WO2023011320A1 - 一种确定反馈码本的方法及通信装置 - Google Patents

一种确定反馈码本的方法及通信装置 Download PDF

Info

Publication number
WO2023011320A1
WO2023011320A1 PCT/CN2022/108708 CN2022108708W WO2023011320A1 WO 2023011320 A1 WO2023011320 A1 WO 2023011320A1 CN 2022108708 W CN2022108708 W CN 2022108708W WO 2023011320 A1 WO2023011320 A1 WO 2023011320A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission opportunity
transmission
sets
opportunities
feedback codebook
Prior art date
Application number
PCT/CN2022/108708
Other languages
English (en)
French (fr)
Inventor
范巍巍
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111161297.6A external-priority patent/CN115706654A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011320A1 publication Critical patent/WO2023011320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of wireless communication, and in particular to a method and a communication device for determining a feedback codebook.
  • the base station can use downlink control information (downlink control information, DCI) or radio resource control (radio resource control, RRC) downlink shared channel (PDSCH) reception and corresponding hybrid automatic repeat request (hybrid automatic repeat request, HARQ) information feedback.
  • DCI downlink control information
  • RRC radio resource control
  • PDSCH downlink shared channel
  • HARQ hybrid automatic repeat request
  • the network device dynamically schedules a PDSCH or a semi-persistently scheduled PDSCH to the terminal device at time slot (slot) n, or a semi-persistent PDSCH scheduled release command (sent through DCI)
  • the terminal device needs to be in slot n+k
  • the HARQ feedback is performed on the PDSCH or semi-persistent PDSCH scheduled release command (DCI) sent in time slot n, where the value of k is indicated by the "PDSCH-to-HARQ-timing-indicator" field in the DCI.
  • the terminal may be instructed to perform feedback on the same HARQ feedback resource for the feedback information of the PDSCH received at different times.
  • the k value indicated by DCI1 on slot 1 is 3, which indicates that the terminal performs HARQ feedback on slot 4 for the PDSCH received on slot 1;
  • the k value indicated by DCI2 on slot 2 is 2, namely Instruct the terminal to perform HARQ feedback on slot 4 for the PDSCH received on slot 2; therefore, the terminal needs to feed back two PDSCHs on slot 4 (that is, the PDSCH received on slot 1 and the PDSCH received on slot 2) HARQ-ACK information.
  • the terminal can send the HARQ-ACK information of the PDSCH received in different time slots on the same feedback resource.
  • the set of all HARQ-ACK bit information sent by the terminal on the same feedback resource is called a HARQ-ACK codebook (HARQ-ACK codebook).
  • the PDSCH or DCI signaling corresponding to the HARQ-ACK bit information can come from the same
  • the activated cells may also come from different activated cells; when they come from different activated cells, these activated cells belong to the same HARQ feedback cell group (cell group).
  • the subcarrier bandwidths supported in frequency range (FR) 1 include 15kHz, 30kHz, and 60kHz, and the subcarrier bandwidths supported in FR2 include 120kHz, 480kHz, and 960kHz.
  • OFDM orthogonal frequency division multiplexing
  • one DCI can schedule multiple PDSCHs in a scenario with a large subcarrier bandwidth.
  • the current method for the terminal to determine the feedback codebook is only applicable to the situation where one DCI only schedules one PDSCH, and cannot continue to be applicable to the scenario where one DCI schedules multiple PDSCHs.
  • Embodiments of the present application provide a method for determining a feedback codebook and a communication device, which are used to solve the problem of how a terminal device determines a feedback codebook when one DCI schedules multiple downlink channels.
  • the embodiment of the present application provides a method for determining a feedback codebook, including: a terminal device determines K*L sets of first transmission opportunities for the first channel on an activated cell, and K represents the configuration of the terminal device
  • the time indicates the number of k values, and the time indication k value indicates that the feedback information sent by the terminal device on the nth time slot is used to feed back the terminal device at the n-k time slot or when the n-k time whether the first channel is successfully received on the time slot before n-k
  • L represents the number of rows in the time domain resource configuration TDRA table, and each row in the TDRA table includes at least one start symbol and length indicator SLIV, each The first set of transmission opportunities is a transmission opportunity determined according to a time indicator k value and the SLIV in one row of the TDRA table; if there is a conflict with the uplink and downlink configuration parameters in any one of the first transmission opportunity sets transmission opportunities, delete the conflicting transmission opportunities in the first transmission opportunity set, and obtain N second
  • One DCI can schedule one or more first channels.
  • the network device can still send the first channels on non-conflicting transmission opportunities, thereby achieving flexible scheduling, Avoid wasting resources.
  • the traditional feedback codebook determination method cannot be used in this scenario, because if the traditional feedback codebook determination method is adopted, when only some transmission opportunities collide, the first transmission opportunity set where the conflicting transmission opportunities are located is all deleted, so There is a difference between the determined feedback codebook and the actual scheduling of the network device, and accurate feedback cannot be performed.
  • the method further includes: combining at least two second transmission opportunity sets in which the last transmission opportunity has symbol overlap among the N second transmission opportunity sets into one third transmission opportunity set Opportunity set; use the second transmission opportunity set without symbol overlap in the last transmission opportunity as a third transmission opportunity set; for the obtained P third transmission opportunity sets, transmit according to the start transmission time or end transmission time of the last transmission opportunity Time sorting; the size of the feedback codebook and the mapping relationship are determined according to the number of the third transmission opportunity set and the sorting.
  • the conflicting transmission opportunity is deleted from the first transmission opportunity set, Obtaining N second sets of transmission opportunities includes: if there is a transmission opportunity in any one of the first sets of transmission opportunities that conflicts with uplink and downlink configuration parameters, deleting the conflicting transmission opportunities in the first set of transmission opportunities, Obtain N second transmission opportunity sets, if the deleted transmission opportunity is the last transmission opportunity in the first transmission opportunity set, use the deleted transmission opportunity as the last transmission opportunity in the second transmission opportunity set obtained after deletion
  • the method further includes: merging at least two second transmission opportunity sets in which the last transmission opportunity has symbol overlap among the N second transmission opportunity sets into a third transmission opportunity set; combining the last transmission opportunity The second transmission opportunity set without symbol overlap is used as a third transmission opportunity set; the obtained P third transmission opportunity sets are sorted according to the start transmission time or end transmission time of the last transmission opportunity; the feedback code
  • the size and the mapping relationship of the book are determined according to the quantity
  • the method further includes: if there is symbol overlap of transmission opportunities belonging to different second transmission opportunity sets in the N second transmission opportunity sets, the symbol overlap and /or Combining transmission opportunities without overlapping symbols to obtain P sets of third transmission opportunities, where P is less than or equal to N; the size of the feedback codebook and the mapping relationship are determined according to the P sets of third transmission opportunities.
  • the method further includes: if at least one transmission opportunity in the i-th second transmission opportunity set has symbol overlap with at least one transmission opportunity in the j-th second transmission opportunity set,
  • the common mapping of the transmission opportunities in the same time slot in the i-th second transmission opportunity set and the j-th second transmission opportunity set is a transmission opportunity, and the index of the commonly mapped transmission opportunity in the time slot, Determined by the end time of the transmission opportunity with the earliest end time among the transmission opportunities in the same time slot; wherein, i is any integer from 1 to N, and j is any integer from i+1 to N; no common mapping is required
  • the transmission opportunity of is independently mapped to a transmission opportunity, and the index of the individually mapped transmission opportunity in the time slot is determined by the end time of the transmission opportunity before mapping; the size of the feedback codebook is based on the The number is determined; the mapped transmission opportunities are sorted according to the time slots from early to late, and the transmission opportunities in the same time slot are sorted from early to late according to the time
  • the method further includes: the terminal device determining the received transmission opportunities in the second transmission opportunity set corresponding to the first channel, and according to the The transmission opportunity determines the corresponding bit of the received feedback information of the first channel in the feedback codebook.
  • the size of the feedback codebook is specifically determined according to the number of time slots in which all transmission opportunities included in the N second transmission opportunity sets are distributed; the size of the feedback codebook The mapping relationship is specifically determined according to the sequence of time slots where all the transmission opportunities included in the N second transmission opportunity sets are distributed.
  • the terminal device activates L cells, where L is an integer greater than 1; the size and mapping relationship of the feedback codebook of the feedback information is determined according to the N second transmission opportunity sets, Including: determining the size and mapping relationship of the first channel feedback codebook on the lth activated cell according to the N1 second transmission opportunity sets on the lth activated cell; according to the cell index from small to large Sequentially, splicing the first channel feedback codebook in each cell, and determining the size and mapping relationship of the spliced first channel feedback codebook.
  • the first channel is a physical downlink shared channel PDSCH or a physical downlink control channel PDCCH used for releasing the semi-persistent scheduling SPS.
  • the embodiment of the present application provides a method for determining the feedback codebook, including: the network device determines K*L first transmission opportunity sets of the first channel on an activated cell, and K represents the configuration of the terminal device
  • the time indicates the number of k values, and the time indication k value indicates that the feedback information sent by the terminal device on the nth time slot is used to feed back the terminal device at the n-k time slot or when the n-k time whether the first channel is successfully received on the time slot before n-k
  • L represents the number of rows in the time domain resource configuration TDRA table, and each row in the TDRA table includes at least one start symbol and length indicator SLIV, each The first set of transmission opportunities is a transmission opportunity determined according to a time indicator k value and the SLIV in one row of the TDRA table; if there is a conflict with the uplink and downlink configuration parameters in any one of the first transmission opportunity sets transmission opportunities, delete the conflicting transmission opportunities in the first transmission opportunity set, and obtain N second transmission opportunity sets
  • One DCI can schedule one or more first channels.
  • the network device can still send the first channels on non-conflicting transmission opportunities, thereby achieving flexible scheduling, Avoid wasting resources.
  • the traditional feedback codebook determination method cannot be used in this scenario, because if the traditional feedback codebook determination method is adopted, when only some transmission opportunities collide, the first transmission opportunity set where the conflicting transmission opportunities are located is all deleted. Applicable to scenarios with more flexible scheduling.
  • the feedback codebook determination method provided by the embodiment of the present application, when there are transmission opportunities that conflict with the uplink and downlink configurations in the first transmission opportunity set that includes multiple transmission opportunities, only the conflicting transmission opportunities will be deleted, and the non-existing transmission opportunities will be reserved.
  • Conflicting transmission opportunities instead of directly deleting the set of first transmission opportunities, meets the requirement that one DCI can flexibly schedule multiple first channels.
  • the method further includes: combining at least two second transmission opportunity sets in which the last transmission opportunity has symbol overlap among the N second transmission opportunity sets into one third transmission opportunity set Opportunity set; use the second transmission opportunity set without symbol overlap in the last transmission opportunity as a third transmission opportunity set; for the obtained P third transmission opportunity sets, transmit according to the start transmission time or end transmission time of the last transmission opportunity Time sorting; the size of the feedback codebook and the mapping relationship are determined according to the number of the third transmission opportunity set and the sorting.
  • the conflicting transmission opportunity is deleted from the first transmission opportunity set, Obtaining N second sets of transmission opportunities includes: if there is a transmission opportunity in any one of the first sets of transmission opportunities that conflicts with uplink and downlink configuration parameters, deleting the conflicting transmission opportunities in the first set of transmission opportunities, Obtain N second transmission opportunity sets, if the deleted transmission opportunity is the last transmission opportunity in the first transmission opportunity set, use the deleted transmission opportunity as the last transmission opportunity in the second transmission opportunity set obtained after deletion
  • the method further includes: merging at least two second transmission opportunity sets in which the last transmission opportunity has symbol overlap among the N second transmission opportunity sets into a third transmission opportunity set; combining the last transmission opportunity The second transmission opportunity set without symbol overlap is used as a third transmission opportunity set; the obtained P third transmission opportunity sets are sorted according to the start transmission time or end transmission time of the last transmission opportunity; the feedback code
  • the size and the mapping relationship of the book are determined according to the quantity
  • the method further includes: if there is symbol overlap of transmission opportunities belonging to different second transmission opportunity sets in the N second transmission opportunity sets, the symbol overlap and /or Combining transmission opportunities without overlapping symbols to obtain P sets of third transmission opportunities, where P is less than or equal to N; the size of the feedback codebook and the mapping relationship are determined according to the P sets of third transmission opportunities.
  • the method further includes: if at least one transmission opportunity in the i-th second transmission opportunity set has symbol overlap with at least one transmission opportunity in the j-th second transmission opportunity set,
  • the common mapping of the transmission opportunities in the same time slot in the i-th second transmission opportunity set and the j-th second transmission opportunity set is a transmission opportunity, and the index of the commonly mapped transmission opportunity in the time slot, Determined by the end time of the transmission opportunity with the earliest end time among the transmission opportunities in the same time slot; wherein, i is any integer from 1 to N, and j is any integer from i+1 to N; no common mapping is required
  • the transmission opportunity of is independently mapped to a transmission opportunity, and the index of the individually mapped transmission opportunity in the time slot is determined by the end time of the transmission opportunity before mapping; the size of the feedback codebook is based on the The number is determined; the mapped transmission opportunities are sorted according to the time slots from early to late, and the transmission opportunities in the same time slot are sorted from early to late according to the time
  • the size of the feedback codebook is specifically determined according to the number of time slots in which all transmission opportunities included in the N second transmission opportunity sets are distributed; the size of the feedback codebook The mapping relationship is specifically determined according to the sequence of time slots where all the transmission opportunities included in the N second transmission opportunity sets are distributed.
  • the terminal device activates L cells, where L is an integer greater than 1; the size and mapping relationship of the feedback codebook of the feedback information is determined according to the N second transmission opportunity sets, Including: determining the size and mapping relationship of the first channel feedback codebook on the lth activated cell according to the N1 second transmission opportunity sets on the lth activated cell; according to the cell index from small to large Sequentially, splicing the first channel feedback codebook in each cell, and determining the size and mapping relationship of the spliced first channel feedback codebook.
  • the first channel is a physical downlink shared channel PDSCH or a physical downlink control channel PDCCH used for releasing the semi-persistent scheduling SPS.
  • the embodiment of the present application also provides a method for determining the feedback codebook, including: determining K*L sets of first transmission opportunities for the first channel on an activated cell, where K represents the set of transmission opportunities configured for the terminal device
  • K represents the set of transmission opportunities configured for the terminal device
  • the number of time indication k values, the time indication k value indicates that the feedback information sent by the terminal device on the nth time slot is used to feed back the n-kth time slot or the n-kth time slot of the terminal device and whether the first channel is successfully received on the time slot before n-k
  • L represents the number of rows in the time domain resource configuration TDRA table, and each row in the TDRA table includes at least one start symbol and length indicator SLIV, each The first transmission opportunity set is a transmission opportunity determined according to a time indication k value and the SLIV in one row of the TDRA table; if there is a transmission opportunity in any first transmission opportunity set that conflicts with the uplink and downlink configuration parameters , delete the conflicting transmission
  • the embodiment of the present application provides a method for determining a feedback codebook, including: a terminal device determines multiple first transmission opportunity sets of a first channel on an activated cell, and the first transmission opportunity set includes multiple Transmission opportunity: the terminal device sends feedback information, and the size and mapping relationship of the feedback codebook of the feedback information are determined according to the number and order of the third transmission opportunity set; wherein, the third transmission opportunity set includes N second The transmission opportunity contained in at least two second transmission opportunity sets in the transmission opportunity set, the last transmission opportunity of the at least two second transmission opportunity sets has symbol overlap, or the third transmission opportunity set includes one of the first The transmission opportunities contained in the two transmission opportunity sets; wherein, each of the second transmission opportunity sets includes transmission opportunities in the first transmission opportunity set that do not conflict with the uplink and downlink configuration parameters, if the first transmission opportunity set and The transmission opportunity in which the uplink and downlink configuration parameters conflict is the last transmission opportunity in the first transmission opportunity set, then the second transmission opportunity set includes the last transmission opportunity, and the uplink and downlink configuration parameters are
  • the number of the third transmission opportunity set is P
  • the P is less than or equal to the N
  • the P third transmission opportunity sets are transmitted according to the start of the last transmission opportunity Sort by time or end transfer time.
  • the embodiment of the present application provides a method for determining a feedback codebook, including: a network device determines a plurality of first transmission opportunity sets of a first channel on an activated cell, and the first transmission opportunity set includes a plurality of Transmission opportunity: the network device receives feedback information sent by the terminal device, and the size and mapping relationship of the feedback codebook of the feedback information is determined according to the number and order of the third transmission opportunity set; wherein, the third transmission opportunity set includes N The transmission opportunities contained in at least two second transmission opportunity sets in the second transmission opportunity set, the last transmission opportunity of the at least two second transmission opportunity sets has symbol overlap, or the third transmission opportunity set includes one of the The transmission opportunities contained in the second transmission opportunity set; wherein, each of the second transmission opportunity sets includes the transmission opportunities in the first transmission opportunity set that do not conflict with the uplink and downlink configuration parameters, if the first transmission opportunity set The transmission opportunity that conflicts with the uplink and downlink configuration parameters is the last transmission opportunity in the first transmission opportunity set, then the second transmission opportunity set includes the last transmission opportunity
  • the number of the third transmission opportunity set is P
  • the P is less than or equal to the N
  • the P third transmission opportunity sets are transmitted according to the start of the last transmission opportunity Sort by time or end transfer time.
  • the embodiment of the present application provides a communication device, including: a processor, and a memory and a communication interface respectively coupled to the processor; the communication interface is used to communicate with other devices; the processor , for running an instruction or a program in the memory, and executing the method for determining a feedback codebook according to the first aspect, the fourth aspect, and any possible implementation manner through the communication interface.
