名义的或者实际的传输机会的时域资源长度,或者实际传输机会中最长时域资源长度;
当传输机会的目标码率大于预定义的目标码率时,所述传输机会为传输机会#t。
可选地,所述配置信息包括:
指示所述Q次传输机会的时域资源信息;
指示所述Q次传输机会的传输方案。
可选地,所述时域资源信息至少包含以下信息组合之一:
信息组合一:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及从第二次传输机会开始的时隙索引;
信息组合二:第i次传输机会的起始和长度指示值SLIVi以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始和长度指示值SLIVi以及从第二次传输机会开始的时隙索引;
信息组合三:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及跨时隙指示,其中,所述跨时隙指示与传输机会次数相关;
信息组合四:第i次传输机会的起始和长度指示值SLIVi以及跨时隙指示,其中,所述跨时隙指示与传输机会次数相关,或者所述跨时隙指示与重复次数相关;
信息组合五:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li;
信息组合六:第i次传输机会的起始和长度指示值SLIVi;
其中,所述i是整数,0<i≤Q。
可选地,所述SLIVi用于获得所述第i次传输机会的时域起始符号Si和时域持续长度Li。
可选地,所述时域资源信息由高层配置。
可选地,所述时域资源信息由所述高层配置及RRC信令联合指示;或者所述时域资源信息由高层配置及DCI信令联合指示。
可选地,第一次传输机会的时隙索引由定时决定,其中,所述定时是指下行发送DCI到上行发送物理上行共享信道PUSCH的时间。
可选地,所述跨时隙指示是位图bitmap指示,通过比特翻转表示当前传输机会跨时隙边界,其中,所述跨时隙指示域中第1个比特表示第二次传输机会的时隙索引信息。
可选地,所述传输方案包括以下之一:
传输方案1:在同一个时隙内,或者同一个时隙内的一段传输上行信息的资源上,或者在连续的R个时隙上有Q次传输机会;
传输方案2:在同一个时隙内的一段传输上行信息的资源上只有1次传输机会。
可选地,所述接收模块152,还用于:
通过无线资源控制RRC信令或下行控制信息DCI获取所述配置信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S11,接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,R为整数,0<R≤Q;
S12,根据所述配置信息发送所述传输块。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-ONly Memory,简称为ROM)、随机存取存储器(RaNdom Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
实施例4
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S11,接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,R为整数,0<R≤Q;
S12,根据所述配置信息发送所述传输块。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种信息发送方法,包括:
    接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,所述R为整数,0<R≤Q;
    根据所述配置信息发送所述传输块。
  2. 根据权利要求1所述的方法,其中,所述配置信息包括以下至少之一:
    在传输机会#t上不发送任何信息;
    在所述传输机会#t上发送解调参考信号DMRS;
    在同一个时隙内,将所述传输机会#t与在时域上连续的其他传输机会的时域资源组成新的传输机会;
    在同一个时隙内,在所述传输机会#t的时域资源位置与其他传输机会的时域资源位置在时域上是非连续的情况下,在所述传输机会#t上不发送DMRS或者不发送任何信息;
    其中,t是传输机会索引,t为整数,0<t≤Q。
  3. 根据权利要求2所述的方法,其中,在所述传输机会#t上发送所述DMRS包括:
    在所述传输机会#t对应的所有时域符号上发送所述DMRS;或者,
    在所述传输机会#t对应的一个时域符号上发送所述DMRS。
  4. 根据权利要求1所述的方法,其中,所述配置信息还包括:
    使能不同传输机会间跳频时,在一次传输机会为传输机会#t的情况下,该次传输机会不执行跳频。
  5. 根据权利要求4所述的方法,其中,
    所述传输机会#t的频域位置与时域上连续的前一次传输机会的第二跳second hop的频域位置相同,或者所述传输机会#t的频域位置与时域上连续的/后一次传输机会的第一跳first hop的频域位置相同。
  6. 根据权利要求2至5中任一项所述的方法,其中,所述配置信息还包括:
    通过以下方式之一确定所述传输机会#t:
    在传输机会的时域资源小于预定义数值N的情况下,所述传输机会为所述传输机会#t;其中,N为大于或等于1的整数;
    在传输机会的时域资源小于M=f(L)的情况下,所述传输机会为所述传输机会#t,其中,L是以下任一时域资源长度:名义的传输机会中的某一次传输机会的时域资源长度,第1次实际的传输机会的时域资源长度,所有实际传输机会 的总时域资源长度,实际传输机会中最短时域资源长度,冗余版本RV={0,1,2,3}中任意一个对应的名义的或者实际的传输机会的时域资源长度,或者实际传输机会中最长时域资源长度;
    在传输机会的目标码率大于预定义的目标码率的情况下,所述传输机会为传输机会#t。
  7. 根据权利要求6所述的方法,其中,
    Figure PCTCN2020075953-appb-100001
    或者
    Figure PCTCN2020075953-appb-100002
    其中,所述L、X为大于或等于1的整数。
  8. 根据权利要求6所述的方法,其中,
    所述预定义的目标码率通过无线资源控制RRC或下行控制信息DCI通知,或者通过调制编码方式MCS索引中的目标码率获得。
  9. 根据权利要求1所述的方法,其中,所述配置信息包括:
    指示所述Q次传输机会的时域资源信息;
    指示所述Q次传输机会的传输方案。
  10. 根据权利要求9所述的方法,其中,
    所述时域资源信息包含以下信息组合中的至少之一:
    信息组合一:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及从第二次传输机会开始的时隙索引;
    信息组合二:第i次传输机会的起始和长度指示值SLIVi以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始和长度指示值SLIVi以及从第二次传输机会开始的时隙索引;
    信息组合三:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及跨时隙指示,其中,所述跨时隙指示与传输机会次数相关,或者所述跨时隙指示与重复次数相关;
    信息组合四:第i次传输机会的起始和长度指示值SLIVi以及跨时隙指示;
    信息组合五:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li;
    信息组合六:第i次传输机会的起始和长度指示值SLIVi;
    其中,i为整数,0<i≤Q。
  11. 根据权利要求10所述的方法,其中,
    所述SLIVi用于获得所述第i次传输机会的时域起始符号Si和时域持续长度Li。
  12. 根据权利要求10所述的方法,其中,
    所述时域资源信息由高层配置。
  13. 根据权利要求12所述的方法,其中,
    所述时域资源信息由所述高层配置及无线资源管理RRC信令联合指示;或者
    所述时域资源信息由高层配置及下行控制信息DCI信令联合指示。
  14. 根据权利要求10所述的方法,其中,
    第一次传输机会的时隙索引由定时决定,其中,所述定时是指下行发送下行控制信息DCI到上行发送物理上行共享信道PUSCH的时间。
  15. 根据权利要求10所述的方法,其中,
    所述跨时隙指示是位图bitmap指示,通过比特翻转表示当前传输机会跨时隙边界,其中,所述跨时隙指示域中第1个比特表示第二次传输机会的时隙索引信息。
  16. 根据权利要求9所述的方法,其中,所述传输方案包括以下之一:
    传输方案1:在同一个时隙内,或者同一个时隙内的一段传输上行信息的资源上,或者在连续的R个时隙上有Q次传输机会;
    传输方案2:在同一个时隙内的一段传输上行信息的资源上只有1次传输机会。
  17. 根据权利要求1至5、7至16中任一项所述的方法,其中,所述接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息包括:
    通过无线资源控制RRC信令或下行控制信息DCI获取所述配置信息。
  18. 一种信息发送装置,包括:
    接收模块,设置为接收用于指示同一个传输块在连续R个时隙上有Q次传输机会的配置信息,其中,所述Q为大于或等于1的整数,R为整数,0<R≤Q;
    发送模块,设置为根据所述配置信息发送所述传输块。
  19. 根据权利要求18所述的装置,其中,所述配置信息包括以下至少之一:
    在传输机会#t上不发送任何信息;
    在所述传输机会#t上发送解调参考信号DMRS;
    在同一个时隙内,将所述传输机会#t与在时域上连续的其他传输机会的时 域资源组成新的传输机会;
    在同一个时隙内,在所述传输机会#t的时域资源位置与其他传输机会的时域资源位置在时域上是非连续的情况下,在所述传输机会#t上不发送DMRS或者不发送任何信息;
    其中,t是传输机会索引,t为整数,0<t≤Q。
  20. 根据权利要求18所述的装置,其中,所述配置信息还包括:
    使能不同传输机会间跳频时,在一次传输机会为传输机会#t的情况下,该次传输机会不执行跳频。
  21. 根据权利要求19或20所述的装置,其中,所述配置信息还包括:
    通过以下方式之一确定所述传输机会#t:
    在传输机会的时域资源小于预定义数值N的情况下,所述传输机会为所述传输机会#t;其中,所述N为大于或等于1的整数;
    在传输机会的时域资源小于M=f(L)的情况下,所述传输机会为所述传输机会#t,其中,L是以下任一时域资源长度:名义的传输机会中的某一次传输机会的时域资源长度,第1次实际的传输机会的时域资源长度,所有实际传输机会的总时域资源长度,实际传输机会中最短时域资源长度,冗余版本RV={0,1,2,3}中任意一个对应的名义的或者实际的传输机会的时域资源长度,或者实际传输机会中最长时域资源长度;
    在传输机会的目标码率大于预定义的目标码率的情况下,所述传输机会为传输机会#t。
  22. 根据权利要求18所述的装置,其中,所述配置信息包括:
    指示所述Q次传输机会的时域资源信息;
    指示所述Q次传输机会的传输方案。
  23. 根据权利要求22所述的装置,其中,
    所述时域资源信息包含以下信息组合中的至少之一:
    信息组合一:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及从第二次传输机会开始的时隙索引;
    信息组合二:第i次传输机会的起始和长度指示值SLIVi以及第i次传输机会所在的时隙索引,或者,第i次传输机会的起始和长度指示值SLIVi以及从第二次传输机会开始的时隙索引;
    信息组合三:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li以及跨时隙指示,其中,所述跨时隙指示与传输机会次数相关,或者所述跨时隙指示与重复次数相关;
    信息组合四:第i次传输机会的起始和长度指示值SLIVi以及跨时隙指示;
    信息组合五:第i次传输机会的起始符号Si、第i次传输机会的时域持续长度Li;
    信息组合六:第i次传输机会的起始和长度指示值SLIVi;
    其中,i为整数,0<i≤Q。
  24. 根据权利要求22所述的装置,其中,所述传输方案包括以下之一:
    传输方案1:在同一个时隙内,或者同一个时隙内的一段传输上行信息的资源上,或者在连续的R个时隙上有Q次传输机会;
    传输方案2:在同一个时隙内的一段传输上行信息的资源上只有1次传输机会。
  25. 一种存储介质,其中,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至17任一项中所述的方法。
  26. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至17任一项中所述的方法。
PCT/CN2020/075953 2019-03-29 2020-02-20 信息发送方法及装置 WO2020199779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20785246.8A EP3952536A4 (en) 2019-03-29 2020-02-20 METHODS AND APPARATUS FOR SENDING INFORMATION
US17/598,376 US20220191846A1 (en) 2019-03-29 2020-02-20 Information sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253316.4 2019-03-29
CN201910253316.4A CN111757493A (zh) 2019-03-29 2019-03-29 一种信息发送方法及装置