  • the embodiment of the present application provides a communication device, including: a processor, and a memory and a communication interface respectively coupled to the processor; the communication interface is used to communicate with other devices; the processor , for running an instruction or a program in the memory, and executing the method for determining a feedback codebook according to the second aspect, the fifth aspect, and any possible implementation manner through the communication interface.
  • an embodiment of the present application provides a computer-readable storage medium, wherein computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the first The method described in the aspect to the fifth aspect and any possible implementation manner is executed.
  • the embodiment of the present application provides a computer program product containing instructions, when it is run on a computer, the method as described in the first aspect to the fifth aspect and any possible implementation manner is executed .
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining a feedback codebook provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first set of transmission opportunities provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first set of transmission opportunities and a second set of transmission opportunities provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a mapped transmission opportunity provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another set of first transmission opportunities and a second set of transmission opportunities provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another mapped transmission opportunity provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a third transmission opportunity set provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another third transmission opportunity set provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another third transmission opportunity set provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another third transmission opportunity set provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the semi-static HARQ-ACK codebook refers to a codebook in which the size and mapping relationship of the HARQ-ACK codebook do not change with the actual data scheduling situation.
  • the codebook size and mapping relationship can be predefined according to the protocol or parameters configured by RRC It is determined that the size of the feedback codebook and the mapping relationship are not changed by changes in actual data scheduling, and the reliability of the codebook is high.
  • the embodiment of the present application provides a method for determining the feedback codebook, which can be used in the process of determining the semi-static HARQ-ACK codebook by the terminal device or network device, and solves the problem of how the terminal device and the network device schedule multiple downlink channels when one DCI schedules multiple downlink channels.
  • the issue of the feedback codebook is determined, so that the terminal equipment and the network equipment communicate the feedback information according to the semi-static HARQ-ACK codebook.
  • the method can be applied to the communication system architecture as shown in FIG. 1 .
  • the communication system architecture includes network equipment and terminal equipment.
  • the network device is a radio access network (radio access network, RAN) device, and the radio access network device may also be called an access network device or a base station, and is used for connecting a terminal device to a wireless network.
  • the wireless access network may be a base station (base station), an evolved base station (evolved NodeB, eNodeB) in an LTE system or an evolved LTE system (LTE-Advanced, LTE-A), or a next-generation base station in a 5G communication system (next generation NodeB, gNB), transmission reception point (transmission reception point, TRP), base band unit (base band unit, BBU), WiFi access point (access point, AP), base station or WiFi system in the future mobile communication system Access nodes in etc.
  • the radio access network device may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part or all of the physical layer.
  • the radio access network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • the terminal equipment may also be called a terminal, a user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (internet of things, IOT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 it is a schematic flowchart of a method for determining a feedback codebook provided by an embodiment of the present application. As shown in the figure, the method may include the following steps:
  • Step 201 the terminal device determines K*L first transmission opportunity sets of a first channel on an activated cell.
  • K represents the number of time indicator k values configured by the network device for the terminal device, and each time indicator k value indicates that the feedback information sent by the terminal device on the nth time slot is used to feed back the terminal device at the n-kth time slot slot, or whether the first channel is successfully received on the n-kth time slot and the time slot before the n-kth time slot.
  • the time indication k value can be indicated through the HARQ timing indicator (PDSCH-to-HARQ-timing-indicator) field of the PDSCH in the DCI, or it can also be indicated through the uplink acknowledgment (dl-DataToUL-ACK) of the downlink data in the RRC signaling ) field for indication, or may also be indicated by other means.
  • the time indication k value indicates whether the terminal device feedbacks on the nth time slot whether it successfully receives the first channel on the n-kth time slot.
  • the multiple first channels may be located on different time slots.
  • the value of the time indicator k represents the feedback information sent by the terminal device on the nth time slot, which is used for Feedback whether the last first channel scheduled by the DCI is located in the n-kth time slot is successful in receiving each first channel scheduled by the DCI.
  • L represents the number of rows in a time domain resource allocation (TDRA) table configured by the network device for the terminal device.
  • TDRA time domain resource allocation
  • Table 1 exemplarily provides a kind of TDRA configuration information.
  • the row index indicated in the DCI is 0, it means that one DCI has scheduled two first channels, and there is a time slot between the two first channels; specifically, the first first channel on time slot l
  • the start symbol is 1 and the length is 13 symbols
  • the start symbol of the second first channel on time slot l+2 is 0 and the length is 7 symbols.
  • the time slot 1 may be determined by the scheduling offset indication k0 indicated in the DCI and the time slot position where the DCI is located.
  • the row index is 1, it means that a DCI has scheduled a first channel, and the first channel has a start symbol of 7 in its corresponding time slot and a length of 7 symbols.
  • Any first set of transmission opportunities is composed of one or more transmission opportunities determined according to a time indication k value and the SLIV defined by one row in the TDRA.
  • a time indication k value and the SLIV defined by one row in the TDRA.
  • the transmission opportunity of the first channel candidate may be as shown in FIG. 3 .
  • the physical uplink control channel (physical uplink control channel, PUCCH) located on slot n in FIG. 3 represents the resource location where the terminal device sends feedback information.
  • PUCCH physical uplink control channel
  • Step 202 If there is a transmission opportunity in the first transmission opportunity set that conflicts with the uplink and downlink configuration parameters, delete the conflicting transmission opportunity in the first transmission opportunity set to obtain N second transmission opportunity sets.
  • the uplink and downlink configuration parameters are used to indicate the uplink and downlink transmission direction in units of time slots or symbols in an activated cell.
  • Network devices can flexibly configure uplink and downlink configuration parameters to indicate that subframes, time slots or each symbol in a time slot are used for uplink transmission or downlink transmission, for example, network devices can configure downlink/uplink through time division duplex in RRC signaling
  • the (TDD DL/UL configuration) field indicates uplink and downlink configuration parameters.
  • the time domain resource occupied by the network device for sending the first channel needs to be located in the configured downlink time domain resource, and the time domain resource occupied by the terminal device for sending the feedback information needs to be located in the configured uplink time domain resource. Since the uplink and downlink configuration parameters can be flexibly configured by the network device, the transmission opportunity of the first channel may conflict with the uplink and downlink configuration parameters.
  • the network device will not send the first channel on the transmission opportunity, so the terminal device can delete the conflicting transmission opportunity from the first transmission opportunity set; or, determine The obtained second transmission opportunity set does not include transmission opportunities that conflict with the uplink and downlink configuration parameters.
  • the terminal device may delete the first transmission opportunity in the first transmission opportunity set 1, and only reserve the second transmission opportunity, that is, reserve the transmission opportunity on slot n-3.
  • the uplink and downlink configuration parameters configured by the network device indicate that slot n-3 is an uplink time slot, that is, the time slot is used for uplink transmission, it is impossible for the network device to send the first channel on slot n-3, then the first transmission Delete the transmission opportunity on slot n-3 in opportunity set 1, and only keep the transmission opportunity on slot n-5; transmit the transmission opportunity on slot n-3 in the first transmission opportunity set 2, then the first transmission opportunity set 2 becomes an empty set, that is, the first transmission opportunity set 2 is deleted. Therefore, the number N of the second transmission opportunity set obtained after the above step 202 may be an integer less than or equal to K*L.
  • Step 203 the terminal device sends feedback information to the network device, and the size and mapping relationship of the feedback codebook corresponding to the feedback information are determined according to the aforementioned N second transmission opportunity sets.
  • the terminal device When the terminal device sends feedback information to the network device, it performs feedback according to the feedback codebook.
  • the size of the feedback codebook represents the length of the feedback information
  • the mapping relationship of the feedback codebook represents the contents of the feedback information fed back in sequence. For example, each bit in the feedback information indicates whether the corresponding first channel is successfully received, and the mapping relationship of the feedback codebook indicates the first channel corresponding to each bit.
  • One DCI can schedule one or more first channels.
  • the network device can still send the first channels on non-conflicting transmission opportunities, thereby achieving flexible scheduling, Avoid wasting resources.
  • the traditional feedback codebook determination method cannot be used in this scenario, because if the traditional feedback codebook determination method is adopted, when only some transmission opportunities collide, the first transmission opportunity set where the conflicting transmission opportunities are located is all deleted, so There is a difference between the determined feedback codebook and the actual scheduling of the network device, and accurate feedback cannot be performed.
  • the above-mentioned first channel may be a semi-persistently scheduled PDSCH or a dynamically scheduled PDSCH; or, the above-mentioned first channel may also be a physical downlink control channel (physical) for releasing semi-persistent scheduling (semi persistent scheduling, SPS) downlink control channel, PDCCH); or, the above-mentioned first channel may also be other physical channels, that is, the above-mentioned method may also be applied to other physical channels that require HARQ feedback.
  • SPS semi-persistent scheduling
  • transmission opportunities determined according to different SLIVs and different time indicator k values may have resource overlap. If there is resource overlap among the multiple transmission opportunities, the network device can only send one first channel among the multiple transmission opportunities with resource overlap. Therefore, in order to reduce the number of bits in the feedback codebook and save resources, transmission opportunities with overlapping resources can be combined.
  • the i-th second transmission opportunity if at least one transmission opportunity in the i-th second transmission opportunity set has symbol overlap with at least one transmission opportunity in the j-th second transmission opportunity set, the i-th second transmission opportunity
  • the transmission opportunities in the same time slot in the opportunity set and the jth second transmission opportunity set are jointly mapped into one transmission opportunity, and the index of the jointly mapped transmission opportunity in the time slot is obtained from the above transmission opportunities in the same time slot
  • the end time of the transmission opportunity with the earliest end time is determined.
  • i is any integer from 1 to N
  • j is any integer from i+1 to N.
  • transmission opportunity A in the i-th second transmission opportunity set is located at symbol 0 to symbol 6 on slot l
  • transmission opportunity B in the j-th transmission opportunity set is located at symbol 1 to symbol 13 on slot l
  • Transmission opportunity A is located on the same time slot and there is symbol overlap.
  • the transmission opportunity A and transmission opportunity B are jointly mapped into one transmission opportunity. Since the end time of transmission opportunity A is earlier than the end time of transmission opportunity B, the mapped The index of the transmission opportunity within this implementation is determined by the end time of transmission opportunity A.
  • the mapped transmission opportunity corresponds to transmission opportunity A and transmission opportunity B, that is, if the terminal device receives the first channel on symbols 0 to 6 on slot 1, the position of its feedback information in the feedback codebook is the The position of the jointly mapped transmission opportunity in the feedback codebook; if the terminal device receives the first channel on symbol 1 to symbol 13 on slot 1, the position of its feedback information in the feedback codebook is also in the common mapping The position of the transmission opportunity in the feedback codebook. For another example, if the transmission opportunity A in the i-th second transmission opportunity set overlaps with the transmission opportunity B in the j-th second transmission opportunity set, the transmission opportunity C in the i-th second transmission opportunity set and the The transmission opportunities D in the j second transmission opportunity sets are located in the same time slot. Even if there is no symbol overlap, they need to be jointly mapped into one transmission opportunity according to the above method.
  • the end time is not the earliest transmission opportunity, only one common mapping is performed, and no common mapping is performed after changing the values of i and j.
  • a transmission opportunity that does not need to be jointly mapped according to the above method it is independently mapped as a transmission opportunity, and the index of the individually mapped transmission opportunity in the time slot where it is located is determined by the end time of the transmission opportunity before mapping.
  • the terminal device can determine the size of the feedback codebook according to the number of mapped transmission opportunities; and sort the mapped transmission opportunities according to the time slots from early to late, and the transmission opportunities in the same time slot are sorted from early to late according to the time corresponding to the index. Sorting is performed at the end, and the mapping relationship of the feedback codebook is determined according to the sorted transmission opportunities.
  • the terminal device may determine the transmission opportunity in the second transmission opportunity set corresponding to the first channel, and map the transmission opportunity according to the transmission opportunity in the feedback codebook Determine the corresponding bit of the feedback information of the first channel in the feedback codebook. For example, after receiving the first channel 1 at slot 1, the terminal device determines that the first channel 1 corresponds to the third transmission opportunity in the second transmission opportunity set 2, and determines that the third transmission opportunity in the second transmission opportunity set 2 is in the feedback
  • the position in the codebook is the position of the first channel 1 in the feedback codebook.
  • the traditional method for determining the feedback codebook combines transmission opportunities with symbol collisions, and does not combine transmission opportunities with no symbol collisions.
  • the network device will not simultaneously The first channel is transmitted on the transmission opportunities corresponding to the two second transmission opportunity sets, and the network device selects at most one transmission opportunity corresponding to the second transmission opportunity set to transmit the first channel. Therefore, only merging conflicting transmission opportunities will still cause codebook redundancy, and the above-mentioned merging method helps to further reduce codebook redundancy.
  • Table 2 exemplarily provides a TDRA configuration information.
  • SLIV indicates that a DCI has scheduled two first channels, and the first first channel has a start symbol of 1 on time slot l and a length of 13 symbols, the start symbol of the second first channel on time slot 1+2 is 0, and the length is 6 symbols, where time slot 1 can be indicated by the scheduling offset indicated in DCI and when k0 and DCI are located to determine the location of the gap.
  • SLIV indicates that a DCI schedules two first channels, the first first channel starts at 1 in time slot l, and has a length of 13 symbols, and the second first channel at time slot l
  • the start symbol on slot 1+2 is 7, and the length is 7 symbols, wherein the slot 1 can be determined by the scheduling offset indication k0 indicated in the DCI and the slot position where the DCI is located.
  • the transmission opportunity of the first channel candidate may be as shown in FIG. 4 .
  • the transmission opportunities are symbols 1 ⁇ 13 on slot n-5 (abbreviated as [n-5 ⁇ 1,13 ⁇ ]), symbols 0 ⁇ 6 on slot n-3 (abbreviated as [n-3 ⁇ 0,6 ⁇ ] ),
  • [n-5 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 1 and [n-5 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 2 have symbol overlap, and the two sets are located at the same time
  • the transmission opportunities of slots are jointly mapped to one transmission opportunity.
  • [n-5 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 1 and [n-5 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 2 are both located in slot n-5, because the two The end time of the transmission opportunity is the same symbol 13, therefore, the index of the jointly mapped transmission opportunity on slot n-5 is determined by the symbol 13; [n-3 ⁇ 0,6 ⁇ ] of the second transmission opportunity set 1 [n-3 ⁇ 7,7 ⁇ ] and the second transmission opportunity set 2 are located in slot n-3, and the earliest end time of the two transmission opportunities is [n-3 ⁇ 0,6 ⁇ ], therefore,
  • the index of the co-mapped transmission opportunity on slot n-3 is determined by symbol 6, as shown in FIG. 5 .
  • the starting time of the mapped transmission opportunity is not limited in this embodiment of the present application
  • [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 3 and [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 4 have symbol overlap, and the two sets are located in the same
  • the transmission opportunities of the same slot are jointly mapped to one transmission opportunity.
  • [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 3 and [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 4 are jointly mapped into one transmission opportunity, and the jointly mapped
  • the index of the transmit opportunity on slot n-4 is identified by symbol 13.
  • [n-2 ⁇ 0,6 ⁇ ] of the second transmission opportunity set 3 and [n-2 ⁇ 7,7 ⁇ ] of the second transmission opportunity set 4 are jointly mapped into one transmission opportunity, and the jointly mapped transmission opportunities are in
  • the index on slot n-2 is determined by symbol 6, as shown in Figure 5.
  • 4 different transmission opportunities are finally obtained, and they are distributed on different time slots. These 4 transmission opportunities are sorted according to the time slots from early to late, respectively [n-5 ⁇ 1, 13 ⁇ ], [n-4 ⁇ 1,13 ⁇ ], [n-3 ⁇ 0,6 ⁇ ], and [n-2 ⁇ 0,6 ⁇ ].
  • the size of the feedback codebook is 4 bits; the mapping relationship of the 4 bits of the feedback codebook is as follows: [n-5 ⁇ 1,13 ⁇ ], [n-4 ⁇ 1,13 ⁇ ], [n-3 ⁇ 0,6 ⁇ ], [n-2 ⁇ 0,6 ⁇ ]. If the terminal device receives the first channel on [n-2 ⁇ 7,7 ⁇ ] according to the DCI, determine that the first channel corresponds to [n-2 ⁇ 7,7 ⁇ ] in the second transmission opportunity set 4, and determine [n-2 ⁇ 7,7 ⁇ ] in the second transmission opportunity set 4 is mapped to [n-2 ⁇ 0,6 ⁇ ], therefore, the feedback information of the terminal device on the first channel is located in the feedback codebook [n -2 ⁇ 0,6 ⁇ ] on the corresponding bit.
  • Table 3 exemplarily provides a TDRA configuration information.
  • SLIV indicates that two first channels are scheduled by one DCI, and the first first channel has a start symbol of 1 on time slot l and a length of 13 symbols, the start symbol of the second first channel on slot l+1 is 0, and the length is 6 symbols, where slot l can be indicated by the scheduling offset indicated in DCI and the time when k0 and DCI are located to determine the location of the gap.
  • SLIV indicates that a DCI schedules two first channels, the first first channel starts at 1 in time slot l, and has a length of 13 symbols, and the second first channel at time slot l
  • the start symbol on slot 1+2 is 7, and the length is 7 symbols, wherein the slot 1 can be determined by the scheduling offset indication k0 indicated in the DCI and the slot position where the DCI is located.
  • [n-3 ⁇ 0,6 ⁇ ] of the second transmission opportunity set 1 and [n-3 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 3 have symbol overlap, and the two sets are located at the same time
  • the transmission opportunities of slots are jointly mapped to one transmission opportunity.
  • [n-3 ⁇ 0,6 ⁇ ] of the second transmission opportunity set 1 and [n-3 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 2 are both located in slot n-3, because the two The earliest end time among the transmission opportunities is [n-3 ⁇ 0,6 ⁇ ], therefore, the index of the jointly mapped transmission opportunity on slot n-3 is determined by symbol 6, as shown in Figure 7.
  • [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 1 and [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 4 have symbol overlap, and the two sets are located in the same The transmission opportunities of the same slot are jointly mapped to one transmission opportunity.
  • [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 1 and [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 4 are both located in slot n-4, because the two The end times of the transmission opportunities are the same, therefore, the index of the jointly mapped transmission opportunities on slot n-4 is determined by symbol 13.
  • the size of the feedback codebook is 6 bits; the mapping relationship of the 6 bits of the feedback codebook is as follows: ⁇ [n-5 ⁇ 1,13 ⁇ ], [n-4 ⁇ 1,13 ⁇ ], [n-3 ⁇ 0,6 ⁇ ], [n-3 ⁇ 7,7 ⁇ ], [n-2 ⁇ 0,6 ⁇ ], [n-2 ⁇ 7,7 ⁇ ] ⁇ .
  • the size and mapping relationship of the feedback codebook can also be determined according to the following method:
  • the opportunity sets belong to the same third set, that is, the third set includes the i-th second transmission opportunity set and the j-th second transmission opportunity set, where i is any integer from 1 to N, and j is i+1 to N any integer in . If there is no symbol overlap between the i-th second transmission opportunity set and any second transmission opportunity set, then use the i-th transmission opportunity set as a third set. After the polling of i value and j value, P third sets are obtained.
  • a third transmission opportunity set includes H second transmission opportunity sets, in the H second transmission opportunity sets, if at least one of the xth second transmission opportunity set and the yth second transmission opportunity set There is symbol overlap in the transmission opportunities, then the common mapping of the transmission opportunities in the same time slot in the xth second transmission opportunity set and the yth second transmission opportunity set is a transmission opportunity, and the commonly mapped transmission opportunities are in The index in the time slot is determined by the end time of the transmission opportunity with the earliest end time among the transmission opportunities in the same time slot; where x is any integer from 1 to H, and y is any from i+1 to H integer.
  • the transmission opportunities that do not need to be mapped together are individually mapped to one transmission opportunity, and the mapping method is similar to that in the foregoing embodiments, and will not be repeated here.
  • the transmission opportunities in each updated third transmission opportunity set are sorted from early to late according to the starting time. Then according to the start time of the first transmission opportunity in the third transmission opportunity set, sort the P third transmission opportunity sets in order from early to late; or, it can also be sorted according to the end time of the last transmission opportunity The P third transmission opportunities are sorted.
  • the terminal device may determine the size of the feedback codebook according to the number of all transmission opportunities in the updated third transmission opportunity set, and determine the feedback codebook according to the ordering of the P third transmission opportunity sets and the ordering of transmission opportunities in each third transmission opportunity set.
  • the mapping relationship of the codebook may be determined.
  • the four first transmission opportunity sets shown in Figure 4 can be determined according to the above Table 2. The specific determination method is similar to the foregoing embodiment, and will not be repeated here. . Since slot n-5 to slot n-1 are all downlink transmission time slots, there is no transmission opportunity that conflicts with uplink and downlink configuration parameters, so the determined second transmission opportunity set is consistent with the first transmission opportunity set.
  • [n-5 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 1 and [n-5 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 2 have symbol overlap, and it is determined that the second transmission opportunity set 1 and the second transmission opportunity set 1
  • the second transmission opportunity set 2 belongs to the third transmission opportunity set 1 .
  • [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 3 and [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 4 have transmission opportunities with overlapping symbols, and determine the second transmission opportunity set 3 and The second set 4 of transmission opportunities belongs to the third set 2 of transmission opportunities.
  • the second transmission opportunity set 1 and the second transmission opportunity set 2 are located at the same time
  • the transmission opportunities on the slots are jointly mapped to one transmission opportunity, that is, [n-5 ⁇ 1,13 ⁇ ] in the second transmission opportunity set 1 and [n-5 ⁇ 1,13 ⁇ ] in the second transmission opportunity set 1 ⁇ ] are jointly mapped to a transmission opportunity; [n-3 ⁇ 0,6 ⁇ ] in the second transmission opportunity set 1 and [n-3 ⁇ 7,7 ⁇ ] in the second transmission opportunity set 1 are jointly mapped as A transmission opportunity, the index of the jointly mapped transmission opportunity on slot n-3 is determined by symbol 6.
  • the transmission opportunities that do not satisfy the common mapping are mapped separately, and the updated third transmission opportunity set 1 is shown in FIG. 8 .
  • the second transmission opportunity set 3 and the second transmission opportunity set 4 are located at the same time
  • the transmission opportunities on the slots are jointly mapped to one transmission opportunity, that is, [n-4 ⁇ 1,13 ⁇ ] in the second transmission opportunity set 3 and [n-4 ⁇ 1,13 ⁇ ] in the second transmission opportunity set 4 ⁇ ] are jointly mapped to a transmission opportunity; [n-2 ⁇ 0,6 ⁇ ] in the second transmission opportunity set 3 and [n-2 ⁇ 7,7 ⁇ ] in the second transmission opportunity set 4 are jointly mapped as A transmission opportunity, the index of the jointly mapped transmission opportunity on slot n-2 is determined by symbol 6.
  • the transmission opportunities that do not satisfy the common mapping are mapped separately, and the updated third transmission opportunity set 1 is shown in FIG. 8 .
  • the updated two third transmission opportunity sets include 4 transmission opportunities in total, and if the maximum transmission codeword of the first channel is 1, the size of the feedback codebook is 4 bits.
  • the transmission opportunity of the third transmission opportunity set 1 is ranked third Before the transmission opportunity of transmission opportunity set 2.
  • the mapping relationship of the 4 bits of the feedback codebook is: ⁇ [n-5 ⁇ 1,13 ⁇ ], [n-3 ⁇ 0,6 ⁇ ], [n-4 ⁇ 1,13 ⁇ ], [n-2 ⁇ 0,6 ⁇ ] ⁇ .
  • the four first transmission opportunity sets as shown in Figure 6 can be determined according to the above Table 2. The specific determination method is similar to the foregoing embodiment, and will not be repeated here. . Since slot n-5 to slot n-1 are all downlink transmission time slots, there is no transmission opportunity that conflicts with uplink and downlink configuration parameters, so the determined second transmission opportunity set is consistent with the first transmission opportunity set.
  • [n-3 ⁇ 0,6 ⁇ ] of the second transmission opportunity set 1 and [n-3 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 3 have symbol overlap
  • [n-4 of the second transmission opportunity set 1 ⁇ 1,13 ⁇ ] and [n-4 ⁇ 1,13 ⁇ ] of the second transmission opportunity set 4 have symbol overlap
  • the second transmission opportunity set 2 serves as the third transmission opportunity set 2 .
  • the second transmission opportunity set 1 there are 3 second transmission opportunity sets in total, wherein there are transmission opportunities in which symbols overlap between the second transmission opportunity set 1 and the second transmission opportunity set 3, therefore, the second transmission opportunity set 1
  • the transmission opportunities located on the same time slot in the second transmission opportunity set 3 are jointly mapped into one transmission opportunity, that is, [n-3 ⁇ 0,6 ⁇ ] in the second transmission opportunity set 1 is combined with the second transmission opportunity set [n-3 ⁇ 1,13 ⁇ ] in 3 are jointly mapped to a transmission opportunity, and the index of the jointly mapped transmission opportunity on slot n-3 is determined by symbol 6.
  • the second transmission opportunity set 1 and the second transmission opportunity set 4 have transmission opportunities with overlapping symbols, therefore, the transmission opportunities in the second transmission opportunity set 1 and the second transmission opportunity set 4 that are located on the same time slot are jointly mapped into one transmission Opportunity, that is, [n-4 ⁇ 1,13 ⁇ ] in the second transmission opportunity set 1 and [n-4 ⁇ 1,13 ⁇ ] in the second transmission opportunity set 4 are jointly mapped into one transmission opportunity, and the common The index of the mapped transport opportunity on slot n-4 is identified by symbol 13.
  • the transmission opportunities that do not satisfy the common mapping are mapped separately, and the updated third transmission opportunity set 1 is shown in FIG. 9 .
  • the obtained two third transmission opportunity sets include 6 transmission opportunities in total, and if the maximum transmission codeword of the first channel is 1, the size of the feedback codebook is 6 bits. Since the start time of the first transmission opportunity in the third transmission opportunity set 2 is earlier than the start time of the first transmission opportunity in the third transmission opportunity set 1, the transmission opportunity of the third transmission opportunity set 2 is ranked third Prior to the transmission opportunity of transmission opportunity set 1.
  • the mapping relationship of the 6 bits of the feedback codebook is: ⁇ [n-5 ⁇ 1,13 ⁇ ], [n-3 ⁇ 7,7 ⁇ ], [n-4 ⁇ 1,13 ⁇ ], [n-3 ⁇ 0,6 ⁇ ], [n-2 ⁇ 0,6 ⁇ ], [n-2 ⁇ 7,7 ⁇ ] ⁇ .
  • the network device may be configured to schedule only one first channel in one time slot.
  • the terminal device can determine the time slots where all the transmission opportunities contained in all the second transmission opportunity sets are distributed, determine the size of the feedback codebook according to the number of time slots, and determine the feedback codebook according to the order of the time slots This mapping relationship.
  • a bundling mode may also be configured for the terminal device, that is, the terminal device performs bundling feedback for one or more first channels scheduled by each DCI. For example, if a DCI schedules two first channels, the terminal device can perform binding feedback on the two first channels, and if the terminal device successfully receives the two first channels, it will feed back an ACK message, if at least one If the first channel is not successfully received, a NACK message is fed back.
  • the terminal device when the terminal device is configured to perform binding feedback for all first channels scheduled by each DCI, the terminal device may generate a first Three sets of transmission opportunities, where the third set of transmission opportunities includes multiple second sets of transmission opportunities satisfying preset conditions.
  • the preset condition is that the last transmission opportunity is located in the same time slot, and there are transmission opportunities with overlapping symbols.
  • the second transmission opportunity set that does not satisfy the preset condition is used as a separate third transmission opportunity set. According to the foregoing manner, P third transmission opportunity sets can be obtained.
  • the terminal device may determine the size of the feedback codebook according to the P value, and determine the mapping relationship of the feedback codebook according to the ordering of the P third transmission opportunity sets.
  • the network device configures the time indication k ⁇ 2,3 ⁇
  • the determined first set of transmission opportunities and the second set of transmission opportunities may be as shown in FIG. 4 .
  • the third transmission opportunity set 1 includes the second transmission opportunity Set 1 and second transmission opportunity set 2 are shown in FIG. 10 . Since the second transmission opportunity set 3 in FIG.
  • the third transmission opportunity set 2 includes the second transmission opportunity
  • the set 3 and the second transmission opportunity set 4 are shown in FIG. 10 .
  • the two sets of third transmission opportunities are determined. If the maximum transmission codeword of the first channel is 1, the size of the feedback codebook is 2 bits.
  • the two sets of third transmission opportunities are sorted from early to late according to the initial transmission time of the first transmission opportunity, and the sorted order is respectively the third transmission opportunity set 1 and the third transmission opportunity set 2, so the feedback codebook 2
  • the mapping relationship of the bits is as follows: the third transmission opportunity set 1 and the third transmission opportunity set 2.
  • the two sets of third transmission opportunities may also be sorted according to end transmission time from early to late.
  • each second transmission opportunity set can be understood as corresponding to a possible DCI, therefore,
  • the second transmission opportunity set 1 corresponds to DCI1
  • the second transmission opportunity set 2 corresponds to DCI2
  • the second transmission opportunity set 3 corresponds to DCI3
  • the second transmission opportunity set 4 corresponds to DCI4. Therefore, the third transmission opportunity set 1 corresponds to DCI1 and DCI2, and the third transmission opportunity set 2 corresponds to DCI3 and DCI4.
  • mapping relationship of the 2 bits of the feedback codebook is: [DCI1 or DCI2], [DCI3 or DCI4], Wherein [DCI n] represents the transmission opportunity of the first channel scheduled by DCI n.
  • the terminal may determine a position in the feedback codebook of the feedback information of the first channel scheduled by the DCI according to the received DCI.
  • the determined first transmission opportunity set and second transmission opportunity set may be as shown in FIG. 6 .
  • the second transmission opportunity set 1 and the second transmission opportunity set 2 in Fig. 6 are respectively used as the third transmission opportunity set 1 and the third transmission opportunity set 2, as shown in FIG. 11 .
  • the last transmission opportunity of the second transmission opportunity set 3 and the second transmission opportunity set 4 in Fig. 6 is located in the same time slot (slot n-2), but the second transmission opportunity set 3 and the second transmission opportunity set 4 do not exist The symbols overlap, and the combination condition is not satisfied. Therefore, the second transmission opportunity set 3 and the second transmission opportunity set 4 are respectively used as the third transmission opportunity set 3 and the third transmission opportunity set 4, as shown in FIG. 11 .
  • the four sets of third transmission opportunities are determined. If the maximum transmission codeword of the first channel is 1, the size of the feedback codebook is 4 bits. Sort the four sets of third transmission opportunities from early to late according to the start transmission time (if the start transmission time of the first transmission opportunity is the same, continue to compare the start transmission time of the second transmission opportunity, and so on) , are respectively the third transmission opportunity set 2, the third transmission opportunity set 1, the third transmission opportunity set 4, and the third transmission opportunity set 3, so the mapping relationship of the 4 bits of the feedback codebook is as follows: the third transmission opportunity set 2 , a third transmission opportunity set 1 , a third transmission opportunity set 4 , and a third transmission opportunity set 3 .
  • the four sets of third transmission opportunities may also be sorted according to end transmission time from early to late.
  • the terminal device when configured to perform bonding feedback for all first channels scheduled by each DCI, if the last transmission opportunity in a set of second transmission opportunities There is no symbol overlap in the last transmission opportunity of the two transmission opportunity sets, then the second transmission opportunity set is regarded as an independent third transmission opportunity set; If there is symbol overlap in the last transmission opportunity set in the transmission opportunity set, multiple second transmission opportunity sets whose last transmission opportunity has symbol overlap are combined into a third transmission opportunity set. Then sort the third transmission opportunity set according to the start transmission time or end transmission time of the last transmission opportunity, and determine the size and mapping relationship of the feedback codebook according to the quantity and sorting of the third transmission opportunity set.
  • each transmission opportunity is not related to The uplink and downlink configuration parameters conflict, and the second transmission opportunity set is consistent with the first transmission opportunity set. Since there is no resource overlap between the last transmission opportunity of each second transmission opportunity set and the last transmission opportunity of other second transmission opportunity sets, each second transmission opportunity set is separately regarded as a third transmission opportunity set.
  • the end times of the last transmission opportunity of the third transmission opportunity set 1, the third transmission opportunity set 2, the third transmission opportunity set 3, and the third transmission opportunity set 4 are respectively: symbol 5 on slot n-3, slot n- Symbol 13 on 3, symbol 5 on slot n-2, symbol 13 on slot n-2; sort the third transmission opportunity set according to the end time of the last transmission opportunity, in order: the third transmission opportunity set 1 , a third transmission opportunity set 2 , a third transmission opportunity set 3 , and a third transmission opportunity set 4 . Therefore, if the maximum transmission codeword is 1, the size of the determined feedback codebook is 4 bits, and the mapping relationship of the 4 bits is as follows: the third transmission opportunity set 1, the third transmission opportunity set 2, the third transmission opportunity Set 3, the third transmission opportunity set 4.
  • the network device configures the time indication k ⁇ 2,3 ⁇
  • the four first transmission opportunity sets shown in Figure 6 can be determined, because each transmission opportunity is not related to The uplink and downlink configuration parameters conflict, and the second transmission opportunity set is consistent with the first transmission opportunity set. Since there is no resource overlap between the last transmission opportunity of each second transmission opportunity set and the last transmission opportunity of other second transmission opportunity sets, the obtained third transmission opportunity set is consistent with the second transmission opportunity set.
  • the end times of the last transmission opportunity of the third transmission opportunity set 1, the third transmission opportunity set 2, the third transmission opportunity set 3, and the third transmission opportunity set 4 are respectively: symbol 5 on slot n-3, slot n- Symbol 13 on 3, symbol 5 on slot n-2, symbol 13 on slot n-2; sort the third transmission opportunity set according to the end time of the last transmission opportunity, in order: the third transmission opportunity set 1 , a third transmission opportunity set 2 , a third transmission opportunity set 3 , and a third transmission opportunity set 4 . If the maximum transmission codeword is 1, the size of the determined feedback codebook is 4 bits, and the mapping relationship of the 4 bits is: the third transmission opportunity set 1, the third transmission opportunity set 2, and the third transmission opportunity set 3 , the third transmission opportunity set 4 .
  • the embodiment of the present application also provides an implementation method of determining the size of the feedback codebook and the mapping relationship. Specifically, when the above step 202 is performed, the transmission that conflicts with the uplink and downlink configuration parameters is deleted from the first transmission opportunity set When the opportunity obtains N second transmission opportunity sets, if the deleted transmission opportunity is the last transmission opportunity in the first transmission opportunity set, the deleted transmission opportunity will be used as the second transmission opportunity obtained after the first transmission opportunity set is deleted. The last transmission opportunity of the set of transmission opportunities. Then, combine the second transmission opportunity set with symbol overlap in the last transmission opportunity to obtain a third transmission opportunity set, and use the second transmission opportunity set without symbol overlap in the last transmission opportunity as a single third transmission opportunity set.