Publications (1)

Publication Number Publication Date
WO2020199779A1 true WO2020199779A1 (zh) 2020-10-08

Family

ID=72664922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075953 WO2020199779A1 (zh) 2019-03-29 2020-02-20 信息发送方法及装置

Country Status (4)

Country Link
US (1) US20220191846A1 (zh)
EP (1) EP3952536A4 (zh)
CN (1) CN111757493A (zh)
WO (1) WO2020199779A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630339A (zh) * 2020-12-10 2022-06-14 中国电信股份有限公司 数据的传输方法、装置和非易失性计算机可读存储介质
WO2022141038A1 (zh) * 2020-12-29 2022-07-07 北京小米移动软件有限公司 数据的传输方法、装置、通信设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3927047A4 (en) * 2019-02-14 2022-11-30 Ntt Docomo, Inc. USER DEVICE
WO2022133754A1 (zh) * 2020-12-22 2022-06-30 华为技术有限公司 发送数据和接收数据的方法以及通信装置
US11601930B2 (en) * 2021-02-02 2023-03-07 Qualcomm Incorporated Early termination of PUSCH transmission
WO2023011320A1 (zh) * 2021-08-06 2023-02-09 华为技术有限公司 一种确定反馈码本的方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039013A (zh) * 2013-03-06 2014-09-10 中兴通讯股份有限公司 资源分配信息处理方法及装置
US20160157254A1 (en) * 2014-11-26 2016-06-02 Samsung Electronics Co., Ltd. Methods and apparatus for control information resource allocation for d2d communications
CN108809543A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 用于传输数据的方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034506A (ko) * 2018-09-21 2020-03-31 삼성전자주식회사 무선 통신 시스템에서 저지연 및 고신뢰도 데이터 전송을 위한 방법 및 장치
WO2020145271A1 (en) * 2019-01-10 2020-07-16 Sharp Kabushiki Kaisha User equipment and base stations that achieve mini-slot-based repetitions
EP3697013A1 (en) * 2019-02-14 2020-08-19 Panasonic Intellectual Property Corporation of America User equipment and system performing transmission and reception operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039013A (zh) * 2013-03-06 2014-09-10 中兴通讯股份有限公司 资源分配信息处理方法及装置
US20160157254A1 (en) * 2014-11-26 2016-06-02 Samsung Electronics Co., Ltd. Methods and apparatus for control information resource allocation for d2d communications
CN108809543A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 用于传输数据的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Enhanced UL Configured Grant Transmissions", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1810159, 29 September 2018 (2018-09-29), XP051517574, DOI: 20200421113949X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630339A (zh) * 2020-12-10 2022-06-14 中国电信股份有限公司 数据的传输方法、装置和非易失性计算机可读存储介质
WO2022141038A1 (zh) * 2020-12-29 2022-07-07 北京小米移动软件有限公司 数据的传输方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
EP3952536A4 (en) 2022-12-07
CN111757493A (zh) 2020-10-09
US20220191846A1 (en) 2022-06-16
EP3952536A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020199779A1 (zh) 信息发送方法及装置
JP7119100B2 (ja) 通信方法およびデバイス
WO2017045496A1 (zh) 一种下行控制方法及装置
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
WO2019158013A1 (zh) 信道传输方法和装置、网络设备及计算机可读存储介质
CN111181694B (zh) 一种上行控制信息的传输方法及装置
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
EP3550911B1 (en) Communication method, network side device and terminal device
CN109756979B (zh) 传输信息的方法和通信设备
WO2020221271A1 (zh) 传输混合自动重传请求harq反馈信息的方法和通信装置
WO2020143286A1 (zh) 下行控制信道的传输方法及装置、存储介质
CN106550445B (zh) 无线通信中的一种低延迟的方法和装置
CN111953466A (zh) 一种配置方法、装置、通信节点及存储介质
CN110034866B (zh) 一种用于反馈的方法、装置及计算机存储介质
US11882518B2 (en) Control information transmission method, base station, and terminal
CN110663205A (zh) 一种数据处理方法及数据处理装置
EP4037229A1 (en) Communication method and apparatus, computer-readable medium and electronic device
WO2020164347A1 (zh) 一种传输方法和设备
WO2019158039A1 (zh) 通信方法和通信装置
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
US12016001B2 (en) Slot aggregation method and device, slot aggregation transmission method and device, storage medium, and electronic device
WO2019214658A1 (zh) 数据传输的发送、接收方法及装置
CN114391230A (zh) 上行控制信息复用传输的方法和装置
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
CN108093438A (zh) 一种信息传输方法、基站以及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020785246

Country of ref document: EP

Effective date: 20211029