  • the conflicting transmission opportunity may be deleted from the second set of transmission opportunities, and the last transmission opportunity in the second set of transmission opportunities may be deleted.
  • the last transmission opportunity that conflicts with the uplink and downlink configuration parameters may also be used or marked as an unavailable transmission opportunity, that is, although the determined second transmission opportunity set exists A transmission opportunity but the transmission opportunity is an unavailable transmission opportunity; or, it can also be implemented in other ways.
  • the network device configures the time indication k ⁇ 2,3 ⁇
  • four sets of first transmission opportunities as shown in FIG. 4 can be determined.
  • the available transmission opportunities are: the second transmission opportunity set 1 ⁇ [n-5 ⁇ 1,13 ⁇ ], the second transmission opportunity Opportunity set 2 ⁇ [n-5 ⁇ 1,13 ⁇ ], [n-3 ⁇ 7,7 ⁇ ] ⁇ , second transmission opportunity set 3 ⁇ [n-4 ⁇ 1,13 ⁇ ] ⁇ , second transmission opportunity Set 4 ⁇ [n-4 ⁇ 1,13 ⁇ ], [n-2 ⁇ 7,7 ⁇ ] ⁇ .
  • the two deleted transmission opportunities are the last transmission opportunities of their respective first transmission opportunity sets
  • the third transmission opportunity set is subsequently determined, the deleted transmission opportunities [n-3 ⁇ 0 ,6 ⁇ ] as the last transmission opportunity of the second transmission opportunity set 1, and the deleted transmission opportunity [n-2 ⁇ 0,6 ⁇ ] as the last transmission opportunity of the second transmission opportunity set 3. Since there is no symbol overlap in the last transmission opportunity of the four second transmission opportunity sets, the determined third transmission opportunity set is consistent with the second transmission opportunity set, and the last transmission opportunity of the third transmission opportunity set is consistent with the second transmission opportunity set. The last transmission opportunity in the set of transmission opportunities agrees.
  • the actual third transmission opportunity sets are respectively: the third transmission opportunity set 1 ⁇ [n-5 ⁇ 1,13 ⁇ ], the third transmission opportunity set 2 ⁇ [n-5 ⁇ 1,13 ⁇ ], [ n-3 ⁇ 7,7 ⁇ ] ⁇ , the third transmission opportunity set 3 ⁇ [n-4 ⁇ 1,13 ⁇ ] ⁇ , the third transmission opportunity set 4 ⁇ [n-4 ⁇ 1,13 ⁇ ], [n -2 ⁇ 7,7 ⁇ ] ⁇ , but the last transmission opportunities marked by them are: [n-3 ⁇ 0,6 ⁇ ], [n-3 ⁇ 7,7 ⁇ ], [n-2 ⁇ 0, 6 ⁇ ], [n-2 ⁇ 7,7 ⁇ ].
  • the four sets of third transmission opportunities are sorted according to the marked end transmission time of the last transmission opportunity.
  • the size and mapping relationship of the feedback codebook are determined according to the quantity and order of the third transmission opportunity set.
  • the embodiment of the present application also provides an implementation method of determining the size of the feedback codebook and the mapping relationship.
  • the third transmission opportunity set is used as a third transmission opportunity set; and the third transmission opportunity set is sorted according to the start transmission time or end transmission time of the last transmission opportunity in the third transmission opportunity set.
  • the size and mapping relationship of the feedback codebook can be determined according to the quantity and order of the second transmission opportunity set.
  • delete can also be understood as “not included”, for example, delete the transmission opportunity in the transmission opportunity set that conflicts with the uplink and downlink configuration parameters, that is, the transmission opportunity set no longer includes The transmission opportunity that conflicts with the uplink and downlink configuration parameters.
  • the aforementioned methods for determining the feedback codebook are all aimed at the first channel in an activated cell.
  • the terminal device may have activated multiple cells. Feedback codebooks, and then splicing the determined feedback codebooks of each cell according to the order of the cell indexes, and sending feedback information according to the spliced feedback codebooks. Since different frequency domain resources are usually used between different cells, it can be considered that there is no problem of resource overlap in the first channel sent by the network device on different cells, so the problem of resource overlap can be simply performed between different cells
  • the codebook can be spliced. As mentioned above, there are many ways to determine the size of the feedback codebook and the mapping relationship in an activated cell.
  • the way of determining the feedback codebook in the cell may be different. For example, if each time slot in cell 1 can only transmit one first channel, and each time slot in other cells can transmit multiple first channels, then the feedback codebook method is determined in cell 1 and other cells can be different.
  • the embodiment of the present application also provides a method for determining a feedback codebook, which is used to solve the problem of determining a feedback codebook by a network device.
  • a method for determining a feedback codebook which is used to solve the problem of determining a feedback codebook by a network device.
  • Figure 9 is a schematic flow chart of the method, as shown in the figure, the method may include the following steps:
  • Step 901 the network device determines K*L sets of first transmission opportunities for the first channel on one activated cell.
  • Step 902 If there is a transmission opportunity in the first transmission opportunity set that conflicts with the uplink and downlink configuration parameters, delete the conflicting transmission opportunity in the first transmission opportunity set to obtain N second transmission opportunity sets.
  • the manner in which the network device determines the first set of transmission opportunities and the second set of transmission opportunities is consistent with the manner in which the terminal device determines the first set of transmission opportunities and the second set of transmission opportunities in the foregoing embodiments.
  • the terminal device determines the first set of transmission opportunities and the second set of transmission opportunities in the foregoing embodiments.
  • Step 903 the network device receives the feedback information sent by the terminal device, and the size and mapping relationship of the feedback codebook corresponding to the feedback information are determined according to the aforementioned N second transmission opportunity sets.
  • the way the network device determines the size of the feedback codebook and the mapping relationship is consistent with the way the terminal device determines the size of the feedback codebook and the mapping relationship in the foregoing embodiments. Method to realize.
  • One DCI can schedule one or more first channels.
  • the network device can still send the first channels on non-conflicting transmission opportunities, thereby achieving flexible scheduling, Avoid wasting resources.
  • the traditional feedback codebook determination method cannot be used in this scenario, because if the traditional feedback codebook determination method is adopted, when only some transmission opportunities collide, the first transmission opportunity set where the conflicting transmission opportunities are located is all deleted, so There is a difference between the determined feedback codebook and the codebook determined by the terminal device, and accurate feedback cannot be performed.
  • conflicting transmission opportunities instead of directly deleting the first transmission opportunity set, meets the requirements of flexible scheduling in the scenario where one DCI can schedule multiple first channels, and can accurately determine the semi-static HARQ- ACK codebook to avoid codebook deviation with terminal equipment.
  • an embodiment of the present application further provides a communication device, which is used to implement the steps performed by the terminal device in the foregoing method embodiments.
  • the communication device may include a module corresponding to one-to-one execution of the method/operation/step/action performed by the terminal device in the above method embodiment, and the module may be a hardware circuit, software, or It is realized by combining hardware circuit with software.
  • the communication device may include a determining module 1201 and a sending module 1202 as shown in FIG. 12 .
  • the determining module 1201 is configured to determine K*L first transmission opportunity sets of the first channel on an activated cell; the sending module 1202 is configured to send feedback information.
  • the determining module 1201 may determine the first set of transmission opportunities and the second set of transmission opportunities with reference to any of the foregoing implementation manners, and further, may refer to any of the foregoing implementation manners to determine the feedback codebook.
  • the embodiments of the present application further provide a communication device, which is used to implement the steps performed by the network device in the foregoing method embodiments.
  • the communication device may include modules corresponding to the methods/operations/steps/actions performed by the network equipment in the above method embodiments.
  • the modules may be hardware circuits, software, or It is realized by combining hardware circuit with software.
  • the communication device may include a determining module 1301 and a receiving module 1302 as shown in FIG. 13 .
  • the determining module 1301 is configured to determine K*L first transmission opportunity sets of the first channel on an activated cell; the receiving module 1302 is configured to receive feedback information.
  • the determining module 1301 may determine the first set of transmission opportunities and the second set of transmission opportunities with reference to any of the foregoing implementation manners, and further, may refer to any of the foregoing implementation manners to determine the feedback codebook.
  • the embodiment of the present application also provides a communication device.
  • the communication device includes a processor 1401 as shown in FIG. 14 , and a communication interface 1402 connected to the processor 1401 .
  • the processor 1401 may be a general-purpose processor, a microprocessor, a specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic device, or one or more integrated circuits used to control the execution of the program of this application, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • Communication interface 1402 using any device such as a transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc. .
  • radio access network radio access network
  • WLAN wireless local area networks
  • the processor 1401 is configured to call the communication interface 1402 to perform a function of receiving and/or sending, and execute the method described in any one of the preceding possible implementation manners.
  • the communication device may further include a memory 1403 and a communication bus 1404 .
  • the memory 1403 is configured to store program instructions and/or data, so that the processor 1401 calls the instructions and/or data stored in the memory 1403 to realize the above functions of the processor 1401 .
  • the memory 1403 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM) or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by the computer Any other medium, but not limited to it.
  • the memory 1403 may exist independently, such as an off-chip memory, and is connected to the processor 1401 through the communication bus 1404 .
  • the memory 1403 can also be integrated with the processor 1401.
  • Communication bus 1404 may include a path for communicating information between the components described above.
  • the communication device may be the terminal device in the foregoing method embodiments, or may be the network device in the foregoing method embodiments.
  • the processor 1401 is used to realize the data processing operation of the communication device
  • the communication interface 1402 is used to realize the receiving operation and the sending operation of the communication device.
  • the processor 1401 is configured to determine K*L first transmission opportunity sets of the first channel on an activated cell; and send feedback information through the communication interface 1402 .
  • each of the above components may also be used to support other processes performed by the terminal device in the above method embodiments.
  • reference may be made to the foregoing description, and details are not repeated here.
  • the processor 1401 is configured to determine K*L first transmission opportunity sets of a first channel on an activated cell; and receive feedback information through the communication interface 1402 .
  • the foregoing components may also be used to support other processes performed by the network device in the foregoing method embodiments.
  • reference may be made to the foregoing description, and details are not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-readable instructions, and when the computer-readable instructions are run on a computer, such as The method for determining the feedback codebook described in any one of the foregoing possible implementation manners is executed.
  • Embodiments of the present application provide a computer program product containing instructions, which, when run on a computer, enable the above method embodiments to be executed.
  • the embodiment of the present application provides a computer-readable storage medium, which stores a computer program, and the computer program includes instructions for executing the above-mentioned method embodiment.
  • the embodiment of the present application provides a computer program product including instructions, which when run on a computer, causes the computer to execute the above method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定反馈码本的方法及通信装置。该方法中,终端确定第一信道的K*L个第一传输机会集合,K是为终端配置的k值的个数,k值表示终端在第n个时隙上发送的反馈信息用于反馈终端在第n-k个时隙或在第n-k个时隙及第n-k之前的时隙上是否成功接收第一信道,L是TDRA表配置的行数,每个第一传输机会集合为根据一个k值和TDRA表的其中一行中的所有SLIV确定出的传输机会,至少一个第一传输机会集合中包含的传输机会个数大于1;在每个第一传输机会集合中删除与上下行配置参数冲突的传输机会,得到N个第二传输机会集合,N小于等于K*L;终端根据N个第二传输机会集合确定反馈码本的大小和映射关系。

Description

一种确定反馈码本的方法及通信装置
相关申请的交叉引用
本申请要求在2021年08月06日提交中国专利局、申请号为202110904156.2、申请名称为“一种确定反馈码本的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年09月30日提交中国专利局、申请号为202111161297.6、申请名称为“一种确定反馈码本的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种确定反馈码本的方法及通信装置。
背景技术
在新空口(new radio,NR)系统中,基站可以通过下行控制信息(downlink control information,DCI)或者通过无线资源控制(radio resource control,RRC)信令指示终端用于进行物理下行共享信道(physical downlink shared channel,PDSCH)的接收和对应混合自动重传请求(hybrid automatic repeat request,HARQ)信息的反馈。具体地,如果网络设备在时隙(slot)n向终端设备动态调度了PDSCH或者半静态调度的PDSCH,或者半静态PDSCH调度的释放命令(通过DCI发送),则终端设备需要在slot n+k中对时隙n发送的PDSCH或半静态PDSCH调度的释放命令(DCI)进行HARQ反馈,其中k的值由DCI中的“PDSCH-to-HARQ-timing-indicator”字段进行指示。
由于不同DCI所指示的k值可以不同,终端针对不同时刻接收的PDSCH的反馈信息,可以被指示在同一HARQ反馈资源上进行反馈。示例性地,在slot 1上的DCI1指示的k值为3,即指示终端针对slot 1上接收到的PDSCH在slot 4上进行HARQ反馈;在slot 2上的DCI2指示的k值为2,即指示终端针对slot 2上接收到的PDSCH在slot 4上进行HARQ反馈;因此,终端在slot 4上需要反馈两个PDSCH(即在slot 1上接收到的PDSCH和slot 2上接收到的PDSCH)的HARQ-ACK信息。可见,终端可以在同一反馈资源上发送在不同时隙中接收到的PDSCH的HARQ-ACK信息。终端在同一个反馈资源上发送的所有HARQ-ACK比特信息构成的集合称为HARQ-ACK码本(HARQ-ACK codebook),所述HARQ-ACK比特信息对应的PDSCH或DCI信令可以来自同一个激活小区,也可以来自不同的激活小区;当来自不同的激活小区时,这些激活小区属于同一个HARQ反馈小区组(cell group)。
在目前的新空口(new radio,NR)中,在频谱范围(frequency range,FR)1支持的子载波带宽包括15kHz、30kHz、60kHz,在FR2支持的子载波带宽包括120kHz、480kHz、960kHz。正交频分复用(orthogonal frequency division multiplexing,OFDM)符号长度和子载波带宽成反比,因此,子载波带宽越大,对应的OFDM符号长度越短,时隙长度也越短。为节省DCI信令开销,在子载波带宽较大的场景中,一个DCI可以调度多个PDSCH。而目前的终端确定反馈码本的方法仅适用于一个DCI仅调度一个PDSCH的情况,无法继续适用于一个DCI调度多个PDSCH的场景。
发明内容
本申请实施例提供一种确定反馈码本的方法及通信装置,用于解决当一个DCI调度多个下行信道时终端设备如何确定反馈码本的问题。
第一方面,本申请实施例提供一种确定反馈码本的方法,包括:终端设备确定第一信道在一个激活小区上的K*L个第一传输机会集合,K表示为所述终端设备配置的时间指示k值的个数,所述时间指示k值表示所述终端设备在第n个时隙上发送的反馈信息用于反馈所述终端设备在第n-k个时隙或者在第n-k个时隙及第n-k之前的时隙上是否成功接收所述第一信道,L表示时域资源配置TDRA表的行数,所述TDRA表的每行包含至少一个起始符号和长度指示符SLIV,每个所述第一传输机会集合为根据一个时间指示k值和所述TDRA表的其中一行中的SLIV确定出的传输机会;若所述任意一个第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,N小于等于K*L;所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向;所述终端设备发送反馈信息,所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定。
一个DCI可以调度一个或多个第一信道,当一个DCI调度多个第一信道但部分传输机会存在冲突时,网络设备仍可以在不冲突的传输机会上发送第一信道,从而实现灵活调度、避免资源浪费。传统的反馈码本确定方法无法沿用于该场景中,因为若采用传统的反馈码本确定方法,当仅部分传输机会存在冲突时,存在冲突的传输机会所在的第一传输机会集合全部删除,因此确定出的反馈码本与网络设备的实际调度存在差异,无法准确反馈。而采用本申请实施例提供的反馈码本确定方法后,当包含多个传输机会的第一传输机会集合中存在与上下行配置冲突的传输机会时,仅删除存在冲突的传输机会,保留不存在冲突的传输机会,而非直接将该第一传输机会集合删除,满足了一个DCI可灵活调度多个第一信道的需求。
在一种可能的实现方式中,所述方法还包括:将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
在一种可能的实现方式中,所述若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,包括:若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,若删除的传输机会为所在第一传输机会集合中最后一个传输机会,将所述删除的传输机会作为经过删除后得到的第二传输机会集合的最后一个传输机会;所述方法还包括:将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
在一种可能的实现方式中,所述方法还包括:若所述N个第二传输机会集合中存在属于不同第二传输机会集合的传输机会的符号重叠,对相同时隙内存在符号重叠和/或不存在符号重叠的传输机会进行合并,得到P个第三传输机会集合,P小于等于N;所述反馈码本的大小和映射关系,根据所述P个第三传输机会集合确定。
在一种可能的实现方式中,所述方法还包括:若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中,i为1~N中任意整数,j为i+1~N中任意整数;将不需要共同映射的传输机会单独映射为一个传输机会,所述单独映射后的传输机会在所在时隙内的索引由映射前的传输机会的结束时刻确定;所述反馈码本的大小根据映射后的传输机会的数量确定;将所述映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,所述反馈码本的映射关系根据排序后的传输机会确定。
在一种可能的实现方式中,所述方法还包括:所述终端设备确定接收到的所述第一信道所对应的第二传输机会集合中的传输机会,根据所述传输机会经过映射后的传输机会确定所述接收到的第一信道的反馈信息在所述反馈码本中对应的比特位。
在一种可能的实现方式中,所述反馈码本的大小,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的个数确定;所述反馈码本的映射关系,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的先后顺序确定。
在一种可能的实现方式中,所述终端设备激活L个小区,L为大于1的整数;所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定,包括:根据第l个激活小区上的N l个第二传输机会集合,确定在所述第l个激活小区上所述第一信道反馈码本的大小和映射关系;按照小区索引从小到大的顺序,对每个小区上所述第一信道反馈码本进行拼接,确定拼接后的所述第一信道反馈码本大小和映射关系。
在一种可能的实现方式中,所述第一信道为物理下行共享信道PDSCH或用于释放半静态调度SPS的物理下行控制信道PDCCH。
第二方面,本申请实施例提供一种确定反馈码本的方法,包括:网络设备确定第一信道在一个激活小区上的K*L个第一传输机会集合,K表示为所述终端设备配置的时间指示k值的个数,所述时间指示k值表示所述终端设备在第n个时隙上发送的反馈信息用于反馈所述终端设备在第n-k个时隙或者在第n-k个时隙及第n-k之前的时隙上是否成功接收所述第一信道,L表示时域资源配置TDRA表的行数,所述TDRA表的每行包含至少一个起始符号和长度指示符SLIV,每个所述第一传输机会集合为根据一个时间指示k值和所述TDRA表的其中一行中的SLIV确定出的传输机会;若所述任意一个第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,N小于等于K*L;所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向;所述网络设备接收所述终端设备发送的反馈信息,所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定。
一个DCI可以调度一个或多个第一信道,当一个DCI调度多个第一信道但部分传输机 会存在冲突时,网络设备仍可以在不冲突的传输机会上发送第一信道,从而实现灵活调度、避免资源浪费。传统的反馈码本确定方法无法沿用于该场景中,因为若采用传统的反馈码本确定方法,当仅部分传输机会存在冲突时,存在冲突的传输机会所在的第一传输机会集合全部删除,无法适用于更加灵活调度的场景中。而采用本申请实施例提供的反馈码本确定方法后,当包含多个传输机会的第一传输机会集合中存在与上下行配置冲突的传输机会时,仅删除存在冲突的传输机会,保留不存在冲突的传输机会,而非直接将该第一传输机会集合删除,满足了一个DCI可灵活调度多个第一信道的需求。
在一种可能的实现方式中,所述方法还包括:将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
在一种可能的实现方式中,所述若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,包括:若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,若删除的传输机会为所在第一传输机会集合中最后一个传输机会,将所述删除的传输机会作为经过删除后得到的第二传输机会集合的最后一个传输机会;所述方法还包括:将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
在一种可能的实现方式中,所述方法还包括:若所述N个第二传输机会集合中存在属于不同第二传输机会集合的传输机会的符号重叠,对相同时隙内存在符号重叠和/或不存在符号重叠的传输机会进行合并,得到P个第三传输机会集合,P小于等于N;所述反馈码本的大小和映射关系,根据所述P个第三传输机会集合确定。
在一种可能的实现方式中,所述方法还包括:若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中,i为1~N中任意整数,j为i+1~N中任意整数;将不需要共同映射的传输机会单独映射为一个传输机会,所述单独映射后的传输机会在所在时隙内的索引由映射前的传输机会的结束时刻确定;所述反馈码本的大小根据映射后的传输机会的数量确定;将所述映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,所述反馈码本的映射关系根据排序后的传输机会确定。
在一种可能的实现方式中,所述反馈码本的大小,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的个数确定;所述反馈码本的映射关系,具体根据 所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的先后顺序确定。
在一种可能的实现方式中,所述终端设备激活L个小区,L为大于1的整数;所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定,包括:根据第l个激活小区上的N l个第二传输机会集合,确定在所述第l个激活小区上所述第一信道反馈码本的大小和映射关系;按照小区索引从小到大的顺序,对每个小区上所述第一信道反馈码本进行拼接,确定拼接后的所述第一信道反馈码本大小和映射关系。
在一种可能的实现方式中,所述第一信道为物理下行共享信道PDSCH或用于释放半静态调度SPS的物理下行控制信道PDCCH。
第三方面,本申请实施例还提供一种确定反馈码本的方法,包括:确定第一信道在一个激活小区上的K*L个第一传输机会集合,K表示为所述终端设备配置的时间指示k值的个数,所述时间指示k值表示所述终端设备在第n个时隙上发送的反馈信息用于反馈所述终端设备在第n-k个时隙或者在第n-k个时隙及第n-k之前的时隙上是否成功接收所述第一信道,L表示时域资源配置TDRA表的行数,所述TDRA表的每行包含至少一个起始符号和长度指示符SLIV,每个所述第一传输机会集合为根据一个时间指示k值和所述TDRA表的其中一行中的SLIV确定出的传输机会;若任意一个第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,若删除的传输机会为所在第一传输机会集合中最后一个传输机会,将所述删除的传输机会作为经过删除后得到的第二传输机会集合的最后一个传输机会;将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合,将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合,得到P个第三传输机会集合;接收或发送反馈信息,所述反馈信息的反馈码本的大小和映射根据所述P个第三传输机会集合确定。
第四方面,本申请实施例提供一种确定反馈码本的方法,包括:终端设备确定第一信道在一个激活小区上的多个第一传输机会集合,所述第一传输机会集合包含多个传输机会;所述终端设备发送反馈信息,所述反馈信息的反馈码本的大小和映射关系根据第三传输机会集合的数量及排序确定;其中,所述第三传输机会集合包括N个第二传输机会集合中的至少两个第二传输机会集合包含的传输机会,所述至少两个第二传输机会集合的最后一个传输机会存在符号重叠,或者所述第三传输机会集合包括一个所述第二传输机会集合包含的传输机会;其中,每个所述第二传输机会集合包括所述第一传输机会集合中与上下行配置参数不冲突的传输机会,若所述第一传输机会集合中与上下行配置参数冲突的传输机会为所述第一传输机会集合中的最后一个传输机会,则第二传输机会集合中包含所述最后一个传输机会,所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向,所述N小于或等于所述多个第一传输机会集合的个数。
在一种可能的实现方式中,所述第三传输机会集合的个数为P,所述P小于或等于所述N,所述P个第三传输机会集合按照最后一个传输机会的起始传输时间或结束传输时间进行排序。
第五方面,本申请实施例提供一种确定反馈码本的方法,包括:网络设备确定第一信道在一个激活小区上的多个第一传输机会集合,所述第一传输机会集合包含多个传输机会;网络设备接收终端设备发送的反馈信息,所述反馈信息的反馈码本的大小和映射关系根据第三传输机会集合的数量及排序确定;其中,所述第三传输机会集合包括N个第二传输机 会集合中的至少两个第二传输机会集合包含的传输机会,所述至少两个第二传输机会集合的最后一个传输机会存在符号重叠,或者所述第三传输机会集合包括一个所述第二传输机会集合包含的传输机会;其中,每个所述第二传输机会集合包括所述第一传输机会集合中与上下行配置参数不冲突的传输机会,若所述第一传输机会集合中与上下行配置参数冲突的传输机会为所述第一传输机会集合中的最后一个传输机会,则第二传输机会集合中包含所述最后一个传输机会,所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向,所述N小于或等于所述多个第一传输机会集合的个数。
在一种可能的实现方式中,所述第三传输机会集合的个数为P,所述P小于或等于所述N,所述P个第三传输机会集合按照最后一个传输机会的起始传输时间或结束传输时间进行排序。
第六方面,本申请实施例提供一种通信装置,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如第一方面、第四方面以及任意一种可能实现方式的确定反馈码本的方法。
第七方面,本申请实施例提供一种通信装置,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如第二方面、第五方面以及任意一种可能实现方式的确定反馈码本的方法。
第八方面,本申请实施例中提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一方面至第五方面以及任一种可能实现方式所述的方法被执行。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得如第一方面至第五方面及任一种可能的实现方式所述的方法被执行。
附图说明
图1为本申请实施例提供的通信系统架构示意图;
图2为本申请实施例提供的反馈码本确定方法的流程示意图;
图3为本申请实施例提供的第一传输机会集合示意图;
图4为本申请实施例提供的一种第一传输机会集合、第二传输机会集合示意图;
图5为本申请实施例提供的一种映射后的传输机会示意图;
图6为本申请实施例提供的另一种第一传输机会集合、第二传输机会集合示意图;
图7为本申请实施例提供的另一种映射后的传输机会示意图;
图8为本申请实施例提供的一种第三传输机会集合示意图;
图9为本申请实施例提供的另一种第三传输机会集合示意图;
图10为本申请实施例提供的又一种第三传输机会集合示意图;
图11为本申请实施例提供的又一种第三传输机会集合示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图;
图14为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
以第三代合作伙伴计划(3rd generation partnership project,3GPP)NR相关技术规范R15版本或R16版本为例,支持两种HARQ-ACK码本类型,分别为半静态HARQ-ACK码本(semi-static HARQ-ACK codebook)和动态HARQ-ACK码本(dynamic HARQ-ACK codebook)。其中,半静态HARQ-ACK码本指的是HARQ-ACK码本大小、映射关系不随实际数据调度情况而改变的一种码本,码本大小、映射关系可以根据协议预定义或RRC配置的参数来确定,反馈码本大小及映射关系不受实际数据调度的改变而变化,码本可靠性较高。
本申请实施例提供一种确定反馈码本的方法,可以用于终端设备或网络设备确定半静态HARQ-ACK码本的过程中,解决在一个DCI调度多个下行信道时终端设备、网络设备如何确定反馈码本的问题,以使终端设备和网络设备根据半静态HARQ-ACK码本进行反馈信息的通信。
该方法可以应用于如图1所示的通信系统架构中,如图1所示,该通信系统架构包括网络设备和终端设备。
其中,网络设备为无线接入网(radio access network,RAN)设备,无线接入网设备又可称为接入网设备或基站,用于将终端设备接入到无线网络。所述无线接入网可以是基站(base station)、LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB)、5G通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、未来移动通信系统中的基站或WiFi系统中的接入节点等。无线接入网设备也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),或者分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考3GPP的相关技术规范。无线接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备,也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
参见图2,为本申请实施例提供的一种反馈码本确定方法的流程示意图,如图所示,该方法可以包括以下步骤:
步骤201、终端设备确定第一信道在一个激活小区上的K*L个第一传输机会集合。
其中,K表示网络设备为终端设备配置的时间指示k值的个数,每个时间指示k值表示终端设备在第n个时隙上发送的反馈信息用于反馈该终端设备在第n-k个时隙,或者,在第n-k个时隙及第n-k时隙之前的时隙上是否成功接收第一信道。时间指示k值可以通过DCI中的PDSCH的HARQ时间指示(PDSCH-to-HARQ-timing-indicator)字段进行指示,或者,也可以通过RRC信令中的下行数据的上行确认(dl-DataToUL-ACK)字段进行指示,或者,还可以通过其他方式进行指示。默认情况下,时间指示k的取值范围可以为{1,2,3,4,5,6,7,8}的任意子集。例如,若网络设备为终端设备配置的时间指示k∈{2,3},网络设备为终端设备配置了2个时间指示k值,故K=2。
当一个DCI仅调度一个第一信道时,时间指示k值表示终端设备在第n个时隙上反馈在第n-k个时隙上是否成功接收第一信道。当一个DCI调度可以多个第一信道时,该多个第一信道可能位于不同的时隙上,此时,时间指示k值表示终端设备在第n个时隙上发送的反馈信息,用于反馈DCI调度的最后一个第一信道位于第n-k个时隙中的DCI所调度的每个第一信道的接收成功与否。例如,一个DCI调度两个第一信道,且两个第一信道在时域上存在一个时隙的间隔,如第一个第一信道位于slot 1,第二个第一信道位于slot 3;当时间指示k=3时,则终端设备在slot n上反馈针对slot n-5上的第一个第一信道和slot n-3上的第二个第一信道的反馈信息。
L表示网络设备为终端设备配置的时域资源配置(time domain resource allocation,TDRA)表的行数。例如,表1示例性的提供一种TDRA配置信息。
表1
Row index(行索引) SLIV
0 {S=1,L=13},slot-gap(时隙间隔),{S=0,L=7}
1 {S=7,L=7}
如表1所示,TDRA中的每一行定义了至少一个SLIV,表1中包括两行故L=2。当DCI中指示的行索引为0时,表示一个DCI调度了两个第一信道,且两个第一信道之间间隔一个时隙;具体的,第一个第一信道在时隙l上的起始符号为1,长度为13个符号,第二个第一信道在时隙l+2上的起始符号为0,长度为7个符号。其中时隙l可以由DCI中指示的调度偏移指示k0和DCI所在的时隙位置来确定。当行索引为1时,表示一个DCI调度了一个第一信道,该第一信道在其对应的时隙上的起始符号为7,长度为7个符号。
任意一个第一传输机会集合由根据一个时间指示k值和TDRA中的一行所定义的SLIV确定出的一个或多个传输机会构成。以表1所示的TDRA为例,若网络设备配置时间指示k∈{2,3},则第一信道候选的传输机会可以如图3所示。由于K=2,L=2,故一共确定出2*2个第一传输机会集合,其中,第一传输机会集合1表示根据k=3、Row index=0时的SLIV确定出的第一信道的传输机会,第一传输机会集合2表示根据k=3、Row index=1时的SLIV确定出的第一信道的传输机会,第一传输机会集合3表示根据k=2、Row index=0时的SLIV确定出的第一信道的传输机会,第一传输机会集合4表示根据k=2、Row index=1时的SLIV确定出的第一信道的传输机会。图3中的位于slot n上的物理上行控制信道(physical uplink control channel,PUCCH)表示终端设备发送反馈信息的资源位置。
步骤202、若第一传输机会集合中存在与上下行配置参数冲突的传输机会,在第一传输机会集合中删除冲突的传输机会,得到N个第二传输机会集合。
所述上下行配置参数用于指示一个激活小区内以时隙或符号为单位的上下行的传输 方向。网络设备可以灵活配置上下行配置参数,以指示子帧、时隙或时隙中每个符号用于进行上行传输或下行传输,例如网络设备可以通过RRC信令中的时分双工下行/上行配置(TDD DL/UL configuration)字段指示上下行配置参数。网络设备发送第一信道所占用的时域资源需要位于配置的下行时域资源中,终端设备发送反馈信息所占用的时域资源需要位于配置的上行时域资源中。由于上下行配置参数可以由网络设备灵活配置,因此,可能出现第一信道的传输机会与上下行配置参数冲突的情况。
若存在传输机会与上下行配置参数冲突,则网络设备不会在该传输机会上发送第一信道,因此,终端设备可以在第一传输机会集合中,删除存在冲突的传输机会;或者,令确定出的第二传输机会集合中不包含有与上下行配置参数冲突的传输机会。
仍以图3为例,若网络设备配置的上下行配置参数指示slot n-5为上行时隙,即该时隙用于进行上行传输,则网络设备不可能在slot n-5上发送第一信道,则终端设备可以将第一传输机会集合1中的第一个传输机会删除,仅保留第二个传输机会,即保留slot n-3上的传输机会。若网络设备配置的上下行配置参数指示slot n-3为上行时隙,即该时隙用于进行上行传输,则网络设备不可能在slot n-3上发送第一信道,则在第一传输机会集合1中删除在slot n-3上的传输机会,仅保留slot n-5上的传输机会;在第一传输机会集合2中传输slot n-3上的传输机会,则第一传输机会集合2变为空集,即删除了第一传输机会集合2。因此,在经过上述步骤202后得到的第二传输机会集合的个数N,可以为小于或等于K*L的整数。
步骤203、终端设备向网络设备发送反馈信息,该反馈信息所对应的反馈码本的大小和映射关系根据上述N个第二传输机会集合确定。
终端设备在向网络设备发送反馈信息时,根据反馈码本进行反馈。反馈码本的大小表示反馈信息的长度,反馈码本的映射关系表示反馈信息依次反馈的内容。例如,反馈信息中的每个比特表示其对应的第一信道是否接收成功,反馈码本的映射关系则表示每个比特位所对应的第一信道。
一个DCI可以调度一个或多个第一信道,当一个DCI调度多个第一信道但部分传输机会存在冲突时,网络设备仍可以在不冲突的传输机会上发送第一信道,从而实现灵活调度、避免资源浪费。传统的反馈码本确定方法无法沿用于该场景中,因为若采用传统的反馈码本确定方法,当仅部分传输机会存在冲突时,存在冲突的传输机会所在的第一传输机会集合全部删除,因此确定出的反馈码本与网络设备的实际调度存在差异,无法准确反馈。而采用本申请实施例提供的反馈码本确定方法后,当包含多个传输机会的第一传输机会集合中存在与上下行配置冲突的传输机会时,仅删除存在冲突的传输机会,保留不存在冲突的传输机会,而非直接将该第一传输机会集合删除,满足了一个DCI可灵活调度多个第一信道的需求。
可选的,上述第一信道可以为半静态调度的PDSCH或动态调度的PDSCH;或者,上述第一信道也可以为用于释放半静态调度(semi persistent scheduling,SPS)的物理下行控制信道(physical downlink control channel,PDCCH);或者,上述第一信道也可以是其他物理信道,即上述方法还可以应用于其他需要HARQ反馈的物理信道。
由于一个DCI可以调度多个第一信道,使得根据不同的SLIV和不同的时间指示k值确定出的传输机会,即不同第二传输机会集合中的传输机会,可能存在资源重叠的可能。若多个传输机会存在资源重叠,网络设备在存在资源重叠的多个传输机会中仅能够发送一 个第一信道。因此,为了减少反馈码本的比特位数、节省资源,可以对资源重叠的传输机会进行合并。
在一种可能的实现方式中,若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中处于相同时隙的传输机会共同映射为一个传输机会,共同映射后的传输机会在该时隙内的索引,由上述处于相同时隙的传输机会中结束时刻最早的传输机会的结束时刻确定。其中,i为1~N中任意整数,j为i+1~N中任意整数。例如,若第i个第二传输机会集合中的传输机会A位于slot l上的符号0~符号6,第j个传输机会集合中的传输机会B位于slot l上的符号1~符号13,与传输机会A位于相同的时隙上且存在符号重叠,将传输机会A和传输机会B共同映射为一个传输机会,由于传输机会A的结束时刻早于传输机会B的结束时刻,因此,映射后的传输机会的在该实现内的索引由传输机会A的结束时刻确定。映射后的传输机会对应传输机会A和传输机会B,即,若终端设备在slot l上的符号0~符号6上接收到第一信道,则其反馈信息在反馈码本中的位置,为该共同映射的传输机会在反馈码本中的位置;若终端设备在slot l上的符号1~符号13上接收到第一信道,则其反馈信息在反馈码本中的位置,也在该共同映射的传输机会在反馈码本中的位置。又例如,若第i个第二传输机会集合中的传输机会A与第j个第二传输机会集合中的传输机会B存在符号重叠,第i个第二传输机会集合中的传输机会C与第j个第二传输机会集合中的传输机会D位于相同的时隙,即使不存在符号重叠,也需要根据上述方式将其共同映射为一个传输机会。
进一步的,进行共同映射的两个或多个传输机会中,结束时刻不是最早的传输机会,仅进行一次共同映射,在变换i、j的取值后,不再进行共同映射。
对于不需要按照上述方法进行共同映射的传输机会,将其单独映射为一个传输机会,单独映射后的传输机会在其所在的时隙内的索引,由映射前的传输机会的结束时刻确定。
然后,终端设备可以根据映射后的传输机会的数量确定反馈码本的大小;并将映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,根据排序后的传输机会确定反馈码本的映射关系。
进一步的,终端设备根据DCI接收到网络设备发送的第一信道后,可以确定第一信道所对应的第二传输机会集合中的传输机会,并根据该传输机会映射后的传输机会在反馈码本中的位置,确定该第一信道的反馈信息在反馈码本中对应的比特位。例如,终端设备在slot l接收到第一信道1后,确定第一信道1对应第二传输机会集合2中第三个传输机会,并确定第二传输机会集合2中第三个传输机会在反馈码本中的位置,即为第一信道1在反馈码本中的位置。
传统的反馈码本确定方法会将存在符号冲突的传输机会进行合并,对不存在符号冲突的传输机会不进行合并。而针对一个DCI调度多个第一信道的场景,若一个第二传输机会集合包含的多个传输机会中仅部分传输机会与第二传输机会集合中的传输机会冲突,则网络设备不会同时在这两个第二传输机会集合对应的传输机会上发送第一信道,网络设备最多选择其中一个第二传输机会集合对应的传输机会发送第一信道。因此,仅合并存在冲突的传输机会仍然会造成码本冗余,而采用上述合并方式,有助于进一步降低码本的冗余。
为了便于理解上述实现方式,下面结合表2、图4、图5,以及表3、图6、图7进行举例说明。
表2
Row index(行索引) SLIV
0 {S=1,L=13},slot-gap(时隙间隔),{S=0,L=6}
1 {S=1,L=13},slot-gap(时隙间隔),{S=7,L=7}
表2示例性的提供一种TDRA配置信息,当行索引为0时,SLIV表示一个DCI调度了两个第一信道,第一个第一信道在时隙l上的起始符号为1,长度为13个符号,第二个第一信道在时隙l+2上的起始符号为0,长度为6个符号,其中时隙l可以由DCI中指示的调度偏移指示k0和DCI所在的时隙位置来确定。当行索引为1时,SLIV表示一个DCI调度了两个第一信道,第一个第一信道在时隙l上的起始符号为1,长度为13个符号,第二个第一信道在时隙l+2上的起始符号为7,长度为7个符号,其中时隙l可以由DCI中指示的调度偏移指示k0和DCI所在的时隙位置来确定。
若网络设备配置时间指示k∈{2,3},则第一信道候选的传输机会可以如图4所示。由于K=2,L=2,故一共确定出2*2个第一传输机会集合,其中,第一传输机会集合1表示根据k=3、Row index=0时的SLIV确定出的第一信道的传输机会为slot n-5上的符号1~13(简称[n-5{1,13}])、slot n-3上的符号0~6(简称[n-3{0,6}]),第一传输机会集合2表示根据k=3、Row index=1时的SLIV确定出的第一信道的传输机会为[n-5{1,13}])、slot n-3上的符号7~13(简称[n-3{7,7}]),第一传输机会集合3表示根据k=2、Row index=0时的SLIV确定出的第一信道的传输机会为slot n-4上的符号1~13(简称[n-4{1,13}])、slot n-2上的符号0~6(简称[n-2{0,6}]),第一传输机会集合4表示根据k=2、Row index=1时的SLIV确定出的第一信道的传输机会为slot n-4上的符号1~13(简称[n-4{1,13}])、slot n-2上的符号7~13(简称[n-2{7,7}])。由于slot n-5至slot n-1均为下行传输时隙,不存在与上下行配置参数冲突的传输机会,故确定出的第二传输机会集合与第一传输机会集合一致。
其中,第二传输机会集合1的[n-5{1,13}]与第二传输机会集合2的[n-5{1,13}]存在符号重叠,将这两个集合中位于相同时隙的传输机会共同映射为一个传输机会。具体的,第二传输机会集合1的[n-5{1,13}]与第二传输机会集合2的[n-5{1,13}]均位于slot n-5中,由于这两个传输机会的结束时刻相同均为符号13,因此,共同映射后的传输机会的在slot n-5上的索引由符号13确定;第二传输机会集合1的[n-3{0,6}]与第二传输机会集合2的[n-3{7,7}]均位于slot n-3中,这两个传输机会中结束时刻最早的为[n-3{0,6}],因此,共同映射后的传输机会的在slot n-3上的索引由符号6确定,如图5所示。其中,映射后的传输机会的起始时刻本申请实施例不做限定,图中均以结束时刻最早的传输机会的起始时刻为例。
同理,第二传输机会集合3的[n-4{1,13}]与第二传输机会集合4的[n-4{1,13}]存在符号重叠,将这两个集合中位于相同时隙的传输机会共同映射为一个传输机会。具体的,将第二传输机会集合3的[n-4{1,13}]与第二传输机会集合4的[n-4{1,13}]共同映射为一个传输机会,共同映射后的传输机会在slot n-4上的索引由符号13确定。将第二传输机会集合3的[n-2{0,6}]与第二传输机会集合4的[n-2{7,7}]共同映射为一个传输机会,共同映射后的传输机会在slot n-2上的索引由符号6确定,如图5所示。
如图5所示,最终得到4个不相同的传输机会,且分布在不同的时隙上,按照时隙从早到晚对这4个传输机会进行排序,分别为[n-5{1,13}]、[n-4{1,13}]、[n-3{0,6}]以及[n-2{0,6}]。
若第一信道的最大传输码字为1,则反馈码本大小为4个比特;反馈码本4个比特的映射关系依次为:[n-5{1,13}]、[n-4{1,13}]、[n-3{0,6}]、[n-2{0,6}]。若终端设备根据DCI在[n-2{7,7}]上接收到了第一信道,确定该第一信道对应第二传输机会集合4中的[n-2{7,7}],并确定第二传输机会集合4中的[n-2{7,7}]映射为[n-2{0,6}],因此,终端设备对该第一信道的反馈信息位于反馈码本中[n-2{0,6}]对应的比特位上。
表3
Row index(行索引) SLIV
0 {S=1,L=13},{S=0,L=6}
1 {S=1,L=13},slot-gap(时隙间隔),{S=7,L=7}
表3示例性的提供一种TDRA配置信息,当行索引为0时,SLIV表示一个DCI调度了两个第一信道,第一个第一信道在时隙l上的起始符号为1,长度为13个符号,第二个第一信道在时隙l+1上的起始符号为0,长度为6个符号,其中时隙l可以由DCI中指示的调度偏移指示k0和DCI所在的时隙位置来确定。当行索引为1时,SLIV表示一个DCI调度了两个第一信道,第一个第一信道在时隙l上的起始符号为1,长度为13个符号,第二个第一信道在时隙l+2上的起始符号为7,长度为7个符号,其中时隙l可以由DCI中指示的调度偏移指示k0和DCI所在的时隙位置来确定。
若网络设备配置时间指示k∈{2,3},则第一信道候选的传输机会可以如图6所述。由于K=2,L=2,故一共确定出2*2个第一传输机会集合,每个第一传输机会集合的确定方式与前述实施例类似,不再赘述。由于slot n-5至slot n-1均为下行传输时隙,不存在与上下行配置参数冲突的传输机会,故确定出的第二传输机会集合与第一传输机会集合一致。
其中,第二传输机会集合1的[n-3{0,6}]与第二传输机会集合3的[n-3{1,13}]存在符号重叠,将这两个集合中位于相同时隙的传输机会共同映射为一个传输机会。具体的,第二传输机会集合1的[n-3{0,6}]与第二传输机会集合2的[n-3{1,13}]均位于slot n-3中,由于这两个传输机会中结束时刻最早的为[n-3{0,6}],因此,共同映射后的传输机会在slot n-3上的索引由符号6确定,如图7所示。
同理,第二传输机会集合1的[n-4{1,13}]与第二传输机会集合4的[n-4{1,13}]存在符号重叠,将这两个集合中位于相同时隙的传输机会共同映射为一个传输机会。具体的,第二传输机会集合1的[n-4{1,13}]与第二传输机会集合4的[n-4{1,13}]均位于slot n-4中,由于这两个传输机会的结束时刻相同,因此,共同映射后的传输机会在slot n-4上的索引由符号13确定。
虽然第二传输机会集合3的[n-3{1,13}]与第二传输机会集合2中的[n-3{7,7}]存在资源重叠,但由于第二传输机会集合3的[n-3{1,13}]已经经过了共同映射,且与其共同映射的传输机会的结束时刻早于其结束时刻,故不需要对其再次映射。
如图7所示,最终得到6个不相同的传输机会,按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序分别为:[n-5{1,13}],[n-4{1,13}],[n-3{0,6}],[n-3{7,7}],[n-2{0,6}],[n-2{7,7}]。若第一信道的最大传输码字为1,则反馈码本大小为6个比特;反馈码本6个比特的映射关系依次为:{[n-5{1,13}],[n-4{1,13}],[n-3{0,6}],[n-3{7,7}],[n-2{0,6}],[n-2{7,7}]}。
在另一种可能的实现方式中,在得到N个第二传输机会集合后,还可以根据下述方式确定反馈码本的大小及映射关系:
若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,确定第i个第二传输机会集合和第j个第二传输机会集合属于同一个第三集合,即第三集合包括第i个第二传输机会集合和第j个第二传输机会集合,其中,i为1~N中任意整数,j为i+1~N中任意整数。若第i个第二传输机会集合与任一个第二传输机会集合均不存在符号重叠,则将第i个传输机会集合作为一个第三集合。经过i值和j值的轮询后,得到P个第三集合。
假设一个第三传输机会集合包括H个第二传输机会集合,在这H个第二传输机会集合中,若第x个第二传输机会集合中与第y个第二传输机会集合中的至少一个传输机会存在符号重叠,则将第x个第二传输机会集合和第y个第二传输机会集合中处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中x为1~H中任意整数,y为i+1~H中任意整数。
将不需要共同映射的传输机会单独映射为一个传输机会,映射的方式与前述实施例中的映射方式类似,此处不再赘述。
更新后的每个第三传输机会集合中的传输机会按照起始时刻从早到晚进行排序。再根据第三传输机会集合中第一个传输机会的起始时刻,按照从早到晚的顺序对P个第三传输机会集合进行排序;或者,也可以根据按照最后一个传输机会的结束时刻对P个第三传输机会进行排序。
终端设备可以根据更新后的第三传输机会集合中全部传输机会的数量确定反馈码本的大小,根据P个第三传输机会集合的排序以及每个第三传输机会集合中传输机会的排序确定反馈码本的映射关系。
为了便于理解上述实现方式,下面结合上述表2、图4、图8,以及表3、图6、图9进行举例说明。
若网络设备配置时间指示k∈{2,3},根据上述表2可以确定出如图4所示的4个第一传输机会集合,具体的确定方式与前述实施例类似,此处不再赘述。由于slot n-5至slot n-1均为下行传输时隙,不存在与上下行配置参数冲突的传输机会,故确定出的第二传输机会集合与第一传输机会集合一致。
其中,第二传输机会集合1的[n-5{1,13}]与第二传输机会集合2的[n-5{1,13}]存在符号重叠,确定第二传输机会集合1与第二传输机会集合2属于第三传输机会集合1。第二传输机会集合3的[n-4{1,13}]与第二传输机会集合4的[n-4{1,13}]存在符号重叠的传输机会,确定第二传输机会集合3与第二传输机会集合4属于第三传输机会集合2。
在第三传输机会集合1中,由于第二传输机会集合1与第二传输机会集合2存在符号重叠的传输机会,因此,将第二传输机会集合1与第二传输机会集合2中位于相同时隙上的传输机会共同映射为一个传输机会,即,将第二传输机会集合1中的[n-5{1,13}]和第二传输机会集合1中的[n-5{1,13}]共同映射为一个传输机会;将第二传输机会集合1中的[n-3{0,6}]与第二传输机会集合1中的[n-3{7,7}]共同映射为一个传输机会,共同映射后的传输机会在slot n-3上的索引由符号6确定。不满足共同映射的传输机会进行单独映射,更新后的第三传输机会集合1如图8所示。
在第三传输机会集合2中,由于第二传输机会集合3与第二传输机会集合4存在符号重叠的传输机会,因此,将第二传输机会集合3与第二传输机会集合4中位于相同时隙上 的传输机会共同映射为一个传输机会,即,将第二传输机会集合3中的[n-4{1,13}]和第二传输机会集合4中的[n-4{1,13}]共同映射为一个传输机会;将第二传输机会集合3中的[n-2{0,6}]与第二传输机会集合4中的[n-2{7,7}]共同映射为一个传输机会,共同映射后的传输机会在slot n-2上的索引由符号6确定。不满足共同映射的传输机会进行单独映射,更新后的第三传输机会集合1如图8所示。
更新后的2个第三传输机会集合中共包括4个传输机会,若第一信道的最大传输码字为1,则反馈码本大小为4个比特。
由于第三传输机会集合1中第一个传输机会的起始时刻早于第三传输机会集合2中第一个传输机会的起始时刻,故第三传输机会集合1的传输机会排在第三传输机会集合2的传输机会之前。反馈码本4个比特的映射关系依次为:{[n-5{1,13}],[n-3{0,6}],[n-4{1,13}],[n-2{0,6}]}。
若网络设备配置时间指示k∈{2,3},根据上述表2可以确定出如图6所示的4个第一传输机会集合,具体的确定方式与前述实施例类似,此处不再赘述。由于slot n-5至slot n-1均为下行传输时隙,不存在与上下行配置参数冲突的传输机会,故确定出的第二传输机会集合与第一传输机会集合一致。
第二传输机会集合1的[n-3{0,6}]与第二传输机会集合3的[n-3{1,13}]存在符号重叠,第二传输机会集合1的[n-4{1,13}]与第二传输机会集合4的[n-4{1,13}]存在符号重叠,确定第二传输机会集合1、第二传输机会集合3和第二传输机会集合4属于第三传输机会集合1。第二传输机会集合2作为第三传输机会集合2。
在第三传输机会集合1中,共包括3个第二传输机会集合,其中,第二传输机会集合1与第二传输机会集合3存在符号重叠的传输机会,因此,将第二传输机会集合1与第二传输机会集合3中位于相同时隙上的传输机会共同映射为一个传输机会,即,将第二传输机会集合1中的[n-3{0,6}]与第二传输机会集合3中的[n-3{1,13}]共同映射为一个传输机会,共同映射后的传输机会在slot n-3上的索引由符号6确定。第二传输机会集合1与第二传输机会集合4存在符号重叠的传输机会,因此,将第二传输机会集合1与第二传输机会集合4中位于相同时隙上的传输机会共同映射为一个传输机会,即,将第二传输机会集合1中的[n-4{1,13}]与第二传输机会集合4中的[n-4{1,13}]共同映射为一个传输机会,共同映射后的传输机会在slot n-4上的索引由符号13确定。不满足共同映射的传输机会进行单独映射,更新后的第三传输机会集合1如图9所示。
得到的2个第三传输机会集合中共包括6个传输机会,若第一信道的最大传输码字为1,则反馈码本大小为6个比特。由于第三传输机会集合2中第一个传输机会的起始时刻早于第三传输机会集合1中第一个传输机会的起始时刻,故第三传输机会集合2的传输机会排在第三传输机会集合1的传输机会之前。反馈码本6个比特的映射关系依次为:{[n-5{1,13}],[n-3{7,7}],[n-4{1,13}],[n-3{0,6}],[n-2{0,6}],[n-2{7,7}]}。
在一种可能的设计中,可以配置网络设备在一个时隙中仅调度一个第一信道。在这种情况下,终端设备可以确定全部第二传输机会集合中所包含的全部传输机会所分布的时隙,根据时隙的数量确定反馈码本的大小,根据时隙的先后顺序确定反馈码本的映射关系。例如,在图4所示的第二传输机会集合中,全部传输机会分布在slot n-5、slot n-4、slot n-3和slot n-2中,假设第一信道的最大码字为1,则反馈码本的大小为4比特,反馈码本的映射关系依次为{slot n-5上的传输机会(简称[N-5]),slot n-4上的传输机会(简称[N-4]),slot  n-3上的传输机会(简称[N-3]),slot n-2上的传输机会(简称[N-2])}。又例如,在图6所示的第二传输机会集合中,全部传输机会分布在slot n-5、slot n-4、slot n-3和slot n-2中,假设第一信道的最大码字为1,则反馈码本的大小为4比特,反馈码本的映射关系依次为{[N-5],[N-4],[N-3],[N-2]}。
在以上的多种实现方式中,对第三传输机会集合中的每个传输机会进行单独反馈,该方式虽然使得反馈信息更加精准,但反馈信息需要占用较多的比特位。为了减少反馈信息所占用的比特位,还可以为终端设备配置绑定模式,即,终端设备针对每个DCI调度的一个或多个第一信道,进行绑定反馈。例如,若一个DCI调度了两个第一信道,则终端设备可以针对这两个第一信道进行绑定反馈,若终端设备成功接收到两个第一信道,则反馈一个ACK信息,若至少一个第一信道没有成功接收,则反馈一个NACK信息。
在一种可能的实现方式中,当终端设备被配置为针对每个DCI调度的全部第一信道见绑定反馈时,终端设备可以根据满足预设条件的多个第二传输机会集合生成一个第三传输机会集合,该第三传输机会集合包括满足预设条件的多个第二传输机会集合。其中,预设条件为,最后一个传输机会位于相同时隙内,且存在符号重叠的传输机会。将不满足预设条件的第二传输机会集合作为一个单独的第三传输机会集合。根据上述方式,可以得到P个第三传输机会集合。
终端设备可以根据P值确定反馈码本的大小,根据P个第三传输机会集合的排序确定反馈码本的映射关系。
为了便于理解上述绑定模式下的反馈码本确定方式,下面结合表2、图4、图10,以及表3、图6、图11进行举例说明。
以表2所示TDRA配置信息为例,若网络设备配置时间指示k∈{2,3},则确定出的第一传输机会集合和第二传输机会集合可以如图4所示。
由于图4中的第二传输机会集合1与第二传输机会集合2最后一个传输机会位于相同时隙内(slot n-3),且第二传输机会集合1中的[n-5{1,13}]与第二传输机会集合2中的[n-5{1,13}]存在符号重叠,满足预设条件,生成第三传输机会集合1,第三传输机会集合1包括第二传输机会集合1和第二传输机会集合2,如图10所示。由于图4中的第二传输机会集合3与第二传输机会集合4最后一个传输机会位于相同时隙内(slot n-2),且第二传输机会集合3中的[n-4{1,13}]与第二传输机会集合4中的[n-4{1,13}]存在符号重叠,满足预设条件,生成第三传输机会集合2,第三传输机会集合2包括第二传输机会集合3和第二传输机会集合4,如图10所示。
最终确定出2个第三传输机会集合,若第一信道的最大传输码字为1,则反馈码本大小为2个比特。将2个第三传输机会集合按照第一个传输机会起始传输时间从早到晚进行排序,排序后的顺序分别为第三传输机会集合1、第三传输机会集合2,故反馈码本2个比特的映射关系依次为:第三传输机会集合1、第三传输机会集合2。或者,也可以将2个第三传输机会集合按照结束传输时间从早到晚进行排序。
进一步的,由于每个第二传输机会集合对应的传输机会,为一个DCI能够调度的第一信道的传输机会,因此,每个第二传输机会集合,可以理解为对应一个可能的DCI,因此,第二传输机会集合1对应DCI1,第二传输机会集合2对应DCI2,第二传输机会集合3对应DCI3,第二传输机会集合4对应DCI4。故而,第三传输机会集合1对应DCI1和DCI2,第三传输机会集合2对应DCI3和DCI4,相应的,反馈码本2比特的映射关系依次为:[DCI1 或DCI2]、[DCI3或DCI4],其中[DCI n]表示DCI n调度的第一信道的传输机会。终端可以根据接收到的DCI,确定该DCI调度的第一信道的反馈信息在反馈码本中的位置。
以表3所示TDRA配置信息为例,若网络设备配置时间指示k∈{2,3},则确定出的第一传输机会集合和第二传输机会集合可以如图6所示。
由于图6中的第二传输机会集合1与第二传输机会集合2最后一个传输机会位于相同时隙内(slot n-3),但第二传输机会集合1与第二传输机会集合2不存在符号重叠,不满足合并条件,因此,将第二传输机会集合1与第二传输机会集合2分别作为第三传输机会集合1和第三传输机会集合2,如图11所示。由于图6中的第二传输机会集合3与第二传输机会集合4最后一个传输机会位于相同时隙内(slot n-2),但第二传输机会集合3与第二传输机会集合4不存在符号重叠,不满足合并条件,因此,将第二传输机会集合3与第二传输机会集合4分别作为第三传输机会集合3和第三传输机会集合4,如图11所示。
最终确定出4个第三传输机会集合,若第一信道的最大传输码字为1,则反馈码本大小为4个比特。将4个第三传输机会集合按照起始传输时间从早到晚进行排序(若第一个传输机会的起始传输时间相同,继续比较第二个传输机会的起始传输时间,以此类推),分别为第三传输机会集合2、第三传输机会集合1、第三传输机会集合4、第三传输机会集合3,故反馈码本4个比特的映射关系依次为:第三传输机会集合2、第三传输机会集合1、第三传输机会集合4、第三传输机会集合3。或者,也可以将4个第三传输机会集合按照结束传输时间从早到晚进行排序。
在另一种可能的实现方式中,当终端设备被配置为针对每个DCI调度的全部第一信道进行绑定反馈时,若一个第二传输机会集合中的最后一个传输机会与其他任一第二传输机会集合的最后一个传输机会均不存在符号重叠,则将该第二传输机会集合作为一个独立的第三传输机会集合;若一个第二传输机会集合中的最后一个传输机会与其他第二传输机会集合中最后一个传输机会存在符号重叠,则将最后一个传输机会存在符号重叠的多个第二传输机会集合合并为一个第三传输机会集合。然后对第三传输机会集合按照最后一个传输机会的起始传输时间或结束传输时间进行排序,根据第三传输机会集合的数量和排序确定反馈码本的大小和映射关系。
以表2所示TDRA配置信息为例,若网络设备配置时间指示k∈{2,3},可以确定出如图4所示的4个第一传输机会集合,由于每个传输机会均不与上下行配置参数冲突,第二传输机会集合与第一传输机会集合一致。由于每个第二传输机会集合的最后一个传输机会与其他第二传输机会集合的最后一个传输机会均不存在资源重叠,故每个第二传输机会集合单独作为一个第三传输机会集合。第三传输机会集合1、第三传输机会集合2、第三传输机会集合3、第三传输机会集合4的最后一个传输机会的结束时间分别为:slot n-3上的符号5、slot n-3上的符号13、slot n-2上的符号5、slot n-2上的符号13;按照最后一个传输机会的结束时间对第三传输机会集合进行排序,依次为:第三传输机会集合1、第三传输机会集合2、第三传输机会集合3、第三传输机会集合4。因此,若最大传输码字为1,则确定出的反馈码本的大小为4比特,该4比特的映射关系依次为:第三传输机会集合1、第三传输机会集合2、第三传输机会集合3、第三传输机会集合4。
以表3所示TDRA配置信息为例,若网络设备配置时间指示k∈{2,3},可以确定出如图6所示的4个第一传输机会集合,由于每个传输机会均不与上下行配置参数冲突,第二传输机会集合与第一传输机会集合一致。由于每个第二传输机会集合的最后一个传输机会 与其他第二传输机会集合的最后一个传输机会均不存在资源重叠,故得到的第三传输机会集合与第二传输机会集合一致。第三传输机会集合1、第三传输机会集合2、第三传输机会集合3、第三传输机会集合4的最后一个传输机会的结束时间分别为:slot n-3上的符号5、slot n-3上的符号13、slot n-2上的符号5、slot n-2上的符号13;按照最后一个传输机会的结束时间对第三传输机会集合进行排序,依次为:第三传输机会集合1、第三传输机会集合2、第三传输机会集合3、第三传输机会集合4。若最大传输码字为1,则确定出的反馈码本的大小为4比特,该4比特的映射关系依次为:第三传输机会集合1、第三传输机会集合2、第三传输机会集合3、第三传输机会集合4。
此外,本申请实施例还提供了一种确定反馈码本大小和映射关系的实现方式,具体的,在执行上述步骤202时,即在第一传输机会集合中删除与上下行配置参数冲突的传输机会得到N个第二传输机会集合时,若删除的传输机会为其所在第一传输机会集合中最后一个传输机会,则将删除的传输机会作为该第一传输机会集合经过删除后得到的第二传输机会集合的最后一个传输机会。然后再对最后一个传输机会存在符号重叠的第二传输机会集合进行合并得到第三传输机会集合,将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个单独的第三传输机会集合。再对第三传输机会集合按照最后一个传输机会的起始时间或结束传输时间进行排序,根据第三传输机会集合的数量和排序确定反馈码本的大小和映射关系。具体的,在确定第一传输机会集合中最后一个传输机会与上下行配置参数冲突时,可以在第二传输机会集合中将冲突的传输机会删除,并将第二传输机会集合中最后一个传输机会作为或标记为删除前的最后一个传输机会,或者,也可以将与上下行配置参数冲突的最后一个传输机会作为或标记为不可用传输机会,即确定出的第二传输机会集合中虽然存在该传输机会但该传输机会为不可用的传输机会;或者,也可以采用其他方式实现。
例如,在配置有表2所示TDRA配置信息时,若网络设备配置时间指示k∈{2,3},可以确定出如图4所示的4个第一传输机会集合。根据上下行配置参数,确定第一传输机会集合1中的最后一个传输机会[n-3{0,6}]与上下行配置参数重叠、第一传输机会集合3中的最后一个传输机会[n-2{0,6}]与上下行配置参数重叠,则删除这两个传输机会,可用的传输机会为:第二传输机会集合1{[n-5{1,13}],第二传输机会集合2{[n-5{1,13}],[n-3{7,7}]},第二传输机会集合3{[n-4{1,13}]},第二传输机会集合4{[n-4{1,13}],[n-2{7,7}]}。然而,由于删除的两个传输机会均为其各自所在第一传输机会集合的最后一个传输机会,因此,在进行后续确定第三传输机会集合时,需要将删除的传输机会[n-3{0,6}]作为第二传输机会集合1的最后一个传输机会,将删除的传输机会[n-2{0,6}]作为第二传输机会集合3的最后一个传输机会。由于4个第二传输机会集合的最后一个传输机会均不存在符号重叠,故确定出的第三传输机会集合与第二传输机会集合一致,且第三传输机会集合的最后一个传输机会与第二传输机会集合的最后一个传输机会一致。此时,实际的第三传输机会集合分别为:第三传输机会集合1{[n-5{1,13}],第三传输机会集合2{[n-5{1,13}],[n-3{7,7}]},第三传输机会集合3{[n-4{1,13}]},第三传输机会集合4{[n-4{1,13}],[n-2{7,7}]},但其标记的最后一个传输机会分别为:[n-3{0,6}]、[n-3{7,7}]、[n-2{0,6}]、[n-2{7,7}]。根据标记的最后一个传输机会的结束传输时间,对4个第三传输机会集合进行排序。最后根据第三传输机会集合的数量和排序确定反馈码本的大小和映射关系。
本申请实施例还提供了一种确定反馈码本大小和映射关系的实现方式,在执行上述步 骤202之前,即,对第一传输机会集合删除与上下行配置参数冲突的传输机会之前,可以先根据第一传输机会集合的最后一个传输机会对第一传输机会集合进行合并得到第三传输机会集合。具体的,将K*L个第一传输机会集合中,最后一个传输机会存在符号重叠的至少两个第一传输机会集合,合并为一个第三传输机会集合,将最后一个传输机会不存在符号重叠的第一传输机会集合作为一个第三传输机会集合;并根据第三传输机会集合的最后一个传输机会的起始传输时间或结束传输时间对第三传输机会集合进行排序。然后再在第三传输机会集合中,删除与上下行配置参数冲突的传输机会,得到N个第二传输机会集合,第二传输机会集合的排序,根据其各自对应的第三传输机会集合的排序确定。然后即可根据第二传输机会集合的数量和排序,确定反馈码本的大小和映射关系。
需要统一说明的是,在本申请实施例中,“删除”也可理解“不包含”,例如删除传输机会集合中与上下行配置参数冲突的传输机会,也就是该传输机会集合中不再包含该与上下行配置参数冲突的传输机会。
前述确定反馈码本的方法均是针对一个激活小区中的第一信道,在一些情况下,终端设备可能激活了多个小区,此时,终端设备可以按照前述实施例分别确定每个小区上的反馈码本,然后按照小区索引的顺序,对确定出的每个小区的反馈码本进行拼接,并根据拼接后的反馈码本发送反馈信息。由于不同小区之间通常采用不同的频域资源,因此,可以认为网络设备在不同小区上发送的第一信道不存在资源重叠的问题,故不同小区间可以不考虑资源重叠的问题,进行简单的码本拼接即可。如前所述,在一个激活小区中确定反馈码本大小和映射关系的方式有多种,若不同小区配置的参数导致在不同激活小区上需要采用不同的码本确定方式,故,多个激活小区中确定反馈码本的方式可能不同。例如,若小区1中每个时隙仅能够传输1个第一信道,而其他小区中每个时隙能够传输多个第一信道,则在小区1和在其他小区中确定反馈码本的方式可以不同。
基于相同的技术构思,本申请实施例还提供一种确定反馈码本的方法,用于解决网络设备确定反馈码本的问题。参见图9为该方法的流程示意图,如图所示,该方法可以包括以下步骤:
步骤901、网络设备确定第一信道在一个激活小区上的K*L个第一传输机会集合。
步骤902、若第一传输机会集合中存在与上下行配置参数冲突的传输机会,在第一传输机会集合中删除冲突的传输机会,得到N个第二传输机会集合。
其中,网络设备确定第一传输机会集合及第二传输机会集合的方式与前述实施例中终端设备确定第一传输机会集合、第二传输机会集合的方式一致,可参见前述实施例确定第一传输机会集合、第二传输机会集合的任一实现方式。
步骤903、网络设备接收终端设备发送的反馈信息,该反馈信息所对应的反馈码本的大小和映射关系根据上述N个第二传输机会集合确定。
其中,网络设备确定反馈码本的大小及映射关系的方式与前述实施例中终端设备确定反馈码本大小及映射关系的方式一致,可参见前述实施例确定反馈码本大小及映射关系的任一实现方式。
一个DCI可以调度一个或多个第一信道,当一个DCI调度多个第一信道但部分传输机会存在冲突时,网络设备仍可以在不冲突的传输机会上发送第一信道,从而实现灵活调度、避免资源浪费。传统的反馈码本确定方法无法沿用于该场景中,因为若采用传统的反馈码 本确定方法,当仅部分传输机会存在冲突时,存在冲突的传输机会所在的第一传输机会集合全部删除,因此确定出的反馈码本与终端设备确定的码本存在差异,无法准确反馈。而采用本申请实施例提供的反馈码本确定方法后,当包含多个传输机会的第一传输机会集合中存在与上下行配置冲突的传输机会时,仅删除存在冲突的传输机会,保留不存在冲突的传输机会,而非直接将该第一传输机会集合删除,满足了一个DCI可调度多个第一信道的场景中灵活调度的需求,且能够准确确定出与终端设备一致的半静态HARQ-ACK码本,避免与终端设备之间的码本偏差。
基于相同的技术构思,本申请实施例还提供一种通信装置,该通信装置用于实现上述方法实施例中终端设备所执行的步骤。
在一种可能的设计中,该通信装置可以包括执行上述方法实施例中终端设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
示例性的,该通信装置可以如图12所示,包括确定模块1201和发送模块1202。具体的,确定模块1201,用于确定第一信道在一个激活小区上的K*L个第一传输机会集合;发送模块1202,用于发送反馈信息。其中,确定模块1201可以参照前述任一实现方式确定第一传输机会集合、第二传输机会集合,进一步的,还可以参照前述任一实现方式确定反馈码本。
基于相同的技术构思,本申请实施例还提供一种通信装置,该通信装置用于实现上述方法实施例中网络设备所执行的步骤。
在一种可能的设计中,该通信装置可以包括执行上述方法实施例中网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
示例性的,该通信装置可以如图13所示,包括确定模块1301和接收模块1302。具体的,确定模块1301,用于确定第一信道在一个激活小区上的K*L个第一传输机会集合;接收模块1302,用于接收反馈信息。其中,确定模块1301可以参照前述任一实现方式确定第一传输机会集合、第二传输机会集合,进一步的,还可以参照前述任一实现方式确定反馈码本。
基于相同的技术构思,本申请实施例还提供一种通信装置。该通信装置包括如图14所示的处理器1401,以及与处理器1401连接的通信接口1402。
处理器1401可以是通用处理器,微处理器,特定集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件,分立门或者晶体管逻辑器件,或一个或多个用于控制本申请方案程序执行的集成电路等。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
通信接口1402,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
在本申请实施例中,处理器1401用于调用通信接口1402执行接收和/或发送的功能,并执行如前任一种可能实现方式所述的方法。
进一步的,该通信装置还可以包括存储器1403以及通信总线1404。
存储器1403,用于存储程序指令和/或数据,以使处理器1401调用存储器1403中存储的指令和/或数据,实现处理器1401的上述功能。存储器1403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1403可以是独立存在,例如片外存储器,通过通信总线1404与处理器1401相连接。存储器1403也可以和处理器1401集成在一起。
通信总线1404可包括一通路,在上述组件之间传送信息。
示例性的,通信装置可以为上述方法实施例中的终端设备,也可以是上述方法实施例中的网络设备。
其中,处理器1401用于实现通信装置的数据处理操作,通信接口1402用于实现通信装置的接收操作和发送操作。
当该通信装置为终端设备时,处理器1401用于确定第一信道在一个激活小区上的K*L个第一传输机会集合;通过所述通信接口1402发送反馈信息。
此外,上述各个部件还可以用于支持上述方法实施例中终端设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为网络设备时,处理器1401用于确定第一信道在一个激活小区上的K*L个第一传输机会集合;通过所述通信接口1402接收反馈信息。
此外,上述各个部件还可以用于支持上述方法实施例中网络设备所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如前所述任一种可能的实现方式所述的确定反馈码本的方法被执行。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被执行。
本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包 括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种确定反馈码本的方法,其特征在于,所述方法包括:
    终端设备确定第一信道在一个激活小区上的K*L个第一传输机会集合,K表示为所述终端设备配置的时间指示k值的个数,所述时间指示k值表示所述终端设备在第n个时隙上发送的反馈信息用于反馈所述终端设备在第n-k个时隙或者在第n-k个时隙及第n-k之前的时隙上是否成功接收所述第一信道,L表示时域资源配置TDRA表的行数,所述TDRA表的每行包含至少一个起始符号和长度指示符SLIV,每个所述第一传输机会集合为根据一个时间指示k值和所述TDRA表的其中一行中的SLIV确定出的传输机会;
    若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,N小于等于K*L;所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向;
    所述终端设备发送反馈信息,所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;
    将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;
    对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;
    所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
  3. 根据权利要求1所述的方法,其特征在于,所述若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,包括:
    若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,若删除的传输机会为所在第一传输机会集合中最后一个传输机会,将所述删除的传输机会作为经过删除后得到的第二传输机会集合的最后一个传输机会;
    所述方法还包括:
    将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;
    将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;
    对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;
    所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:若所述N个第二传输机会集合中存在属于不同第二传输机会集合的传输机会的符号重叠,对相同时隙内存在符号重叠和/或不存在符号重叠的传输机会进行合并,得到P个第三传输机会集合,P小于等于N;
    所述反馈码本的大小和映射关系,根据所述P个第三传输机会集合确定。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中,i为1~N中任意整数,j为i+1~N中任意整数;
    将不需要共同映射的传输机会单独映射为一个传输机会,所述单独映射后的传输机会在所在时隙内的索引由映射前的传输机会的结束时刻确定;
    所述反馈码本的大小根据映射后的传输机会的数量确定;
    将所述映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,所述反馈码本的映射关系根据排序后的传输机会确定。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定接收到的所述第一信道所对应的第二传输机会集合中的传输机会,根据所述传输机会经过映射后的传输机会确定所述接收到的第一信道的反馈信息在所述反馈码本中对应的比特位。
  7. 根据权利要求1所述的方法,其特征在于,所述反馈码本的大小,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的个数确定;
    所述反馈码本的映射关系,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的先后顺序确定。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述终端设备激活L个小区,L为大于1的整数;
    所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定,包括:
    根据第l个激活小区上的N l个第二传输机会集合,确定在所述第l个激活小区上所述第一信道反馈码本的大小和映射关系;
    按照小区索引从小到大的顺序,对每个小区上所述第一信道反馈码本进行拼接,确定拼接后的所述第一信道反馈码本大小和映射关系。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一信道为物理下行共享信道PDSCH或用于释放半静态调度SPS的物理下行控制信道PDCCH。
  10. 一种确定反馈码本的方法,其特征在于,所述方法包括:
    网络设备确定第一信道在一个激活小区上的K*L个第一传输机会集合,K表示为所述终端设备配置的时间指示k值的个数,所述时间指示k值表示所述终端设备在第n个时隙上发送的反馈信息用于反馈所述终端设备在第n-k个时隙或者在第n-k个时隙及第n-k之前的时隙上是否成功接收所述第一信道,L表示时域资源配置TDRA表的行数,所述TDRA表的每行包含至少一个起始符号和长度指示符SLIV,每个所述第一传输机会集合为根据一 个时间指示k值和所述TDRA表的其中一行中的SLIV确定出的传输机会;
    若所述任意一个第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,N小于等于K*L;所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向;
    所述网络设备接收所述终端设备发送的反馈信息,所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;
    将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;
    对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;
    所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
  12. 根据权利要求10所述的方法,其特征在于,所述若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,包括:
    若任意一个所述第一传输机会集合中存在与上下行配置参数冲突的传输机会,在所述第一传输机会集合中删除所述冲突的传输机会,得到N个第二传输机会集合,若删除的传输机会为所在第一传输机会集合中最后一个传输机会,将所述删除的传输机会作为经过删除后得到的第二传输机会集合的最后一个传输机会;
    所述方法还包括:
    将所述N个第二传输机会集合中,最后一个传输机会存在符号重叠的至少两个第二传输机会集合,合并为一个第三传输机会集合;
    将最后一个传输机会不存在符号重叠的第二传输机会集合作为一个第三传输机会集合;
    对得到的P个第三传输机会集合,按照最后一个传输机会的起始传输时间或结束传输时间进行排序;
    所述反馈码本的大小和映射关系,根据所述第三传输机会集合的数量和及所述排序确定。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:若所述N个第二传输机会集合中存在属于不同第二传输机会集合的传输机会的符号重叠,对相同时隙内存在符号重叠和/或不存在符号重叠的传输机会进行合并,得到P个第三传输机会集合,P小于等于N;
    所述反馈码本的大小和映射关系,根据所述P个第三传输机会集合确定。
  14. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中 处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中,i为1~N中任意整数,j为i+1~N中任意整数;
    将不需要共同映射的传输机会单独映射为一个传输机会,所述单独映射后的传输机会在所在时隙内的索引由映射前的传输机会的结束时刻确定;
    所述反馈码本的大小根据映射后的传输机会的数量确定;
    将所述映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,所述反馈码本的映射关系根据排序后的传输机会确定。
  15. 根据权利要求10所述的方法,其特征在于,所述反馈码本的大小,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的个数确定;
    所述反馈码本的映射关系,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的先后顺序确定。
  16. 根据权利要求10-14任一项所述的方法,其特征在于,所述终端设备激活L个小区,L为大于1的整数;
    所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定,包括:
    根据第l个激活小区上的N l个第二传输机会集合,确定在所述第l个激活小区上所述第一信道反馈码本的大小和映射关系;
    按照小区索引从小到大的顺序,对每个小区上所述第一信道反馈码本进行拼接,确定拼接后的所述第一信道反馈码本大小和映射关系。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述第一信道为物理下行共享信道PDSCH或用于释放半静态调度SPS的物理下行控制信道PDCCH。
  18. 一种确定反馈码本的方法,其特征在于,所述方法包括:
    终端设备确定第一信道在一个激活小区上的多个第一传输机会集合,所述第一传输机会集合包含多个传输机会;
    所述终端设备发送反馈信息,所述反馈信息的反馈码本的大小和映射关系根据第三传输机会集合的数量及排序确定;
    其中,所述第三传输机会集合包括N个第二传输机会集合中的至少两个第二传输机会集合包含的传输机会,所述至少两个第二传输机会集合的最后一个传输机会存在符号重叠,或者所述第三传输机会集合包括一个所述第二传输机会集合包含的传输机会;
    其中,每个所述第二传输机会集合包括所述第一传输机会集合中与上下行配置参数不冲突的传输机会,若所述第一传输机会集合中与上下行配置参数冲突的传输机会为所述第一传输机会集合中的最后一个传输机会,则第二传输机会集合中包含所述最后一个传输机会,所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向,所述N小于或等于所述多个第一传输机会集合的个数。
  19. 根据权利要求18所述的方法,其特征在于,所述第三传输机会集合的个数为P,所述P小于或等于所述N,所述P个第三传输机会集合按照最后一个传输机会的起始传输时间或结束传输时间进行排序。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:若所述N个第二传输机会集合中存在属于不同第二传输机会集合的传输机会的符号重叠,对相同时隙内存在 符号重叠和/或不存在符号重叠的传输机会进行合并,得到P个第三传输机会集合,P小于等于N;
    所述反馈码本的大小和映射关系,根据所述P个第三传输机会集合确定。
  21. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中,i为1~N中任意整数,j为i+1~N中任意整数;
    将不需要共同映射的传输机会单独映射为一个传输机会,所述单独映射后的传输机会在所在时隙内的索引由映射前的传输机会的结束时刻确定;
    所述反馈码本的大小根据映射后的传输机会的数量确定;
    将所述映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,所述反馈码本的映射关系根据排序后的传输机会确定。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定接收到的所述第一信道所对应的第二传输机会集合中的传输机会,根据所述传输机会经过映射后的传输机会确定所述接收到的第一信道的反馈信息在所述反馈码本中对应的比特位。
  23. 根据权利要求18所述的方法,其特征在于,所述反馈码本的大小,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的个数确定;
    所述反馈码本的映射关系,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的先后顺序确定。
  24. 根据权利要求18-23任一项所述的方法,其特征在于,所述终端设备激活L个小区,L为大于1的整数;
    所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定,包括:
    根据第l个激活小区上的N l个第二传输机会集合,确定在所述第l个激活小区上所述第一信道反馈码本的大小和映射关系;
    按照小区索引从小到大的顺序,对每个小区上所述第一信道反馈码本进行拼接,确定拼接后的所述第一信道反馈码本大小和映射关系。
  25. 根据权利要求18-24任一项所述的方法,其特征在于,所述第一信道为物理下行共享信道PDSCH或用于释放半静态调度SPS的物理下行控制信道PDCCH。
  26. 一种确定反馈码本的装置,其特征在于,包括:
    确定模块,用于确定第一信道在一个激活小区上的多个第一传输机会集合,所述第一传输机会集合包含多个传输机会;
    发送模块,用于发送反馈信息,所述反馈信息的反馈码本的大小和映射关系根据第三传输机会集合的数量及排序确定;
    其中,所述第三传输机会集合包括N个第二传输机会集合中的至少两个第二传输机会集合包含的传输机会,所述至少两个第二传输机会集合的最后一个传输机会存在符号重叠,或者所述第三传输机会集合包括一个所述第二传输机会集合包含的传输机会;
    其中,每个所述第二传输机会集合包括所述第一传输机会集合中与上下行配置参数不冲突的传输机会,若所述第一传输机会集合中与上下行配置参数冲突的传输机会为所述第一传输机会集合中的最后一个传输机会,则第二传输机会集合中包含所述最后一个传输机会,所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向,所述N小于或等于所述多个第一传输机会集合的个数。
  27. 一种确定反馈码本的装置,其特征在于,包括:
    确定模块,用于确定第一信道在一个激活小区上的多个第一传输机会集合,所述第一传输机会集合包含多个传输机会;
    接收模块,用于接收终端设备发送的反馈信息,所述反馈信息的反馈码本的大小和映射关系根据第三传输机会集合的数量及排序确定;
    其中,所述第三传输机会集合包括N个第二传输机会集合中的至少两个第二传输机会集合包含的传输机会,所述至少两个第二传输机会集合的最后一个传输机会存在符号重叠,或者所述第三传输机会集合包括一个所述第二传输机会集合包含的传输机会;
    其中,每个所述第二传输机会集合包括所述第一传输机会集合中与上下行配置参数不冲突的传输机会,若所述第一传输机会集合中与上下行配置参数冲突的传输机会为所述第一传输机会集合中的最后一个传输机会,则第二传输机会集合中包含所述最后一个传输机会,所述上下行配置参数用于指示一个激活小区内以时隙和/或符号为单位的上下行的传输方向,所述N小于或等于所述多个第一传输机会集合的个数。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第三传输机会集合的个数为P,所述P小于或等于所述N,所述P个第三传输机会集合按照最后一个传输机会的起始传输时间或结束传输时间进行排序。
  29. 根据权利要求26或27所述的装置,其特征在于,所述确定模块还用于:若所述N个第二传输机会集合中存在属于不同第二传输机会集合的传输机会的符号重叠,对相同时隙内存在符号重叠和/或不存在符号重叠的传输机会进行合并,得到P个第三传输机会集合,P小于等于N;
    所述反馈码本的大小和映射关系,根据所述P个第三传输机会集合确定。
  30. 根据权利要求26或27所述的装置,其特征在于,所述确定模块还用于:
    若第i个第二传输机会集合中的至少一个传输机会与第j个第二传输机会集合中的至少一个传输机会存在符号重叠,将第i个第二传输机会集合和第j个第二传输机会集合中处于相同时隙的传输机会的共同映射为一个传输机会,所述共同映射后的传输机会在所述时隙内的索引,由所述处于相同时隙内的传输机会中结束时刻最早的传输机会的结束时刻确定;其中,i为1~N中任意整数,j为i+1~N中任意整数;
    将不需要共同映射的传输机会单独映射为一个传输机会,所述单独映射后的传输机会在所在时隙内的索引由映射前的传输机会的结束时刻确定;
    所述反馈码本的大小根据映射后的传输机会的数量确定;
    将所述映射后的传输机会按照时隙从早到晚排序,相同时隙内的传输机会按照索引对应的时刻从早到晚进行排序,所述反馈码本的映射关系根据排序后的传输机会确定。
  31. 根据权利要求26或27所述的装置,其特征在于,所述反馈码本的大小,具体根据所述N个第二传输机会集合中包含的全部传输机会所分布的时隙的个数确定;
    所述反馈码本的映射关系,具体根据所述N个第二传输机会集合中包含的全部传输机 会所分布的时隙的先后顺序确定。
  32. 根据权利要求26-30任一项所述的装置,其特征在于,所述终端设备激活L个小区,L为大于1的整数;
    所述反馈信息的反馈码本的大小和映射关系根据所述N个第二传输机会集合确定,包括:
    根据第l个激活小区上的N l个第二传输机会集合,确定在所述第l个激活小区上所述第一信道反馈码本的大小和映射关系;
    按照小区索引从小到大的顺序,对每个小区上所述第一信道反馈码本进行拼接,确定拼接后的所述第一信道反馈码本大小和映射关系。
  33. 根据权利要求26-32任一项所述的装置,其特征在于,所述第一信道为物理下行共享信道PDSCH或用于释放半静态调度SPS的物理下行控制信道PDCCH。
  34. 一种通信装置,其特征在于,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如权利要求1-9任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如权利要求10-17任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如权利要求18-25任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-25任一项所述的方法。
PCT/CN2022/108708 2021-08-06 2022-07-28 一种确定反馈码本的方法及通信装置 WO2023011320A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110904156 2021-08-06
CN202110904156.2 2021-08-06
CN202111161297.6A CN115706654A (zh) 2021-08-06 2021-09-30 一种确定反馈码本的方法及通信装置
CN202111161297.6 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023011320A1 true WO2023011320A1 (zh) 2023-02-09

Family

ID=85154267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108708 WO2023011320A1 (zh) 2021-08-06 2022-07-28 一种确定反馈码本的方法及通信装置

Country Status (1)

Country Link
WO (1) WO2023011320A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943806A (zh) * 2018-09-21 2020-03-31 电信科学技术研究院有限公司 一种混合自动重传请求确认码本的传输方法和设备
CN111436144A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111435881A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 用于无线通信的方法和通信装置
CN111757493A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 一种信息发送方法及装置
US20210112583A1 (en) * 2019-10-15 2021-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for signaling starting symbols in multiple pdsch transmission occasions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943806A (zh) * 2018-09-21 2020-03-31 电信科学技术研究院有限公司 一种混合自动重传请求确认码本的传输方法和设备
CN111436144A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111435881A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 用于无线通信的方法和通信装置
CN111757493A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 一种信息发送方法及装置
US20210112583A1 (en) * 2019-10-15 2021-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for signaling starting symbols in multiple pdsch transmission occasions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "PDSCH/PUSCH enhancements for NR 52.6-71 GHz", 3GPP DRAFT; R1-2105556, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011522 *

Similar Documents

Publication Publication Date Title
US11553557B2 (en) Method and apparatus for performing cooperative communication in wireless communication system
US11924849B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
WO2020144261A1 (en) Advanced feedback in sidelink
US11844147B2 (en) Method and apparatus for resource allocation for network coordination
US20150117271A1 (en) Method and apparatus for transmitting hybrid automatic repeat request acknowledge information
JP7364662B2 (ja) Urllcサービスのための低レイテンシharqプロトコル
WO2020192748A1 (en) Method and apparatus for handling overlapping pusch durations
JP2020523841A (ja) フィードバック情報の送受信方法、装置及び通信システム
US20230156740A1 (en) Method and device for transmitting and receiving pdcch in wireless communication system
US11805525B2 (en) Method and apparatus for determining of transmission resources for uplink channels of use for dual connectivity in wireless communication system
US20220312337A1 (en) Method and device for controlling uplink transmission power for network coordination communication system
JP2023536741A (ja) 拡張クロスキャリアスケジューリングのための制御チャネルハンドリング
TWI551091B (zh) 處理通訊運作的方法及其通訊裝置
WO2021016968A1 (zh) 上行信道传输方式的确定方法、装置、设备及介质
WO2021156071A1 (en) Dynamic processing time and dynamic blind decoding capability for nr user devices
EP3955669A1 (en) Communication method and device
WO2023051324A1 (zh) 一种随机接入前导的发送方法、接收方法及通信装置
WO2023011320A1 (zh) 一种确定反馈码本的方法及通信装置
WO2021142706A1 (zh) 资源冲突的解决方法、装置、终端和存储介质
US10728921B2 (en) Information processing method and device
WO2023011097A1 (zh) 反馈信息传输方法及相关装置
WO2024032732A1 (zh) Harq-ack码本反馈方法和通信装置
WO2022259556A1 (ja) 端末及び通信方法
WO2024065486A1 (zh) Harq-ack码本构建方法、装置、设备及存储介质
US11818081B2 (en) Method and device for transmitting uplink channel, by terminal, for dual connectivity in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE